误差和有效数字
误差与有效数字

误差与有效数字一、误差:1.系统误差产生的原因及特点(1)来源:一是实验原理不够完善;二是实验仪器不够精确;三是实验方法粗略.例如,在验证力的平行四边形定则实验中,弹簧测力计的零点未校准;在验证牛顿第二定律的实验中,用砂和砂桶的重力代替对小车的拉力等.(2)基本特点:实验结果与真实值的偏差总是偏大或偏小.(3)减小方法:改善实验原理;提高实验仪器的测量精确度;设计更精巧的实验方法.2.偶然误差产生的原因及特点(1)来源:偶然误差是由于各种偶然因素对实验者和实验仪器的影响而产生的.例如,用刻度尺多次测量长度时估读值的差异;电源电压的波动引起的测量值微小变化.(2)基本特点:多次重复同一测量时,偶然误差有时偏大,有时偏小,且偏大和偏小的机会比较接近.(3)减小方法:多次测量取平均值可以减小偶然误差.除上述两类误差外,还有因工作疏忽而引起的过失误差。
如试剂用错,度读错,砝码认错,或者计算错误,均可引起很大的误差,这些都应力求避免。
3.绝对误差和相对误差从分析数据看,误差分为绝对误差和相对误差.绝对误差:绝对误差是测量值与真实值之差,即绝对误差=|测量值-真实值|.它反映了测量值偏离真实值的大小.相对误差:相对误差等于绝对误差与真实值之比,常用百分数表示.它反映了实验结果的精确程度.对于两个实验值的评价,必须考虑相对误差,绝对误差大者,其相对误差不一定大.【例1】指出以下误差是系统误差还是偶然误差A.测量小车质量时天平不等臂、或砝码不标准,天平底盘未调平所致的误差。
B.用有毫米刻度的尺测量物体长度,毫米以下的数值只能用眼睛估计而产生的误差C.用安培表内接法测电阻时,测量值比真实值大D.在验证共点力合成的平行四边形法则实验中,在画出两分力方向及合力方向时,画线不准所致误差【解析】A是选项是实验仪器不精确所致,是系统误差;B选项是由于测量者在估计时由于视线方向不准造成的,是偶然误差;C选项是实验原理不完善、忽略电流表内阻影响所致,是系统误差;D选项是画力方向时描点不准、直尺略有移动,或画线时铅笔倾斜程度不一致所致,是偶然误差。
误差和有效数字介绍课件

误差的表示
误差通常用标准差或相对误差来 表示,这些值可以帮助我们了解
测量结果的可靠性和准确性。
有效数字的保留
在处理测量数据时,应根据误差 的大小来确定有效数字的保留, 以确保结果的准确性和可靠性。
有效数字对误差的影响
01
有效数字的精度
有效数字的精度决定了测量结果的精度,保留更多的有效数字可以提供
误差和有效数字介绍课件
目录
• 误差的基本概念 • 有效数字的基本概念 • 误差与有效数字的关系 • 误差的减小和避免 • 有效数字的取舍原则 • 误差和有效数字的应用实例
01
误差的基本概念
误差的定义
01
02
03
误差
测量值与真实值之间的差 异。
误差的来源
测量工具、测量方法、环 境条件、操作人员等。
质量测量的误差和有效数字分析
总结词
有效数字的位数是衡量质量测量结果 可靠性的重要指标。
详细描述
在质量测量中,有效数字的位数需要 根据称重工具的精度和称重方法的要 求来确定。例如,如果使用分辨率
THANKS
感谢观看
例子
将2345转换为科学记数法为2.345×10^3。
06
误差和有效数字的应用实例
长度测量的误差和有效数字分析
总结词
长度测量中的误差和有效数字分析是确保测量准确性的关键。
详细描述
在长度测量中,由于测量工具、测量方法和测量环境等因素的影响,测量结果往往存在误差。为了准确评估测量结果 的可靠性,需要对长度测量中的误差进行分析,并确定有效数字的位数。
误差的表示方法
绝对差
测量值与真实值之间的差值。
相对误差
高中物理必修二第四章—误差和有效数字

例题4.如图5-11所示,角游标尺上有30分格,对应于圆盘 刻度盘上29个分格,角游标尺每一格与刻度盘的每一格的差 是________分,此时角度为 ____________.
图5-11 【解析】将圆盘刻度盘类比为游标卡尺的主尺,角游标
1 尺类比为游标卡尺的游标尺,该角游标尺的精度为30 度,所 以其示数为:161+15×1 =161.50°.
如:刻度尺不标准,一毫米的刻度偏大,用此类 刻度测量长度时,测量结果始终_________。
①系统误差的特点:实验结果与真实值的偏差总 是偏 大或偏小.
②减小系统误差的方法:改善实验原理;提高实 验仪器的测 量精确度;设计更精巧的实验方法。
说明:任何一次测量,不管仪器如何精密,不管 如何测量,都存在误差。
强调:作为有效数字中的“0”,无论是在数字的中 间,还是在数字的末尾,均不能随意省略.
如:1.0 cm和1.00 cm的意义是不同的,1.0 cm为两 位有效数字,1.00 cm为三位有效数字;两者的误 差也不同,前者cm为准确位,mm为估读位,后 者mm为准确位,mm的十分位为估读位,因此其 准确度也不同.
3.有效数字的读数规则
(1)刻度尺、螺旋测微器:是最小分度为“1”的仪 器,测量误差出现在下一位。读数时要估读到下
一位,估计数字有:0.1、0.2………0.9. 如最小刻度为1 mm 的刻度尺,测量误差出现在
mm的下一位上,估读到十分之几毫米. (2)游标卡尺:直接读出最小分度的准确数,不需
要往下估读。
4.13误差和有效数字
一、误差:测量值与真实值的差异叫做误差.
1、测量值:借助实验仪器,通过实验测量出的物 理量的值。
误差和有效数字

偶然误差
1、产生原因:由于实验者本身及各种偶然因 、产生原因: 素造成的。 素造成的。 2、特点:当多次重复同一测量时,有时偏大, 、特点:当多次重复同一测量时,有时偏大, 有时偏小, 有时偏小,并且偏大和偏小的机会相同 。 3、减少方法:多次测量求平均值。 、减少方法:多次测量求平均值。
绝对误差和相对误差
误差和有效数字
一、差
1、测量值与真实值的差异叫做误差。 、测量值与真实值的差异叫做误差。 2、误差按产生的原因可分为系统误差和偶 、 然误差两种。 然误差两种。
系统误差
1、产生原因:由于测量仪器结构缺陷、实验 、产生原因:由于测量仪器结构缺陷、 方法不完善造成的。 方法不完善造成的。 2、特点:当多次重复同一实验时,误差总是 、特点:当多次重复同一实验时, 同样地偏大或偏小。 同样地偏大或偏小。 3、减少方法:改进实验仪器,完善实验原理 、减少方法:改进实验仪器,
1、绝对误差:测量值和真实值间的差值。 、绝对误差:测量值和真实值间的差值。 2、相对误差:绝对误差与测量值的比值。 、相对误差:绝对误差与测量值的比值。 3、在相同的条件下,为了提高测量的准确程 、在相同的条件下, 应该考虑尽可能减少相对误差。 度,应该考虑尽可能减少相对误差
有效数字
1、带有一位不可靠数字的近似数字,叫做有 、带有一位不可靠数字的近似数字, 效数字。 效数字。 2、凡是用测量仪器直接测量的结果,读数一 、凡是用测量仪器直接测量的结果, 般要求在读出仪器最小刻度所在位的数值 可靠数字) 再向下估读一位( (可靠数字)后,再向下估读一位(不可 靠数字) 靠数字) 。 3、间接测量的有效数字运算不作要求,运算 、间接测量的有效数字运算不作要求, 结果一般可用2~3位有效数字表示。 位有效数字表示。 结果一般可用 位有效数字表示
误差与有效数字

如:
表1-5 铜丝电阻与温度关系测量记录表
t(oC
)
20.0
30.0
40.0
50.0
60.0
70.0
(Ω)
升 1.28 1.32 1.37 1.42 1.47 1.51 R温2 3 0 5 0 3
降 1.27 1.31 1.37 1.41 1.46 1.51 温5 8 0 5 8 0
,它的数学计算式是:
(2)标准误差σ 的意义 ① σ 反映了测量的离散性 σ 越小,离散度就越小,测量精密度越高。 ② σ 具有明确的概率意义
Xx
在置信区间[-2σ ,+2σ ] 和[-3σ ,+3σ ]内 的置信概率分别为95.4%和99.7%。
所以把Δ =3σ称为极限误差。
(3)随机误差的估算 ① 有限次测量的标准偏差 算术平均值为:
例: Sin43.43o=0.6875 Sin30o07′= Sin30.12o=0.5018
6.对其他函数运算我们给出一种简单直观的方法 ,即将自变量可疑位上下变动一个单位,观察 函数结果在哪一位上变动,结果的可疑位就取
在该位上。
如求
,因为
所以取
上面给出的各函数运算例子也可用这种方法来确 定结果的有效数字位数。
一.有效数字的概念 1.有效数字定义及其意义
先看一个例子:用米尺(最小刻度是1mm)测量
钢棒的长度:4.26cm,4.27cm,或4.28cm?
“4.2” -确切数字 6、7、8(第三位数) ——可疑数字
L=4.2 ?cm
有效数字:测量结果的第一位非零数字起到最末1 位可疑数字(误差所在位)止的全部数字。
有效数字和误差1

常见的误差有系统误差和偶然误差
1.系统误差 . 系统误差是由某些必然的或经常的原因造 成的。 成的。 根据误差的来源可分为:方法误差、 根据误差的来源可分为:方法误差、仪器 误差、试剂误差、操作误差等。 误差、试剂误差、操作误差等。 系统误差常用做空白试验或对照实验的方 法消除。 法消除。
ቤተ መጻሕፍቲ ባይዱ
在不加试样的情况下, 在不加试样的情况下,按照样品分析步骤 空白试验, 和条件进行分析试验称为空白试验 和条件进行分析试验称为空白试验,所得结果 称为空白值。 称为空白值。 空白值 从试样测定结果中扣除空白值,便可以消 从试样测定结果中扣除空白值, 除因试剂、 除因试剂、蒸馏水及实验仪器等因素引起的系 统误差。 统误差。
(三)偏差与精密度 精密度指多次重复测定的结果相互接近的程度, 精密度指多次重复测定的结果相互接近的程度, 指多次重复测定的结果相互接近的程度 是保证准确度的前提。 是保证准确度的前提。 偏差是指各次测定的结果和平均值之间的差值。 偏差是指各次测定的结果和平均值之间的差值。 是指各次测定的结果和平均值之间的差值 偏差越小,精密度越高。 偏差越小,精密度越高。
在计算中常会遇到下列两种情况: 在计算中常会遇到下列两种情况: 1、化学计量关系中的分数和倍数,这些数不是 、化学计量关系中的分数和倍数, 测量所得, 测量所得,它们的有效数字位数可视为无限多位 2、关于pH、pK和lgK等对数值,其有效数字的 、关于 、 和 等对数值, 等对数值 位数仅取决于小数部分的位数, 位数仅取决于小数部分的位数,因为整数部分只 与该真数中的10的方次有关 与该真数中的 的方次有关
11.23
cm 11 12
在确定有效数字位数时, 在确定有效数字位数时,特别需要指出的是 数字“ 来表示实际测量结果时 来表示实际测量结果时, 数字“0”来表示实际测量结果时,它便是有效 数字 例如:分析天平称得的物体质量为 例如:分析天平称得的物体质量为7.1560g 滴定时滴定管读数为20.05mL 滴定时滴定管读数为 这两个数值中的“ 都是有效数字 这两个数值中的“0”都是有效数字 中的“ 只起到定位作用 只起到定位作用, 在0.006g中的“0”只起到定位作用,不是 中的 有效数字
误差和有效数字

一、误差和有效数字1.误差测量值与真实值的差异叫做误差。
误差可分为系统误差和偶然误差两种。
⑴系统误差的特点是在多次重复同一实验时,误差总是同样地偏大或偏小。
⑵偶然误差总是有时偏大,有时偏小,并且偏大和偏小的机会相同。
减小偶然误差的方法,可以多进行几次测量,求出几次测量的数值的平均值。
这个平均值比某一次测得的数值更接近于真实值。
2.有效数字带有一位不可靠数字的近似数字,叫做有效数字。
⑴有效数字是指近似数字而言。
⑵只能带有一位不可靠数字,不是位数越多越好。
凡是用测量仪器直接测量的结果,读数一般要求在读出仪器最小刻度所在位的数值(可靠数字)后,再向下估读一位(不可靠数字),这里不受有效数字位数的限制。
间接测量的有效数字运算不作要求,运算结果一般可用2~3位有效数字表示。
二、基本测量仪器及读数高考要求会正确使用的仪器主要有:刻度尺、游标卡尺、螺旋测微器、天平、秒表、打点计时器、弹簧秤、温度表、电流表、电压表、多用电表、滑动变阻器、电阻箱等等。
1.刻度尺、秒表、弹簧秤、温度表、电流表、电压表的读数使用以上仪器时,凡是最小刻度是10分度的,要求读到最小刻度后再往下估读一位(估读的这位是不可靠数字,但是是有效数字的不可缺少的组成部分)。
凡是最小刻度不是10分度的,只要求读到最小刻度所在的这一位,不再往下估读。
例如⑴读出下图中被测物体的长度。
(6.50cm)⑵下图用3V量程时电压表读数为多少?用15V量程时电压表度数又为多少?1.14V; 5.7V1 23V5 10150 1 2 3 4 5 6 7 8 9 1⑶右图中秒表的示数是多少分多少秒?3分48.75秒凡仪器的最小刻度是10分度的,在读到最小刻度后还要再往下估读一位。
⑴6.50cm 。
⑵1.14V 。
15V 量程时最小刻度为0.5V ,只读到0.1V 这一位,应为5.7V 。
⑶秒表的读数分两部分:小圈内表示分,每小格表示0.5分钟;大圈内表示秒,最小刻度为0.1秒。
误差和有效数字(精)

误差和有效数字
1.误差:测量值与真实值的差异叫做误差。
误差可分为系统误差和偶然误差两种。
*系统误差:是由于仪器本身不精密、试验方法粗略或试验原理不完善而产生的。
如仪器调零不准。
系统误差的特点是在多次重复同一实验时,误差总是同样地偏大或偏小,不会出现几次偏大另外几次偏小的情况。
系统误差不能通过多次测量取平均值的方法来减小。
只能通过校准测量器材、改进试验方法、完善试验原理等方法来达到减小系统误差的目的。
*偶然误差:是由各种偶然因素对试验者及仪器、被测物理量的影响而产生的,偶然误差总是有时偏大,有时偏小,并且偏大和偏小的机会相同它遵从一定的统计规律。
减小偶然误差的方法,可以多进行几次测量,求出几次测量的数值的平均值。
这个平均值比某一次测得的数值更接近于真实值。
2.有效数字:带有一位不可靠数字的近似数字,叫做有效数字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:10.00[mL]→0.001000[L] 均为四位
2.-1数据中零的作用
数字零在数据中具有双重作用:
(1)作普通数字用,如 0.5180 4位有效数字 5.18010-1
(2)作定位用:如 0.0518 3位有效数字 5.1810-2
续前
4.pH,pM,pK,lgC,lgK等对数值,其有效数字的 位数取决于小数部分(尾数)数字的位数,整数部 分只代表该数的方次 例:pH = 11.20 → [H+]= 6.3×10-12[mol/L] 两位
5.结果首位为8和9时,有效数字可以多计一位 例:90.0% ,可示为四位有效数字 例:99.87% →99.9% 进位
3.记录及使用有效数字的注意事项 特别强调:
(1)“0”在数字中的意义 ①数字前的“0”只起定位作用,本身不是有效数字。 ②数字之间的“0”和小数末尾的“0”都是有效数字。 (2)pH、pM、lgK等对数数值:小数部分才是有效数字。
• 2.误差:测定值与真实值之间的差值。
• 理解:a.误差越小,准确度越高;
•
误差越小,准确度越高;
•
b.客观存在,不能消灭。
(一)准确度与误差
2.误差 (1)绝对误差:测量值与真实值之差
x
(2)相对误差:绝对误差占真实值的百分比
x
RE% 100% 100%
RE% 100%
注:μ未知,δ已知,可用χ代替μ
3. 过失误差
三、误差的减免
1. 系统误差的减免
(1) 方法误差—— 采用标准方法,对比实验 (2) 仪器误差—— 校正仪器 (3) 试剂误差—— 作空白实验
2. 偶然误差的减免
——增加平行测定的次数
有效数字及其运算规则
一、有效数字 二、有效数字的修约规则 三、有效数字的运算法则
一、 有效数字
• 四、提高分析准确度的方法
• 1.选择恰当的分析方法 • 2.减小测量误差 • 称量误差:称样量>0.2g,才能使称量相
对误差<0.1%
• 滴定管读数误差:消耗滴定剂体积>20ml, 才能使滴定相对误差<0.1%
• 3.增加平行测定次数 • 4.消除测量中的系统
• 校准仪器、对照试验、加样回收试验、空 白试验
x
注:1)测高含量组分,RE可小;测低含量组分,RE可大
2)仪器分析法——测低含量组分,RE大
化学分析法——测高含量组分,RE小
• 绝对误差与相对误差均有正负之分,正值 表示分析结果偏高;负值表示分析结果偏 低。
(二)精密度与偏差
1.精密度:平行测量的各测量值间的相互接近程度
2.偏差: (1)绝对偏差 :单次测量值与平均值之差
b.仪器误差——仪器本身的缺陷
例: 天平两臂不等,砝码未校正; 滴定管,容量瓶未校正。
c.试剂误差——所用试剂有杂质
例:去离子水不合格; 试剂纯度不够
(含待测组份或干扰离子)。
d.主观误差——操作人员主观因素造成
例:对指示剂颜色辨别偏深或偏浅; 滴定管读数不准。
2. 偶然误差
( 1) 特点 a.不恒定 b.难以校正 c.服从正态分布(统计规律) ( 2) 产生的原因 a.偶然因素 b.滴定管读数
二、误差的种类、性质、产生的原因及减免 1. 系统误差
(1) 特点
a.对分析结果的影响比较恒定; b. 在 同 一 条 件 下 , 重 复 测 定 , 重复出现; c.影响准确度,不影响精密度; d.可以消除。
产生的原因?
(2) 产生的原因
a.方法误差——选择的方法不够完善
例: 重量分析中沉淀的溶解损失; 滴定分析中指示剂选择不当。
0.1000 mol/L
(4)pH 4.34 ,小数点后的数字位数为有效数字位数
对数值,lgX =2.38;lg(2.4102)
2. 乘除运算时
有效数字的位数取决于相对误差最大的数据的位
引、实验过程中常遇到的两类数字
(1)数目:如测定次数;倍数;系数;分数
(2)测量值或计算值。数据的位数与测定准确度有关。
记录的数字不仅表示数量的大小,而且要正确地反映测
量的精确程度。
结果
绝对偏差
相对偏差 有效数字位数
0.51800 ±0.00001 ±0.002%
5
0.5180
±0.0001
±0.02%
第四节 误差和有效数字
概述
• 定量分析的任务是要准确地解决“量”的 问题,但是定量分析中的误差是客观存在 的,因此,必须寻找产生误差的原因并设 法减免,从而提高分析结果的可靠程度, 另外还要对实验数据进行科学的处理,写 出合乎要求的分析报告。
•
• 一.分析结果的准确度与误差
1.准确度:指测量结果与真值的接近程度 准确度的高低用误差的大小来衡量;
d xi x
(2)相对偏差:绝对偏差占平均值的百分比
d 100% xi x 100%
x
x
(三)准确度与精密度的关系
1. 准确度高,要求精密度一定高 但精密度好,准确度不一定高
2. 准确度反映了测量结果的正确性 精密度反映了测量结果的重现性
• 准确度与精密度的关系
• 精密度是保证准确度的前提条件。只有在 消除了系统误差的情况下,才可用精密度 表示准确度。
(3)以“0”结尾的整数或很小的数字:用10的幂指数表 示
(4)自然数(常数、倍数、分数等):无穷多位有效数字
3.改变单位,不改变有效数字的位数
如: 24.01mL
24.0110-3 L
4.注意点
(1)容量器皿;滴定管;移液管;容量瓶;4位有效数字
(2)分析天平(万分之一)取4位有效数字
(3)标准溶液的浓度,用4位有效数字表示:
4
0.518
±0.001
±0.2%
3
第一节 有效数字及运算规则
一、有效数字的意义和位数 1.有效数字的意义 有效数字:分析工作中实际能够测量到的数字。 ★一个数据的位数不仅表示数量的大小,而且反映了 测量的准确度。
2.有效数字的位数 在有效数字中只有最末一位数字是欠准确的,
可能有±1的偏差。一、有来自数字:实际可以测得的数字1. 有效数字位数包括所有准确数字和一位欠准数字
例:滴定读数20.30mL,最多可以读准三位
第四位欠准(估计读数)±1%
2. 在0~9中,只有0既是有效数字,又是无效数字
例: 0.06050
四位有效数字
定位 有效位数
例:3600 → 3.6×103 两位 → 3.60×103 三 位
3.单位变换不影响有效数字位数