三角形有关线段辅导习题精选[1]

合集下载

专题9.1 与三角形有关的线段【八大题型】(举一反三)(华东师大版)(解析版)

专题9.1 与三角形有关的线段【八大题型】(举一反三)(华东师大版)(解析版)

专题9.1与三角形有关的线段【八大题型】【华东师大版】【题型1三角形的分类】 (1)【题型2判断三角形的个数】 (3)【题型3三角形三边关系的应用】 (5)【题型4三角形的稳定性】 (6)【题型5三角形的角平分线、中线和高线概念辨析】 (8)【题型6三角形的中线与面积问题】 (10)【题型7三角形的中线与周长问题】 (13)【题型8证明三角形中线段不等关系】 (16)【例1】(2021秋•漳平市期中)下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④【分析】①根据等腰三角形及等边三角形的定义进行解答即可;②由三角形按边分可分为不等边三角形和等腰三角形,其中等腰三角形又可分为底和腰不相等的三角形和等边三角形,可得结论;③根据等腰三角形的定义进行解答;④根据三角形按角分类情况可得答案.【解答】解:①∵有两个边相等的三角形叫等腰三角形,三条边都相等的三角形叫等边三角形,∴等腰三角形不一定是等边三角形,∴①错误;②∵三角形按边分可分为不等边三角形和等腰三角形,其中等腰三角形又可分为底和腰不相等的三角形和等边三角形,∴②错误;③∵两边相等的三角形称为等腰三角形,∴③正确;④∵三角形按角分类可以分为锐角三角形、直角三角形、钝角三角形,∴④正确.故选:C.【变式1-1】(2021秋•威县期末)下列关于三角形的分类,有如图所示的甲、乙两种分法,则()A.甲、乙两种分法均正确B.甲分法正确,乙分法错误C.甲分法错误,乙分法正确D.甲、乙两种分法均错误【分析】给出知识树,分析其中的错误,这就要求平时学习扎实认真,概念掌握的准确.【解答】解:甲正确的分类应该为,乙分法正确;故选:C.【变式1-2】(2021秋•阳新县期末)如图表示的是三角形的分类,则正确的表示是()A.M表示三边均不相等的三角形,N表示等腰三角形,P表示等边三角形B.M表示三边均不相等的三角形,N表示等边三角形,P表示等腰三角形C.M表示等腰三角形,N表示等边三角形,P表示三边均不相等的三角形D.M表示等边三角形,N表示等腰三角形,P表示三边均不相等的三角形【分析】根据三角形按边的分类可直接选出答案.【解答】解:三角形根据边分类如下:三角形不等边三角形等腰三角形底和腰不相等的等腰三角形等边三角形;故选:B.【变式1-3】(2021秋•静安区期末)下列说法错误的是()A.任意一个直角三角形都可以被分割成两个等腰三角形B.任意一个等腰三角形都可以被分割成两个等腰三角形C.任意一个直角三角形都可以被分割成两个直角三角形D.任意一个等腰三角形都可以被分割成两个直角三角形【分析】根据等腰三角形的判定和直角三角形的性质判断即可.【解答】解:A、任意一个直角三角形被斜边的中线分割成两个等腰三角形,说法正确;B、有的等腰三角形不能分割成两个等腰三角形,说法错误;C、任意一个直角三角形可以被斜边的高分割成两个直角三角形,说法正确;D、任意一个等腰三角形可以被底边上的高分割成两个直角三角形,说法正确;故选:B.【题型2判断三角形的个数】【例2】(2021•蒙阴县校级开学)如图中三角形的个数是()A.3B.4C.5D.6【分析】结合图形写出所有的三角形,得到答案.【解答】解:图中有△ABE、△ABC、△BCE、△BCD、△CED共5个,故选:C.【变式2-1】(2022春•建邺区校级期中)如图,以AB为边的三角形的个数是()A.1个B.2个C.3个D.4个【分析】根据三角形的概念、结合图形写出以AB为边的三角形.【解答】解:△ABC、△ABE、△ABF、△ABD四个三角形是以AB为边的三角形,故选:D.【变式2-2】(2021秋•安徽期中)现有若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角,则在这些三角形中锐角三角形的个数是()A.3B.4或5C.6或7D.8【分析】根据三角形的定义,先得出三角形的个数.再根据三角形的分类,得出锐角三角形的个数.【解答】解:由题意得:若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角时,∴共有33÷3=11个三角形;又三角形中,最多有一个直角或最多有一个钝角,显然11个三角形中,有5个直角三角形和3个钝角三角形;故还有11﹣5﹣3=3个锐角三角形.故选:A.【变式2-3】(2022秋•饶平县校级期末)观察图形规律:(1)图①中一共有个三角形,图②中共有个三角形,图③中共有个三角形.(2)由以上规律进行猜想,第n个图形共有个三角形.【分析】(1)根据图形直接数出三角形个数即可;(2)根据(1)中所求得出数字变化规律,进而求出即可.【解答】解:(1)如图所示:图①中一共有3个三角形,图②中共有6个三角形,图③中共有10个三角形.故答案为:3,6,10;(2)∵1+2=3,1+2+3=6,1+2+3+4=10,∴第n个图形共有:1+2+3+…+(n+1)=(r1)(r2)2.故答案为:(r1)(r2).【题型3三角形三边关系的应用】【例3】(2022•平桂区二模)老师布置了一份家庭作业:用老师给的三根小木棍做出一个三角形木架,三根小木棍的长度分别为:5cm、9cm、10cm,要求只能对10cm的小木棍进行裁剪(裁剪后长度为整数).你认为同学们最多能做出()个不同的三角形木架.A.1B.2C.6D.10【分析】根据三角形的三边关系列出不等式组,判断即可.【解答】解:设从10cm的小木棍上裁剪的线段长度为xcm,则9﹣5<x<9+5,即4<x<14,∴整数x的值为5cm、6cm、7cm、8cm、9cm、10cm,∴同学们最多能做出6个不同的三角形木架,故选:C.【变式3-1】(2022春•秦淮区期中)如图,用四颗螺丝将不能弯曲的木条围成一个木框,不计螺丝大小,其中相邻两颗螺丝的距离依次为3、4、6、8,且相邻两根木条的夹角均可以调整,若调整木条的夹角时不破坏此木框,则任意两颗螺丝的距离的最大值是()A.7B.10C.11D.14【分析】分四种情况、根据三角形的三边关系解答即可.【解答】解:①选3+4、6、8作为三角形,则三边长为7、6、8;7﹣6<8<7+6,能构成三角形,此时两个螺丝间的最长距离为8;②选6+4、3、8作为三角形,则三边长为10、3、8;8﹣3<10<8+3,能构成三角形,此时两个螺丝间的最大距离为10;③选3+8、4、6作为三角形,则三边长为111、4、6;4+6<11,不能构成三角形,此种情况不成立;④选6+8、3、4作为三角形,则三边长为14、3、4;而3+4<14,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为10,故选:B.【变式3-2】(2022•襄州区模拟)一个三角形的周长是偶数,其中的两条边分别为5和9,则满足上述条件的三角形个数为()A.2个B.4个C.6个D.8个【分析】首先设三角形第三边长为x,根据三角形的三边关系可得9﹣5<x<5+9,解不等式可得x的取值范围,再根据周长是偶数确定x的值,进而可得答案.【解答】解:设三角形第三边长为x,由题意得:9﹣5<x<5+9,解得:4<x<14,∵周长是偶数,∴x=6,8,10,12,共4个.故选:B.【变式3-3】(2021秋•祁阳县期末)已知三角形的三条边长均为整数,其中有一条边长是4,但它不是最短边,这样的三角形的个数为()A.6个B.8个C.10个D.12个【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,用穷举法即可得出答案.【解答】解:∵三角形的三条边长均为整数,其中有一条边长是4,但它不是最短边,列举法:当4是最大边时,有(1,4,4),(2,3,4),(2,4,4),(3,3,4),(3,4,4).当4是中间的边时,有(2,4,5),(3,4,5),(3,4,6).共8个,故选:B.【题型4三角形的稳定性】【例4】(2021春•左权县月考)我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥中的斜拉索桥,那么你能推断出斜拉索大桥中运用的数学原理是.【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性.【解答】解:可以推断出斜拉索大桥中运用的数学原理是三角形的稳定性.故答案为:三角形的稳定性.【变式4-1】(2021秋•云梦县月考)下列生活中的一些事实运用了“三角形稳定性”的是()A.B.C.D.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:儿童座架利用三角形的稳定性,座架形成三角形不变形,结实,故C符合题意;A、B、D不是三角形,故选项不符合题意.故选:C.【变式4-2】(2021秋•龙岩期末)下列图形中,不具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性进行解答即可.【解答】解:A、不具有稳定性,故此选项符合题意;B、具有稳定性,故此选项不符合题意;C、具有稳定性,故此选项不合题意;D、具有稳定性,故此选项不符合题意;故选:A.【变式4-3】(2021秋•岚皋县校级月考)要使如图所示的六边形木架不变形,则至少需要钉上木条的根数为()A.1B.2C.3D.4【分析】三角形具有稳定性,所以要使六边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【解答】解:过六边形的一个顶点作对角线,有6﹣3=3条对角线,所以至少要钉上3根木条.故选:C.交AC于E.F为AB上的一点,CF⊥AD于H.下列判断正确的有()A.AD是△ABE的角平分线B.BE是△ABD边AD上的中线C.CH为△ACD边AD上的高D.AH为△ABC的角平分线【分析】根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.【解答】解:A、根据三角形的角平分线的概念,知AG是△ABE的角平分线,故本选项错误;B、根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故本选项错误;C、根据三角形的高的概念,知CH为△ACD的边AD上的高,故本选项正确;D、根据三角形的角平分线的概念,知AD是△ABC的角平分线,故本选项错误.故选:C.【变式5-1】(2021春•镇江期中)如图,△ABC的角平分线AD与中线BE相交于点O,有下列两个结论:①AO是△ABE的角平分线:②DE是△ADC的中线,其中()A.只有①正确B.只有②正确C.①和②都正确D.①和②都不正确【分析】易得∠BAD=∠CAD,AE=CE,根据这两个条件判断所给选项是否正确即可.【解答】解:∵△ABC的角平分线AD与中线BE相交于点O,∴∠BAD=∠CAD,AE=CE,①在△ABE中,∠BAD=∠CAD,∴AO是△ABE的角平分线,故①正确;②在△ADC中,AE=CE,∴DE是△ADC的中线,故②正确;故选:C.【变式5-2】(2022春•静安区期中)下列判断错误的是()A.三角形的三条高的交点在三角形内B.三角形的三条中线交于三角形内一点C.直角三角形的三条高的交点在直角顶点D.三角形的三条角平分线交于三角形内一点【分析】根据三角形的角平分线,中线,高的定义一一判断即可.【解答】解:A、锐角三角形的三条高的交点在三角形内,故本选项说法错误,符合题意;B、三角形的三条中线交于三角形内一点,故本选项说法正确,不符合题意;C、直角三角形的三条高的交点在直角顶点,故本选项说法正确,不符合题意;D、三角形的三条角平分线交于三角形内一点,故本选项说法正确,不符合题意.故选:A.【变式5-3】(2021秋•茶陵县期末)下列说法中,正确的个数是()①三角形的中线、角平分线、高都是线段;②三角形的三条角平分线、三条中线、三条高都在三角形内部;③直角三角形只有一条高;④三角形的三条角平分线、三条中线、三条高分别交于一点.A.1B.2C.3D.4【分析】根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上.【解答】解:①三角形的中线、角平分线、高都是线段,故正确;②钝角三角形的高有两条在三角形外部,故错误;③直角三角形有两条直角边和直角到对边的垂线段共三条高,故错误;④三角形的三条角平分线、三条中线分别交于一点是正确的,三条高线所在的直线一定交于一点,高线指的是线段,故错误.所以正确的有1个.故选:A.【题型6三角形的中线与面积问题】【例6】(2022春•广州期中)如图,△ABC的面积是24,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG的面积是()A.9B.9.5C.10.5D.10【分析】根据中线的性质,可得:△AEF的面积=12×△ABE的面积=14×△ABD的面积=18×△ABC的面积=3,△AEG的面积=3,根据三角形中位线的性质可得△EFG的面积=14×△BCE的面积=3,进而得到△AFG的面积.【解答】解:∵点D是BC的中点,∴AD是△ABC的中线,∴△ABD的面积=△ADC的面积=12×△ABC的面积,同理得:△AEF的面积=12×△ABE的面积=14×△ABD的面积=18×△ABC的面积=18×24=3,△AEG的面积=3,△BCE的面积=12×△ABC的面积=12,又∵FG是△BCE的中位线,∴△EFG的面积=14×△BCE的面积=14×12=3,∴△AFG的面积是3×3=9,故选:A.【变式6-1】(2022春•邗江区校级期中)如图,在△ABC中,D,E分别是BC,AD的中=2cm2,则S△ABC=()点,点F在BE上,且EF=2BF,若S△BCFA.3B.6C.8D.12=2cm2,求得S△BEC=3S△BCF=6cm2,根据三角形中线把【分析】根据EF=2BF,S△BCF=S△CDE=12S△BEC=3cm2,从而求出S△ABD 三角形分成两个面积相等的三角形可得S△BDE=2S△BDE=6cm2,再根据S△ABC=2S△ABD计算即可得解.=S△ACD=2cm2,【解答】解:如图,∵EF=2BF,S△BCF=3S△BCF=3×2=6cm2,∴S△BEC∵D是BD的中点,=S△CDE=12S△BEC=3cm2,∴S△BDE∵E是AD的中点,=S△ACD=2S△BDE=6cm2,∴S△ABD=2S△ABD=12cm2,∴S△ABC∴△ABC的面积为12cm2,故选:D.【变式6-2】(2021秋•潮安区期末)如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8,则阴影部分的面积为()A.4B.2C.6D.8【分析】根据AD是△ABC的中线,点E是AD的中点,得出三角形EDC的面积+三角形AEB的面积与三角形ABC的面积的关系即可.【解答】解:∵AD是△ABC的中线,=S△ACD=12S△ABC,∴S△ABD∵点E是AD的中点,=S△BDE=12S△ABD,∴S△ABES△EDC=S△CAE=12S△ACD,=14S△ABC,S△CDE=14S△ABC,∴S△ABE+S△CDE=14S△ABC+14S△ABC=12S△ABC=12×8=4,∴S△ABE故选:A.【变式6-3】(2022春•泰兴市校级月考)如图,在△ABC中,G是边BC上任意一点,D、E、F分别是AG、BD、CE的中点,S△ABC=48,则S△DEF的值为.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【解答】解:连接CD,如图所示:∵点D是AG的中点,=12S△ABG,S△ACD=12S△AGC,∴S△ABD+S△ACD=12S△ABC=24,∴S△ABD=12S△ABC=24,∴S△BCD∵点E是BD的中点,=12S△BCD=12,∴S△CDE∵点F是CE的中点,=12S△CDE=6.∴S△DEF故答案为:6.【题型7三角形的中线与周长问题】【例7】(2021秋•乳山市校级月考)在△ABC中,∠B<∠C,AD为BC边的中线,△ABD 的周长与△ADC的周长相差3,AB=8,则AC=.【分析】根据三角形的中线的定义可得BD=CD,然后求出△ABD与△ADC的周长差,然后代入数据计算即可得解.【解答】解:如图:∵AD为BC边的中线,∴BD=CD,∵△ABD与△ADC的周长差为3,AB=8,∠B<∠C,﹣C△ADC=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC=8﹣AC=3,∴C△ABD解得AC=5.故答案为:5.【变式7-1】(2021秋•涧西区校级期中)如图,在△ABC中,AD是BC边上的中线,△ADC 的周长比△ABD的周长多2,AB+AC=8,则AC的长为.【分析】根据三角形的中线的定义得到BD=DC,根据三角形的周长公式得到AC﹣AB =2,根据题意列出方程组,解方程组得到答案.【解答】解:∵AD是BC边上的中线,∴BD=DC,由题意得,(AC+CD+AD)﹣(AB+BD+AD)=2,整理得,AC﹣AB=2,则A−A=2A+A=8,解得,A=5A=3,故答案为:5.【变式7-2】(2021春•芙蓉区校级月考)△ABC中,AC=2BC,BC边上的中线AD把△ABC 的周长分成40和60两部分,求BC的长.【分析】先根据AD是BC边上的中线得出BD=CD,设BD=CD=x,AB=y,则AC=4x,再分△ACD的周长是60与△ABD的周长是60两种情况进行讨论即可.【解答】解:∵AD是BC边上的中线,AC=2BC,∴BD=CD,设BD=CD=x,AB=y,则AC=4x,分为两种情况:①AC+CD=60,AB+BD=40,则4x+x=60,x+y=40,解得:x=12,y=28,即BC=2x=24,AB=28,AC=4x=48,∵BC+AB=24+28=52>AC,∴此时符合三角形三边关系定理;②AC+CD=40,AB+BD=60,则4x+x=40,x+y=60,解得:x=8,y=52,即AC=4x=32,AB=52,BC=2x=16,∵AC+BC=32+16=48<AB,∴此时不符合三角形三边关系定理;综合上述:BC=24.【变式7-3】(2022秋•重庆期末)如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE的周长相等.(1)求线段AE的长.(2)若图中所有线段长度的和是53cm,求BC+12DE的值.【分析】(1)设AE=xcm,根据三角形BDE与四边形ACDE的周长相等列方程,解方程即可;(2)找出图中所有的线段,再根据所有线段长度的和是53cm,求出2BC+DE,得到答案.【解答】解:(1)∵三角形BDE与四边形ACDE的周长相等,∴BD+DE+BE=AC+AE+CD+DE,∵BD=DC,∴BE=AE+AC,设AE=x cm,则BE=(10﹣x)cm,由题意得,10﹣x=x+6.解得,x=2,∴AE=2cm;(2)图中共有8条线段,它们的和为:AE+EB+AB+AC+DE+BD+CD+BC=2AB+AC+2BC+DE,由题意得,2AB+AC+2BC+DE=53,∴2BC+DE=53﹣(2AB+AC)=53﹣(2×10+6)=27,∴BC+12DE=272(cm).【题型8证明三角形中线段不等关系】【例8】(2022春•鼓楼区期末)如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.【分析】首先延长BP交AC于点D,再在△ABD中可得PB+PD<AB+AD,在△PCD中,PC<PD+CD然后把两个不等式相加整理后可得结论.【解答】证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.【变式8-1】(2021春•嵩县期末)如图所示,D是△ABC的边AC上任意一点(不含端点),连结BD,请判断AB+BC+AC与2BD的大小关系,并说明理由.【分析】根据三角形两边之和大于第三边即可求解.【解答】解:AB+BC+AC>2BD.理由如下:在△ABD中,AB+AD>BD,在△BCD中,BC+CD>BD,∴AB+AD+BC+CD>2BD,即AB+BC+AC>2BD.【变式8-2】(2022春•台江区校级期末)如图,在△ABC中,已知∠BAC=70°,∠ABC 和∠ACB的平分线相交于点D.(1)求∠BDC的度数;(2)试比较DA+DB+DC与12(AB+BC+AC)的大小,写出推理过程.【分析】(1)先由三角形内角和定理求出∠ABC+∠ACB=110°,再由角平分线的定义求出∠CBD+∠BCD=55°,然后由三角形内角和定理即可得出答案;(2)由三角形的三边关系得:DA+DB>AB,DB+DC>BC,DA+DC>AC,则2(DA+DB+DC)>AB+BC+AC,即可得出结论.【解答】解:(1)∵∠BAC=70°,∴∠ABC+∠ACB=180°﹣70°=110°,∵∠ABC和∠ACB的平分线相交于点D,∴∠ABD=∠CBD=12∠ABC,∠ACD=∠BCD=12∠ACB,∴∠CBD+∠BCD=12(∠ABC+∠ACB)=12×110°=55°,∴∠BDC=180°﹣(∠CBD+∠BCD)=180°﹣55°=125°;(2)DA+DB+DC>12(AB+BC+AC),理由如下:在△ABD中,由三角形的三边关系得:DA+DB>AB①,同理:DB+DC>BC②,DA+DC>AC③,①+②+③得:2(DA+DB+DC)>AB+BC+AC,∴DA+DB+DC>12(AB+BC+AC).【变式8-3】(2021秋•饶平县校级期中)在锐角三角形ABC中,AB>AC,AM为中线,P 为△AMC内一点,证明:PB>PC(如图).【分析】在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,根据在两边对应相等的两个三角形中,第三边大的,所对的角也大,得出∠AMB>∠AMC.而∠AMB+∠AMC=180°,则∠AMC<90°.由于P为锐角△AMC内一点,过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.【解答】证明:在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,∴∠AMB>∠AMC,∴∠AMC<90°.过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.所以PB>PC.。

八年级上册数学第十一章三角形11.1与三角形有关的线段配套练习

八年级上册数学第十一章三角形11.1与三角形有关的线段配套练习

八年级上册数学第十一章三角形11.1与三角形有关的线段配套练习题一、选择题(本大题共8小题,共24.0分)1.已知三条线段的长度比如下: ①2:3:4; ②1:2:3; ③2:4:6; ④3:3:6; ⑤6:6:10; ⑥6:8:10,其中能构成三角形的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.【解答】解: ①设三条线段的长分别为2x,3x,4x,则2x+3x>4x,故能构成三角形; ②设三条线段的长分别为x,2x,3x,则x+2x=3x,故不能构成三角形; ③设三条线段的长分别为2x,4x,6x,则2x+4x=6x,故不能构成三角形; ④设三条线段的长分别为3x,3x,6x,则3x+3x=6x,故不能构成三角形; ⑤设三条线段的长分别为6x,6x,10x,则6x+6x>10x,故能构成三角形; ⑥设三条线段的长分别为6x,8x,10x,则6x+8x>10x,故能构成三角形.故选C.2.已知三角形的两边长分别为3cm和4cm,则该三角形第三边的长不可能是()A. 1cmB. 3cmC. 5cmD. 6cm【答案】A【解析】解:∵三角形的两边长分别为3cm和4cm,∴1<第三边的长<7,故该三角形第三边的长不可能是1cm.故选:A.直接利用三角形三边关系得出第三边长的取值范围进而得出答案.此题主要考查了三角形三边关系,正确得出第三边长的取值范围是解题关键.3.如图,AD,BE,CF依次是△ABC的高、中线和角平分线,下列各式中错误的是()A. AE=CEB. ∠ADC=90∘C. ∠CAD=∠CBED. ∠ACB=2∠ACF【答案】C【解析】略4.下列说法正确的是()A. 所有的等腰三角形都是锐角三角形B. 等边三角形属于等腰三角形C. 不存在既是钝角三角形又是等腰三角形的三角形D. 一个三角形里有两个锐角,则一定是锐角三角形【答案】B【解析】解:A、错误,内角为30°,30°,120°的等腰三角形是钝角三角形;B、正确,等边三角形属于等腰三角形;C、错误,内角为30°,30°,120°的三角形既是钝角三角形又是等腰三角形的三角形;D、错误,内角为30°,30°,120°的三角形有两个锐角,是钝角三角形.故选:B.根据锐角三角形、钝角三角形、等腰三角形的定义一一判断即可.本题考查三角形的一个概念,解题的关键是搞清楚锐角三角形、钝角三角形、等腰三角形的定义,属于基础题,中考常考题型.5.画△ABC中AB边上的高,下列画法中正确的是()A. B.C. D.【答案】C【解析】略6.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了使它更加稳固,需要在窗框上钉一根木条,这根木条不应钉在()A. A,C两点之间B. E,G两点之间C. B,F两点之间D. G,H两点之间【答案】B【解析】选项A,C,D中都构成了三角形,增加了稳定性;选项B中,木条钉在E,G两点之间,没有构成三角形.故选B.7.将一张三角形纸片剪开分成两个三角形,这两个三角形不可能()A. 都是直角三角形B. 都是钝角三角形C. 都是锐角三角形D. 是一个直角三角形和一个钝角三角形【答案】C【解析】【分析】本题主要考查了三角形的分类,理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.分三种情况讨论,即可得到这两个三角形不可能都是锐角三角形.【解答】解:如图,沿三角形一边上的高剪开即可得到两个直角三角形.,如图,钝角三角形沿虚线剪开即可得到两个钝角三角形.,如图,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.,因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.故选C.8.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()A. 4个B. 5个C. 6个D. 7个【答案】A【解析】【分析】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.依据△ABC的周长为22,△ABM的周长比△ACM的周长大2,可得2<BC<11,再根据△ABC的三边长均为整数,即可得到BC=4,6,8,10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22−BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=22−BC−22=10−12BC,为整数,∴BC边长为偶数,∴BC=4,6,8,10,故选:A.二、填空题(本大题共2小题,共6.0分)9.三角形的三条中线相交于一点,这个点一定在三角形的________,这个点叫做三角形的__________.【答案】内部;重心【解析】略10.如图,在△ABC中,D是BC边上一点,E是AD边上一点.(1)以AC为边的三角形共有个,它们是;(2)∠1是△和△的内角;(3)在△ACE中,∠CAE的对边是.【答案】3△ACE,△ACD,△ACBBCECDECE【解析】略三、解答题(本大题共5小题,共40.0分)11.在如图所示的方格纸中,每个小正方形的边长均为1,点A,点B,点C均在小正方形的顶点上.(1)画出△ABC中BC边上的高AD;(2)画出△ABC中AC边上的中线BE;(3)直接写出△ABE的面积为.【答案】解:(1)如图所示,线段AD即为所求.(2)如图所示,线段BE即为所求.(3)4.【解析】(3)解:∵S△ABC=12BC⋅AD=12×4×4=8,∴△ABE的面积=12S△ABC=4.12.已知a、b、c为△ABC的三边长,且b、c满足(b−5)2+(c−7)2=0,a为方程|a−3|=2的解,求△ABC的周长,并判断△ABC的形状.【答案】解:∵(b −5)2+(c −7)2=0,∴{b −5=0,c −7=0,解得{b =5,c =7,∵a 为方程|a −3|=2的解,∴a =5或1,当a =1,b =5,c =7时,三边长分别为1,5,7,1+5<7,不能组成三角形,故a =1不符合题意;当a =5,b =5,c =7时,三边长分别为5,5,7,5+5>7,能组成三角形,故a =5符合题意,∴△ABC 的周长=5+5+7=17.∵a =b =5,∴△ABC 是等腰三角形.【解析】要注意检验三边长能否构成三角形.13. 若△ABC 的三边长分别为m −2,2m +1,8.(1)求m 的取值范围;(2)若△ABC 的三边均为整数,求△ABC 的周长.【答案】解:(1)根据三角形的三边关系,{2m +1−(m −2)<82m +1+m −2>8, 解得:3<m <5;(2)因为△ABC 的三边均为整数,且3<m <5,所以m =4.所以,△ABC 的周长为:(m −2)+(2m +1)+8=3m +7=3×4+7=19.【解析】(1)直接利用三角形三边关系得出不等式组求出答案;(2)利用m 的取值范围得出m 的值,进而得出答案.此题主要考查了三角形三边关系,正确得出不等式组是解题关键.14.如图,已知P是△ABC内一点.求证:PA+PB+PC>1(AB+BC+AC).2【答案】证明:在△ABP中,PA+PB>AB; ①在△PBC中,PB+PC>BC; ②在△PAC中,PA+PC>AC. ③ ①+ ②+ ③,得2(PA+PB+PC)>AB+BC+AC,(AB+BC+AC).即PA+PB+PC>12【解析】见答案15.在平面内,分别用3根、5根、6根⋯⋯火柴棒首尾顺次相接,能搭成什么形状的三角形呢?通过尝试,列表如下:火柴棒根数356示意图形状等边三角形等腰三角形等边三角形(1)用4根火柴棒能搭成三角形吗?(2)用8根、12根火柴棒分别能搭成几种不同形状的三角形?并画出它们的示意图.【答案】解:(1)用4根火柴棒不能搭成三角形.(2)用8根火柴棒能搭成一种三角形,示意图如图 ①所示;用12根火柴棒能搭成三种不同形状的三角形,即:(4,4,4),(5,5,2),(3,4,5),示意图如图 ②所示.【解析】见答案。

第十一章与三角形有关的线段练习

第十一章与三角形有关的线段练习

--与三角形有关的线段练习(一)一、选择题:1.等腰三角形的底边BC=8 cm ,且|AC -BC|=2 cm ,则腰长AC 为( ) A.10 cm 或6 cm B.10 cm C.6 cm D.8 cm 或6 cm2.如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为( )A.5B.6C.7D.83.如果三角形的三边长是三个连续自然数,则下面判断错误的是 ( ). A.周长大于6 B.周长可以被6整除 C.周长可以被3整除 D.周长有时是奇数4.三角形三边长a 、b 、c 满足(a -b -c)(b -c)=0,则这个三角形是( )A.等边三角形B.等腰三角形C.斜三角形D.任意三角形5.等腰三角形周长为23,且腰长为整数,这样的三角形共有( )个 A.4个 B.5个 C.6个 D.7个6.下列各组数分别表示三条线段的长度,( )组不能组成三角形。

A. 1,2,2B. 3x ,5x ,7xC. 三条线段的比为4:7:6D. 4cm ,8cm ,13cm7. 如图所示,AM 是△ABC 的中线,若用S 1表示△ABM 的面积,用S 2表示△ACM 的面积,则S 1与S 2的大小关系是( )A. S 1 > S 2B. S 1 < S 2C. S 1 = S 2D. 以上三种情况都有可能8. 已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5。

其中可构成三角形的有( ) A. 1个 B. 2个 C. 3个 D. 4个9. 在△ABC 中,D 是BC 上的点,且BD :DC=2:1,S △ACD =12,那么 S △ABC 等于( )A. 30B. 36C. 72D. 2410. 若一个三角形的两条高与边重合,那么它的三个内角中( )A. 都是锐角B. 有一个直角C. 有一个钝角D. 不能确定11. 如图,在△ABC 中,D 、E 分别是AC 、BC 的中点,则下列说法正确的是( ) A. BD 是∠ABC 的平分线 B. BD 是AC 边上的高 C. BD 是AC 边上的中线 D. DE 是△ABC 的中线12. 如果三角形的一条边长为4cm ,另两条边长都为x cm ,则x 的取值范围是( )。

部编数学八年级上册专题01与三角形有关的线段重难点专练(解析版)(人教版)含答案

部编数学八年级上册专题01与三角形有关的线段重难点专练(解析版)(人教版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!专题01与三角形有关的线段重难点专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2021·西藏日喀则市·八年级期末)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.11【答案】C【详解】【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断.【详解】设第三边长为x,则有7-3<x<7+3,即4<x<10,观察只有C选项符合,故选C.【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边之间的关系是解题的关键. 2.(2021·陕西宝鸡市·八年级期末)在三角形ABC中,AB=7,BC=2,并且AC的长为奇数,则AC=( )A.3B.5C.7D.9【答案】C【解析】分析:根据三角形的任意两边之和大于第三边,任意两边之差小于第三边求出AC的取值范围,再根据AC是奇数解答即可.详解:∵AB=7,BC=2,∴7+2=9,7-2=5,∴5<AC<9,∵AC为奇数,∴AC=7.故选C.点睛:本题主要考查了三角形的三边关系,熟记关系式求出AC的取值范围是解题的关键.3.(2021·湖南八年级期末)如图,AD是△ABC的中线,△ABD比△ACD的周长大6 cm,则AB与AC的差为( )A.2 cm B.3 cm C.6 cm D.12 cm【答案】C【分析】根据三角形的周长和中线的定义进行解题.【详解】∵AD是△ABC的中线,∴BD=BC.∴△ABD比△ACD的周长大6cm,即AB与AC的差值为6cm.故选C.【点睛】本题考查了三角形的角平分线、中线和高,熟练掌握三角形是本题解题的关键.4.(2021·河北八年级期末)若实数m、n满足等式|m﹣=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是( )A.6B.8C.8或10D.10【答案】D【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【详解】解:∵=0,∴m-2=0,n-4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选D.【点睛】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求m、n的值,再根据m或n作为腰,分类求解.5.(2021·武汉市武珞路中学八年级期中)已知三角形的两边分别为5和8,则此三角形的第三边可能是()A.2B.3C.5D.13【答案】C【分析】先根据三角形的三边关系求出x的取值范围,再求出符合条件的x的值即可.【详解】此三角形第三边的长为x,则8-5<x<8+5,即3<x<13,只有选项C符合题意.故选C.【点睛】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.6.(2021·河北八年级期末)如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是( )A.AC是△ABC的高B.DE是△BCD的高C.DE是△ABE的高D.AD是△ACD的高【答案】C【分析】根据三角形高的定义分别进行判断.【详解】解:△ABC中,AC⊥BC,则AC是BC边上的高,所以A正确;△BCD中,DE⊥BC,则DE是BC边上的高,所以B正确;△ABE中,DE不是△ABE的高,所以C错误;△ACD中,CD⊥AB,则AD是CD边上的高,所以D正确.故答案为:C.【点睛】本题考查了三角形的角平分线、中线和高,三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高;三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线;三角形一边的中点与此边所对顶点的连线叫做三角形的中线.7.(2021·山东滨州市·八年级期末)三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A 表示( )A .直角三角形B .锐角三角形C .钝角三角形D .等边三角形【答案】D【分析】根据三角形的分类可直接得到答案.【详解】三角形根据边分类 ()ìïìííïîî不等边三角形两边相等的三角形等腰三角形三边相等的三角形等边三角形,∴图中小椭圆圈里的A 表示等边三角形.故选D .【点睛】此题主要考查了三角形的分类,关键是掌握分类方法.按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).8.(2021·浙江八年级期末)已知三角形的三边长分别为2、x 、10,若x 为正整数,则这样的三角形个数为( )A .1B .2C .3D .4【答案】C【分析】先根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出x 的取值范围,然后根据若x 为正整数,即可选择答案.【详解】10-2=8,10+2=12Q,812\<<,xQ若x为正整数,\的可能取值是9,10,11三个,故这样的三角形共有3个.x所以C选项是正确的.【点睛】本题主要考查了三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;牢记三角形的三边关系定理是解答的关键,注意本题的隐含条件就是x为正整数. 9.(2021·湖南八年级期末)三角形的下列线段中将三角形的面积分成相等两部分的是( )A.中线B.角平分线C.高D.以上都对【答案】A【分析】根据等底等高的三角形的面积相等解答.【详解】∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.【点睛】本题考查了三角形的面积,主要利用了“三角形的中线把三角形分成两个等底同高的三角形”的知识,本知识点是中学阶段解三角形的面积经常使用,一定要熟练掌握并灵活应用.10.(2021·河南八年级期末)下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4cm B.1cm,2cm,3cm C.3cm,4cm,5cm D.4cm,5cm,6cm 【答案】B【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】+>,能构成三角形,不合题意;A.234+=,不能构成三角形,符合题意;B.123+>,能构成三角形,不合题意;C.435+>,能构成三角形,不合题意.D.456【点睛】此题考查了三角形三边关系,解题关键在于看较小的两个数的和能否大于第三个数.11.(2021·湖南娄底市·八年级期末)以下列各组线段为边,能组成三角形的是( ) A.2、2、4B.2、6、3C.8、6、3D.11、4、6【答案】C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】根据三角形的三边关系,知A、2+2=4,不能组成三角形;B、3+2=5<6,不能组成三角形;C、3+6>8,能够组成三角形;D、4+6<11,不能组成三角形.故选C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.12.(2021·邯郸市第十一中学八年级期末)如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)( )A.B.C.D.【答案】D过A作河岸的垂线AH,在直线AH上取点I,使AI等于河宽,连接BI即可得出N,作出MN⊥a即可得到M,连接AM即可.【详解】解:根据河的两岸是平行直线,桥要与河岸垂直可知,只要AM+BN最短就符合题意,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB 交河岸b于N,作MN垂直于河岸交河岸a于M点,连接AM.故选D.【点睛】本题考查了最短路线问题以及三角形三边关系定理的应用,关键是找出M、N的位置.13.(2021·河南八年级期末)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A.锐角三角形B.钝角三角形C.直角三角形D.都有可能【答案】C【分析】根据三角形的三条高线与三角形的位置关系即可直接得出结论.【详解】解:锐角三角形的三条高的交点在三角形内部(如图1),钝角三角形的三条高所在直线的交点在三角形外部(如图2),直角三角形的三条高的交点在三角形的直角顶点上(如图3).故选C.【点睛】本题主要考查了三角形的三条高线的交点问题,掌握三角形的三条高线交点的特征是解题的关键.14.(2021·重庆市两江中学校八年级月考)现有两根长度为3cm和8cm的木条,想制作一个三角形木框,桌上有下列长度的几根木条,应该选择长度为()的木条. A.11cm B.10cm C.5cm D.3cm【答案】B【分析】设木条的长度为xcm,再由三角形的三边关系即可得出结论.【详解】解:设木条的长度为xcm,则8-3<x<8+3,即5<x<11,故她应该选择长度为10cm的木条.故选:B.【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.15.(2021·山东八年级期末)下列各组数中,不能成为三角形三条边长的数是()A.5,10,12B.3,14,13C.4,12,12D.2,6,8【答案】D【分析】根据三角形三边关系判断即可.【详解】解:A、因为5+10>12,所以本组数可以构成三角形.故本选项不符合题意;B、因为3+13>14,所以本组数能构成三角形.故本选项不符合题意;C、因为4+12>12,所以本组数能构成三角形.故本选项不符合题意;D、因为2+6=8,所以本组数不能构成三角形.故本选项符合题意;故选:D.【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.16.(2021·湖北八年级期末)以下列各组线段为边,能组成三角形的是()A.2cm,5cm,8cm B.3cm,3cm,6cmC.25cm,24cm,7cm D.1cm,2cm,3cm【答案】C【分析】根据三角形任意两边之和大于第三边进行分析即可.【详解】A、2+5<8,不能组成三角形;B、3+3=6,不能组成三角形;C、7+24>25,能够组成三角形;D、1+2=3,不能组成三角形.故选:C.【点睛】此题考查三角形三边关系.解题关键在于掌握用两条较短的线段相加,如果大于最长哪条就能够组成三角形.V的边AB上的高线,下17.(2021·北京延庆区·八年级期末)如图,用三角板作ABC列三角板的摆放位置正确的是()A.B.C.D.【答案】B【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.根据高线的定义即可得出结论.【详解】解:A.作出的是△ABC中BC边上的高线,故本选项错误;B.作出的是△ABC中AB边上的高线,故本选项正确;C.不能作出△ABC中AB边上的高线,故本选项错误;D.作出的是△ABC中AC边上的高线,故本选项错误;故选:B .【点睛】本题考查的是作图-基本作图,熟知三角形高线的定义是解答此题的关键.18.(2021·山东临沂市·)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )A .4B .5C .6D .7【答案】B【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】①长度分别为5、3、4,能构成三角形,且最长边为5;②长度分别为2、6、4,不能构成三角形;③长度分别为2、7、3,不能构成三角形;④长度分别为6、3、3,不能构成三角形;综上所述,得到三角形的最长边长为5.故选:B .【点睛】此题考查构成三角形的条件,三角形的三边关系,解题中运用不同情形进行讨论的方法,注意避免遗漏构成的情况.19.(2020·四川七年级期末)如图,在ABC D 中,90CAB Ð=°,AD 是高,CF 是中线,BE 是角平分线,BE 交AD 于G ,交CF 于H ,下列说法正确的是( )①AEG AGE Ð=Ð②BH CH =③2EAG EBC Ð=Ð④ACF BCF S S D D =A .①③B .①②③C .①③④D .②③④【答案】C【分析】①根据90CAB Ð=°,AD 是高,可得90AEG ABE Ð=°-Ð,90DGB DBG Ð=°-Ð,又因为BE 是角平分线,可得ABE DBE ÐÐ=,故能得到∠AEG=∠DGB ,再根据对顶角相等,即可求证该说法正确;②因为CF 是中线,BE 是角平分线,得不到∠HCB=∠HBC ,故该说法错误;③90EAG DAB Ð+Ð=°,90DBA DAB Ð+Ð=°,可得∠EAG=∠DBA ,因为∠DBA=2∠EBC ,故能得到该说法正确;④根据中线平分面积,可得该说法正确.【详解】解:①∵90CAB Ð=°,AD 是高∴90AEG ABE Ð=°-Ð,90DGB DBGÐ=°-Ð∵BE 是角平分线∴ABE DBEÐÐ=∴∠AEG=∠DGB∵∠DGB=∠AGE∴AEG AGE Ð=Ð,故该说法正确;②因为CF 是中线,BE 是角平分线,得不到∠HCB=∠HBC ,故该说法错误;③∵90EAG DAB Ð+Ð=°,90DBA DAB Ð+Ð=°∴∠EAG=∠DBA∵∠DBA=2∠EBC ,∴∠EAG=2∠EBC ,故该说法正确;④根据中线平分面积,可得ACF BCF S S D D =,故该说法正确.故选C .【点睛】本题主要考查了三角形的高,中线,角平分线的性质,熟练各线的特点和性质是解决本题的关键.20.(2021·河北八年级期末)如图所示,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且S △ABC =4cm 2,则S 阴影等于…( )A .2cm 2B .1cm 2C .12cm 2D .14cm 2【答案】B【分析】根据三角形的中线将三角形面积平分这一结论解答即可.【详解】∵在△ABC 中,点D 是BC 的中点,∴12ABD ACD ABC S S S D D D == =2cm 2,∵在△ABD 和△ACD 中,点E 是AD 的中点,∴12BED ABD S S D D ==1 cm 2,12CED ACD S S D D ==1 cm 2,∴BEC S D =2 cm 2,∵在△BEC 中,点F 是CE 的中点,∴12BEF BEC S S D D ==1 cm 2,即S 阴影=1 cm 2故选:B .【点睛】本题考查三角形的中线与三角形面积的关系,熟知三角形的中线将三角形面积平分这一结论是解答的关键.21.(2020·重庆八年级月考)在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( )A .8B .9.6C .10D .12【答案】B【分析】如图,作CE AB ^与E,利用勾股定理的逆定理证明AD BC ^,再利用面积法求出EC 即可.【详解】如图,作CE AB ^与E.AD Q 是ABC D 的中线,BC =12,\BD=6,10,8,6,AB AD BD ===Q \ 222AB AD BD =+,90,ADB \Ð=o,AD BC \^11,22ABC S BC AD AB CE D ==Q g g g g 1289.6.10CE ´\==故选B.【点睛】本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.22.(2021·湖北八年级期末)若a ,b ,c 为△ABC 的三边长,且满足|a ﹣5|+(b ﹣3)2=0,则c 的值可以为( )A .7B .8C .9D .10【答案】A【分析】根据非负数的性质列方程求出a 、b 的值,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出c 的取值范围,然后解答即可.【详解】解:∵|a ﹣5|+(b ﹣3)2=0,∴a ﹣5=0,b ﹣3=0,解得a =5,b =3,∵5﹣3=2,5+3=8,∴2<c <8,∴c 的值可以为7.故选:A .【点睛】本题考查了非负数的性质以及三角形的三边关系.注意:几个非负数的和为0时,这几个非负数都为0.23.(2021·湖北八年级期末)下列长度的三条线段能构成三角形的是()A .2cm ,3cm ,5cmB .5cm ,6cm ,11cmC .3cm ,4cm ,8cmD .5cm ,6cm ,10cm 【答案】D【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】解:A、2+3=5,不能构成三角形;B、5+6=11,不能构成三角形;C、3+4<8,不能构成三角形;D、5+6>10,能构成三角形.故选:D.【点睛】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数就可以.24.(2021·浙江八年级期末)已知三角形的一边长为8,则它的另两边长分别可以是()A.4,4B.17,29C.3,12D.2,9【答案】D【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”进行判断即可.【详解】A、∵4+4=8,∴构不成三角形;B、29−17=12>8,∴构不成三角形;C、∵12−3=9>8,∴构不成三角形;D、9−2=7<8,9+2=11>8,∴能够构成三角形,故选:D.【点睛】此题考查了三角形的三边关系,熟练掌握三角形三边关系“任意两边之和大于第三边,任意两边之差小于三边”是解题的关键.D的高的是()25.(2021·湖北八年级期末)下面四个图形中,线段AD是ABCA.B.C .D .【答案】D【分析】根据三角形高的定义进行判断.【详解】解:线段AD 是△ABC 的高,则过点A 作对边BC 的垂线,则垂线段AD 为△ABC 的高.选项A 、B 、C 错误,故选:D .【点睛】本题考查了三角形的高:三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.26.(2021·广州市番禺区新英才中英文学校八年级期末)下列各组数中,不可能成为一个三角形三边长的是()A .2,3,4B .5,7,7C .5,6,12D .6,8,10【答案】C【分析】判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A .∵2+3>4,∴能组成三角形,故A 错误;B .∵5+7>7,∴不能组成三角形,故B 错误;C .∵5+6<12,∴不能组成三角形,故C 正确;D .∵6+8>10,∴能组成三角形,故D 错误;故选:C .【点睛】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.27.(2021·全国八年级)AD 是ABC V 的高,80BAD Ð=°,20CAD Ð=°,则BAC Ð的度数为( )A .100°B .80°C .60°D .100°或60°【答案】D【分析】分高AD 在△ABC 内部和外部两种情况讨论求解即可.【详解】①如图1,当高AD 在△ABC 的内部时,∠BAC=∠BAD+∠CAD=80°+20°=100°;②如图2,当高AD 在△ABC 的外部时,∠BAC=∠BAD-∠CAD=80°-20°=60°,综上所述,∠BAC 的度数为100°或60°.故选:D .【点睛】本题考查了三角形的高线,难点在于要分情况讨论.28.(2021·全国)如图所示,AD 为ABC V 的中线,DE AB ^于点E ,DF AC ^于点F ,6,8,3AB AC DE ===,则DF 等于( )A .3B .94C .5D .6【答案】B【分析】由AD 为中线得到ABD ADC S S =V V ,根据DE AB ^于点E ,DF AC ^于点F ,6,8,3AB AC DE ===列得1122AC DF AB DE ´=´,分别代入计算即可.【详解】解:Q 在ABC V 中,AD 为中线,∴ABD ADC S S =V V ,DE AB ∵⊥于E ,DF AC ^于,F 6AB = ,8AC =,3DE =,∴1122AC DF AB DE ´=´,∴1186322DF ´´=´´解得94DF =,故选:B.【点睛】此题考查三角形中线的性质:三角形的中线将三角形分为两个面积相等的三角形.29.(2021·全国八年级)如图,已知AD BC ^于点D ,BE AC ^于点E ,CF AB ^于点F ,则ABC V 中BC 边上的高是( )A .CFB .BEC .CD D .AD【答案】D【分析】从三角形的一个顶点向它的对边引垂线,顶点和垂足间的线段叫做三角形的高.根据此概念求解即可.【详解】A 、CF ⊥AB ,∴线段CF 是△ABC 中AB 边上的高,此选项不符合题意;B 、BE ⊥AC ,∴线段BE 是△ABC 中AC 边上的高,此选项不符合题意;C 、CD 不是△ABC 的高,此选项不符合题意;D 、AD ⊥BC ,∴线段AD 是△ABC 中BC 边上的高,此选项符合题意;故选:D .【点睛】本题主要考查了三角形的高.准确识图并熟记三角形高的定义是解题的关键.30.(2021·全国八年级)以下列各组线段为边,能组成三角形的是( )A .2cm ,3cm ,5cmB .6cm ,7cm ,8cmC .1cm ,1cm ,3cmD .4cm ,4cm ,9cm【答案】B【分析】根据三角形的三边关系对各选项进行逐一分析即可.【详解】A 、235+=,不能组成三角形,故本选项错误;B 、678+>,能组成三角形,故本选项正确;C 、1123+=<,不能组成三角形,故本选项错误;D 、4489+=<,不能组成三角形,故本选项错误.故选:B .【点评】本题主要考查了三角形的三边关系,关键是掌握在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.31.(2021·全国)下列长度的三根小木棒不能构成三角形的是( )A .1,1,1B .3,4,5C .2,2,3D .1,1,2【答案】D【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:A ,111+>,能构成三角形;B ,345+>,能构成三角形;C ,223+>,能构成三角形;D ,112+=,不能构成三角形.故选D .【点睛】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.32.(2021·新疆喀什地区·八年级期末)已知三角形两边的长分别是3和5,则此三角形第三边的长不可能是().A .3B .5C .7D .11【答案】D【分析】根据三角形的三边关系解答.【详解】设三角形的第三边为x,则5-3<x<5+3,2<x<8,故选:D.【点睛】此题考查三角形三边关系:三角形任意两边的和都大于第三边,熟记关系是解题的关键.33.(2021·天津红桥区·八年级期末)以下列长度的各组线段为边,能组成三角形的是( )A.2cm,3cm,6cm B.3cm,4cm,8cmC.5cm,6cm,10cm D.5cm,6cm,11cm【答案】C【分析】根据三角形三边关系解答.【详解】A、∵2+3<6,∴以此三条线段不能组成三角形;B、3+4<8,∴以此三条线段不能组成三角形;C、∵5+6>10,∴以此三条线段能组成三角形;D、∵5+6=11,∴以此三条线段不能组成三角形;故选:C.【点睛】此题考查三角形的三边关系:三角形两边的和大于第三边.34.(2021·云南八年级期末)下列四个图形中,线段BE表示△ABC的高的是()A.B.C.D.【答案】C【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【详解】解:线段BE是△ABC的高的图是选项C.故选:C.【点睛】本题考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.35.(2021·云南保山市·八年级期末)已知三角形的两边长分别为1和4,则第三边长可能是()A.3B.4C.5D.6【答案】B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x,∵三角形两边的长分别是1和4,∴4-1<x<4+1,即3<x<5.故选:B.【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.36.(2021·山东滨州市·八年级期末)若一个三角形的三边长分别为3,7,x,则x的值可能是()A.6B.3C.2D.11【答案】A【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.37.(2021·江苏八年级期末)已知实数x、y满足|x-4|+ =0,则以x、y的值为两边长的等腰三角形周长是()A.20或16B.20C.16D.18【答案】B【分析】根据绝对值与二次根式的非负性即可求出x与y的值.由于没有说明x与y是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B.【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.38.(2021·广西钦州市·八年级期末)下列长度的三条线段中,有组成三角形的是()A.3cm,4cm,9cm B.8cm,7cm,15cmC.12cm,13cm,24cm D.2cm,2cm,6cm【答案】C根据三角形的三边关系对各选项进行逐一分析即可.【详解】解:A、∵3+4=7<9,∴不能构成三角形,故本选项不符合题意;B、∵8+7=15,∴不能构成三角形,故本选项不符合题意;C、∵12+13=25>24,∴能构成三角形,故本选项符合题意;D、∵2+2=4<6,∴不能构成三角形,故本选项不符合题意.故选:C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.39.(2021·广东八年级期末)如图,ABCV中,D、E分别是BC、AD的中点,若ABCV的面积是10,则ABE△的面积是()A.54B.52C.5D.10【答案】B【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可求出△ABE的面积.【详解】∵AD是BC上的中线,∴ S△ABD=S△ACD=12S△ABC ,∵BE是△ABD中AD边上的中线,∴ S△ABE=S△BED=12S△ABD ,∴ S△ABE=14SΔABC,∵△ABC的面积是10,∴ S△ABE=14×10=52.【点睛】本题考查的是三角形的中线的性质,三角形一边上的中线把原三角形分成的两个三角形的面积相等.40.(2021·云南曲靖市·曲靖一中八年级期末)三角形的两边长分别是4和11,第三边+,则m的取值范围在数轴上表示正确的是()长为34mA.B.C.D.【答案】A【分析】已知两边的长,第三边应该大于任意两边的差,而小于任意两边的和,列不等式进行求解后再进行判断即可.【详解】解:根据三角形的三边关系,得11-4<3+4m<11+4,解得1<m<3.故选:A.【点睛】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.41.(2021·江苏七年级期中)已知a,b,c是三角形的三边,那么代数式a2-2ab+b2-c2的值()A.大于零B.等于零C.小于零D.不能确定【答案】C【详解】a2-2ab+b2-c2=(a-b)2-c2=(a+c-b)[a-(b+c)].∵a,b,c是三角形的三边.∴a+c-b>0,a-(b+c)<0.∴a2-2ab+b2-c2<0.故选C.二、填空题42.(2021·富顺第二中学校八年级开学考试)已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是_____.【答案】12cm.【详解】①当三边长分别为2,2,5时,因为2+2<5,所以不符合题意;当三边长分别为2,5,5时,周长为2+5+5=12,故答案为12.43.(2021·湖北八年级期末)如图,△ABC中,D、E、F为BC、AD、BE的中点,若△CEF的面积是3,则△ABC的面积是________.【答案】12【分析】根据三角形的面积公式得到:三角形的中线将三角形分为面积相等的两部分,据此进行答题即可.【详解】∵点F是BE的中点,∴S△EFC=12S△BCE.又∵点D是BC的中点,∴S△BDE=12S△BCE,S△ABD=12S△ABC,∴S△BDE=S△EFC=3,S△ABC=2S△ABD.又∵点E是AD的中点,∴S△BDE=12S△ABD,即S△ABD=2S△BDE=6,∴S△ABC=2S△ABD=12.故答案是12.【点睛】本题考查了三角形面积:三角形面积等于底边与底边上的高乘积的一半;等底等高的两三角形面积相等,等高的两三角形面积的比等于底边的比.44.(2021·固阳县第三中学八年级期中)等腰三角形的边长分别为6和8,则周长为。

《与三角形有关的线段》典型例题、习题精选

《与三角形有关的线段》典型例题、习题精选

《与三角形有关的线段》典型例题、习题精选例题:1.三角形两边的长分别为3和5,则周长l的范围是( )A.2<l<8 B.10<l<18 C.10<l<16 D.无法确定答案:C说明:因为三角形中的任意两边之和大于第三边,所以要想构成三角形,第三边的长需要比5-3 = 2要大,但不能比3+5 = 8的值大,这样就不难得出该三角形周长l的范围应该是2+3+5<l<3+5+8,即10<l<16,所以答案为C.2.一个三角形的两边长为3cm、8cm,第三边的数值的奇数,那么这个三角形的周长为( )A. 18cm B. 20cm C. 19cmD. 18cm或 20cm答案:D说明:因为这个三角形的第三边的数值为奇数,并且三角形中任意两边之和大于第三边,所以第三边的数值一定大于5并且小于11,这样第三边长只能是7cm或9cm,因此,这个三角形的周长为18cm或20cm,答案为D.3.从长度为3、5、7、10的四条线段中任选三条组成一个三角形,这样的三角形有几个?解析:有四种不同的选法.①3,5,7;②3,5,10;③3,7,10;④5,7,10.其中,3+5<10,3+7 = 10.故只有两组线段长3,5,7和5,7,10可作为边长组成三角形,即有两个这样的三角形.4.如图,D为△ABC内一点,说明:AB+AC>BD+DC.解析:延长BD与AC相交于E.在△ABE中,AB+AE>BE = BD+DE,在△DEC中,DE+EC>CD..∴AB+AE+DE+EC>BD+DE+CD∴AB+AE+EC>BD+CD.即AB+AC>BD+DC.习题一一、选择题:1.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有( )A.1个B.2个 C.3个 C.4个2.如果三角形的两边长分别为3和5,则周长L的取值范围是( )A.6<L<15 B.6<L<16 C.11<L<13 D.10<L<163.现有两根木棒,它们的长度分别为 20cm和 30cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取 ( )A. 10cm的木棒B. 20cm的木棒 C. 50cm的木棒D. 60cm的木棒4.已知等腰三角形的两边长分别为3和6,则它的周长为( )A.9 B.12 C.15 D.12或155.已知三角形的三边长为连续整数,且周长为 12cm,则它的最短边长为( )A. 2cm B. 3cm C. 4cm D. 5cm6.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( )A.2个B.3个C.4个D.5个二、填空题:1.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.2.若等腰三角形的两边长分别为3和7,则它的周长为_______;若等腰三角形的两边长分别是3和4,则它的周长为_____.3.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.4.若五条线段的长分别是 1cm, 2cm, 3cm, 4cm, 5cm,则以其中三条线段为边可构成______个三角形.5.已知等腰三角形ABC中,AB=AC= 10cm,D为AC边上一点,且BD=AD,△BCD的周长为 15cm,则底边BC的长为__________.6.已知等腰三角形的两边长分别为 4cm和 7cm,且它的周长大于 16cm,则第三边长为_____.三、基础训练:1.如图所示,已知P是△ABC内一点,试说明PA+PB+PC>(AB+BC+AC).2.已知等腰三角形的两边长分别为4,9,求它的周长.四、提高训练:设△ABC的三边a,b,c的长度都是自然数,且a≤b≤c,a+b+c=13,则以a,b,c 为边的三角形共有几个?五、探索发现:若三角形的各边长均为正整数,且最长边为9,则这样的三角形的个数是多少?六、中考题与竞赛题:1.(2001.南京)有下列长度的三条线段,能组成三角形的是( )A. 1cm, 2cm, 3cm B. 1cm, 2cm, 4cm; C. 2cm, 3cm, 4cm D. 2cm,3cm, 6cm2.(2002.青海)两根木棒的长分别是 8cm, 10cm,要选择第三根木棒将它们钉成三角形,那么第三根木棒的长x的取值范围是________;如果以 5cm为等腰三角形的一边,另一边为10cm,则它的周长为________.答案:一、1.B 2.D 3.B 4.C 5.B 6.B二、1.5<c<9 6或8 6 2.17 10或11 3.0<a<12 b>2 4.3 5. 5cm 6. 7cm三、1.解:在△APB中,AP+BP>AB,同理BP+PC>BC,PC+AP>AC,三式相加得2(AP+BP+PC)>AB+AC+BC,∴AP+BP+CP>(AB+AC+BC).2.22四、5个五、25个六、1.C 2.2cm<x<18cm 25cm.习题二1.如图(1)所示,在△ABC中,∠ACB=90°,把△ABC沿直线AC翻折180°,使点 B 落在点B′的位置,则线段AC具有性质( )A.是边BB′上的中线 B.是边BB′上的高C.是∠BAB′的角平分线 D.以上三种性质合一(1) (2)(3)2.如图(2)所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( )A.DE是△BCD的中线 B.BD是△ABC的中线C.AD=DC,BE=EC D.∠C的对边是DE3.如图(3)所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S △ABC= 4cm2,则黄色部分面积等于( )A. 2cm2 B. 1cm 2 C.cm2 D.cm24.在△ABC,∠A=90°,角平分线AE、中线AD、高AH的大小关系为( )A.AH<AE<AD B.AH<AD<AE C.AH≤AD≤AE D.AH≤AE≤AD5.在△ABC中,D是BC上的点,且BD:DC=2:1,S△ACD=12,那么S△ABC等于( )A.30 B. 36 C.72 D.246.不是利用三角形稳定性的是( )A.自行车的三角形车架 B.三角形房架C.照相机的三角架 D.矩形门框的斜拉条二、填空题:1.直角三角形两锐角的平分线所夹的钝角为_______度.2.等腰三角形的高线、角平分线、中线的总条数为________.3.在△ABC中,∠B=80°,∠C=40°,AD,AE分别是△ABC的高线和角平分线,则∠DAE 的度数为_________.4.三角形的三条中线交于一点,这一点在_______,三角形的三条角平分线交于一点,这一点在__________,三角形的三条高线所在直线交于一点,这一点在_____.1.如图所示,在△ABC中,∠C-∠B=90°,AE是∠BAC的平分线,求∠AEC的度数.2.在△ABC中,AB=AC,AD是中线,△ABC的周长为 34cm,△ABD的周长为 30cm,求AD 的长.四、提高训练:在△ABC中,∠A = 50°,高BE,CF所在的直线交于点O,求∠BOC的度数.五、探索发现:如图5所示的是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s.按此规律推断s与n有什么关系,并求出当n=13时,s的值.六、中考题与竞赛题:(2000.杭州)AD,AE分别是等边三角形ABC的高和中线,则AD 与AE 的大小关系为____.答案:一、1.D 2.D 3.B 4.D 5.B 6.C二、1.135 2.3条或7条 3.20°4.三角形内部三角形内部三角形内部、边上或外部三、1.∠AEC=45° 2.AD= 13cm四、∠BOC=50°或130°五、s=3n-3,当n=13时,s=36.六、AD=AE.。

中考数学复习----《三角形之与三角形有关的线段》知识点总结与专项练习题(含答案解析)

中考数学复习----《三角形之与三角形有关的线段》知识点总结与专项练习题(含答案解析)

中考数学复习----《三角形之与三角形有关的线段》知识点总结与专项练习题(含答案解析)知识点总结1.三角形的定义:三条线段首尾顺次连接组成的图形。

2.三角形的分类:①按角分类:锐角三角形,直角三角形,钝角三角形。

②按边分类:不等边三角形,等腰三角形。

等腰三角形底和腰相等时叫做等边三角形。

3.三角形的中线、高线、角平分线:①中线:连接顶点与对边中点得到的线段。

平分三角形的面积。

②高线:过定点做对边的垂线,顶点与垂足之间的线段。

得到两个直角三角形。

③角平分线:作三角形角的平分线与对边相交,顶点与交点间的线段。

4.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。

三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。

专项练习题1.(2022•大庆)下列说法不正确的是()A.有两个角是锐角的三角形是直角或钝角三角形B.有两条边上的高相等的三角形是等腰三角形C.有两个角互余的三角形是直角三角形D.底和腰相等的等腰三角形是等边三角形【分析】根据直角三角形概念可判断A,C,由等腰三角形,等边三角形定义可判断B,D.【解答】解:∵有两个角是锐角的三角形,第三个角可能是锐角,直角或钝角,∴有两个角是锐角的三角形可能是锐角三角形,直角三角形或钝角三角形;故A不正确,符合题意;有两条边上的高相等的三角形是等腰三角形,故B正确,不符合题意;有两个角互余的三角形是直角三角形,故C正确,不符合题意;底和腰相等的等腰三角形是等边三角形,故D正确,不符合题意;故选:A.2.(2022•玉林)请你量一量如图△ABC中BC边上的高的长度,下列最接近的是()A.0.5cm B.0.7cm C.1.5cm D.2cm【分析】过点A作AD⊥BC于D,用刻度尺测量AD即可.【解答】解:过点A作AD⊥BC于D,用刻度尺测量AD的长度,更接近2cm,故选:D.3.(2022•杭州)如图,CD⊥AB于点D,已知∠ABC是钝角,则()A.线段CD是△ABC的AC边上的高线B.线段CD是△ABC的AB边上的高线C.线段AD是△ABC的BC边上的高线D.线段AD是△ABC的AC边上的高线【分析】根据三角形的高的概念判断即可.【解答】解:A、线段CD是△ABC的AB边上的高线,故本选项说法错误,不符合题意;B、线段CD是△ABC的AB边上的高线,本选项说法正确,符合题意;C、线段AD不是△ABC的BC边上高线,故本选项说法错误,不符合题意;D、线段AD不是△ABC的AC边上高线,故本选项说法错误,不符合题意;故选:B.4.(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形【分析】根据三角形具有稳定性,四边形不具有稳定性即可得出答案.【解答】解:三角形具有稳定性,四边形不具有稳定性,故选:A.5.(2022•永州)下列多边形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性即可得出答案.【解答】解:三角形具有稳定性,其它多边形不具有稳定性,故选:D.6.(2022•常州)如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD 的面积是.【分析】由题意可得CE是△ACD的中线,则有S△ACD=2S△AEC=2,再由AD是△ABC 的中线,则有S△ABD=S△ACD,即得解.【解答】解:∵E是AD的中点,∴CE是△ACD的中线,∴S△ACD=2S△AEC,∵△AEC的面积是1,∴S△ACD=2S△AEC=2,∵AD是△ABC的中线,∴S△ABD=S△ACD=2.故答案为:2.7.(2022•淮安)下列长度的三条线段能组成三角形的是()A.3,3,6 B.3,5,10 C.4,6,9 D.4,5,9【分析】根据三角形的三边关系判断即可.【解答】解:A、∵3+3=6,∴长度为3,3,6的三条线段不能组成三角形,本选项不符合题意;B、∵3+5<10,∴长度为3,5,10的三条线段不能组成三角形,本选项不符合题意;C、∵4+6>9,∴长度为4,6,9的三条线段能组成三角形,本选项符合题意;D、∵4+5=9,∴长度为4,5,9的三条线段不能组成三角形,本选项不符合题意;故选:C.8.(2022•衢州)线段a,b,c首尾顺次相接组成三角形,若a=1,b=3,则c的长度可以是()A.3 B.4 C.5 D.6【分析】根据三角形两边之和大于第三边,两边之差小于第三边直接列式计算即可.【解答】解:∵线段a=1,b=3,∴3﹣1<c<3+1,即2<c<4.观察选项,只有选项A符合题意,故选:A.9.(2022•南通)用一根小木棒与两根长分别为3cm,6cm的小木棒组成三角形,则这根小木棒的长度可以为()A.1cm B.2cm C.3cm D.4cm【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求第三根木条的取值范围.【解答】解:设第三根木棒长为xcm,由三角形三边关系定理得6﹣3<x<6+3,所以x的取值范围是3<x<9,观察选项,只有选项D符合题意.故选:D.10.(2022•益阳)如图1所示,将长为6的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等,若要将其围成如图2所示的三棱柱形物体,则图中a的值可以是()A.1 B.2 C.3 D.4【分析】本题实际上是长为6的线段围成一个等腰三角形.求腰长的取值范围.【解答】解:长为6的线段围成等腰三角形的腰长为a.则底边长为6﹣2a.由题意得,.解得<a<3.所给选项中分别为:1,2,3,4.∴只有2符合上面不等式组的解集.∴a只能取2.故选:B.11.(2022•西宁)若长度是4,6,a的三条线段能组成一个三角形,则a的值可以是()A.2 B.5 C.10 D.11【分析】根据三角形三边关系定理得出6﹣4<a<6+4,求出2<a<10,再逐个判断即可.【解答】解:∵长度是4,6,a的三条线段能组成一个三角形,∴6﹣4<a<6+4,∴2<a<10,∴只有选项B符合题意,选项A、选项C、选项D都不符合题意;故选:B.12.(2022•西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是()A.﹣5 B.4 C.7 D.8【分析】由实数与数轴与绝对值知识可知该三角形的两边长分别为3、4.然后由三角形三边关系解答.【解答】解:由题意知,该三角形的两边长分别为3、4.不妨设第三边长为a,则4﹣3<a<4+3,即1<a<7.观察选项,只有选项B符合题意.故选:B.13.(2022•邵阳)下列长度的三条线段能首尾相接构成三角形的是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.4cm,5cm,10cm D.6cm,9cm,2cm【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形的三边关系,得:A、1+2=3,不能构成三角形;B、3+4>5,能构成三角形;C、4+5<10,不能构成三角形;D、2+6<9,不能构成三角形.故选:B.14.(2022•金华)已知三角形的两边长分别为5cm和8cm,则第三边的长可以是()A.2cm B.3cm C.6cm D.13cm【分析】由三角形的两边长分别为5cm和8cm,可得第三边x的长度范围即可得出答案.【解答】解:∵三角形的两边长分别为5cm和8cm,∴第三边x的长度范围为:3cm<x<13cm,∴第三边的长度可能是:6cm.故选:C.15.(2022•德阳)八一中学九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km.那么杨冲,李锐两家的直线距离不可能是()A.1km B.2km C.3km D.8km【分析】根据三角形的三边关系得到李锐两家的线段的取值范围,即可得到选项.【解答】解:当杨冲,李锐两家在一条直线上时,杨冲,李锐两家的直线距离为2km或8km,当杨冲,李锐两家不在一条直线上时,设杨冲,李锐两家的直线距离为xkm,根据三角形的三边关系得5﹣3<x<5+3,即2<x<8,杨冲,李锐两家的直线距离可能为2km,8km,3km,故选:A.。

部编版人教初中数学八年级上册《11.1 与三角形有关的线段 同步练习题及答案》最新精品优秀测试题

前言:该同步练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。

以高质量的同步练习题助力考生查漏补缺,在原有基础上更进一步。

(最新精品同步练习题)第十一章三角形11.1与三角形有关的线段基础巩固1.(知识点1)若有一条公共边的两个三角形称为一对“共边三角形”,如图11-1-1,则图中以BC为公共边的“共边三角形”有()图11-1-1A. 2对B. 3对C. 4对D. 6对2.(知识点1)如图11-1-2,平面上A,B,C,D,E五个点,其中B,C,D 及A,E,C分别在同一条直线上,那么以这五个点中的三个点为顶点的三角形有()图11-1-2A. 4个B. 6个C. 8个D. 10个3.(知识点3)下列长度的三条线段中,能组成三角形的是()A.1 cm,3 cm,5 cmB.2 cm,4 cm,6 cmC.1 cm,2 cm,3 cmD.2 cm,3 cm,4 cm4.(题型一角度a)已知三角形的周长为15 cm,其中的两边长都等于第三边长的2倍,则这个三角形的最短边长是()A. 3 cmB. 4 cmC. 5 cmD. 6 cm5.(知识点5)在下列各图形中,具有稳定性的是()6.(题型一角度b)已知等腰三角形的周长为16,且每边长均为整数,如果设腰长为x,底边长为y,那么符合条件的三角形共有个.7.(题型二)如图11-1-3,分别画出每个三角形过顶点A的中线、角平分线和高.(1)(2)(3)图11-1-38.(题型二)如图11-1-4,已知AD是△ABC的中线,△ABD的周长比△ADC 的周长大2,且AB=5,求AC的长度.图11-1-4能力提升9.(题型一)在下列给出的三条线段中,不一定能组成三角形的是()A. a+1,a+2,a+3 (a>0)B. 三条线段的长度分别是4,6,8。

三角形相关线段习题精选(含答案)

三角形相关线段习题精选1、如图,在平面直角坐标系中,点B、A分别在x轴、y轴上,∠BAO=60°,在坐标轴上找一点C,使得△ABC是等腰三角形,则符合条件的等腰三角形ABC有个.2、如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1+S2=3、如图,在△ABC中,点D,E分别在AB,AC上,且CD与BE相交于点F,已知△BDF的面积为6,△BCF的面积为9,△CEF的面积为6,则四边形ADFE的面积为.4、直角三角形两直角边长分别为5和12,则它的斜边上的高为.5、如图,中,,,,点D是BC的中点,将沿AD翻折得到,联结CE,那么线段CE的长等于.第5题图第6题图第7题图第9题图6、如图,在△ABC中,已知点D、E、F分别是边BC、AD、CE上的中点,且S△ABC=4,则S△BFF=_______7、如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△FCE的面积为S2,若S△ABC=6,则S1-S2的值为_________.8、在△ABC中,AB=5,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.9、如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条 B.3条 C.4条 D.5条10、已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为( )A.2 B.3 C.5 D.1311、如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的周长可以是()A.10 B.11 C.16 D.2612、小华要画一个有两边长分别为7cm和8cm的等腰三角形,则这个等腰三角形的周长是()A.16cm B.17cm C.22cm或23cm D.11cm13、下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.5cm,7cm,10cm B.5cm,7cm,13cmC.7cm,10cm,13cm D.5cm,10cm,13cm14、若等腰三角形的两边长分别为4和9,则它的周长为()A.22 B.17 C.13 D.17或2215、如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=4,则AC长是()A.9 B.8 C.7 D.616、如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.617、已知三角形的两边分别为4和9,则此三角形的第三边可能是()18、如图,△ABC中,点D在BC上,△ACD和△ABD面积相等,线段AD是三角形的().A.高B.角平分线C.中线D.无法确定19、.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部 B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高 D.直角三角形斜边上的高等于斜边的一半20、下列长度的三条线段能组成三角形的是()A.1cm,2cm,3cmB.6cm,2cm,3cmC.4cm,6cm,8cmD.5cm,12cm,6cm21、若某三角形的三边长分别为3,5,,则的取值范围是()A.0<<9 B.3<<9 C.0<<7 D.3<<722、若△ABC的边长都是整数,周长为11,且有一边长为4,则这个三角形的最大边长为()A.7 B.6 C.5 D.423、、如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC=()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:524、设△ABC的面积为1,如图①将边BC、AC分别2等份,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等份,BE1、AD1相交于点O,△AOB的面积记为S2;……,依此类推,则S5的值为()A.B.C.D.25、如图,AD是△ABC的中线,DE是△ADC的高线,AB=3,AC=5,DE=2,点D到AB的距离是()A.2B.C.D.26、下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,1127、已知在ΔABC中,AB=AC,周长为24,AC边上的中线BD把ΔABC分成周长差为6的两个三角形,则ΔABC各边的长分别变为______。

《与三角形有关的线段》精选测试题及参考答案

《与三角形有关的线段》精选测试题及参考答案一、选择题1.下列长度的三条线段能组成三角形的是( )A.6,5,10B.5,3,2C.5,8,14D.6,9,22.三角形的三边长分别为5,8,x,则第三边长x的取值范围是( )A.3<x<8B.5<x<13C.3<x<13D.8<x<133.若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是( )A.8cmB.13cmC.8cm或13 cmD.11 cm或13 cm4.一个三角形的两边长分别为2和5,且第三边长为整数,这样的三角形的周长最大值是( )A.10B.11C.12D.135.如图,在△ABC中,BC边上的高为( )A.BFB.CFC.BDD.AE第5题第6题第7题第8题6.如图,在△ABC中,D,E,F分别为BC,AD,CE的中点,且S△ABC=12cm2,则阴影部分的面积为( )A. 1 cm²B. 1.5 cm2C. 2 cm²D. 3 cm²7.如图,△ABC的中线BD、CE相交于点0,OF⊥BC,垂足为F,且AB=6,BC=5,AC=3,0F=2,则四边形ADOE的面积是( )A.9B.6C.5D.38.如图,在△ABC中,AD⊥AB,有下列三个结论:①AD是△ACD的高②AD是△ABD的高③AD是△ABC的高.其中正确的结论是( )A.①和②B. ①和③C.②和③D.只有②正确9.如图,点O是△ABC的重心,连接AO并延长交BC于点D.连接BO并延长交AC于点E,则下列说法一定正确的是( )A.AD是△ ABC 的高B.BO是△ABD 的中线C.AO是△ ABE 的角平分线D.△AOE 与△ BOD 的面积相等10.画ΔABC的边BC上的高,正确的是( )A. B. C. D.11.如图,已知AE是ΔABC的边BC上的中线,若AB=8,BC=12,△ACE的周长比△AEB的周长多 2,则AC的长为( )A.14B.12C.10D.8第11题第12题第13题第14题12.如图,在△ABC中,已知点 D、E分别为边BC、AD上的中点,且S△ABC=4cm²,则S△ABC的值为( )A.2cm²B.1cm²C.0.5cm²D.0.25cm²13.如图,∠AOB=30°,P是∠AOB的角平分线上的一点,PM⊥OB于点M,PN//OB交OA于点N,若PM=1,则PN的长为( )A.1B.1.5C.3D.214.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC边上的高是线段( )A.AEB.CDC.BFD.AF15.如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的的面积等于( )A.4B.5C.7D.10二、填空题16.一个不等边三角形的两边长分别为3和13,且第三边长为整数,符合条件的三角形有____个.17.三角形的三边长分别为5,8,2x+1,则x的取值范围是____.18.已知三角形两边长分别是2和4,第三边长是奇数,则第三边长为____.19,如图,已知AD是△ABC的中线,CE是△ACD的中线,若△ABC的面积为12,则ΔCDE的面积为____.第19题第20题第21题第22题20.如图,在△ABC中,BC边上的高是___,在△AEC中,AE边上的高是___,21.如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,且AD=4,若点P在边AC上移动,则BP长的最小值为___.22.如图,在ΔABC中,E是AC上的一点,AE=4EC,点D是BC的中点,且S△ABC=15,则S1-S2=_.三、解答题23.如图,画出△ABC的三条高.24.已知三角形的三边长分别为a-2,a-1和a+1,求a的取值范围.25.已知a,b,c是△ABC的三边长,(1)若a,b,c满足(a-b)(b-c)= 0,试判断△ABC的形状;(2)化简: |a+b-c|+|b-c-a|.26.在等腰三角形ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成15和6两部分,求这个三角形的腰长和底边长.27.如图,已知AD,AE分别是ΔABC的高和中线,若△ABE的面积是12,AD=4.8,∠CAB=9 0°,AB=6.(1)求BC的长.(2)求△ABC的周长.28.在△ABC中,已知点D、E、F分别为BC、AD、CE的中点,(1)如图①,若S△ABC =1cm²,求△BEF的面积;(2)如图②,若S△BFC= 1cm²,则S△ABC =___.(提示:对比第(1)题,先作辅助线.)、参考答案一、选择题1-5 ACDDD 6-10 BCDDA 11-15 CADCB二、填空题16. 517.1<x<618.3或519. 320.AB,CD21.24522. 4.5三、解决问题23.略24.a>425(1)等腰三角形(2)2a26(1)能(2)底边是1,腰长是10. 27(1)BC=10(2)2428(1)1平方厘米4(2)4平方厘米。

11.1 与三角形有关的线段100题(含解析)

绝密★启用前一、单选题1.三角形的两边长分别为3和5,则周长C 的范围是( )A .615C <<B .616C << C .1113C <<D .1016C <<【答案】D【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.即可求解.【详解】解:∵三角形的两边长分别为3和5,∴第三边的取值范围是大于5-3而小于5+3,即第三边的取值范围是大于2而小于8.又另外两边之和是5+3=8,故周长C 的取值范围是1016C <<.故选:D .【点睛】本题考查三角形的三边关系,熟记关系求出第三边的取值范围是解题的关键. 2.下列各组数可能是一个三角形的边长的是( )A .5,7,12B .5,6,7C .5,5,12D .1,2,6 【答案】B【解析】【分析】在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A 、5+7=12,不能构成三角形;B 、5+6>7,能构成三角形;C 、5+5<12,不能构成三角形;D 、1+2<6,不能构成三角形.故选:B .【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.3.以下列各组线段的长为边,能组成三角形的是()A.1cm、2cm、3cm B.1dm、5cm、6cm C.1dm、3cm、3cm D.2cm、4cm、7cm 【答案】B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析即可得出结论.【详解】根据三角形的三边关系可知:A.2+1=3,不能组成三角形;B.1dm=10cm,5+6>10,能组成三角形;C.1dm=10cm,3+3<10,不能组成三角形;D.2+4<7,不能组成三角形.故选B.【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.注意单位要统一.4.下列长度的三条线段,能构成三角形的是()A.1,2,6 B.1,2,3 C.2,3,4 D.2,2,4【答案】C【分析】根据三角形的三边关系对各选项进行逐一分析即可.【详解】解:A、∵1+2=3<6,∴不能组成三角形,故本选项错误;B、∵1+2=3,∴不能组成三角形,故本选项错误;C、∵2+3=5>4,∴能组成三角形,故本选项正确;D、∵2+2=4,∴不能组成三角形,故本选项错误.故选:C.【点睛】本题考查的是三角形三边关系,熟知三角形任意两边之和大于第三边;任意两边差小于第三边是解答此题的关键.5.三角形的两边长为4和7,则第三边长x的取值范围为().A .311x <<B .311x ≤≤C .3x ≤D .11x ≥【答案】A【分析】 根据三角形的三边关系进行计算即可.【详解】根据三角形的三边关系,得:第三边大于两边之差,即x >7-4=3,而小于两边之和,即x <7+4=11.故选:A.【点睛】本题考查三角形的三边关系,明确“三角形的第三边大于两边之差而小于两边之和”是关键.6.如图,工人师傅做了一个长方形窗框ABCD ,E ,F ,G ,H 分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条应钉在( )A .E ,H 两点之间B .E ,G 两点之间C .F ,H 两点之间D .A ,B 两点之间【答案】A【分析】 根据三角形的稳定性进行判断逐一判断即可.【详解】A 选项:若钉在E 、H 两点处则构成了三角形,能固定窗框,故符合题意;B 选项:若钉在E 、G 两点处则构成了两个四边形,不能固定窗框,故不符合题意;C 选项:若钉在F 、H 两点处则构成了两个四边形,不能固定窗框,故不符合题意;D 选项:若钉在A 、B 两点处则未改变形状,不能固定窗框,故不符合题意; 故选A .【点睛】考查三角形稳定性的实际应用.解题关键是利用了三角形的稳定性,判断是否稳定则看能否构成三角形.7.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.7cm、5cm、11cm B.4cm、3cm、7cm C.5cm、10cm、4cm D.2cm、3cm、1cm 【答案】A【分析】根据三角形的三边关系对各选项进行逐一分析即可.【详解】+>,∴能围成三角形,解:①7511②347+=,∴不能围成三角形,+<,∴不能围成三角形,③4510+=,∴不能围成三角形.④123能围成三角形的是①,故选:A.【点睛】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.8.“有两条边相等的三角形是等腰三角形”是( )A.基本事实B.定理C.定义D.条件【答案】C【解析】分析:根据“各选项中所涉及的几何概念的定义”进行分析判断即可.详解:“有两条边相等的三角形是等腰三角形”是“等腰三角形的定义”.故选C.点睛:熟悉“各选项中所涉及的几何概念和等腰三角形的定义:有两边相等的三角形叫等腰三角形”是解答本题的关键.9.三角形的三条线交点,叫做三角形的重心()A.高B.中C.角平分D.无法确定【答案】B【分析】根据三角形的重心定义即可得.【详解】三角形的重心是三角形的三条中线的交点故选:B.【点睛】本题考查了三角形的重心定义,熟记定义是解题关键.另外常考点是三角形的内心、外心、垂心的概念,需加以区分.10.如果一个三角形的两边长分别为4和7,则第三边的长可能是()A.3 B.4 C.11 D.12【答案】B【分析】根据三角形的三边关系定理可得7-4<x<7+4,计算出不等式的解集,再确定x的值即可.【详解】设第三边长为x,则7-4<x<7+4,3<x<11,∴A、C、D选项不符合题意.故选:B.【点睛】考查了三角形的三边关系,解题关键是掌握第三边的范围:大于已知的两边的差,而小于两边的和.11.下列各组长度的线段为边,能构成三角形的是()A.7cm、5cm、12cm B.4cm、6cm、5cmC.8cm、4cm、3cm D.6cm、8cm、15cm【答案】B【分析】根据三角形的任意两边之和大于第三边,对各选项的数据进行判断即可.【详解】解:A、7+5=12,不能构成三角形,故本选项错误;B、4cm、6cm、5cm,能构成三角形,故本选项正确;C、4+3<8,不能构成三角形,故本选项错误;D、6+8<15,不能构成三角形,故本选项错误.故选B.【点睛】考核知识点:三角形三边关系.12.下列长度的三条线段能组成三角形的是()A.2,2,4 B.3,4,1 C.5,6,12 D.5,5,8【答案】D【解析】【分析】根据三角形的三边关系进行判断.【详解】解:A、∵2+2=4,∴不能构成三角形,故本选项错误;B、∵3+1=4,∴不能构成三角形,故本选项错误;C、∵5+6<12,∴不能构成三角形,故本选项错误;D、∵5+5>8,∴能构成三角形,故本选项正确.故选:D.【点睛】本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的三边关系是解题的关键.13.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.1【答案】B【解析】试题分析:由三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选B.考点:三角形三边关系.14.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C .D .【答案】A【分析】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】根据定义可得A 是作BC 边上的高,C 是作AB 边上的高,D 是作AC 边上的高. 故选A.考点:三角形高线的作法15.已知三角形的两边长分别是4和7,则这个三角形的第三条边的长可能是( )A .12B .11C .8D .3【答案】C【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求出 第三边的取值范围,即可得出结果.【详解】∵7﹣4=3,7+4=11,∴3<第三边<11,∴只有C 中的8满足.故选C .【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.16.已知线段6a cm =,9b cm =,则下列线段中,能与a ,b 组成三角形的是( )A .3cmB .12 cmC .15cmD .18cm 【答案】B【分析】根据三角形的第三边大于两边之差小于两边之和即可判断.【详解】解:设三角形的第三边为m .由题意:9-6<m <6+9,即3<m<15,故选B.【点睛】本题考查三角形的三边关系,解题的关键是熟练掌握基本知识,属于中考常考题型.17.三角形三条中线的交点叫做三角形的A.内心B.外心C.中心D.重心【答案】D【解析】试题分析:三角形的重心是三角形三条中线的交点.故选D.考点:三角形的重心.18.给出下列命题①三条线段组成的图形叫三角形,②三角形的三条高相交于三角形内同一点,③任何一个三角形都有三条角平分线、三条中线、三条高④三角形的内角和等于外角和、⑤多边形的内角和大于外角和⑥三角形的三条角平分线相交于形内同一点.其中正确的有( )A.1个B.2个C.3个D.4个【答案】B【解析】三条线段组成的图形叫三角形,不正确,应该是由三条不在同一条直线上的线段首尾顺次连接而成的图形叫三角形;②三角形的三条高相交于三角形内同一点,不正确,锐角三角形的三条高相交于三角形内同一点,直角三角形的三条高相交于直角顶点,钝角三角形的三条高相交于三角形外同一点;③任何一个三角形都有三条角平分线、三条中线、三条高,正确;④三角形的内角和等于外角和,不正确,三角形的内角和是180°,外角和是360°;⑤多边形的内角和大于外角和,不正确,理由同④;⑥三角形的三条角平分线相交于形内同一点,正确.故选B.19.如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形【答案】A【解析】高的交点在三角形内部的是锐角三角形.选A.20.一个等腰三角形的两边长分别为4厘米、9厘米,则这个三角形的周长为()A.17或22 B.22 C.13 D.17或13【答案】B【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长;题目给出等腰三角形有两条边长为4cm和9cm,而没有明确腰、底分别是多少,所以要进行分类讨论,还要用三角形的三边关系验证能否组成三角形.【详解】解:分类讨论:情况一:若4厘米为腰长,9厘米为底边长,由于4+4<9,则三角形不存在;情况二:若9厘米为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22(厘米).故选:B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,最后养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.21.用13根同样长的火柴棒在桌面上摆一个三角形(不许折断,且全部用完),能摆出不同形状的三角形个数是()A.6 B.5 C.4 D.3【答案】B【解析】【分析】可以把三角形的周长看作13,再根据三角形三边的关系应满足:任意两边之和大于第三边,两边之差小于第三边,从一条边有1根开始,逐渐增多即可得出结论.【详解】解:∵三角形两边之和大于第三边,∴只能有5种答案,即①1、6、6;②2、5、6;③3、5、5;④4、4、5;④3、4、6.故选:B.【点睛】本题考查的知识点是三角形三边的关系,若三条线段能够构成三角形需满足:任意两边之和大于第三边,两边之差小于第三边.熟记定理是解题的关键.22.下列四组线段中,能组成三角形的是()A.2cm,3 cm,4 cm B.3 cm,4 cm,8 cmC.4 cm,6 cm,2 cm D.7 cm,11 cm,2 cm【答案】A【解析】试题解析:A、2+3>4,能够组成三角形;B、3+4=7,不能组成三角形;C、4+2=6,不能组成三角形;D、7+2<10,不能组成三角形.故选A.考点:三角形三边关系.23.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.3,4,7 D.5,6,10【答案】D【分析】根据三角形的三边关系进行判断,两条较小的边的和大于最大的边逐一进行判断即可.【详解】解:A、3+4<8,不能构成三角形,故此选项错误;B、5+6=11,不能构成三角形,故此选项错误;C、4+3=7,不能构成三角形,故此选项错误.D、5+6>10,能构成三角形,故此选项正确;故选:D.【点睛】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度,即可判定这三条线段能构成一个三角形.24.三角形的两边长分别为5和12,那么第三边长可能是()A.5 B.7 C.11 D.19【答案】C【分析】确定第三边范围:大于两边之差,小于两边之和,找在此范围的边长即可.【详解】解:设第三边为x,则12-5<x<5+12,即7<x<17,所以符合条件的为11,故选C.【点睛】此题主要考查三角形的三边关系,正确确定第三边范围是解题关键.25.如图,在△ABC中,AD是高,AE是∠BAC的平分线,AF是BC边上的中线,则下列线段中,最短的是()A.AB B.AE C.AD D.AF【答案】C【分析】首先根据三角形的高的定义得出AD⊥BC,再根据垂线段最短求解即可【详解】解:∵在△ABC中,AD是高,∴AD⊥BC,又∵在△ABC中,AE是∠BAC的平分线,AF是BC边上的中线,∴AD<AB,AD<AE,AD<AF,故选C.【点睛】本题考查三角形的角平分线、中线和高以及垂线段最短的性质,掌握定义与性质是解题的关键26.若一个三角形的两边长分别为3和7,则第三边长可能是()A.10B.6C.4D.3【答案】B【分析】设第三边长为x,根据三角形的三边关系得到第三边的范围,进而可得答案.【详解】解:设第三边长为x,由一个三角形的两边长分别为3和7,则根据三角形的三边关系得:<<,所以只有B选项符合题意;7373x-<<+,即410x故选B.【点睛】本题主要考查三角形的三边关系,熟练掌握三角形的三边关系是解题的关键.27.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3 B.2,2,4 C.1,2,4 D.3,4,5【答案】D【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【详解】+=,不能组成三角形,故A选项错误;解:A、123+=,不能组成三角形,故B选项错误;B、224C、124+<,不能组成三角形,故C选项错误;+>,能组成三角形,故D选项正确;D、345故选:D.【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.28.已知△ABC在正方形网格中的位置如图所示,则点P叫作△ABC的()A.中心B.圆心C.重心D.格点【答案】C【分析】根据三角形中各线段的交点对应的概念辨析即可.【详解】A、正三角形才有中心,故错误;B、既不是内切圆的圆心,也不是外接圆的圆心,故错误;C、由图可知,P是三条中线的交点,则为重心,故正确;D、没有这个说法,故错误;故选:C【点睛】本题考查三角形重心的判断,熟记三条中线的交点为重心是解题关键.29.下列物品不是利用三角形稳定性的是()A.自行车的三角形车架B.三角形房架C.高架桥的三角形结构D.伸缩晾衣架【答案】D【分析】利用三角形的稳定性进行解答.【详解】解:由四边形组成的伸缩衣架是利用了四边形的不稳定性,而A、B、C选项都是利用了三角形的稳定性,故选D.【点睛】本题考查了三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.30.在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形【答案】D【解析】试题分析:根据三角形的内角和定理求出∠C,即可判定△ABC的形状.解:∵∠A=20°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣20°﹣60°=100°,∴△ABC是钝角三角形.故选D.点评:本题考查了三角形的内角和定理,比较简单,求出∠C的度数是解题的关键.31.如图,是三条两两相交的笔直公路,现欲修建一个加油站,使它到三条公路的距离相等,这个加油站应建在:()A .△ABC 三边的中线的交点上B .△ABC 三边垂直平分线的交点上 C .△ABC 三条边高的交点上D .△ABC 三内角平分线的交点上【答案】D【解析】 试题解析:三角形中到三边的距离相等的是三角形的内心,即为三条内角平分线的交点.故选D.点睛:角平分线的性质:角平分线上的点到角两边的距离相等.32.如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A .6B .4C .3D .2【答案】C【分析】 作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,利用中点的性质即可求出BCD △的面积,同理可求出阴影部分面积.【详解】解:作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,点D 是AB 边上的中点12BD AB ∴=1111112622222BCD ABC S BD CF AB CF S ∴=⋅=⨯⋅==⨯= 点E 是BC 边上的中点 12CE BC ∴= 111116322222CED BCD S CE DG BC DG S ∴=⋅=⨯⋅==⨯= 所以阴影部分的面积为3.故选:C.【点睛】本题考查了和中点有关的三角形的面积,灵活的利用中点的性质表示三角形的面积间的关系是解题的关键.33.已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为 A .2B .3C .5D .13【答案】B【分析】根据“三角形两边之和大于第三边, 两边之差小于第三边”,可得x 的取值范围,一一判断可得答案.【详解】解:根据“三角形两边之和大于第三边, 两边之差小于第三边” 可得:13-2<x<13+2,即11<x<15,因为取正整数,故x 的取值为12、13、14,即这样的三角形共有3个. 故本题正确答案为B.【点睛】本题主要考查构成三角形的三边的关系.34.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm【答案】B【详解】分析:结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.详解:A 、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选B.点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交于第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.35.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5【答案】C【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选C.【点睛】本题主要考查了三角形三边关系的运用,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.36.下列图形具有稳定性的是()A.B.C.D.【答案】A【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断即可得.【详解】A、具有稳定性,符合题意;B、不具有稳定性,故不符合题意;C、不具有稳定性,故不符合题意;D、不具有稳定性,故不符合题意,故选A.【点睛】本题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.37.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为() A.2a+2b-2c B.2a+2b C.2c D.0【答案】D【解析】试题解析:∵a、b、c为△ABC的三条边长,∴a+b-c>0,c-a-b<0,∴原式=a+b-c+(c-a-b)=0.故选D.考点:三角形三边关系.38.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【答案】D【解析】试题分析:根据三角形的高线的定义可得,则D选项中线段BE是△ABC的高.考点:三角形的高39.有4cm和6cm的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,下列长度的小棒可选的是()A.1cm B.2cm C.7cm D.10cm【答案】C【解析】【分析】根据三角形的三边关系可得6-4<第三根小棒的长度<6+4 ,再解不等式可得答案. 【详解】设第三根小棒的长度为x cm ,由题意得:6-4<x<6+4 ,解得:2<x<10 ,故选:C .【点睛】此题主要考查了三角形的三边关系,关键是掌握三边关系定理:三角形两边之和大于第三边.角形的两边差小于第三边.40.下列命题:①三角形的三个内角中最多有一个钝角;②三角形的三个内角中至少有两个锐角;③有两个内角分别为50°和20°的三角形一定是钝角三角形;④直角三角形中两锐角之和为90°.其中是真命题的有()A.1个B.2个C.3个D.4个【答案】D【解析】试题解析:因为三角形的内角和为180°,所以三角形的三个内角中最多有一个钝角,三角形的三个内角中至少有两个锐角,所以①②是正确的;有两个内角为50°和20°的三角形的第三角为110°,所以一定是钝角三角形,所以③正确;因为直角三角形中有一个角等于90°,所以直角三角形中两锐角的和为90°,所以④正确.故选D.41.如图,在△ABC中,BC=8,AD为BC边上的高,A点沿AD所在的直线运动时,三角形的面积发生变化,当△ABC的面积为48时,AD的长为()A.24 B.12 C.8 D.6【答案】B【分析】利用三角形的面积公式即可得解.【详解】∵△ABC的面积=12BC•AD=12×8•AD=48,∴AD=12.故选B【点睛】本题主要考查了三角形的面积,解题的关键是掌握三角形的面积公式.42.如图,在△ABC中,∠ACB=90°,把△ABC沿直线AC翻折180°,使点B 落在点B′的位置,则线段AC具有性质( )A.是∠BAB′的平分线B.是边BB′上的高C.是边BB′上的中线D.以上三种线重合【答案】D【解析】解:∵∠ACB=90°,把△ABC沿直线AC翻折180°,∴∠ACB′=∠ACB=90°,∠BAC=∠B′AC,BC=B′C,∴AC是△ABB′的边BB′上的高,AC平分∠BAB′,线段AC是△ABB′的边BB′上的中线.故选D.43.已知三角形的两边长分别为3cm和8cm,则该三角形的第三边的长可能是()A.4cm B.5cm C.6cm D.11cm【答案】C【解析】【分析】已知三角形的两边长分别为3cm 和8cm ,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围.【详解】设第三边长为x ,则由三角形三边关系定理得8-3<x <8+3,即5<x <11. 因此,本题的第三边应满足5<x <11,把各项代入不等式符合的即为答案. 4,5,13都不符合不等式5<x <11,只有6符合不等式,故答案为6cm . 故选C .【点睛】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.44.如图,ABC ∆中,14BD BC =,13AE AD =,12CF CE =,12ABC S ∆=,则DEF S ∆=( )A .2B .52C .3D .4 【答案】C【分析】据题意先求得S △ACD =34S △ABC =9,然后求得S △CDE =23S △ACD =6,最后求得S △DEF =12S △CDE =3. 【详解】解:∵14BD BC =, ∴S △ACD =34S △ABC =34×12=9;∵13AE AD,∴S△CDE=23S△ACD=23×9=6;∵点F是CE的中点,∴S△DEF=12S△CDE=12×6=3.故选:C.【点睛】此题主要考查了三角形的中线与面积的求法,解题的关键是熟知中线平分三角形面积的原理.45.下列长度的三条线段,哪一组不能构成三角形()A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,9【答案】D【分析】根据三角形三边关系,即两边之和大于第三边,两边之差小于第三边,即可得出答案. 【详解】解:A、3+3>3,符合三角形的三边关系定理,故本选项错误;B、3+4>5,符合三角形的三边关系定理,故本选项错误;C、5+6>10,符合三角形的三边关系定理,故本选项错误;D、4+5=9,不符合三角形的三边关系定理,故本选项正确;故选D.【点睛】本题考查了三角形的三边关系定理的应用,主要考查学生的理解能力和辨析能力,注意:三角形的任意两边之和大于第三边,三角形的两边之差小于第三边46.不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线【答案】C【解析】因为在三角形中,它的中线、角平分线和中位线一定在三角形的内部,而钝角三角形的高在三角形的外部.故选C.47.如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B = 30°,∠C= 100°,如图2.则下列说法正确的是A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远【答案】C【解析】分析:∵∠C=100°,∴AB>AC.如图,取BC的中点E,则BE=CE,∴AB+BE>AC+CE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.1.1 三角形的边
考点1:认识三角形
1.如图7.1.1-1的三角形记作__________,它的三条边是__________,三个顶点分别是_________,三个内角是__________,顶点A 、B 、C 所对的边分别是___________,用小写字母分别表示__________.
2.三角形按边分类可分为__________三角形,__________三角形;等腰三角形分为底与腰__________的三角形和底与腰__________的三角形.
3.如图7.1.1-2所示,以AB 为一边的三角形有( ) A.3个 B.4个 C.5个 D.6个
如图7-1-26,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个…,则在第n 个图形中,互不重叠的三角形共有_______个(用含n 的代数式表示)
.
图7-1-26
考点2:三角形三边关系(紧紧围线两边之和大于第三边,两边之差小于第三边) 4.已知四组线段的长分别如下,以各组线段为边,能组成三角形的是( ) A.1,2,3 B.2,5,8 C.3,4,5 D.4,5,10
5.已知三角形的三边长分别为4、5、x ,则x 不可能是( ) A .3 B .5 C .7 D .9
6..已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A.13cm B.6cm C.5cm D.4cm
7.一个三角形的两条边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是( ) A.14 B.15 C.16 D.17 8.如果线段a 、b 、c 能组成三角形,那么,它们的长度比可能是( ) A.1∶2∶4 B.1∶3∶4 C.3∶4∶7 D.2∶3∶4
9.已知等腰三角形的两边长分别为4cm 和7cm ,则此三角形的周长为( ) A.15cm B.18cm C.15cm 或18cm D.不能确定
10.下列各组给出的三条线段中不能组成三角形的是( ) A.3,4,5 B.3a ,4a ,5a C.3+a ,4+a ,5+a D.三条线段之比为3∶5∶8 11..三角形三边的比是3∶4∶5,周长是96cm ,那么三边分别是________cm.
12.已知等腰三角形的周长是25cm ,其中一边长为10cm ,求另两边长__________. 已知三角形的三边长分别为3,8,x; 若x 的值为奇数,则x 的值有______个;
已知等腰三角形的周长为21cm ,若腰长为底边长的3倍,则其三边长分别为______; 如果△ABC 是等腰三角形,试问:
⑴ 若周长是18,一边长是8,则另两边长是_________________; ⑵ 若周长是18,一边长是4,则另两边长是__________________。


7.1.1-2 图7.1.1-1
小明的爷爷要做一个三角形的木架养鱼用,现有两根长度为3m 和5m 的木棒,还需要到某木材市场上购买一根.问:(1)有几种规格的木棒可供小明的爷爷选择?(2)选择哪一种规格的木棒最省钱? 14.初一、(2)班的王华说他的步子大,一步能走2米多,你相信吗?为什么?
三角形的高、中线与角平分线
考点1:三角形的高
1.如图7.1.2-1,在△ABC 中,BC 边上的高是________;在△AFC 中,CF 边上的高是________;在△ABE 中,AB 边上的高是_________.(识图能力的提高,从不同的角度进行考察,高可以从不同角度进行考察)
图7.1.2-1 图7.1.2-2 图7.1.2-3
2.如图7.1.2-2,△ABC 的三条高AD 、BE 、CF 相交于点H ,则△ABH 的三条高是_______,这三条高交于________. BD 是△________、△________、△________的高.
3.如图7.1.2-3,在△ABC 中EF ∥AC ,BD ⊥AC 于D ,交EF 于G ,则下面说话中错误的是( ) A.BD 是△ABC 的高 B.CD 是△BCD 的高 C.EG 是△ABD 的高 D.BG 是△BEF 的高
4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A.锐角三角形 B.直角三角形 C .钝角三角形 D .不能确定
5.三角形的三条高的交点一定在( )(可以三角形的中线与角平分线的进行记忆) A.三角形内部 B.三角形的外部 C.三角形的内部或外部 D.以上答案都不对
6.如图
7.1.2-4所示,△ABC 中,边BC 上的高画得对吗?为什么?
图7.1.2-4
考点2:三角形的中线与角平分线 7如图7.1.2-5所示:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°. (2)AE 平分∠BAC ,交BC 于E 点,则AE 叫做△ABC 的________,∠________=∠________=
2
1
∠________. (3)若AF =FC ,则△ABC 的中线是________,S △ABF =________.(三角形的中线可以平分三角形的面积) (4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线.
图7.1.2-5 图7.1.2-6
8.如图7.1.2-6,DE ∥BC ,CD 是∠ACB 的平分线,∠ACB =60°,那么∠EDC =______度. 9.如图7.1.2-7,BD =DC ,∠ABN =2
1
∠ABC ,则AD 是△ABC 的________线,BN 是△ABC 的________, ND 是△BNC 的________线
.
图7.1.2-7 图7.1.2-8
10.如图7.1.2-8,若上∠1=∠2、∠3=∠4,下列结论中错误的是( ) A.AD 是△ABC 的角平分线 B.CE 是△ACD 的角平分线 C.∠3=
2
1
∠ACB D.CE 是△ABC 的角平分线
11.下列判断中,正确的个数为( )
(1)D 是△ABC 中BC 边上的一个点,且BD =CD ,则AD 是△ABC 的中线 (2)D 是△ABC 中BC 边上的一个点,且∠ADC =90°,则AD 是△ABC 的高 (3)D 是△ABC 中BC 边上的一个点,且∠BAD =
2
1
∠BAC ,则AD 是△ABC 的角平分线 (4)三角形的中线、高、角平分线都是线段 A.1 B.2 C.3 D.4
12.如图图7.1.2-9所示,在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,求S △ABE .
图7.1.2-9
.13.如图,△ABC 中,D 是BC 边的中点,S △AC D =12,求S △ABC .
14.在△ABC 中,AB=2BC,AD 、CE 分别是BC 、AB 边上的高,试判断AD 和CE 的大小关系,并说明理由。

D
C
B
E
A
15. 如图7-1-6,△ABC的周长为18 cm,BE、CF分别为AC、AB边上的中线,BE、CF相交于点O,AO的延
长线交BC于D,且AF=3 cm,AE=2 cm,求BD的长.
16.如图7-1-7所示,已知在△ABC中,AB=AC=8,P是BC上任意一点,PD⊥AB于点D,PE⊥AC于点E.若△ABC的面积为14,问:PD+PE的值是否确定?若能确定,是多少?若不能确定,请说明理由.
7.1.3 三角形的稳定性
考点1:三角形的稳定性
1.三角形是具有________的图形,而四边形没有________.
2.自行车用脚架撑放比较稳定的原因是________.
3.木工师傅在做完门框后,为了防止变形常常像图7.1.3-1所示那样钉上两条斜拉的木板条(即图中的AB、CD
两个木条),这样做根据数学道理是____________.
图7.1.3-1 图7.1.3-2
考点2:四边形的不稳定性
4.如图7.1.3-2是放缩尺,其工作原理是______________.
5下列把四边形的不稳定性合理地应用到生产实际中的例子有()
(1)活动挂架(2)放缩尺(3)屋顶钢架(4)能够推拢和拉开的铁拉门
(5)自行车的车架(6)大桥钢架
A.1
B.2
C.3
D.4
6.如图
7.1.3-4,哪些应用了三角形的稳定性,些应用了四边形的不稳定性.
钢架桥起重机屋顶钢架活动滑门
图7.1.3-4
7.如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,求△ABD•与△ACD的周长之差.
8.如图5,在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分为15和6两部分,
求该等腰三角形的腰长及底边长.
9.(探究题)(1)如图7-1-2-9,AD是△ABC的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△DEF
的角平分线吗?如果是,请给予证明;如果不是,请说明理由.
(2)若将结论与AD是△ABC的角平分线、DE∥AB、DF∥AC中的任一条件交换,•所得命题正确吗?。

相关文档
最新文档