根轨迹的绘制法则

合集下载

根轨迹法4.2

根轨迹法4.2
其一: s zi (i 1, 2...m)
其二: 是在n>m时,只有当s →∞时
结论: 根轨迹的起点为系统的开环极点或无穷远点;
根轨迹的终点是系统的开环零点或无穷远点
Monday, February 24,
2
2020
法则2. 根轨迹的分支数和对称性
根轨迹分支数等于开环极点数和开环零
点数中的大者,根轨迹连续且对称实轴.
线方向的夹角称为分离角
(2k 1)
l
k 0,1L l 1
(1)若实轴上的根轨迹的左右两侧均为开环零点(包括无限零点)或 开环极点(包括无限极点),则在此段根轨迹上必有分离点。 (2)分离点若在复平面上,则一定是成对出现的。
Monday, February 24,
4
2020
法则6 根轨迹的起始角和终止角
-8 -6 -4 -2 0 2
12
2020
[例]开环传递函数为:
Gk
(s)

s[( s
Kg 4)2
,画根轨迹。
1]
解:⒈求出开环零极点,即: p1 0,p2,3 4 j
⒉实轴上的根轨迹:(-∞,0]
⒊渐近线
0 4 4 j 4 4 j 8 2.67
60 ,2c 60
s3

8s2

64 3
s

Kg
0
将 s j 代入得:82 Kgp 0

3 64 0
3
Monday, Februar0y ,24,
2020
64 4.62 3
K gp 0 ,
512 3
15
⒍求分离会合点:由特征方程 8

根轨迹的绘制法则

根轨迹的绘制法则

第4章 根 轨 迹 法根轨迹的基本概念所谓根轨迹是指控制系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上移动的轨迹。

一般取开环增益为可变参数,但也可以用系统中的其他参数,如某个环节的时间常数等。

根轨迹的绘制法则gnj jmi iK ps z s s D s N 1)()()()(11-=++=∏∏== 在绘制根轨迹时,通常首先求出g K =0和g K =∞时的特征根,再根据绘制法则画出0<g K <∞时的根轨迹草图;一. 根轨迹的起点(K g =0)上式说明,当g K = 0时,系统的开环极点就是闭环极点。

绘制根轨迹时,我们通常是从g K = 0时的闭环极点画起,即开环极点是闭环根轨迹曲线的起点。

起点数n 就是根轨迹曲线的条数。

二. 根轨迹的终点(K g =∞)当g K =∞时,闭环特征方程式为∏==+=mi i z s s N 1)()(这就是说,系统的开环零点就是g K =∞时的闭环极点,即根轨迹曲线的终点。

其个数为m ,另外的n -m 个根轨迹终点在无穷远。

三. 根轨迹的分支数和对称性根轨迹在s 平面上的分支数(条数)等于开环特征方程的阶数n ,即与开环极点个数相同。

此外,在一般控制系统的特征方程中,各项系数都是实数。

因此,特征根或是实数,或是共扼复数,则根轨迹一定是对称于实轴。

四. 实轴上的根轨迹当开环传递函数有实数极点、零点时,这意味着实轴上有根轨迹的起点和终点。

这时,必须确定实轴上哪一区间有根轨迹,哪一区间没有根轨迹。

五. 根轨迹的分离点和会和点在有根轨迹的实轴上,存在着两个开环极点时,必然有一个分离点a 。

同样,在有根轨迹的实轴上,存在两个开环零点(包括无穷远零点)时,必然有一个会合点b 。

当g K 为g K a (a 点的g K 值)或g K b (b 点的g K 值)时,特征方程都将出现重根。

这是两者的共性。

此外,分离点a 的g K 值,是其实轴根轨迹上的最大g K 值;会合点b 的g K 值,是其实轴根轨迹上的最小g K 值。

根轨迹绘制的基本法则

根轨迹绘制的基本法则

规则七、 根轨迹与虚轴的交点:交点和相应的Kr值 利用劳斯判据求出。 根轨迹与虚轴的交点对应于临界稳定状态,此时系统 出现虚根。 在例4-2-2中,系统闭环特征方程式为:
1 Kr ( s 5) s ( s 1)( s 2)
1 3 6 2K r 3 5K r
0,
s( s 1)( s 2) K r ( s 5) 0
同理可证明入射角。
例4-2-3
设系统开环零极点图如图4-7。p
0 0
j
3
确定根轨迹离开共轭复数根的出射角。
其中 ( p3 z1 ) 85 , ( p3 p1 ) 135
( p3 p2 ) 45 , ( p3 p4 ) 90
0 0
×●
P3
P2 × ●
n m j j 1 i 1
i
nm
对例4-2-2,渐近线与实轴夹角为:

l 180 n m


180 l 2

( l 1,3,) 90 , 90 ( 270 )
0
0 0
交点坐标为:
1 2 ( 5 ) 2
1 , 即(1,j0)。
j

× × ×
﹣2 ﹣1
P3
s0 点为从 p3 出发的根轨迹上一点。
z ( p1 p 2 p 3 p 4 ) 180 l
0
j
×●
z
P3
P1
p 3 180 l z ( p1 p 2 p 4 )
0
P2
×●
Z1
×
01 P
P2

P2 × ●

4-2 绘制根轨迹的基本法则.

4-2 绘制根轨迹的基本法则.

6
证明:角度的简单证明
sK 无穷远处的一个闭环特征根
与有限零点和有限极点所成
角度相同,都设为
a a
a atga
相角条件
ma na (2k 1)

a

(2k 1)
mn
根轨迹对称于实轴,也可写为


(2k 1)
nm
交角有n-m个,交点只有一个
7
【例4.2.1】一个系统开环传递函数为
135
根轨迹的复平面部分是以 零点到分离点距离为半径 的圆周的一部分
Imaginary Axis
例4.2.3 2.5
2
1.5
1
135°
0.5
d=-3.414
p1=-1+j
0
z1=-2
-0.5
p2=-1-j
-1
-1.5
-2
-2.5
-4
-3
-2
-1
0
1
Real Axis
23
法则7:根轨迹与虚轴的交点
j
j 1
i 1
s z1 s z2 360 或0 s z1 s p1
s p1 s p2 360 或0
z1
p1
s p3 180 s z3 0
z3
z2
s
p3 0
s p2
s z2 p2
5
开环零点用○表示
一条根轨迹起于p1, 终止于z1
其他三条终止于无 穷远处
Imaginary Axis
=-1.67
p3=-1+j
0
p2=-4
z1=-1 p1=0 p4=-1-j

180根轨迹绘制法则

180根轨迹绘制法则
s(s 2.5)(s 0.5 1.5 j)(s 0.5 1.5 j)
解:将开环零极点标注在s平面上。
j
由法则1,确定根轨迹起点和终点。
由法则2,确定有4条根轨迹分支。
由法则4,确定实轴上的根轨迹 [-∞,-2.5]、[-1.5,0] 。
由法则3,确定根轨迹有1条渐近线
-3 -2 -1 0
K1 K1 0
K1 0
m
1
n

1
j1 d z j i1 d pi
K1
分分离点离点
分离角: (2k 1) / l
K1
K1 0
K1
会合? 点? ?
K1 0
式中,zi , pj 分别为开环系统 的零点和极点; l 为在s平面上 相遇又立即分开的根轨迹的条 数,k 0,1, , l 1。
称为终值角,以 zi 标志。
根轨迹的
j
起始角 [s]
p1 p1
p3
0

p2
p2
根轨迹的j 终止角
p1
z1
p1
z1
z1
0
z2
z2 p2 z2源自p2j[s] p1
p1
[s]

0

p2 p2
出射角对(a)复极点,
(b入) 射角对复零点。
法则6:根轨迹起始角和终值角。
用试探法得d≈-2.3。
由法则6,确定起始角和终止角。
p3 (2k 1) (135o 90o 26.6o ) 71.6o p4 71.6o 本题无须确定终止角。
由法则7,确定根轨迹与虚轴的交点。
闭环特征方程为:s4 5s3 8s2 6s K* 0

2绘制根轨迹的基本法则

2绘制根轨迹的基本法则
K
g
s ( s + 1 )( s + 5 )
,试确定根轨
上例已经确定了渐近线、实轴上的根轨迹段和分离(会合)点等, 下面确定根轨迹与虚轴的交点。
方法一:闭环特征方程: 3 + 6s 2 + 5s + K g = 0 ,令 s = jω 代入闭环特 s 征方程 ( jω ) 3 + 6( jω ) 2 + 5( jω ) + K g = 0 分解为实部和虚部: K g − 6ω 2 ) + j (5ω − ω 3 ) = 0 ( K g − 6ω 2 = 0 ω = 1,± 5 于是有: ,显然交点为 ⇒ 3 K g = 0,30 5ω − ω = 0 方法二:构造劳斯表
根据根轨迹相角条件可以写出的方向角其它各极点指向的方向角各零点指向的方向角其它各极点指向的方向角由各零点指向的方向角其它各极点指向的方向角由各零点指向的方向角其它各极点指向的方向角由各零点指向考虑到k的取值为所以上式可以写成为
4.2 绘制根轨迹的基本法则
一、 180°根轨迹作图法则
法则1:根轨迹的起点和终点 根轨迹的起点是指根轨迹增益 K g = 0 时,闭环极点在s平面上的位置, K g时闭环极点在s平面上的位置。 =∞ 而根轨迹的终点则是指 根轨迹起始于系统的开环极点(包括重极点),而终止于开环零点。 根轨迹起始于系统的开环极点(包括重极点),而终止于开环零点。 ),而终止于开环零点 法则2:根轨迹的连续性和对称性 根轨迹具有连续性,且对称于实轴。 根轨迹具有连续性,且对称于实轴。 法则3:根轨迹的分支数 根轨迹的分支数取传递函数分子、分母阶数 和 的大者 的大者。 根轨迹的分支数取传递函数分子、分母阶数m和n的大者。 法则4:根轨迹的渐近线 当系统的开环增益Kg→∞时趋向无穷远处的根轨迹共有n-m条,n-m条 根轨迹趋向无穷远的方位由渐近线决定。

自动控制原理4.2 绘制根轨迹的基本法则

自动控制原理4.2 绘制根轨迹的基本法则

§4—2 绘制根轨迹的基本法则
绘制根轨迹的基本法则(续)
根轨迹在s平面上的分支数=闭环特征方程的阶 数。即:分支数=闭环极点数=开环极点数n(n≥m) 或=开环零点数m(m>n)。
二、根轨迹的起点和终点:
根轨迹起始于开环极点,终止于开环零点。 若n>m,则有(n-m)条终止于无穷远处。 若m>n,则有(m-n)条起始于无穷远处。
同理可得 :
zk
2k 1

n

z
k
i 1

pi
m


zk
j 1
zj
jk
共轭复数的开环零极点才需计算出射角和入射角,
实数开环零极点不用计算,一般为:0°, 180°,
±90°, ±60°与±120°, ±45°与±135°等.
§4—2 绘制根轨迹的基本法则
sd sd
1 2

0.473
3.527舍
j
-5
sd2
sd1
-1
0
§4—2 绘制根轨迹的基本法则
六、根轨迹与虚轴的交点:
根轨迹与虚轴相交,表示闭环极点中有一部分 位于虚轴上,即闭环特征方程有纯虚根±jω, 系统 处于临界稳定。
1、将s j,代入1 G( j)H( j) 0
3
2

Kg

0
Kg

6,
Kc 3
2、用劳斯判据:
§4—2 绘制根轨迹的基本法则
s3 1
2
s2 3
Kg
s1 6 K g
0
3
s0 K g
当 s1 行 等 于0时 , 可 能 出现共轭虚根,令

绘制根轨迹的基本法则

绘制根轨迹的基本法则
虚根。故可在闭环特征方程中令 s = jω ,然后分别令方程的实部和虚部均为零,从中求得 交点的坐标值及其相应的 K ∗ 值。此外,根轨迹与虚轴相交表明系统在相应 K ∗ 值下处于临 界稳定状态,故亦可用劳斯稳定判据去求出交点的坐标值及其相应的 K ∗ 值。此处的根轨迹
增益称为临界根轨迹增益。
例 4-4 某单位反馈系统开环传递函数为
1221)π n−m
⎨ ⎪
n
m
∑ p j − ∑ zi
⎪σ ⎩
a
=
j =1
i =1
n−m
( k =0,±1,±2,… n − m − 1)
(4-12)
证明 (1)渐近线的倾角ϕa :假设在无穷远处有闭环极点 s* ,则 s 平面上所有从开 环零点 zi 和极点 p j 指向 s* 的向量相角都相等,即 ∠(s* − zi ) = ∠(s* − p j ) = ϕa ,代入相角
件式(4-9)改写为
∏ ∏ K * =
n
| (s −
j =1
pj)|
=
s n−m
n
|1−
j =1
pj s
|
m
∏| (s − zi ) |
i =1
∏m | 1 − zi |
i =1
s
(4-11)
可见,当 s = p j 时,K * = 0 ;当 s = zi 时,K * → ∞ ;当| s | → ∞ 且 n ≥ m 时,K * → ∞ 。 法则 2 根轨迹的分支数、对称性和连续性:根轨迹的分支数与开环零点数 m 、开环
(4-16) (4-17)
于是有
∑ ∑ n
1
m
=
1
j=1 s − p j i=1 s − zi
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2:系统的特征方程为:
*
求根轨迹分离点。
*
K 1 G( s) H ( s) 1 0 s ( s 1)( s 2)

j 2 ( K * 6)
解:因为系统根轨迹方程为:
K 1 s ( s 1)( s 2)
K s ( s 1)( s 2)
*
(4) 实轴上的根轨迹区间为:
j 2*
j 2
( K * 6)
( K 6)
(, 2];[1, 0]
法则5:根轨迹轨迹的分离点。 两条或两条以上的根轨迹分支在s平面上相 遇又立即分开的点,称根轨迹的分离点。 一般常见的分离点多位于实轴上 , 但有时 也产生于共轭复数对中。分离点必然是重根点, 系统的闭环特征方程写为
j i
j 1
j i
证明: 在根轨迹上靠近起点P1较远处取一点S1,显然满足 相角条件,有 ( s1 z1 ) [( s1 p1 ) ( s1 p2 ) ( s1 p3 )] (2k 1) jω s1
当S1无限趋近于P1点时, θ p1 p 1 即 ( s1 p1 ) 为P1点的 θ 出射角 p ,一般情况下, φ z1p1 p3 0 开环复数极点Pk的出射 z1 θ p2p1 角为: m m
法则3:根轨迹的渐近线。 如果开环零点的数目m小于开环极点数n, 即 n>m, 则有(n-m)条根轨迹沿着某条渐近线终止 于无穷远处。 渐近线的可由下面的方程决定。 渐近线与实轴的交点坐标:
a
p z
i 1 i j 1
n
m
j
nm
渐近线与实轴正方向的夹角:
(2k 1) a nm (k 0,1, 2 n m 1)
j 1 i
m
—相角条件
(k 0,1, 2 )
幅值条件为充分条件,用于确定K*的值; 相角条件为充要条件,用于绘制根轨迹。
4.2.1 常规根轨迹的绘制法则(180°根轨迹) 法则1:根轨迹起始于开环极点,终止于开环零 点。一般在实际系统中,开环传函分子多 项式次数m与分母多项式次数n满足: m≤n,所以有n-m条根轨迹终止于无穷 n 远处。 s p
1
p3p1
σ
pi (2k 1) ( z
j 1
j pi

j 1 (i j )

p j pi
)
p2
同理可以确入射角。 k 0, 1, 2,
s1 p1 φ z1p1 θ p2 θ
p1

Байду номын сангаасθ p3 0
p2p1
法则4:实轴上的根轨迹。实轴上某一区域,若 其右边开环零、极点个数之和为奇数, 则该区域是根轨迹。(180°根轨迹)
证明: θ s1左边每个开环极点或零点提 供的相角为0, s1右边每个开环极 点或零点提供的相角为180º , s1 每对共轭极点和零点提供的 相角之和为0或360º ,互相抵消。 p z 2 1 所以,只有其右边开环零点、 极点的总数为奇数的实轴线段才 满足相角条件。
-2
-1
d
0 σ
由 dK (3s 2 6 s 2) 0
ds
*
s1 0.423; s2 1.577 (舍)
j 2 ( K * 6)
法则6:根轨迹的起始角与终止角。 根轨迹离开开环复数极点处的切线与正实 pi 表示。 轴的夹角,称起始角。用 根轨迹进入开环复数极点处的切线与正实 zi 表示。 轴的夹角,称终止角。用
于实轴对称。
(3) 根轨迹渐近线与实轴的交点为:
a
p z
i 1 i j 1
n
m
jω ω j
j j 22
K* 6) 6) (( K
*
j
渐近线与实轴的夹角为:
nm (0 1 2) 1 30
-2 -2
d -1 d -1
σ 0 σ 0
(2k 1) (2k 1) 5 a , , nm 30 3 3
4-2 根轨迹的绘制法则
烟台大学光电信息学院
绘制根轨迹的条件:
G(s)H(s)=-1
即:
K
*
——根轨迹方程
—幅值条件
| (s z ) | | (s p ) |
i 1 i n j i 1 j 1 n j
m
1
(s z ) (s p ) (2k 1)
证明:由幅值条件
*
K*

i 1 m
i
当 K 0 时,只有 s pi 才能满足以上幅值条件, 故根轨迹必从开环极点 pi出发。
*

j 1
s zj
当 K 时,只有 s z j或 (n≥m时)才能满 s 足以上幅值条件,故根轨迹必终止于开环零点 或 无穷远处。
法则2:根轨迹的分支数等于max{m,n},且根 轨迹连续,并关于实轴对称。
pi (2k 1) ( z p p p ); k 0, 1, 2,
j 1
m
j i
m
n
j 1 (i j )
n
j i
zi (2k 1) ( z z p z ); k 0, 1, 2,
j 1 ( j i )
1

θ
p1
2
0 σ
例1:已知系统的特征方程为 * K 1 G ( s) H ( s) 1 0 s( s 1)( s 2) 试大致绘制其根轨迹。
解:由题意,系统开环传递函数为:
K* Gk ( s) G ( s ) H ( s ) s ( s 1)( s 2)
(1) 系统无开环零点;开环极点为p1=0,P2= -1,p3=-2。根轨迹起始于开环极点,终止 于开环零点或无穷远处。 (2) m=0 , n=3 ,所以根轨迹条数为 3 条,且关
D( s) 1 G ( s) H ( s)
则根据分离点必然是重根点的条件, 可以得 出分离点的确定公式:
1 1 j 1 d z j j 1 d pi
m
n
dK ( 0) ds
*
上述方程是求取分离点或会合点的必要条件, 是否确实为分离点或会合点,需要用相角条件进 行判断。分离点或会合点可能在s平面上任何一 点。(对于复杂的方程,多用试探法)
相关文档
最新文档