误差与有效数字
误差与有效数字

误差与有效数字一、误差:1.系统误差产生的原因及特点(1)来源:一是实验原理不够完善;二是实验仪器不够精确;三是实验方法粗略.例如,在验证力的平行四边形定则实验中,弹簧测力计的零点未校准;在验证牛顿第二定律的实验中,用砂和砂桶的重力代替对小车的拉力等.(2)基本特点:实验结果与真实值的偏差总是偏大或偏小.(3)减小方法:改善实验原理;提高实验仪器的测量精确度;设计更精巧的实验方法.2.偶然误差产生的原因及特点(1)来源:偶然误差是由于各种偶然因素对实验者和实验仪器的影响而产生的.例如,用刻度尺多次测量长度时估读值的差异;电源电压的波动引起的测量值微小变化.(2)基本特点:多次重复同一测量时,偶然误差有时偏大,有时偏小,且偏大和偏小的机会比较接近.(3)减小方法:多次测量取平均值可以减小偶然误差.除上述两类误差外,还有因工作疏忽而引起的过失误差。
如试剂用错,度读错,砝码认错,或者计算错误,均可引起很大的误差,这些都应力求避免。
3.绝对误差和相对误差从分析数据看,误差分为绝对误差和相对误差.绝对误差:绝对误差是测量值与真实值之差,即绝对误差=|测量值-真实值|.它反映了测量值偏离真实值的大小.相对误差:相对误差等于绝对误差与真实值之比,常用百分数表示.它反映了实验结果的精确程度.对于两个实验值的评价,必须考虑相对误差,绝对误差大者,其相对误差不一定大.【例1】指出以下误差是系统误差还是偶然误差A.测量小车质量时天平不等臂、或砝码不标准,天平底盘未调平所致的误差。
B.用有毫米刻度的尺测量物体长度,毫米以下的数值只能用眼睛估计而产生的误差C.用安培表内接法测电阻时,测量值比真实值大D.在验证共点力合成的平行四边形法则实验中,在画出两分力方向及合力方向时,画线不准所致误差【解析】A是选项是实验仪器不精确所致,是系统误差;B选项是由于测量者在估计时由于视线方向不准造成的,是偶然误差;C选项是实验原理不完善、忽略电流表内阻影响所致,是系统误差;D选项是画力方向时描点不准、直尺略有移动,或画线时铅笔倾斜程度不一致所致,是偶然误差。
误差和有效数字介绍课件

误差的表示
误差通常用标准差或相对误差来 表示,这些值可以帮助我们了解
测量结果的可靠性和准确性。
有效数字的保留
在处理测量数据时,应根据误差 的大小来确定有效数字的保留, 以确保结果的准确性和可靠性。
有效数字对误差的影响
01
有效数字的精度
有效数字的精度决定了测量结果的精度,保留更多的有效数字可以提供
误差和有效数字介绍课件
目录
• 误差的基本概念 • 有效数字的基本概念 • 误差与有效数字的关系 • 误差的减小和避免 • 有效数字的取舍原则 • 误差和有效数字的应用实例
01
误差的基本概念
误差的定义
01
02
03
误差
测量值与真实值之间的差 异。
误差的来源
测量工具、测量方法、环 境条件、操作人员等。
质量测量的误差和有效数字分析
总结词
有效数字的位数是衡量质量测量结果 可靠性的重要指标。
详细描述
在质量测量中,有效数字的位数需要 根据称重工具的精度和称重方法的要 求来确定。例如,如果使用分辨率
THANKS
感谢观看
例子
将2345转换为科学记数法为2.345×10^3。
06
误差和有效数字的应用实例
长度测量的误差和有效数字分析
总结词
长度测量中的误差和有效数字分析是确保测量准确性的关键。
详细描述
在长度测量中,由于测量工具、测量方法和测量环境等因素的影响,测量结果往往存在误差。为了准确评估测量结果 的可靠性,需要对长度测量中的误差进行分析,并确定有效数字的位数。
误差的表示方法
绝对差
测量值与真实值之间的差值。
相对误差
实验中的误差和有效数字

【补偿训练】
(多选)用最小刻度为1mm的刻度尺测量的长度如下,
其中记录正确的是( )
A.3.10cm
B.3.1cm
C.3.100cm
D.0.31cm
【解析】选A、D。最小刻度为1mm的刻度尺测量的数据
若用cm作单位,小数点后面有两位,则A、D正确,B、
C错误。
【拓展例题】 不同物理量的有效数字 【典例】写出下列各测量量的有效数字位数。 (1)长度:3.142×103mm,有效数字位数______ (2)质量:0.0030kg,有效数字位数______ (3)时间:11.3s,有效数字位数______ (4)温度:104℃,有效数字位数______ (5)电压:14V,有效数字位数______
【典例示范】
用毫米刻度尺测量一物体的直径,下列数据中正确的是
()
A.21.4cm
B.21.420cm
C.21cm
D.21.42cm
【解析】选D。毫米刻度尺最小刻度是1mm,若用cm作
单位小数点后面应有两位,四位有效数字,则D正确,
A、B、C错误。
【素养训练】 1.甲、乙两位同学用两只刻度尺测同一物体长度,甲测量后记录数 据是16mm,乙测量后记录数据是16.0mm,下面说法正确的是( ) A.甲用的刻度尺最小刻度为厘米 B.甲用的刻度尺最小刻度为毫米 C.乙用的刻度尺最小刻度为分米 D.乙用的刻度尺最小刻度为厘米
【补偿训练】 关于误差和错误下列说法中正确的是( ) A.选择更精密的仪器,可以消除误差 B.改进实验方法,认真操作,可以消除误差 C.多次测量,反复求平均值,总能够消除误差 D.误差不能消除,只能努力减小,而错误可以消除或改正
【解析】选D。误差只能减小,不能消除,则A、B、C错误;错 误可以避免和消除,则D正确。
误差和有效数字

偶然误差
1、产生原因:由于实验者本身及各种偶然因 、产生原因: 素造成的。 素造成的。 2、特点:当多次重复同一测量时,有时偏大, 、特点:当多次重复同一测量时,有时偏大, 有时偏小, 有时偏小,并且偏大和偏小的机会相同 。 3、减少方法:多次测量求平均值。 、减少方法:多次测量求平均值。
绝对误差和相对误差
误差和有效数字
一、差
1、测量值与真实值的差异叫做误差。 、测量值与真实值的差异叫做误差。 2、误差按产生的原因可分为系统误差和偶 、 然误差两种。 然误差两种。
系统误差
1、产生原因:由于测量仪器结构缺陷、实验 、产生原因:由于测量仪器结构缺陷、 方法不完善造成的。 方法不完善造成的。 2、特点:当多次重复同一实验时,误差总是 、特点:当多次重复同一实验时, 同样地偏大或偏小。 同样地偏大或偏小。 3、减少方法:改进实验仪器,完善实验原理 、减少方法:改进实验仪器,
1、绝对误差:测量值和真实值间的差值。 、绝对误差:测量值和真实值间的差值。 2、相对误差:绝对误差与测量值的比值。 、相对误差:绝对误差与测量值的比值。 3、在相同的条件下,为了提高测量的准确程 、在相同的条件下, 应该考虑尽可能减少相对误差。 度,应该考虑尽可能减少相对误差
有效数字
1、带有一位不可靠数字的近似数字,叫做有 、带有一位不可靠数字的近似数字, 效数字。 效数字。 2、凡是用测量仪器直接测量的结果,读数一 、凡是用测量仪器直接测量的结果, 般要求在读出仪器最小刻度所在位的数值 可靠数字) 再向下估读一位( (可靠数字)后,再向下估读一位(不可 靠数字) 靠数字) 。 3、间接测量的有效数字运算不作要求,运算 、间接测量的有效数字运算不作要求, 结果一般可用2~3位有效数字表示。 位有效数字表示。 结果一般可用 位有效数字表示
误差与有效数字

如:
表1-5 铜丝电阻与温度关系测量记录表
t(oC
)
20.0
30.0
40.0
50.0
60.0
70.0
(Ω)
升 1.28 1.32 1.37 1.42 1.47 1.51 R温2 3 0 5 0 3
降 1.27 1.31 1.37 1.41 1.46 1.51 温5 8 0 5 8 0
,它的数学计算式是:
(2)标准误差σ 的意义 ① σ 反映了测量的离散性 σ 越小,离散度就越小,测量精密度越高。 ② σ 具有明确的概率意义
Xx
在置信区间[-2σ ,+2σ ] 和[-3σ ,+3σ ]内 的置信概率分别为95.4%和99.7%。
所以把Δ =3σ称为极限误差。
(3)随机误差的估算 ① 有限次测量的标准偏差 算术平均值为:
例: Sin43.43o=0.6875 Sin30o07′= Sin30.12o=0.5018
6.对其他函数运算我们给出一种简单直观的方法 ,即将自变量可疑位上下变动一个单位,观察 函数结果在哪一位上变动,结果的可疑位就取
在该位上。
如求
,因为
所以取
上面给出的各函数运算例子也可用这种方法来确 定结果的有效数字位数。
一.有效数字的概念 1.有效数字定义及其意义
先看一个例子:用米尺(最小刻度是1mm)测量
钢棒的长度:4.26cm,4.27cm,或4.28cm?
“4.2” -确切数字 6、7、8(第三位数) ——可疑数字
L=4.2 ?cm
有效数字:测量结果的第一位非零数字起到最末1 位可疑数字(误差所在位)止的全部数字。
有效数字和误差1

常见的误差有系统误差和偶然误差
1.系统误差 . 系统误差是由某些必然的或经常的原因造 成的。 成的。 根据误差的来源可分为:方法误差、 根据误差的来源可分为:方法误差、仪器 误差、试剂误差、操作误差等。 误差、试剂误差、操作误差等。 系统误差常用做空白试验或对照实验的方 法消除。 法消除。
ቤተ መጻሕፍቲ ባይዱ
在不加试样的情况下, 在不加试样的情况下,按照样品分析步骤 空白试验, 和条件进行分析试验称为空白试验 和条件进行分析试验称为空白试验,所得结果 称为空白值。 称为空白值。 空白值 从试样测定结果中扣除空白值,便可以消 从试样测定结果中扣除空白值, 除因试剂、 除因试剂、蒸馏水及实验仪器等因素引起的系 统误差。 统误差。
(三)偏差与精密度 精密度指多次重复测定的结果相互接近的程度, 精密度指多次重复测定的结果相互接近的程度, 指多次重复测定的结果相互接近的程度 是保证准确度的前提。 是保证准确度的前提。 偏差是指各次测定的结果和平均值之间的差值。 偏差是指各次测定的结果和平均值之间的差值。 是指各次测定的结果和平均值之间的差值 偏差越小,精密度越高。 偏差越小,精密度越高。
在计算中常会遇到下列两种情况: 在计算中常会遇到下列两种情况: 1、化学计量关系中的分数和倍数,这些数不是 、化学计量关系中的分数和倍数, 测量所得, 测量所得,它们的有效数字位数可视为无限多位 2、关于pH、pK和lgK等对数值,其有效数字的 、关于 、 和 等对数值, 等对数值 位数仅取决于小数部分的位数, 位数仅取决于小数部分的位数,因为整数部分只 与该真数中的10的方次有关 与该真数中的 的方次有关
11.23
cm 11 12
在确定有效数字位数时, 在确定有效数字位数时,特别需要指出的是 数字“ 来表示实际测量结果时 来表示实际测量结果时, 数字“0”来表示实际测量结果时,它便是有效 数字 例如:分析天平称得的物体质量为 例如:分析天平称得的物体质量为7.1560g 滴定时滴定管读数为20.05mL 滴定时滴定管读数为 这两个数值中的“ 都是有效数字 这两个数值中的“0”都是有效数字 中的“ 只起到定位作用 只起到定位作用, 在0.006g中的“0”只起到定位作用,不是 中的 有效数字
误差和有效数字

一、误差和有效数字1.误差测量值与真实值的差异叫做误差。
误差可分为系统误差和偶然误差两种。
⑴系统误差的特点是在多次重复同一实验时,误差总是同样地偏大或偏小。
⑵偶然误差总是有时偏大,有时偏小,并且偏大和偏小的机会相同。
减小偶然误差的方法,可以多进行几次测量,求出几次测量的数值的平均值。
这个平均值比某一次测得的数值更接近于真实值。
2.有效数字带有一位不可靠数字的近似数字,叫做有效数字。
⑴有效数字是指近似数字而言。
⑵只能带有一位不可靠数字,不是位数越多越好。
凡是用测量仪器直接测量的结果,读数一般要求在读出仪器最小刻度所在位的数值(可靠数字)后,再向下估读一位(不可靠数字),这里不受有效数字位数的限制。
间接测量的有效数字运算不作要求,运算结果一般可用2~3位有效数字表示。
二、基本测量仪器及读数高考要求会正确使用的仪器主要有:刻度尺、游标卡尺、螺旋测微器、天平、秒表、打点计时器、弹簧秤、温度表、电流表、电压表、多用电表、滑动变阻器、电阻箱等等。
1.刻度尺、秒表、弹簧秤、温度表、电流表、电压表的读数使用以上仪器时,凡是最小刻度是10分度的,要求读到最小刻度后再往下估读一位(估读的这位是不可靠数字,但是是有效数字的不可缺少的组成部分)。
凡是最小刻度不是10分度的,只要求读到最小刻度所在的这一位,不再往下估读。
例如⑴读出下图中被测物体的长度。
(6.50cm)⑵下图用3V量程时电压表读数为多少?用15V量程时电压表度数又为多少?1.14V; 5.7V1 23V5 10150 1 2 3 4 5 6 7 8 9 1⑶右图中秒表的示数是多少分多少秒?3分48.75秒凡仪器的最小刻度是10分度的,在读到最小刻度后还要再往下估读一位。
⑴6.50cm 。
⑵1.14V 。
15V 量程时最小刻度为0.5V ,只读到0.1V 这一位,应为5.7V 。
⑶秒表的读数分两部分:小圈内表示分,每小格表示0.5分钟;大圈内表示秒,最小刻度为0.1秒。
误差和有效数字(精)

误差和有效数字
1.误差:测量值与真实值的差异叫做误差。
误差可分为系统误差和偶然误差两种。
*系统误差:是由于仪器本身不精密、试验方法粗略或试验原理不完善而产生的。
如仪器调零不准。
系统误差的特点是在多次重复同一实验时,误差总是同样地偏大或偏小,不会出现几次偏大另外几次偏小的情况。
系统误差不能通过多次测量取平均值的方法来减小。
只能通过校准测量器材、改进试验方法、完善试验原理等方法来达到减小系统误差的目的。
*偶然误差:是由各种偶然因素对试验者及仪器、被测物理量的影响而产生的,偶然误差总是有时偏大,有时偏小,并且偏大和偏小的机会相同它遵从一定的统计规律。
减小偶然误差的方法,可以多进行几次测量,求出几次测量的数值的平均值。
这个平均值比某一次测得的数值更接近于真实值。
2.有效数字:带有一位不可靠数字的近似数字,叫做有效数字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分享
∙丁铖
∙
∙丁铖的分享
∙
∙当前分享
返回分享首页»
分享
大物实验 - 误差与有效数字练习来源:姚晨炜的日志
误差与有效数字练习题答案
1.有甲、乙、丙、丁四人,用螺旋测微计测量一个铜球的直径,各人所得的结果表达如下:d甲 =(1.2832±0.0003)cm ,d乙 =(1.283±0.0003)cm ,d丙 =(1.28±0.0003)cm ,d丁 =(1.3±0.0003)cm ,问哪个人表达得正确?其他人错在哪里?
答:甲对。
其他人测量结果的最后位未与不确定度所在位对齐。
2.一学生用精密天平称一物体的质量m,数据如下表所示:Δ仪 =0.0002g
请计算这一测量的算术平均值,测量标准误差及相对误差,写出结果表达式。
A类分量:
B类分量:
合成不确定度:=0.00018g
取0.00018g ,测量结果为:
( P=0.683 )
相对误差:
3.用米尺测量一物体的长度,测得的数值为
试求其算术平均值,A类不确定度、B类不确定度、合成不确定度及相对误差,写出结果表达式。
,
A类分量: =1.060.006=0.0064cm
B类分量:
合成不确定度: =0.04cm
相对误差: ( P=0.683 )
结果:
4.在测量固体比热实验中,放入量热器的固体的起始温度为t1±S t1= 99.5 ± 0.3℃,固体放入水中后,温度逐渐下降,当达到平衡时,t2±S t2= 26.2 ± 0.3℃,试求温度降低值t =t2–t1的表示式及相对误差。
处理:t =t2–t1=26.2-99.5=-73.3℃, U =0.5℃ ,
(或 -0.7℅)
t =( -73.3 ± 0.5)℃ ( P=0.683 )
5.一个铅质圆柱体,测得其直径为d ±U d=(2.040±0.003) cm ,高度为h±U h=(4.120 ± 0.003)cm,
质量为m±U m =(149.10 ± 0.05)g。
试求:(1)计算铅的密度ρ;(2)计算铅的密度ρ的相对误差和不确定度;(3)表示ρ的测量结果。
处理:(1)g/㎝3
(2)
(3) g/㎝3 ( P=0.683 )
6.按照误差理论和有效数字运算规则改正以下错误:
(1)N=10.8000±0.3cm
正:N =(10.8±0.3)cm ,测量误差决定测量值的位数(测量结果存疑数所在位与误差对齐)
(2)有人说0.2870有五位有效数字,有人说只有三位,请纠正,并说明其原因。
答:有效数字的位数应从该数左侧第一个非零数开始计算,0.2870应有四位有效数字。
其左端的“0”为定位用,不是有效数字。
右端的“0”为有效数字。
(3)L =28cm =280mm
正:L=2.8×102mm ,改变单位时,其有效数字位数不变。
(4)L =(28000±8000)mm
正:L =(2.8±0.8)×104mm ,误差约定取一位有效数字。
7.试计算下列各式(在书写计算过程中须逐步写出每步的计算结果):
(1)已知y = lg x,x ±σx=1220 ± 4 ,求y :
处理:y = lg x = lg 1220 =3.0864
=0.0014
( P=0.683 )
(2)已知y = sinθ,θ±Sθ=45°30´±0°04´ ,求y :
处理:y = sin45°30´=0.7133
U
=∣cosθ∣Uθ=∣cos45°30´∣=0.0008 ,
y
( P=0.683 )
8.某同学在弹簧倔强系数的测量中得到如下数据:
其中F为弹簧所受的作用力,y为弹簧的长度,已知y-y0=()F,用图解法处理数据(必须用直角坐标纸,不允许用代数方格纸或自行画格作图),从图中求出弹簧的倔强系数k,及弹簧的原长y0。
处理:按要求作图(见作图示意,注意注解方框里内容的正确表达,正确取轴和分度,正确画实验点和直线拟合,正确取计算斜率的两点),
计算斜率 cm/g
计算倔强系数 g/cm
通过截距得到弹簧原长为4.00cm。
实验名称基本测量—长度和体积的测量
姓名学号专业班实验班组号教师
阅读材料:p.38§2.2.1.1“游标与螺旋测微原理”。
一. 预习思考题
1、游标卡尺的精度值是指:主尺最小分度值与游标分度格数之比。
根据左图游标卡尺的结构,请字母表示:游标卡尺的主尺是: D ;游标部分是:E ;测量物体外径用:A、B ;测量内径用:A’、B’ ;测量深度用:C 。
下图游标卡尺的读数为: 12.64mm(1.264cm) 。
2、左图螺旋测微器(a)和(b)的读数分别为:5.155mm和 5.655mm。
螺旋测微器测量前要检查并记下零点读数,即所谓的初始读数;测量最终测量结果为末读数
减去初始读数。
下图的两个初始读数分别为(左) 0.005mm 和(右)-0.011mm。
3、在检查零点读数和测量长度时,切忌直接转动测微螺杆和微分筒,而应轻轻转动棘轮。
4、螺旋测微器测量完毕,应使螺杆与砧台之间留有空隙,以免因热胀而损坏螺纹。
基本测量数据处理参考(原始数据均为参考值)
1. 圆筒的测量测量量具:游标卡尺;Δ
=0.02mm;
仪
圆筒容积的计算:
=π=×3.1416×2.4772×4.435 = 21.37 cm3
E
==1.3%
V
U
= E V = 21.37*0.013 = 0.28 cm3,±S V= (21.37 ± 0.28) cm3 ( P=0.683 ) V
2.钢珠的测量测量量具:螺旋测微计;Δ
=0.004mm;初读数=-0.002mm
仪
(钢珠测量部分练习不确定度)
= ,
A分量S=t0.683(n-1)=1.11×0.0012=0.0013mm
B分量u =0.683Δ仪=0.683×0.004=0.0027mm ,
U=
±=(5.988±0.003)mm
l 钢珠体积的计算:
==×3.1416×5.9883 =112.42mm3 =0.2%
,±=(112.42±0.22)mm3。