2021学年冀教版七年级数学下册第九章达标检测卷(含解析)

合集下载

2021-2022学年冀教版七年级数学下册第九章 三角形课时练习试卷(含答案解析)

2021-2022学年冀教版七年级数学下册第九章 三角形课时练习试卷(含答案解析)

冀教版七年级数学下册第九章三角形课时练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组线段中,能构成三角形的是()A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、62、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )A.4 B.5 C.8 D.113、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是()A.3cm B.4cm C.7cm D.10cm4、下列所给的各组线段,能组成三角形的是:( )A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,135、已知三角形的两边长分别为2cm和3cm,则第三边长可能是()A.6cm B.5cm C.3cm D.1cm6、当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是()A.80°B.90°C.100°D.120°7、下列长度的三条线段能组成三角形的是( )A .2,3,6B .2,4,7C .3,3,5D .3,3,78、如图,90C A ∠=∠=︒,25B ∠=︒,则D ∠的度数是( )A .55°B .35°C .45°D .25°9、如图,在ABC 中,90C ∠=︒,30A ∠=︒,将ABC 沿直线m 翻折,点A 落在点D 的位置,则12∠-∠的度数是( )A .30°B .45°C .60°D .75°10、如图,BD 是ABC 的角平分线,∥DE BC ,交AB 于点E .若30A ∠=︒,50BDC ∠=︒,则BDE ∠的度数是( )A .10°B .20°C .30°D .50°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线a ∥b ,在Rt△ABC 中,点C 在直线a 上,若∠1=56°,∠2=29°,则∠A 的度数为______度.2、如图,∠ABD =80°,∠C =38°,则∠D =___度.3、一个三角形的三个内角之比为1:2:3,这个三角形最小的内角的度数是 _____.4、在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,且a =3,b =4,若三边长为连续整数,则c =______.5、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)三、解答题(5小题,每小题10分,共计50分)1、如图,BD 是ABC ∆的角平分线,BE 是ABC ∆的AC 边上的中线.(1)若ABE △的周长为13,6BE =,4CE =,求AB 的长.(2)若92A ∠=︒,34CBD ∠=︒,求C ∠的度数.2、已知:如图,在△ABC 中,AB =3,AC =5.(1)直接写出BC 的取值范围是 .(2)若点D 是BC 边上的一点,∠BAC =85°,∠ADC =140°,∠BAD =∠B ,求∠C .3、如图,Rt △ABC 中,90C ∠=︒,D 、E 分别是AB 、AC 上的点,且12∠=∠.求证:ED ⊥AB4、根据题意画出图形,并填注理由证明:三角形的内角和等于180°.已知:△ABC求证:∴∠A +∠B +∠C =180°证明:作BC 的延长线CD ,过点C 作射线CE BA .∵CE BA (辅助线)∴∠B =∠ECD ( )∠A =∠ACE ( )∵∠BCA +∠ACE +∠ECD =180°( )∴∠A +∠B +∠ACB =180°( )5、已知:如图,AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF交AB于点G,且∠AGF=∠F.求证:EF∥AD.-参考答案-一、单选题1、C【解析】【分析】根据三角形的三边关系定理逐项判断即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边.+<,不能构成三角形,此项不符题意;A、247+=,不能构成三角形,此项不符题意;B、459+>,能构成三角形,此项符合题意;C、5810+<,不能构成三角形,此项不符题意;D、136故选:C.本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.2、C【解析】【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【详解】解:∵一个三角形的两边长分别为3和8,∴5<第三边长<11,则第三边长可能是:8.故选:C.【点睛】此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.3、C【解析】【分析】设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设三角形的第三边是xcm.则7-3<x<7+3.即4<x<10,四个选项中,只有选项C符合题意,【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.4、D【解析】【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.5、C【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:设第三边长为x cm,根据三角形的三边关系可得:3-2<x<3+2,解得:1<x<5,只有C选项在范围内.故选:C.【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.6、B【解析】【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.【详解】解:由题意得:α=2β,α=60°,则β=30°,180°-60°-30°=90°,故选B.【点睛】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.7、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】+=<,所以不能组成三角形,故本选项不符合题意;解:A、因为2356B、因为2467+=<,所以不能组成三角形,故本选项不符合题意;+=>,所以能组成三角形,故本选项符合题意;C、因为3365+=<,所以不能组成三角形,故本选项不符合题意;D、因为3367故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.8、D【解析】【分析】根据三角形的内角和定理和对顶角相等求解即可.【详解】解:设AD与BC相交于O,则∠COD=∠AOB,∵∠C+∠COD+∠D=180°,∠A+∠AOB=∠B=180°,∠C=∠A=90°,∴∠D=∠B=25°,故选:D.【点睛】本题考查三角形的内角和定理、对顶角相等,熟练掌握三角形的内角和是180°是解答的关键.9、C【解析】【分析】设m 交,AC AB 于点,E F ,G 是射线EF 上的一点,设,AEG DEG AFG DFG αβ∠=∠=∠=∠=,根据三角形的外角的性质可得30βα-=︒,进而根据平角的定义即可求得1,2∠∠,即可求得12∠-∠.【详解】如图,设m 交,AC AB 于点,E F ,G 是射线EF 上的一点,折叠,,AEG DEG AFG DFG ∴∠=∠∠=∠设,AEG DEG AFG DFG αβ∠=∠=∠=∠=30A βαα∴=+∠=+︒即30βα-=︒11802,21802αβ∠=︒-∠=︒-122260βα∴∠-∠=-=︒故选C【点睛】本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.10、B【解析】【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,∴∠ABD=∠BDC−∠A=50°−30°=20°,∵BD是△ABC的角平分线,∴∠DBC=∠ABD=20°,∵DE∥BC,∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.二、填空题1、27【解析】【分析】如图,∠3=∠1,由∠3=∠2+∠A计算求解即可.【详解】解:如图∵a∥b,∠1=56°∴∠3=∠1=56°∵∠3=∠2+∠A,∠2=29°∴∠A=∠3﹣∠2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.2、423、30°##30度【解析】【分析】设三角形的三个内角分别为x,2x,3x,再根据三角形内角和定理求出x的值,进而可得出结论.【详解】解:∵三角形三个内角的比为1:2:3,∴设三角形的三个内角分别为x,2x,3x,∴x+2x+3x=180°,解得x=30°.∴这个三角形最小的内角的度数是30°.故答案为:30°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.4、2或5##5或2【解析】【分析】根据三角形的三边关系求得第三边的取值范围,进一步确定第三边的长,由此得出答案即可.【详解】解:∵a=3,b=4,∴根据三角形的三边关系,得4﹣3<c<4+3.即1<c<7,∵若三边长为连续整数,∴c=2或5故答案为:2或5.【点睛】本题主要考查三角形三边关系,注意掌握三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,解题的关键掌握三角形三边关系.5、4(答案不唯一)【解析】【分析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.【详解】解:根据三角形的三边关系,得第三边应大于两边之差,即532-=;而小于两边之和,即538+=,即2<第三边8<,故第三根木棒的长度可以是4.故答案为:4(答案不唯一).【点睛】本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.三、解答题1、(1)3;(2)20︒.【解析】【分析】(1)首先根据中线的性质得到4AE CE ==,然后根据ABE △的周长为13,即可求出AB 的长;(2)首先根据BD 是ABC ∆的角平分线得到268ABC CBD ∠=∠=︒,然后根据三角形内角和定理即可求出C ∠的度数.【详解】(1)∵BE 是ABC ∆的AC 边上的中线,∴4AE CE ==,又∵ABE △的周长为13,∴1313463AB AE BE =--=--=;(2)∵BD 是ABC ∆的角平分线,∴268ABC CBD ∠=∠=︒,又∵92A ∠=︒,∴180180926820C A ABC ∠=︒-∠-∠=︒-︒-︒=︒.此题考查三角形中线和角平分线的概念,三角形内角和定理的运用,解题的关键是熟练掌握三角形中线和角平分线的概念,三角形内角和定理.2、(1)2<BC<8;(2)25°【解析】【分析】(1)根据三角形三边关系解答即可;(2)根据三角形外角性质和三角形内角和解答即可.【详解】解:(1)∵AC-AB<BC<AC+AB,AB=3,AC=5.∴2<BC<8,故答案为:2<BC<8(2)∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=140︒∵∠B=∠BAD∴∠B=114070 2⨯︒=︒∵∠B+∠BAC+∠C=180︒∴∠C=180︒﹣∠B﹣∠BAC即∠C=180︒﹣70︒﹣85︒=25︒【点睛】本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出∠B的度数是解此题的关键.3、见解析【分析】根据三角形内角和定理可得90ADE C ∠=∠=︒,从而可得结论.【详解】解:在ABC ∆中,2180A C ∠+∠+∠=︒,在ADE ∆中,1180A ADE ∠+∠+∠=︒∵,12A A ∠=∠∠=∠∴90ADE C ∠=∠=︒∴ED ⊥AB【点睛】本题主要考查了垂直的判定,证明90ADE C ∠=∠=︒是解答本题的关键.4、两直线平行,同位角相等;两直线平行,内错角相等;平角等于180°;等量代换【解析】【分析】根据平行线的性质和平角度数等于180°求解即可.【详解】解:证明:作BC 的延长线CD ,过点C 作射线CE BA .∵CE BA (辅助线)∴∠B =∠ECD (两直线平行,同位角相等)∠A =∠ACE (两直线平行,内错角相等)∵∠BCA +∠ACE +∠ECD =180°(平角等于180°)∴∠A +∠B +∠ACB =180°(等量代换)故答案为:两直线平行,同位角相等;两直线平行,内错角相等;平角等于180°;等量代换.【点睛】此题考查了证明三角形的内角和等于180°,平行线的性质以及平角度数等于180°,解题的关键是熟练掌握平行线的性质以及平角度数等于180°.5、见解析【解析】【分析】利用角平分线得到∠BAD=∠CAD,根据三角形外角的性质推出∠CAD=∠F,即可得到结论.【详解】∵AD是△ABC的角平分线,∴∠BAD=∠CAD,又∵∠BAD+∠CAD=∠AGF+∠F,且∠AGF=∠F,∴∠CAD=∠F,∴EF AD∥.【点睛】此题考查了角平分线的计算,三角形外角性质,平行线的判定定理,熟记平行线的判定定理是解题的关键.。

2021-2022学年度强化训练冀教版七年级数学下册第九章 三角形综合测试试题(含详解)

2021-2022学年度强化训练冀教版七年级数学下册第九章 三角形综合测试试题(含详解)

冀教版七年级数学下册第九章三角形综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是()A.30°B.35°C.45°D.60°2、如图,CM是ABC的中线,4cmAM ,则BM的长为()A.3cm B.4cm C.5cm D.6cm3、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是()A .63°B .58°C .54°D .56°4、若一个三角形的两条边的长为5和7,那么第三边的长可能是( )A .2B .10C .12D .135、如图,将△ABC 沿着DE 减去一个角后得到四边形BCED ,若∠BDE 和∠DEC 的平分线交于点F ,∠DFE =α,则∠A 的度数是( )A .180°﹣αB .180°﹣2αC .360°﹣αD .360°﹣2α6、下图中能体现∠1一定大于∠2的是( )A .B .C .D .7、如图,已知AD AB =,C E ∠=∠,55CDE ∠=︒,则ABE ∠的度数为( )A.155°B.125°C.135°D.145°8、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.下列说法正确的是()A.证法1用特殊到一般法证明了该定理B.证法1只要测量够100个三角形进行验证,就能证明该定理C.证法2还需证明其他形状的三角形,该定理的证明才完整D.证法2用严谨的推理证明了该定理9、利用直角三角板,作ABC 的高,下列作法正确的是( )A .B .C .D .10、如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( )A .60︒B .75︒C .90︒D .105︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知ABC 中,45A ∠=︒,高BD 和CE 所在直线交于H ,则BHC ∠的度数是________.2、如图,直线ED 把ABC 分成一个AED 和四边形BDEC ,ABC 的周长一定大于四边形BDEC 的周长,依据的原理是____________________________________.3、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)4、如图,△ABC中,∠B=20°,D是BC延长线上一点,且∠ACD=60°,则∠A的度数是____________ 度.5、如图,在直线l1∥l2,把三角板的直角顶点放在直线l2上,三角板中60°的角在直线l1与l2之间,如果∠1=35°,那么∠2=___度.三、解答题(5小题,每小题10分,共计50分)1、已知AM∥CN,点B在直线AM、CN之间,AB⊥BC于点B.(1)如图1,请直接写出∠A和∠C之间的数量关系:.(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为.2、在△ABC中,∠A-∠B=30°,∠C=4∠B,求∠A、∠B、∠C的度数3、如图是A、B、C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C 岛在B岛的北偏西40°方向.从C岛看A、B岛的视角∠ACB为多少?4、如图,AD 是△ABC 的边BC 上的中线,已知AB =5,AC =3.(1)边BC 的取值范围是 ;(2)△ABD 与△ACD 的周长之差为 ;(3)在△ABC 中,若AB 边上的高为2,求AC 边上的高.5、如图,在ABC 中(AB BC >),2AC BC =,BC 边上的中线AD 把ABC 的周长分成60和40两部分,求AC 和AB 的长.-参考答案-一、单选题1、B【解析】由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.【详解】解:∵△AOB绕点O逆时针旋转65°得到△COD,∴∠AOC=65°,∵∠AOB=30°,∴∠BOC=∠AOC−∠AOB=35°.故选:B.【点睛】本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.2、B【解析】【分析】直接根据三角形中线定义解答即可.【详解】解:∵CM是ABC的中线,4cmAM=,∴BM= 4cmAM=,故选:B.【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.3、C【解析】先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【详解】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.故选:C.【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DE C.4、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B符合题意,【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.5、B【解析】【分析】根据∠DFE=α得到∠FDE+∠FED,再根据角平分线的性质求出∠BDE+∠CED=360°-2α,利用外角的性质得到∠ADE+∠AED=2α,最后根据三角形内角和求出结果.【详解】解:∵∠DFE=α,∴∠FDE+∠FED=180°-α,由角平分线的定义可知:∠BDF=∠FDE,∠CEF=∠FED,∴∠BDE+∠CED=2∠FDE+2∠FED=360°-2α,∴∠ADE+∠AED=180°-∠BDE+180°-∠CED=2α,∴∠A=180°-(∠ADE+∠AED)=180°-2α,故选B.【点睛】本题考查了角平分线的定义,三角形内角和,三角形外角的性质,解题的关键是利用角平分线得到相等的角,根据内角和进行计算.6、C【解析】【分析】由对顶角的性质可判断A ,由平行线的性质可判断B ,由三角形的外角的性质可判断C ,由直角三角形中同角的余角相等可判断D ,从而可得答案.【详解】解:A 、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B 、如图,13,∠=∠若两线平行,则∠3=∠2,则1=2,∠∠若两线不平行,则2,3∠∠大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C 、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D 、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C .【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.7、B【解析】【分析】根据三角形外角的性质得出55CBE A E A C ∠=∠+∠=∠+∠=︒,再求ABE ∠即可.【详解】解:∵55CDE ∠=︒,∴55A C ∠+∠=︒,∵C E ∠=∠,∴55CBE A E ∠=∠+∠=︒,∴180125ABE CBE ∠=︒-∠=︒;故选:B .【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.8、D【解析】【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A 不符合题意,C 不符合题意,D 符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B 不符合题意; 故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.9、D【解析】【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A 、B 、C 均不是高线.故选:D .【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.10、B【解析】【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠【详解】 解:45,30EDB ABC ∠=︒∠=︒175EDB ABC ∴∠=∠+∠=︒故选B【点睛】本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.二、填空题1、45°或135°【解析】【分析】分两种情况讨论:①如图1,ABC 为锐角三角形,由题意知90BDA CEA ∠=∠=︒, 45ACE ∠=︒,45ABD ∠=︒,180A ABD DBC BCE ACE ∠+∠+∠+∠+∠=︒,180DBC BCE BHC ∠+∠+∠=︒,代值计算求解即可;②如图2,ABC 为钝角三角形,由题意知90BDA CEA ∠=∠=︒,在BEH △中,45ABD ∠=︒,90CEB ∠=︒,180BHC CEB ABD ∠=︒-∠-∠,代值计算求解即可.【详解】解:由题意知90BDA CEA ∠=∠=︒①如图1所示,ABC 为锐角三角形∵90BDA CEA ∠=∠=︒,45A ∠=︒∴45ACE ∠=︒,45ABD ∠=︒∵180A ABD DBC BCE ACE ∠+∠+∠+∠+∠=︒∴180********DBC BCE ∠+∠=︒-︒-︒-︒=︒∵180DBC BCE BHC ∠+∠+∠=︒∴18045135BHC ∠=︒-︒=︒;②如图2所示,ABC 为钝角三角形∵90BDA CEA ∠=∠=︒,45A ∠=︒∴45ABD ∠=︒在BEH △中,45ABD ∠=︒,90CEB ∠=︒∴180180904545BHC CEB ABD ∠=︒-∠-∠=︒-︒-︒=︒;综上所述,BHC ∠的值为45︒或135︒故答案为:45︒或135︒.【点睛】本题考查了三角形的高,三角形的内角和定理.解题的关键在于正确求解角度.2、三角形两边之和大于第三边【解析】【分析】表示出ABC 和四边形BDEC 的周长,再结合ADE 中的三边关系比较即可.【详解】解:ABC 的周长=AC AB BC AE AD CE CB BD ++=++++四边形BDEC 的周长=DE CE CB BD +++∵在ADE 中AE AD DE +>∴AE AD CE CB BD ++++>DE CE CB BD +++即ABC 的周长一定大于四边形BDEC 的周长,∴依据是:三角形两边之和大于第三边;故答案为三角形两边之和大于第三边【点睛】本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.3、4(答案不唯一)【解析】【分析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.【详解】解:根据三角形的三边关系,得第三边应大于两边之差,即532-=;而小于两边之和,即538+=,即2<第三边8<,故第三根木棒的长度可以是4.故答案为:4(答案不唯一).【点睛】本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.4、40【解析】【分析】直接根据三角形外角的性质可得结果.【详解】解:∵∠B =20°,∠ACD =60°,∠ACD 是△ABC 的外角,∴∠ACD =∠B +∠A ,∴602040A ACD B ∠=∠-∠=︒-︒=︒,故答案为:40.【点睛】本题考查了三角形外角的性质,熟知三角形的一个外角等于与它不相邻的两个内角的和是解本题的关键5、65【解析】【分析】根据三角形外角性质即可求得∠3的度数,再依据平行线的性质,可求得∠3=∠2.【详解】解:∵∠3是△ABC的外角,∠1=∠ABC=35°,∴∠3=∠C+∠ABC=30°+35°=65°,∵直线l1∥l2,∴∠2=∠3=65°,故答案为:65.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.三、解答题1、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°【解析】【分析】(1)过点B作BE∥AM,利用平行线的性质即可求得结论;(2)过点B作BE∥AM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.【详解】(1)过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C=∠CBE,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案为:∠A+∠C=90°;(2)∠A和∠C满足:∠C﹣∠A=90°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠C,∵AB⊥BC,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)设CH与AB交于点F,如图,∵AE 平分∠MAB ,∴∠GAF =12∠MAB ,∵CH 平分∠NCB ,∴∠BCF =12∠BCN ,∵∠B =90°,∴∠BFC =90°﹣∠BCF ,∵∠AFG =∠BFC ,∴∠AFG =90°﹣∠BCF .∵∠AGH =∠GAF +∠AFG ,∴∠AGH =12∠MAB +90°﹣12∠BCN =90°﹣12(∠BCN ﹣∠MAB ).由(2)知:∠BCN ﹣∠MAB =90°,∴∠AGH =90°﹣45°=45°.故答案为:45°.【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.2、55A ∠=︒,25B ∠=︒,100C ∠=︒【解析】【分析】根据三角形内角和定理,以及已知条件列三元一次方程组解方程求解即可【详解】在△ABC 中,180A B C ∠+∠+∠=︒,∠A -∠B =30°,∠C =4∠B ,180304A B C A B C B ∠+∠=︒-∠⎧⎪∴∠-∠=︒⎨⎪∠=∠⎩①②③ ①-②得2150B C ∠=︒-∠④将③代入④解得25B ∠=︒100C ∴∠=︒,55A ∠=︒∴55A ∠=︒,25B ∠=︒,100C ∠=︒【点睛】本题考查了三角形内角和定理,解三元一次方程组,正确的计算是解题的关键.3、90°【解析】【分析】根据题意在图中标注方向角,得到有关角的度数,根据三角形内角和定理和平行线的性质解答即可.【详解】解:由题意得,∠DAB =80°,∵DA ∥EB ,∴∠EBA =180°﹣∠DAB =100°,又∠EBC =40°,∴∠ABC =∠EBA ﹣∠EBC =60°,∵∠DAB =80°,∠DAC =50°,∴∠CAB =30°,∴∠ACB =180°﹣∠CAB ﹣∠ABC =90°.【点睛】本题主要考查了平行线的性质和三角形内角和定理,准确计算是解题的关键.4、(1)28BC <<;(2)2;(3)103h =. 【解析】【分析】 (1)直接根据三角形三边关系进行解答即可;(2)根据三角形中线将△ABD 与△ACD 的周长之差转换为AB 和AC 的差即可得出答案;(3)设AC 边上的高为h ,根据三角形面积公式列出方程求解即可.【详解】解:(1)∵△ABC 中AB =5,AC =3,∴5353BC -<<+,即28BC <<,故答案为:28BC <<;(2)∵△ABD 的周长为AB AD BD ++,△ACD 的周长为AC AD CD ++,∵AD 是△ABC 的边BC 上的中线,∴BD CD =,∴AB AD BD ++-(AC AD CD ++)=532AB AC -=-=,故答案为:2;(3)设AC 边上的高为h , 根据题意得:11222AB AC h ⨯=⨯, 即1152322h ⨯⨯=⨯⨯, 解得103h =.【点睛】本题考查了三角形三边关系,三角形的中线,三角形的高等知识点,熟练掌握基础知识是解本题的关键.5、48AC =,28AB =【解析】【分析】由题意可得60AC CD +=,40AB BD +=,由中线的性质得244AC BC CD BD ===,故可求得48AC =,即可求得28AB =.【详解】由题意知100AC CD BD AB +++=,60AC CD +=,40AB BD +=∵2AC BC =,D 为BC 中点∴244AC BC CD BD === ∴156044AC CD AC AC AC +=+== 即460485AC =⨯=则BC =24,CD =BD =12则40401228AB BD =-=-=且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.。

2022年最新冀教版七年级数学下册第九章 三角形达标测试试题(含答案解析)

2022年最新冀教版七年级数学下册第九章 三角形达标测试试题(含答案解析)

冀教版七年级数学下册第九章 三角形达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知ACD ∠为ABC 的外角,60ACD ∠=︒,20B ∠=︒,那么A ∠的度数是( )A .30°B .40°C .50°D .60°2、如图,在ABC ∆中,若点D 使得BD DC =,则AD 是ABC ∆的( )A .高B .中线C .角平分线D .中垂线3、如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=46°,则∠2等于( )A .56°B .34°C .44°D .46°4、如图,将ABC 的BC 边对折,使点B 与点C 重合,DE 为折痕,若65A ∠=︒,25ACD ∠=︒,则B ∠=( ).A .45°B .60°C .35°D .40°5、如图,点B 、G 、C 在直线FE 上,点D 在线段AC 上,下列是△ADB 的外角的是( )A .∠FBAB .∠DBC C .∠CDBD .∠BDG6、如图,AB 和CD 相交于点O ,则下列结论不正确的是( )A .12∠=∠B .1B ∠=∠C .2D ∠>∠ D .A D B C ∠+∠=∠+∠7、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是()A.5米B.10米C.15米D.20米8、若一个三角形的两条边的长为5和7,那么第三边的长可能是()A.2 B.10 C.12 D.139、已知△ABC的内角分别为∠A、∠B、∠C,下列能判定△ABC是直角三角形的条件是()A.∠A=2∠B=3∠C B.∠C=2∠B C.∠A+∠B=∠C D.∠A:∠B:∠C= =3:4:510、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是()A.3cm B.6cm C.10cm D.12cm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个三角形的三个内角之比为1:2:3,这个三角形最小的内角的度数是 _____.2、已知,在△ABC中,∠B=48°,∠C=68°,AD是BC边上的高,AE平分∠BAC,则∠DAE的度数为____.3、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.4、如图,A B C D E ∠+∠+∠+∠+∠=______.5、在ABC 中,AD ⊥BC 于点D ,BD =CD ,若BC =6,AD =4,则图中阴影部分的面积为__________.三、解答题(5小题,每小题10分,共计50分)1、已知a b c ,,是ABC 的三边长.(1)若a b c ,,满足,2()||0a b b c -+-=,试判断ABC 的形状;(2)化简:||||||b c a a b c a b c --+-+---2、如图,已知点D 为△ABC 的边BC 延长线上一点,DF ⊥AB 于点F ,并交AC 于点E ,其中∠A =∠D =40°.求∠B 和∠ACD 的度数.3、如图所示,AB//CD,G为AB上方一点,E、F分别为AB、CD上两点,∠AEG=4∠GEB,∠CFG=2∠GFD,∠GEB和∠GFD的角平分线交于点H,求∠G+∠H的值.4、如图,在△ABC中,AD平分∠BAC,P为线段AD上一点,PE⊥AD交BC的延长线于点E,若∠B=35°,∠ACB=75°,求∠E的度数.5、完成下面的证明已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE//BA,DF//CA.求证:∠A+∠B+∠C=180°.证明:∵DE//BA,∴∠3=(),∠2=().∵DF//CA,∴∠1=(),∠BFD=().∴∠2=().∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).-参考答案-一、单选题1、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.2、B【解析】【分析】根据三角形的中线定义即可作答.【详解】解:∵BD=DC,∴AD是△ABC的中线,故选:B.【点睛】本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3、C【解析】【分析】依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.【详解】解:如图:∵l1∥l2,∠1=46°,∴∠3=∠1=46°,又∵l3⊥l4,∴∠2=90°﹣46°=44°,故选:C .【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.4、A【解析】【分析】由折叠得到∠B =∠BCD ,根据三角形的内角和得∠A +∠B +∠ACB =180°,代入度数计算即可.【详解】解:由折叠得∠B =∠BCD ,∵∠A +∠B +∠ACB =180°,65A ∠=︒,25ACD ∠=︒,∴65°+2∠B +25°=180°,∴∠B =45°,故选:A .【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.5、C【解析】【分析】根据三角形的外角的概念解答即可.【详解】解:A.∠FBA 是△ABC 的外角,故不符合题意;B. ∠DBC不是任何三角形的外角,故不符合题意;C.∠CDB是∠ADB的外角,符合题意;D. ∠BDG不是任何三角形的外角,故不符合题意;故选:C.【点睛】本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.6、B【解析】【分析】根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.【详解】解:选项A、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A不符合题意;选项B、∵∠1=∠B+∠C,∴∠1>∠B,故选项B符合题意;选项C、∵∠2=∠D+∠A,∴∠2>∠D,故选项C不符合题意;∠+∠=∠+∠,故选项D不符合题意;选项D、∵1∠+∠=∠,1A D∠+∠=∠,∴A D B CB C故选:B.【点睛】本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.7、A【解析】【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.8、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B 符合题意,故选:B .【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.9、C【解析】【分析】根据三角形内角和定理依次计算判断.【详解】解:A 、设∠C=2x ,则∠B =3x ,∠A =6x ,∵180A B C ∠+∠+∠=︒,∴632180x x x ++=°, 解得18011x =︒, ∴∠A =6x =108011︒, ∴△ABC 不是直角三角形,故该选项不符合题意;B 、当∠C =20°,∠B=10°时符合题意,但是无法判断△ABC 是直角三角形,故该选项不符合题意;C 、∵∠A +∠B =∠C ,180A B C ∠+∠+∠=︒,∴90C ∠=︒,即△ABC 是直角三角形,故该选项符合题意;D 、设∠A =3x ,∠B =4x ,∠C =5x ,∵180A B C ∠+∠+∠=︒,∴345180x x x ++=︒,解得15x =︒,∴575C x ∠==︒,∴△ABC 不是直角三角形,故该选项不符合题意;故选:C .【点睛】此题考查了三角形内角和定理,熟记三角形内角和为180度并应用是解题的关键.10、C【解析】【分析】设第三根木棒的长度为x cm ,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为x cm ,则9393,x612,x所以A ,B ,D 不符合题意,C 符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.二、填空题1、30°##30度【解析】【分析】设三角形的三个内角分别为x ,2x ,3x ,再根据三角形内角和定理求出x 的值,进而可得出结论.【详解】解:∵三角形三个内角的比为1:2:3,∴设三角形的三个内角分别为x ,2x ,3x ,∴x +2x +3x =180°,解得x =30°.∴这个三角形最小的内角的度数是30°.故答案为:30°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.2、10°##10度【解析】【分析】由三角形内角和求出BAC ∠的度数,然后利用角平分线的定义求出BAE ∠的度数,再根据AD ⊥BC 求出BAD ∠的度数,利用DAE BAD BAE ∠=∠-∠即可求出DAE ∠的度数.【详解】解:如图,∵∠B =48°,∠C =68°180180486864BAC B C ∴∠=︒-∠-∠=︒-︒-︒=︒∵AE 平分∠BAC11643222BAE BAC ∴∠=∠=⨯︒=︒ ∵AD ⊥BC90BDA ∴∠=︒904842BAD BDA B ∴∠=∠-∠=︒-︒=︒423210DAE BAD BAE ∴∠=∠-∠=︒-︒=︒故答案为10︒【点睛】本题主要考查三角形内角和定理和角平分线的定义,掌握三角形内角和定理和角平分线的定义是解题的关键.3、30°##30度【解析】【分析】根据三角形的外角的性质,即可求解.【详解】解:∵ACD A B ∠=∠+∠ ,∴B ACD A ∠=∠-∠ ,∵∠ACD =75°,∠A =45°,∴30B ∠=︒ .故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.4、180度##180︒【解析】【分析】如图,连接,BC 记,CD BE 的交点为,G 先证明,D E GBC GCB ∠+∠=∠+∠再利用三角形的内角和定理可得答案.【详解】解:如图,连接,BC 记,CD BE 的交点为,G180,180,,D E DGE GBC GCB BGC DGE BGC ∠+∠=︒-∠∠+∠=︒-∠∠=∠,D E GBC GCB ∴∠+∠=∠+∠180,A ABG GBC GCB ACG ∴∠+∠+∠+∠+∠=︒180,A ABG ACG D E ∴∠+∠+∠+∠+∠=︒故答案为:180︒【点睛】本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.5、6【解析】【分析】如图,先标注字母,证明,,ABD ACD BEF CEF SS S S 可得1,2ABC S S 阴影从而可得结论.【详解】解:如图,先标注字母,AD ⊥BC 于点D ,BD =CD ,,,ABD ACD BEF CEFS S S S 1,2ABC S S 阴影BC =6,AD =4,16412,2ABC S 1 6.2ABCS S 阴影 故答案为:6【点睛】本题考查的是三角形的高,中线与面积的关系,掌握“三角形的中线把三角形的面积分为相等的两部分”是解本题的关键.三、解答题1、(1)ABC 是等边三角形;(2)33a b c -+【解析】【分析】(1)由性质可得a =b ,b =c ,故ABC 为等边三角形.(2)根据三角形任意两边和大于第三边,任意两边差小于第三边判定正负,再由绝对值性质去绝对值计算即可.【详解】(1)∵2()||0a b b c -+-=∴2()0a b -=且||0b c -=∴a b c ==∴ABC 是等边三角形.(2)∵a b c ,,是ABC 的三边长∴b -c -a <0,a -b +c >0,a -b -c <0原式=|()|()|()|a c b a b c b c a -+-+-+--+-=a c b a b c b c a +-+-+--+=33a b c -+【点睛】本题考查了三角形三条边的关系以及绝对值化简,根据三角形任意两边和大于第三边,任意两边差小于第三边判定绝对值内数值正负是解题的关键.2、∠B =50°;∠ACD =90°.【解析】【分析】由DF ⊥AB ,在Rt △BDF 中可求得∠B ;再由∠ACD =∠A +∠B 可求得结论.【详解】解:∵DF ⊥AB ,∴∠BFD =90°,∴∠B +∠D =90°,∵∠D =40°,∴∠B =90°-∠D =90°-40°=50°;∴∠ACD =∠A +∠B =40°+50°=90°.【点睛】本题主要考查了三角形内角和定理及外角的性质,掌握三角形内角和为180°是解题的关键.3、∠G +∠H =36°.【解析】【分析】先设2GEB x ∠=,2GFD y ∠=,由题意可得8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,从而求出x y ,;根据题意得AEG G CFG ∠=∠+∠, AEH H CFH ∠=∠+∠, 从而得到G H ∠+∠的值.【详解】解:设2GEB x ∠=,2GFD y ∠=,由题意可得,8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,解得18x =︒,30y =︒;由靴子图AEGFC 知,AEG G CFG ∠=∠+∠,即84x G y =∠+由靴子图AEHFC 知,AEH H CFH ∠=∠+∠,即即84x G y =∠+,95x H y =∠+,179171893036G H x y ∠+∠=-=⨯︒-⨯︒=︒【点睛】本题考查平行线的性质,解题的关键是设2GEB x ∠=,2GFD y ∠=,由题意得到x y ,的关系式,正确将G H ∠+∠表示成x y ,的形式.4、20︒【解析】【分析】根据三角形内角和的性质求得BAC ∠的度数,再根据角平分线求得BAD ∠的度数,利用三角形外角性质求得ADE ∠的度数,从而求得E ∠的度数.【详解】解:∵35B ∠=︒,75ACB ∠=︒,∴70BAC ∠=︒,∵AD 平分∠BAC , ∴1=352BAD BAC ∠=∠︒,∴70ADE B BAD ∠=∠+∠=︒,∵PE ⊥AD ,∴90DPE ∠=︒,∴9020E ADE ∠=︒-∠=︒.【点睛】此题考查了三角形内角和的性质,三角形外角的性质以及角平分线的性质,解题的关键是灵活利用相关性质进行求解.5、∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换【解析】【分析】先根据平行线的性质得出∠A=∠2,∠1=∠C,∠3=∠B,再由平角的定义即可得出结论.【详解】证明:∵DE//B∴∠3=∠B(两直线平行,同位角相等),∠2=∠BFD(两直线平行,内错角相等),∵DF//CA,∴∠1=∠C(两直线平行,同位角相等),∠A=∠BFD(两直线平行,同位角相等),∴∠2=∠A(等量代换).∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).故答案为:∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.。

2021-2022学年度冀教版七年级数学下册第九章 三角形课时练习试题(含详细解析)

2021-2022学年度冀教版七年级数学下册第九章 三角形课时练习试题(含详细解析)

冀教版七年级数学下册第九章 三角形课时练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有下列长度的三条线段,其中能组成三角形的是( )A .4,5,9B .2.5,6.5,10C .3,4,5D .5,12,172、如图,在△ABC 中,AD 是△ABC 的中线,△ABD 的面积为3,则△ABC 的面积为( )A .8B .7C .6D .53、如图,BD 是ABC 的角平分线,∥DE BC ,交AB 于点E .若30A ∠=︒,50BDC ∠=︒,则BDE ∠的度数是( )A.10°B.20°C.30°D.50°4、已知△ABC的内角分别为∠A、∠B、∠C,下列能判定△ABC是直角三角形的条件是()A.∠A=2∠B=3∠C B.∠C=2∠B C.∠A+∠B=∠C D.∠A:∠B:∠C= =3:4:55、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根6、以下长度的线段能和长度为2,6的线段组成三角形的是()A.2 B.4 C.6 D.97、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为()A.15°B.10°C.20°D.25°8、利用直角三角板,作ABC的高,下列作法正确的是()A.B.C .D .9、如图,钝角ABC 中,2∠为钝角,AD 为BC 边上的高,AE 为BAC ∠的平分线,则DAE ∠与1∠、2∠之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )A .21DAE ∠=∠-∠B .212DAE ∠-∠∠=C .212DAE ∠∠=-∠D .122DAE ∠+∠∠=10、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,OA =15米,OB =10米,A 、B 间的距离不可能是( )A .5米B .10米C .15米D .20米第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB=DE,AC=DF,BF=CE,点B、F、C、E在一条直线上,AB=4,EF=6,求△ABC中AC 边的取值范围.2、等腰三角形的一条边长为4cm,另一条边长为6cm,则它的周长是________.3、如图,在△ABC中,D是AC延长线上一点,∠A=50°,∠B=70°,则∠BCD=__________°.4、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)5、在△ABC中,若AC=3,BC=7则第三边AB的取值范围为________.三、解答题(5小题,每小题10分,共计50分)1、已知AM∥CN,点B在直线AM、CN之间,AB⊥BC于点B.(1)如图1,请直接写出∠A和∠C之间的数量关系:.(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为.2、已知ABC 的三边长分别为a ,b ,c .若a ,b ,c 满足22()()0a b b c -+-=,试判断ABC 的形状.3、如图,∠B =45°,∠A +15°=∠1,∠ACD =60°.求证:AB ∥CD .4、如图,将一副直角三角板的直角顶点C 叠放在一起.(1)如图(1),若∠DCE =33°,则∠BCD = ,∠ACB = .(2)如图(1),猜想∠ACB 与∠DCE 的大小有何特殊关系?并说明理由.(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A 重合在一起,则∠DAB 与∠CAE 的数量关系为 .5、如图,AD 是ABC 的高,CE 是ADC 的角平分线.若BAD ECD ∠=∠,70B ∠=︒,求CAD ∠的度数.-参考答案-一、单选题1、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,+=,不能够组成三角形,不符合题意;A、459+=<,不能够组成三角形,不符合题意;B、2.5 6.5910C、3475,4315+=>-=<,能够组成三角形,符合题意;+=,不能组成三角形,不符合题意;D、51217故选:C.【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.2、C【解析】【分析】根据三角形的中线将三角形的面积分成相等的两部分即可求解.【详解】解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,∴△ABC的面积=3×2=6.故选:C.【点睛】考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.3、B【解析】【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解. 【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,∴∠ABD=∠BDC−∠A=50°−30°=20°,∵BD是△ABC的角平分线,∴∠DBC=∠ABD=20°,∵DE∥BC,∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.4、C【解析】【分析】根据三角形内角和定理依次计算判断.【详解】解:A 、设∠C=2x ,则∠B =3x ,∠A =6x ,∵180A B C ∠+∠+∠=︒,∴632180x x x ++=°, 解得18011x =︒, ∴∠A =6x =108011︒, ∴△ABC 不是直角三角形,故该选项不符合题意;B 、当∠C =20°,∠B=10°时符合题意,但是无法判断△ABC 是直角三角形,故该选项不符合题意;C 、∵∠A +∠B =∠C ,180A B C ∠+∠+∠=︒,∴90C ∠=︒,即△ABC 是直角三角形,故该选项符合题意;D 、设∠A =3x ,∠B =4x ,∠C =5x ,∵180A B C ∠+∠+∠=︒,∴345180x x x ++=︒,解得15x =︒,∴575C x ∠==︒,∴△ABC不是直角三角形,故该选项不符合题意;故选:C.【点睛】此题考查了三角形内角和定理,熟记三角形内角和为180度并应用是解题的关键.5、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.6、C【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】解:设第三边的长为a ,已知长度为2,6的线段,根据三角形的三边关系可得,6262a -<<+,即48a <<,根据选项可得6a =∴6a =故选C【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.7、A【解析】【分析】利用DE ∥AF ,得∠CDE =∠CFA =45°,结合∠CFA =∠B +∠BAF 计算即可.【详解】∵DE ∥AF ,∴∠CDE =∠CFA =45°,∵∠CFA =∠B +∠BAF ,∠B =30°,∴∠BAF =15°,故选A .【点睛】本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.8、D【解析】【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A、B、C均不是高线.故选:D.【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.9、B【解析】【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.【详解】解:由三角形内角和知∠BAC=180°-∠2-∠1,∵AE为∠BAC的平分线,∴∠BAE=12∠BAC=12(180°-∠2-∠1).∵AD为BC边上的高,∴∠ADC=90°=∠DAB+∠ABD.又∵∠ABD=180°-∠2,∴∠DAB=90°-(180°-∠2)=∠2-90°,∴∠EAD=∠DAB+∠BAE=∠2-90°+12(180°-∠2-∠1)=12(∠2-∠1).故选:B 【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.10、A【解析】【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.二、填空题1、2<AC<10【分析】由BF=CE得到 BC=EF=6,再根据三角形三边关系求解即可.【详解】解:∵BF=CE,点B、F、C、E在一条直线上,∴BF+FC=CE+FC,∴BC=EF=6,∵AB=4,∴6-4<AC<6+4,即2<AC<10,∴AC边的取值范围为2<AC<10.【点睛】本题考查三角形的三边关系,熟知一个三角形任意两边之和大于第三边,任意两边之差小于第三边是解答的关键.2、16cm或14cm##14cm或16cm【解析】【分析】根据题意分腰为6cm和底为6cm两种情况,分别求出即可.【详解】解:①当腰为6cm时,它的周长为6+6+4=16(cm);②当底为6cm时,它的周长为6+4+4=14(cm);故答案为:16cm或14cm.【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的两腰相等,注意分类讨论.【解析】【分析】根据三角形的外角性质,可得BCD A B ∠=∠+∠ ,即可求解.【详解】解:∵BCD ∠ 是ABC 的外角,∴BCD A B ∠=∠+∠ ,∵∠A =50°,∠B =70°,∴120BCD ∠=︒ .故答案为:120【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.4、4(答案不唯一)【解析】【分析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.【详解】解:根据三角形的三边关系,得第三边应大于两边之差,即532-=;而小于两边之和,即538+=,即2<第三边8<,故第三根木棒的长度可以是4.故答案为:4(答案不唯一).【点睛】本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.5、4<AB<10【解析】【分析】根据三角形的三边关系,直接求解即可.【详解】解:∵在△ABC中,AC=3,BC=7,∴BC AC AB BC AC-<<+,即7373-<<+,AC解得410<<.AB故答案为:410<<.AB【点睛】本题考查的是三角形的三边关系,熟悉相关性质是解题的关键.三角形中第三边的长大于其他两边之差,小于其他两边之和.三、解答题1、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°【解析】【分析】(1)过点B作BE∥AM,利用平行线的性质即可求得结论;(2)过点B作BE∥AM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.【详解】(1)过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C=∠CBE,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案为:∠A+∠C=90°;(2)∠A和∠C满足:∠C﹣∠A=90°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠C,∵AB⊥BC,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)设CH与AB交于点F,如图,∵AE 平分∠MAB ,∴∠GAF =12∠MAB ,∵CH 平分∠NCB ,∴∠BCF =12∠BCN ,∵∠B =90°,∴∠BFC =90°﹣∠BCF ,∵∠AFG =∠BFC ,∴∠AFG =90°﹣∠BCF .∵∠AGH =∠GAF +∠AFG ,∴∠AGH =12∠MAB +90°﹣12∠BCN =90°﹣12(∠BCN ﹣∠MAB ).由(2)知:∠BCN ﹣∠MAB =90°,∴∠AGH =90°﹣45°=45°.故答案为:45°.【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.2、ABC 的形状是等边三角形.【解析】【分析】利用平方数的非负性,求解a ,b ,c 的关系,进而判断ABC .【详解】解:∵22()()0a b b c -+-=,∴0a b -=,0b c -=∴a =b =c ,∴ ABC ∆是等边三角形.【点睛】本题主要是考查了三角形的分类,熟练掌握各类三角形的特点,例如三边相等为等边三角形,含90︒的三角形为直角三角形等,这是解决此类题的关键.3、见解析【解析】【分析】由三角形内角和定理和已知条件求出∠A =60°,得出∠ACD =∠A ,即可得出AB ∥CD .【详解】证明:∵∠A +∠B +∠1=180°,∠A +15°=∠1,∴∠A +45°+∠A +15°=180°,解得:∠A =60°,∵∠ACD =60°,∴∠ACD =∠A ,∴AB ∥CD .【点睛】本题考查了平行线的判定方法、三角形内角和定理;熟练掌握平行线的判定方法,由三角形内角和定理求出∠A 是解决问题的关键.4、(1)57°,147°;(2)∠ACB =180°-∠DCE ,理由见解析;(3)∠DAB+∠CAE =120°【解析】【分析】(1)根据角的和差定义计算即可.(2)利用角的和差定义计算即可.(3)利用特殊三角板的性质,角的和差定义即可解决问题.【详解】解:(1)由题意,∠=︒-︒=︒;BCD903357∠=︒+︒=︒;ACB9057147故答案为:57°,147°.(2)∠ACB=180°-∠DCE,理由如下:∵∠ACE=90°-∠DCE,∠BCD=90°-∠DCE,∴∠ACB=∠ACE+∠DCE+∠BCD=90°-∠DCE+∠DCE+90°-∠DCE=180°-∠DCE.(3)结论:∠DAB+∠CAE=120°.理由如下:∵∠DAB+∠CAE=∠DAE+∠CAE+∠BAC+∠CAE=∠DAC+∠EAB,又∵∠DAC=∠EAB=60°,∴∠DAB+∠CAE=60°+60°=120°.故答案为:∠DAB+∠CAE=120°.【点睛】本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、50︒【解析】【分析】AD 是ABC 的高,有90ADB ADC ∠=∠=︒;由70B ∠=︒知20BAD ∠=︒;CE 是ADC 的角平分线可得12ECD ACD ∠=∠;20BAD ECD ∠=∠=︒,40ACD ∠=︒;在ACD △中,904050CAD ∠=︒-︒=︒. 【详解】解:∵AD 是ABC 的高∴90ADB ADC ∠=∠=︒∵70B ∠=︒∴20BAD ∠=︒∵CE 是ADC 的角平分线 ∴12ECD ACD ∠=∠∵20BAD ECD ∠=∠=︒∴40ACD ∠=︒∴在ACD △中,904050CAD ∠=︒-︒=︒.【点睛】本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.。

冀教版数学七年级下册第九章小测验及答案.docx

冀教版数学七年级下册第九章小测验及答案.docx

第九章三角形一、选择题 ( 第 1~10 小题各 3 分, 第 11~16 小题各 2 分, 共 42 分)1.不必定在三角形内部的线段是()A.三角形的角均分线B.三角形的中线C.三角形的高D.三角形的中位线2.以下图 , 三角形被遮住的两个角不行能是()A. 一个锐角 , 一个钝角B.两个锐角C.一个锐角 , 一个直角D.两个钝角3.以下说法中错误的选项是A.随意三角形的内角和都是() 180°B.三角形按边进行分类可分为不等边三角形和等腰三角形C.三角形的中线、角均分线、高都是线段D.三角形的一个外角大于任何一个内角4.以下图 , AD⊥BC于点D, GC⊥BC于点C, CF⊥AB于点F, 以下对于高的说法中错误的选项是()A.△ABC中, AD是BC边上的高B.△GBC中, CF是BG边上的高C.△ABC中, GC是BC边上的高D.△GBC中, GC是BC边上的高5.设M表示直角三角形, N表示等腰三角形, P表示等边三角形, Q表示等腰直角三角形, 则下列四个图中 , 能表示它们之间关系的是()6.以下图 , 一块试验田的形状是三角形( 设其为△ABC), 管理员从BC边上的一点D出发,沿DC→ CA→ AB→ BD的方向走了一圈回到D处,则管理员从出发到回到原处在途中身体()A.转过 90°B.转过 180°C.转过 270°D.转过 360°7.以下条件 : ①∠A+∠B=∠C; ②∠A∶∠B∶∠C=1∶ 2∶ 3; ③∠A=90°- ∠B; ④∠A=∠B- ∠C.此中能确立△ ABC是直角三角形的条件有()A.1 个B.2 个C.3 个D.4 个(第 6题图)( 第8题图)8.以下图, 是一块三角形木板的剩余部分, 量得∠A=100°,∠ B=40°,这块三角形木板此外()一个角∠C的度数为A. 30°B. 40°C. 50°D. 60°9.若△ABC中 ,2(∠ A+∠ C)=3∠B,则∠ B的外角度数为()A.36 °B.72 °C.108°D.144 °10.把 14 cm 长的铁丝截成三段 , 围成不是等边三角形的三角形, 而且使三边均为整数, 那么()A.有 1 种截法B.有 2 种截法C.有 3 种截法D.有 4 种截法11.以下图 , 在△ABC中 , 点D, E, F分别是三条边上的点, EF∥AC, DF∥AB, ∠B=45° , ∠=60°.则∠等于()C EFDA.80 °B.75 °C.70 °D.65°(第11题图)(第12题图)12.在△ABC中 , AD, CE分别是△ABC的高 , 且AD=2, CE=4, 则AB∶BC等于()A.3∶4B.4∶3C.1∶2D.2∶113 以下图 ,∠ +∠ +∠ +∠ -∠A 等于().BCDE A. 360° B. 300°C. 180°D. 240°14.如所示 , 在△ABC中 , ∠ABC,∠ACB的均分BE, CD订交于点 F,∠ ABC=42°,∠ A=60°,∠ BFC等于()A. 118°B. 119°C. 120°D. 121°(第14)(第15)15.如所示 , 用四个螺将四条不行曲折的木条成一个木框 , 不螺大小 , 此中相两螺的距离挨次2,3,4,6, 且相两木条的角均可整.若整木条的角不损坏此木框 , 随意两个螺的距离的最大()A.6B.7C.8D.1016.如所示 , △ABC的面1, 第一次操作 : 分延AB, BC, CA至点 A1, B1, C1,使A1B=AB, CB1=CB, C1A=CA,次接 A1, B1, C1,获得△ A1B1C1. 第二次操作:分延 A1B1, B1C1, C1A1至点 A2, B2, C2,使 A2B1=A1B1, B2C1=B1C1, C2A1=C1A1,次接 A2, B2, C2,获得△ A2B2C2,⋯,按此律,要使获得的三角形的面超2014, 操作的次数最少是()A.7B.6C.5D.4二、填空题 (第 17~18小题各 3 分, 第 19小题 4分,共 10 分)17.当三角形中一个内角α 是另一个内角β 的两倍,我称此三角形“特点三角形”, 其中α 称为“特点角”.假如一个“特点三角形”的“特点角”为100°, 那么这个“特点三角形”的最小内角的度数为.18.已知a, b, c 是三角形的三条边, 则 | a+b- c|-|c- a- b|的化简结果为.19.以下图, 将纸片△ABC沿DE折叠,点 A 落在点A' 处,已知∠1+∠2=100° , 则∠A的大小等于度 .三、解答题 ( 共 68 分)20. (9 分 ) 一副三角板叠在一同按以下图的方式搁置, 最小锐角的极点D恰巧放在等腰直角三角板的斜边AB上, BC与 DE交于点 M.已知∠ ADF=100°,求∠ DMB的度数 .21. (9 分)(1)如图(1)所示,有一块直角三角板XYZ搁置在△ ABC上,恰巧三角板 XYZ的两条直角边 XY, XZ分别经过点B, C.△ABC中,∠ A=30°,则∠ ABC+∠ ACB=度,∠ XBC+∠XCB=度;(2)如图 (2) 所示 , 改变直角三角板XYZ的地点 , 使三角板XYZ的两条直角边XY, XZ仍旧分别经过点B,C,那么∠ABX+∠ACX的大小能否变化?若变化,请举例说明;若不变化,恳求出∠ABX+∠ACX的大小 .22. (9 分 ) 以下图 , 武汉有三个车站A, B, C成三角形,一辆公共汽车从 B 站前去 C站 .(1)当汽车运动到点 D点时,恰巧 BD=CD,连结线段 AD, AD这条线段是什么线段?这样的线段在△ABC中有几条呢?此时有面积相等的三角形吗?(2)汽车持续向前运动 , 当运动到点E时 , 发现∠BAE=∠CAE,那么AE这条线段是什么线段呢 ? 在△ ABC中,这样的线段又有几条呢?(3)汽车持续向前运动 , 当运动到点F时 , 发现∠AFB=∠AFC=90° , 则AF是什么线段 ?这样的线段在△ ABC中有几条?(第22题图)(第23题图)23. (9 分 )(1) 以下图 , 有两根竹竿AB, DB靠在墙角上 , 并与墙角FCE形成必定的角度 , 测得∠CAB,∠ CDB的度数分别为α,β . 用含有α,β的代数式表示∠ DBF和∠ ABD的度数 .(2)小明、小芳和小兵三位同学同时丈量△ABC的三边长,小明说:“三角形的周长是11”,小芳说 : “有一条边长为 4”, 小兵说 : “三条边的长度是三个不一样的整数”.三边的长度分别是多少 ?24. (10 分 ) 以下图 , AD为△ABC的中线 , BE为△ABD的中线.(1)∠ ABE=15°,∠ BAD=26°,求∠ BED的度数;(2)若△ ABC的面积为40, BD=5,则△ BDE中 BD边上的高为多少?25. (10 分 ) 以下图 , 点P是△ABC内部一点 , 连结BP, 并延伸交AC于点 D.(1) 尝试究∠ 1, ∠ 2, ∠A从大到小的摆列次序;(2)尝试究线段 AB+BC+CA与线段2BD的大小关系;(3)尝试究线段 AB+AC与线段 PB+PC的大小关系 .(第25题图)(第26题图)26. (12 分 ) 以下图 , 在△ABC中 , AD⊥BC, AE均分∠BAC,∠B=70° , ∠C=30°.求 :(1)∠ BAE的度数;(2)∠ DAE的度数;(3)假如条件∠ B=70°,∠ C=30°改成∠ B-∠ C=40°,能否能得出∠ DAE的度数?若能,请你写出求解过程 ; 若不可以 , 请说明原因.参照答案:1. C( 分析 : 三角形的角均分线、中线、中位线都在三角形的内部 , 只有高可能在外面或许与三角形的边重合 . )2. D( 分析 : 依据三角形内角和定理 , 可知三角形三个内角的和为 180° , 因此三角形被遮住的两个角不行能是两个钝角 . )3. D( 分析 : 分别依据三角形外角的性质、三角形的分类及三角形的内角和定理对各选项进行逐个剖析即可 . A,B,C都正确.D. 三角形的一个外角大于任何一个和它不相邻的内角, 故本选项错误 .)4.C( 分析 : 依据三角形的高的定义对各选项剖析判断后利用清除法求解. )5.A ( 分析 : 依据各种三角形的观点可知 A 能够表示它们之间的包括关系. )6D( 分析 : 管理员正面朝前行走 , 转过的角的度数和正好为三角形的外角和360°)..7. D( 分析 : ①由于∠A+∠B=∠C, 则 2∠C=180° , ∠C=90° , 因此△ABC是直角三角形;②由于∠A∶∠ B∶∠ C=1∶2∶3,设∠ A=x,则 x+2x+3x=180°, x=30°,∠ C=30°×3=90°,因此△ABC是直角三角形;③由于∠ A=90°-∠B,因此∠ A+∠ B=90°,则∠ C=180°-90°=90°,因此△ABC是直角三角形;④由于∠ A=∠ B-∠C,因此∠ C+∠ A=∠B,又∠ A+∠ B+∠ C=180°,2∠B=180°,解得∠ B=90°,△ ABC是直角三角形 . 能确立△ ABC是直角三角形的有①②③④, 共 4个. )8. B( 分析 : 由于△ABC中 , ∠A=100° , ∠B=40° , 因此∠C=180° - ∠A- ∠B=180° -100 °-40 ° =40°. )9. C( 分析 : 由于∠A+∠B+∠C=180° , 因此 2( ∠A+∠B+∠C)=360 ° , 由于 2( ∠A+∠C)=3 ∠B, 因此∠ B=72°,因此∠ B 的外角度数是180°-∠ B=108° . )10. D ( 分析 : 依据三角形的三边关系, 两边之和大于第三边, 最短的边长是 1 时, 不建立 ; 当最短的边长是 2 时 , 三边长是2,6,6;当最短的边长是 3 时 , 三边长是3,5,6;当最短的边长是4时, 三边长是4,4,6和4,5,5.最短的边长必定不可以大于4.综上可知有2,6,6;3,5,6;4,4,6和 4,5,5, 共 4 种截法. )11. B( 分析 : 先由平行线的性质可得∠BFE=∠ C=60°,∠ CFD=∠ B=45°,再依据平角定义求得答案 . 由于 EF∥AC,因此∠ BFE=∠ C=60°. 由于 DF∥ AB,∠ CFD=∠ B=45°,因此∠ EFD=180°-∠- ∠=180° -60 ° -45 ° =75°)BFE CFD.12. C(分析 : 由于AD, CE分别是△ABC的高 , 因此S△ABC=1AB·CE=1BC·AD, 由于AD=2, CE=4, 因此22∶= ∶ =2∶ 4=1∶ 2.)AB BC AD CE13. C(分析 : 依据三角形的外角的性质, 得∠B+∠C=∠CGE=180° - ∠ 1, ∠D+∠E=∠DFG=180° -∠2, 两式相加再减去∠, 依据三角形的内角和是 180°可求解.由于∠ +∠ =∠=180° -A B C CGE∠1, ∠D+∠E=∠DFG=180° - ∠2, 因此∠B+∠C+∠D+∠E- ∠A=360° -( ∠ 1+∠ 2+∠A)=180 °. )14. C(分析 : 由于∠ABC=42° , ∠A=60° , 因此∠ACB=78° , 由于BE是∠ABC的均分线 , 因此∠EBC=1∠ ABC=1×42°=21°,同理得∠ DCB=39°,在△ FBC 中,∠ BFC=180°-∠ EBC-∠ DCB=180°22-21 ° -39 °=120°. )15. B ( 分析 : 若两个螺丝的距离最大, 则此时这个木框的形状为三角形, 可依据三根木条的长来判断有几种三角形的组合, 而后分别找出这些三角形的最长边即可. 已知4根木条的四边长分别为2,3,4,6:①选2+3,4,6作为三角形,则三边长为5,4,6;5-4<6<5+4,能组成三角形此时两个螺丝间的最大距离为6; ②选 3+4,6,2作为三角形,则三边长为2,7,6;6-2<7<6+2,能组成三角形 , 此时两个螺丝间的最大距离为7; ③选 4+6,2,3作为三角形,则三边长为,10,2,3;2+3<10, 不可以组成三角形, 此种状况不建立; ④选 6+2,3,4作为三角形,则三边长为8,3,4;而 3+4<8, 不可以组成三角形 , 此种状况不建立.综上所述 , 随意两个螺丝间的距离的最大值为 7. )16. D(分析 : △ABC与△A1BB1底相等 ( AB=A1B), 其高的比为1∶ 2( BB1=2BC), 故面积比为 1∶ 2,由于△ ABC的面积为1,因此??=2.同理可得 , ??=2, ??=2, 因此△ ???? ??△ ???? ??△ ?????111111??△??????=??+??+??+ △ABC=2+2+2+1=7; 同理可得△ 2 2 2 的面积=7×△111的△ ???? ?? △ ?????△ ???? ?? S A B C A B C 111111111面积 =49, 第三次操作后的面积为7× 49=343, 第四次操作后的面积为7× 343=2401故按此规.律, 要使获得的三角形的面积超出2014, 最少经过 4次操作.)17 30° ( 分析 : 依据题目赐予的定义 , 得α=100°?2=100° ?β=50° , 进一步求出最小内.β角是 180°-100 ° -50 ° =30°. )18. 0( 分析 : 依据三角形三边知足的条件是两边和大于第三边, 依据此来确立绝对值内的式子的正负 , 进而化简计算即可.由于, ,是三角形的三边长, 因此+ -c>0,- - <0, 因此原式a b c a b c a b=a+b- c+c- a- b=0. )19. 50( 分析 : 连结AA', 易得AD=A'D, AE=A'E, 故∠ 1+∠ 2=2( ∠DAA'+∠EAA')=2 ∠BAC=100°.故∠ BAC=50° . )20.解 : 由于∠ADF=100° , ∠FDE=30° , ∠ADF+∠FDE+∠MDB=180° , 因此∠MDB=180° -100 °-30 ° =50°, 由于∠B=45° , ∠B+∠DMB+∠MDB=180° , 因此∠DMB=180° -50 °-45 ° =85°.21.解 :(1)150 90 (2) 不变化.原因以下 : ∠ABX+∠ACX=∠ABC-∠XBC+∠ACB-∠XCB=( ∠ABC+∠ ACB)-(∠ XBC+∠ XCB)=150°-90°=60° .22.解 :(1)AD是△ ABC中 BC边上的中线,△ ABC中有三条中线,此时△ ABD与△ ADC的面积相等. (2) AE是△ ABC中∠ BAC的均分线,△ ABC中角均分线有三条 . (3) AF是△ ABC中 BC边上的高线 , △ABC中有三条高线.23.解 :(1)∠ DBF=90°+β,∠ABF=90°+α,因此∠ ABD=∠ ABF-∠ DBF=α-β.(2) 由于三角形的周长是 11, 有一条边长为 4, 因此另两边的和为7, 由于三条边的长度是三个不一样的整数,因此另两边长可能为 1 与 6,1+4=5<6, 不切合三角形三边关系, 舍去 , 另两边长可能为 2 与5,2+4=6>5, 切合三角形三边关系 , 另两边长可能为 3 与 4,4=4,不切合题意 , 舍去.因此另两边长为 2 与 5, 因此三边的长度应当是2,4,5 .24.解 :(1) ∠BED=∠ABE+∠BAD=15° +26° =41°.(2) 由于AD为△ABC的中线 , BE为△ABDBDE 11S△ABC11×5h=10, 解得h=4,即的中线 , 因此 S= ×= ×40=10, 设△ BD中 BD边上的高为 h, 则2242△BDE中 BD边上的高为4.25 解 :(1)由于∠ 2 是△的外角 , 因此∠ 2>∠ , 由于∠ 1 是△的外角 , 因此∠ 1>∠2, 所.ABD A PDC以∠ 1>∠ 2>∠A.(2)在△ ABD中, AB+AD>BD,①在△ BCD中, BC+CD>BD,②① +②得+++>2, 即++ >2(3) 在△中 ,+ >+ ,在△中 ,+ >, AB AD BC CD BD AB BC CA BD.ABD AB AD BP PD PDC PD CD PC 两式相加得+++>+ +, 即+ >+AB AD PD DC BP PD PC AB AC PB PC.26.解 :(1)由于∠ B+∠ C+∠ BAC=180°,因此∠ BAC=180°-∠ B-∠ C=180°-70°-30°=80°,由于 AE均分∠ BAC,因此∠ BAE=1∠BAC=40°.(2)由于 AD⊥ BC,因此∠ ADE=90°,而∠ ADE=2冀教版数学七年级下册第九章小测验及答案.docx∠B+∠ BAD,因此∠ BAD=90°-∠ B=90°-70°=20°,因此∠ DAE=∠ BAE-∠ BAD=40°-20°=20°. (3) 能.原因以下 : 由于∠B+∠C+∠BAC=180° , 因此∠BAC=180° - ∠B- ∠C, 由于AE111因此∠均分∠ BAC,因此∠ BAE=∠BAC= (180° - ∠B- ∠C)=90 ° - ( ∠B+∠C), 由于AD⊥BC,222ADE=90°,而∠ ADE=∠ B+∠ BAD,因此∠ BAD=90°-∠ B,因此∠ DAE=∠ BAE-∠ BAD=90°-1(∠ B+211× 40°=20°.∠C)-(90°-∠ B)= (∠ B-∠ C),由于∠ B-∠ C=40°,因此∠ DAE=22。

2021-2022学年度冀教版七年级数学下册第九章 三角形章节测评试卷(精选含详解)

2021-2022学年度冀教版七年级数学下册第九章 三角形章节测评试卷(精选含详解)

冀教版七年级数学下册第九章 三角形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将一个含有30°角的直角三角板放置在两条平行线a ,b 上,若1115∠=︒,则2∠的度数为( )A .85°B .75°C .55°D .95°2、下列长度的三条线段能组成三角形的是( )A .3 4 8B .4 4 10C .5 6 10D .5 6 113、如图,将△ABC 绕点C 按逆时针方向旋转至△DEC ,使点D 落在BC 的延长线上.已知∠A =32°,∠B =30°,则∠ACE 的大小是( )A.63°B.58°C.54°D.56°4、如图,把△ABC绕顶点C按顺时针方向旋转得到△A′B′C′,当A′B′⊥AC,∠A=50°,∠A′CB=115°时,∠B′CA的度数为()A.30°B.35°C.40°D.45°5、下列叙述正确的是()A.三角形的外角大于它的内角B.三角形的外角都比锐角大C.三角形的内角没有小于60°的D.三角形中可以有三个内角都是锐角6、如图,在△ABC中,AD是△ABC的中线,△ABD的面积为3,则△ABC的面积为()A.8 B.7 C.6 D.57、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根8、如图,在ABC中,AD、AE分别是边BC上的中线与高,4AE=,CD的长为5,则ABC的面积为()A.8 B.10 C.20 D.409、三角形的外角和是()A.60°B.90°C.180°D.360°10、当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是()A.80°B.90°C.100°D.120°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC中,点D,E,F分别是BC,AD,EC的中点,若△ABC的面积等于36,则△BEF的面积为________.2、如图,将ABC 绕点B 逆时针旋转95︒,得到EBD △,若点E 恰好落在AD 的延长线上,则CAD ∠=__________︒.3、如图:ABC 中,40A ∠=︒,60B ∠=︒,CD AB ⊥于D ,CE 平分ACB ∠,DF CE ⊥于F ,则CDF ∠=______°.4、一个三角形的两边长分别为2和5,则第三边的长度可取的整数值为_________(写出一个即可).5、已知两个定点A 、B 的距离为4厘米,那么到点A 、B 距离之和为4厘米的点的轨迹是____________.三、解答题(5小题,每小题10分,共计50分)1、如图,ABC 中,BE 为AC 边上的高,CD 平分ACB ∠,CD 、BE 相交于点F .若70A ∠=︒,60ABC ∠=︒,求BFC ∠的度数.2、如图,在ABC 中,AC =6,BC =8,AD ⊥BC 于D ,AD =5,BE ⊥AC 于E ,求BE 的长.3、在△ABC 中,∠B =∠A +30°,∠C =40°,求∠A 和∠B 的度数.4、如图,在△ABC 中,∠BAC =40°,∠B =75°,AD 是△ABC 的角平分线,求∠ADB 的度数.5、如图,在ABC 中,CD 是ACB ∠的平分线,点E 在边AC 上,且DE CE =.(Ⅰ)求证:∥DE BC ;(Ⅱ)若50A ∠=︒,60B ∠=︒,求BDC ∠的大小.-参考答案-一、单选题1、A【解析】【分析】由平行线的性质,得31115∠=∠=︒,然后由三角形外角的性质,即可求出答案.【详解】解:由题意,如图,a b,∵//∴31115∠=∠=︒,∠=∠+︒,∵3230∠=︒-︒=︒;∴21153085故选:A【点睛】本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出3115∠=︒.2、C【解析】【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.3、C【解析】【分析】先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【详解】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.故选:C.【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DE C.4、B【解析】【分析】由旋转的性质可得∠A′=∠A=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠A′CA=40°,即可求解.【详解】解:根据旋转的性质可知∠A′=∠A=50°,∠BCB'=∠ACA',∴∠A′CA=90°﹣50°=40°,∴∠BCB′=∠A′CA=40°,∴∠B′CA=∠A′CB﹣∠A′CA﹣∠BCB′=115°﹣40°﹣40°=35°.故选:B.【点睛】本题主要考查了旋转的性质,三角形内角和定理的应用,解决这类问题要找准旋转角、以及旋转后对应的线段和角.5、D【解析】【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为:20,70,90,故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.6、C【解析】【分析】根据三角形的中线将三角形的面积分成相等的两部分即可求解.【详解】解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,∴△ABC的面积=3×2=6.故选:C.【点睛】考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.7、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.8、C【解析】【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD是边BC上的中线,CD的长为5,∴CB=2CD=10,ABC的面积为1110420 22BC AE⨯=⨯⨯=,故选:C.【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.9、D【解析】【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,142536180∠+∠=∠+∠=∠+∠=︒,142536540∴∠+∠+∠+∠+∠+∠=︒,又123180∠+∠+∠=︒,456540180360∴∠+∠+∠=︒-︒=︒,即三角形的外角和是360︒,故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.10、B【解析】【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.【详解】解:由题意得:α=2β,α=60°,则β=30°,180°-60°-30°=90°,故选B.【点睛】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.二、填空题1、9【解析】【分析】根据三角形的中线将三角形分成面积相等的两部分即可求得.【详解】解:∵点D,E,F分别是BC,AD,EC的中点,∴AE =DE =12AD ,EF =CF =12CE ,BD =DC =12BC ,∵△ABC 的面积等于36, ∴11361822ABD ACD ABC S S S ===⨯=, 192ABE BED ABD S S S ===,192AEC CDE ACD S S S ===, ∴9918BEC BDE CDE S S S =+=+=,∴1118922BEF BCF BEC S S S ===⨯=, 故答案为:9.【点睛】本题主要考查了三角形中线的性质,熟知三角形的中线把三角形分成面积相等的两部分是解题关键..2、85【解析】【分析】利用旋转的性质得出旋转前后对应线段相等、对应角相等即可.【详解】解:∵将△ABC 绕点B 逆时针旋转95°,∴∠ABE =95°,AB =BE ,∠CAB =∠E ,∵AB =BE ,∴∠E =∠BAE ,∴∠BAE +∠CAB =∠BAE +∠E =180°−∠ABE=180°−95°故答案为:85.【点睛】本题主要考查了旋转的性质以及三角形内角和定理的应用,熟记旋转的性质是解决问题的关键.3、804、4,5,6(写出一个即可)【解析】【分析】由构成三角形三边成立的条件可得第三条边的取值范围.【详解】设第三条长为x∵2+5=7,5-2=3∴3<x<7.故第三条边的整数值有4、5、6.故答案为:4,5,6(写出一个即可)【点睛】本题考查了构成三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边,关键为“任意”两边均满足此关系.5、线段AB【解析】【分析】设到定点A、B的距离之和为4厘米的点是点P,若点P不在线段AB上,易得PA+PB>4,若点P在线段AB上,则PA+PB=AB=4,由此可得答案.解:设到定点A 、B 的距离之和为4厘米的点是点P ,若点P 在不在线段AB 上,则点P 在直线AB 外或线段AB 的延长线或线段BA 的延长线上,则由三角形的三边关系或线段的大小关系可得:PA +PB >AB ,即PA +PB >4,若点P 在线段AB 上,则PA +PB =AB =4,所以到点A 、B 的距离之和为4厘米的点的轨迹是线段AB .故答案为:线段AB .【点睛】本题考查了点的轨迹和三角形的三边关系,正确理解题意、掌握解答的方法是关键.三、解答题1、115︒.【解析】【分析】先根据三角形的内角和定理可得50∠=°ACB ,再根据角平分线的定义可得25ECF ∠=︒,然后根据垂直的定义可得90CEF ∠=︒,最后根据三角形的外角性质即可得.【详解】 解:在ABC 中,70A ∠=︒,60ABC ∠=︒,18050AB B C AC A ∴∠=︒-∠=∠-︒, CD 平分ACB ∠,1252ECF ACB ∠=∠=∴︒, BE 为AC 边上的高,90CEF ∴∠=︒,9025115BFC CEF ECF ∴∠=∠+∠=︒+︒=︒.本题考查了三角形的内角和定理、角平分线的定义、三角形的外角性质等知识点,熟练掌握三角形的内角和定理是解题关键.2、203BE =. 【解析】【分析】根据三角形面积公式计算即可.【详解】 解:11=,=22ABC ABC S AC BE S BC AD ⋅⋅ AC BE BC AD ∴⋅=⋅402063BE ∴==. 【点睛】本题考查三角形面积的计算,利用等积法是解题关键.3、55A ∠=︒,85B ∠=︒【解析】【分析】利用已知结合三角形内角和定理即可求解.【详解】解:∵40C ∠=︒,∴140A B ∠+∠=︒.∵30B A ∠=∠+︒,∴30140A A ∠+∠+︒=︒,∴55A ∠=︒,∴85B ∠=︒.【点睛】本题考查三角形内角和定理,正确得出30140A A ∠+∠+︒=︒是解题关键.4、85°【解析】【分析】根据角平分线定义求出DAB ∠,根据三角形内角和定理得出180ADB DAB B ∠=︒-∠-∠,代入求出即可.【详解】解:AD 平分CAB ∠,40BAC ∠=︒,1202DAB BAC ∴∠=∠=︒, 75B ∠=︒,180180207585ADB DAB B ∴∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查了三角形内角和定理,角平分线定义的应用,解题的关键是注意:三角形的内角和等于180︒.5、(Ⅰ)见解析;(Ⅱ)85︒【解析】【分析】(Ⅰ)由CD 是ACB ∠的平分线得出DCB DCE ∠=∠,由DE CE =得出CDE DCE ∠=∠从而得出DCB CDE ∠=,由平行线的判断即可得证;(Ⅱ)由三角形内角和求出70ACB ∠=︒,由角平分线得出35BCD ∠=︒,由三角形内角和求出BDC ∠即可得出答案.【详解】(Ⅰ)∵CD 是ACB ∠的平分线,∴DCB DCE ∠=∠,∵DE CE =,∴CDE DCE ∠=∠,∴DCB CDE ∠=,∴∥DE BC ;(Ⅱ)∵50A ∠=︒,60B ∠=︒,∴180506070ACB ∠=︒-︒-︒=︒, ∴1352BCD ACB ∠=∠=︒,∴18085BDC B BCD ∠=︒-∠-∠=︒.【点睛】本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键。

2021-2022学年最新冀教版七年级数学下册第九章 三角形定向练习试卷(含答案详解)

2021-2022学年最新冀教版七年级数学下册第九章 三角形定向练习试卷(含答案详解)

冀教版七年级数学下册第九章 三角形定向练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一扇窗户打开后,用窗钩AB 可将其固定( )A .三角形的稳定性B .两点之间线段最短C .四边形的不稳定性D .三角形两边之和大于第三边2、如图,在ABC 中,90C ∠=︒,30A ∠=︒,将ABC 沿直线m 翻折,点A 落在点D 的位置,则12∠-∠的度数是( )A.30°B.45°C.60°D.75°3、下列长度的三条线段能组成三角形的是()A.1,6,6 B.2,3,5 C.3,4,8 D.5,6,114、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )A.4 B.5 C.8 D.115、将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角∠的度数是()板的一条直角边放在同一条直线上,则αA.45°B.60°C.75°D.85°6、如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3D.S△AEB=S△EDB7、以下长度的线段能和长度为2,6的线段组成三角形的是()A.2 B.4 C.6 D.98、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为()A.32°B.33°C.34°D.38°9、下列所给的各组线段,能组成三角形的是:( )A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,1310、在△ABC中,∠A=∠B=14∠C,则∠C=()A.70°B.80°C.100°D.120°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,三角形ABC的面积为1,:2:1BD DC ,E为AC的中点,AD与BE相交于P,那么四边形PDCE的面积为______.2、如图,E为△ABC的BC边上一点,点D在BA的延长线上,DE交AC于点F,∠B=46°,∠C=30°,∠EFC=70°,则∠D=______.3、如图,一副三角板按如图放置,则∠DOC 的度数为______.4、已知a ,b ,c 是△ABC 的三边,化简:|a +b -c |+|b -a -c |=________.5、如图,在ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC 的面积等于24cm 2,则阴影部分图形面积等于_____cm 2三、解答题(5小题,每小题10分,共计50分)1、如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB ≥C D .2、已知ABC 的三边长分别为a ,b ,c .若a ,b ,c 满足22()()0a b b c -+-=,试判断ABC 的形状.3、已知,如图1,直线AB CD ∥,E 为直线AB 上方一点,连接ED BE 、,ED 与AB 交于P 点.(1)若110,70ABE CDE ∠=∠=︒︒,则E ∠=_________︒(2)如图1所示,作CDE ∠的平分线交AB 于点F ,点M 为CD 上一点,BFM ∠的平分线交CD 于点H ,过点H 作HG FH ⊥交FM 的延长线于点G ,GF BE ∥,且2320E DFH ∠=∠+︒,求EDF G ∠+∠的度数.(3)如图2,在(2)的条件下,25FDC ∠=︒,将FHG △绕点F 顺时针旋转,速度为每秒钟3︒,记旋转中的FHG △为FH G '',同时FDE ∠绕着点D 顺时针旋转,速度为每秒钟5︒,记旋转中的FDE ∠为F DE ∠'',当FDE ∠旋转一周时,整个运动停止.设运动时间为t (秒),则当FH G ''其中一条边与F DE ∠''的边DF′互相垂直时,直接写出t 的值.4、如图,在ABC 中,AC =6,BC =8,AD ⊥BC 于D ,AD =5,BE ⊥AC 于E ,求BE 的长.5、如图,BD 是△ABC 的角平分线,DE ∥BC ,交AB 于点E ,∠A =45°,∠BDC =60°,求∠BED 的度数.-参考答案-一、单选题1、A【解析】【分析】由三角形的稳定性即可得出答案.【详解】一扇窗户打开后,用窗钩AB 可将其固定,故选:A .【点睛】本题考查了三角形的稳定性,加上窗钩AB 构成了△AOB ,而三角形具有稳定性是解题的关键.2、C【解析】【分析】设m 交,AC AB 于点,E F ,G 是射线EF 上的一点,设,AEG DEG AFG DFG αβ∠=∠=∠=∠=,根据三角形的外角的性质可得30βα-=︒,进而根据平角的定义即可求得1,2∠∠,即可求得12∠-∠.【详解】如图,设m 交,AC AB 于点,E F ,G 是射线EF 上的一点,折叠,,AEG DEG AFG DFG ∴∠=∠∠=∠设,AEG DEG AFG DFG αβ∠=∠=∠=∠=30A βαα∴=+∠=+︒即30βα-=︒11802,21802αβ∠=︒-∠=︒-122260βα∴∠-∠=-=︒故选C【点睛】本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.3、A【解析】【分析】根据构成三角形的条件逐项分析判断即可.三角形的任意两边之和大于第三边,任意两边之差小于第三边,根据原理分别计算两条较短边的和与最长边比较,再逐一分析即可.【详解】解:A. 1+6>6,能组成三角形,故该选项正确,符合题意;B. 2+3=5,不能组成三角形,故该选项不正确,不符合题意;C. 3+4<8,不能组成三角形,故该选项不正确,不符合题意;D. 5+6=11,不能组成三角形,故该选项不正确,不符合题意;故选A【点睛】本题考查了判断构成三角形的条件,解题的关键是掌握构成三角形的条件.4、C【解析】【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【详解】解:∵一个三角形的两边长分别为3和8,∴5<第三边长<11,则第三边长可能是:8.故选:C.【点睛】此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.5、C【解析】【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.【详解】解:如图:∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,∴∠α=∠D+∠DGB=30°+45°=75°.故选C.【点睛】本题主要考查三角形的外角的性质,掌握三角形的内角和定理和三角形外角的性质是解答本题的关键.6、C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A、∵AE=DE,∴BE是△ABD的中线,故本选项不符合题意;B、∵BD平分∠EBC,∴BD是△BCE的角平分线,故本选项不符合题意;C、∵BD平分∠EBC,∴∠2=∠3,但不能推出∠2、∠3和∠1相等,故本选项符合题意;D、∵S△AEB=12×AE×BC,S△EDB=12×DE×BC,AE=DE,∴S△AEB=S△EDB,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.7、C【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】解:设第三边的长为a ,已知长度为2,6的线段,根据三角形的三边关系可得,6262a -<<+,即48a <<,根据选项可得6a =∴6a =故选C【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.8、A【解析】【分析】由折叠的性质可知40A A '∠=∠=︒,再由三角形外角的性质即可求出DFA ∠的大小,再次利用三角形外角的性质即可求出2∠的大小.【详解】如图,设线段AC 和线段A D '交于点F .由折叠的性质可知40A A '∠=∠=︒.∵1A DFA ∠=∠+∠,即11240DFA ︒=︒+∠,∴72DFA ∠=︒.∵2DFA A '∠=∠+∠,即72240︒=∠+︒,∴232∠=︒.故选A .【点睛】本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.9、D【解析】【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A 不符合题意;∵5+7=12,∴B 不符合题意;∵5+5=10<11,∴C 不符合题意;∵5+12=17>13,∴D 符合题意;故选D .【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.10、D【解析】【分析】根据三角形的内角和,180A B C ∠+∠+∠=︒①,进而根据已知条件,将,A B ∠∠代入①即可求得C ∠【详解】解:∵在△ABC 中,180A B C ∠+∠+∠=︒,∠A =∠B =14∠C , ∴1118044C C C ∠+∠+∠=︒解得120C ∠=︒故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.二、填空题1、730 【解析】【分析】连接CP .设△CPE 的面积是x ,△CDP 的面积是y .根据BD :DC =2:1,E 为AC 的中点,得△BDP 的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是△BCE的面积相等,得4x+x=2y+x+y,解得43y x=,再根据△ABC的面积是1即可求得x、y的值,从而求解.【详解】解:连接CP,设△CPE的面积是x,△CDP的面积是y.∵BD:DC=2:1,E为AC的中点,∴△BDP的面积是2y,△APE的面积是x,1,2 ABE BCES S==∵BD:DC=2:1,CE:AC=1:2,2,ABD ACDS S∴△ABP的面积是4x.∴4x+x=2y+x+y,解得43y x =.又∵4x+x=12,解得:x=110,则412,31015y则四边形PDCE的面积为x+y=730.故答案为:730.【点睛】本题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.2、34°##34度【解析】【分析】根据题意先求∠DAC,再依据△ADF三角形内角和180°可得答案.【详解】解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°-∠DAC-∠AFD=34°,故答案为:34°.【点睛】本题考查三角形内角和定理及三角形一个外角等于不相邻的两个内角的和,解题的关键是掌握三角形内角和定理.3、75【解析】【分析】根据题意得:∠ACB=30°,∠ACD=45°,∠D=90°,从而得到∠OCD=15°,再由再由直角三角形两锐角互余,即可求解.【详解】解:根据题意得:∠ACB=30°,∠ACD=45°,∠D=90°,∴∠OCD =∠ACD -∠ACB =15°,∴∠DOC =90°-∠OCD =75°.故答案为:75°【点睛】本题主要考查了直角三角形的性质,根据题意得到∠ACB =30°,∠ACD =45°,∠D =90°是解题的关键.4、2a【解析】【分析】首先利用三角形的三边关系得出0,0a b c b a c +->--<,然后根据求绝对值的法则进行化简即可.【详解】解:∵,,a b c 是ABC ∆的三条边,∴00a b c b a c +->--<,, ∴||()()a a b c b a c b a c b c =+-+-+--+++-=2a b c b a c a +--++=.故答案为:2a .【点睛】熟悉三角形的三边关系和求绝对值的法则,是解题的关键,注意,去绝对值后,要先添加括号,再去括号,这样不容易出错.|a +b -c |+|b -a -c |5、6【解析】【分析】因为点F 是CE 的中点,所以△BEF 的底是△BEC 的底的一半,△BEF 高等于△BEC 的高;同理,D 、E、分别是BC、AD的中点,可得△EBC的面积是△ABC面积的一半;利用三角形的等积变换可解答.【详解】解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,而高相等,∴S△BEF=12S△BEC,∵E是AD的中点,∴S△BDE=12S△ABD,S△CDE=12S△ACD,∴S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即阴影部分的面积为6cm2.故答案为6.【点睛】本题考查了三角形面积的等积变换:若两个三角形的高(或底)相等,面积之比等于底边(高)之比.三、解答题1、见解析【分析】连接OC ,OD ,再根据三角形的三边关系即可得出结论.【详解】连接OC ,OD ,AB OA OB OC OD =+=+,OC OD CD +>,AB CD ∴>.当且仅当CD 过圆心O 时,取“=”号,AB CD ∴≥.【点睛】本题考查的是三角形的三边关系,解题的关键是熟知三角形任意两边之和大于第三边.2、ABC 的形状是等边三角形.【解析】【分析】利用平方数的非负性,求解a ,b ,c 的关系,进而判断ABC .【详解】解:∵22()()0a b b c -+-=,∴0a b -=,0b c -=∴ ABC ∆是等边三角形.【点睛】本题主要是考查了三角形的分类,熟练掌握各类三角形的特点,例如三边相等为等边三角形,含90︒的三角形为直角三角形等,这是解决此类题的关键.3、 (1)40;(2)EDF G ∠+∠=70°;(3)t 的值为10.【解析】【分析】(1)根据平行线性质求出∠EPB =∠CDE =70°,根据∠ABE 是△BEP 的外角可求∠E =∠ABE -∠EPB =110°-70°=40°即可;(2)根据GF BE ∥,得出∠GFB =∠FBE ,∠HDF =∠PFD ,根据FH 平分BFM ∠,得出∠GFH =∠HFP ,可得∠GFB =2∠HFB =2∠HFD +2∠DFP ,根据DF 平分CDE ∠,得出∠FDH =∠FDE =∠PFD ,可得∠EPB =∠PDH =2∠PDF =2∠PFD ,根据∠EBF 为△EBP 的外角,可证∠E =2∠DFH ,根据2320E DFH ∠=∠+︒,解方程得出∠DFH =20°,根据HG FH ⊥,得出∠G +∠GFH =90°,得出∠G +∠PFD =90°-∠HFD =90°-20°=70°即可;(3)当25FDC ∠=︒时,∠HFP =∠HFD +∠DFP =45°,可得∠GFH =∠HFP =45°,∠G =45°,当FH G ''其中一条边与F DE ∠''的边DF′互相垂直,分三种情况当G′H′⊥DF′时,FH′交CD 与S ,FH′∥F′D ,∠CDF′=25°+5t ,∠FSC =45°+3°t ,列方程25°+5t =45°+3°t ,当GF ⊥F′D 时,GF 交CD 于R ,交DF′于Q ,∠HDF ′=25°+5t ,∠CRG =∠GFA =3t -90°,∠QRD +∠QDR =90°,列方程3t-90°+180°-(25+5t )=90°,当H′F ⊥DF ′,H′F 交CD 于U ,交DF′于V ,∠HDF′=25°+5°t ,∠CUF =∠AFH′=3°t -90°-45°,∠VUD +∠UDV =90°,列方程180°-(25°+5°t )+3°t -90°-45°=90°即可.(1)解:∵AB CD ∥,70CDE ∠=︒,∴∠EPB =∠CDE =70°,∵∠ABE 是△BEP 的外角,110ABE ∠=︒,∴∠E =∠ABE -∠EPB =110°-70°=40°,故答案为:40;(2)解:∵GF BE ∥,∴∠GFB =∠FBE ,∠HDF =∠PFD∵FH 平分BFM ∠,∴∠GFH =∠HFP ,∴∠GFB =2∠HFB =2∠HFD +2∠DFP∵DF 平分CDE ∠,∴∠FDH =∠FDE =∠PFD ,∴∠EPB =∠PDH =2∠PDF =2∠PFD∵∠EBF 为△EBP 的外角,∴∠EBF =∠E +∠EPB =∠E +2∠PFD ,∴2∠HFD +2∠DFP =∠E +2∠PFD ,∴∠E =2∠DFH ,∵2320E DFH ∠=∠+︒,∴4∠DFH =3∠DFH +20°,∴∠DFH=20°,∵HG FH⊥,∴∠FHG=90°,∴∠G+∠GFH=90°,∴∠G+∠PFH=∠G+∠HFD+∠PFD=90°,∴∠G+∠PFD=90°-∠HFD=90°-20°-70°,∴EDF G∠+∠=70°;(3)当25∠=︒时,∠HFP=∠HFD+∠DFP=45°,FDC∴∠GFH=∠HFP=45°,∴∠G=45°,当FH G''其中一条边与F DE∠''的边DF′互相垂直,分三种情况,当G′H′⊥DF′时,FH′交CD与S,FH′∥F′D,∠FSC=∠CDF′,∠CDF′=25°+5t,∠FSC=45°+3°t,∴25°+5t=45°+3°t,解得t=10,当GF⊥F′D时,GF交CD于R,交DF′于Q,∠HDF′=25°+5t,∠CRG=∠GFA=3t-90°,∠QRD+∠QDR=90°即3t-90°+180°-(25+5t)=90°,解得t=-12.5<0舍去,当H′F⊥DF′,H′F交CD于U,交DF′于V,∠HDF′=25°+5°t,∠CUF=∠AFH′=3°t-90°-45°,∵∠VUD+∠UDV=90°,∴180°-(25°+5°t)+3°t-90°-45°=90°,解得t=-35<0舍去,综合t 的值为10.【点睛】本题考查平行线性质,三角形外角性质,角平分线有关的计算,解一元一次方程,余角性质,直线垂直,图形旋转性质,掌握平行线性质,三角形外角性质,角平分线有关的计算,解一元一次方程,余角性质, 直线垂直,图形旋转性质,根据余角性质列方程是解题关键.4、203BE =. 【解析】【分析】根据三角形面积公式计算即可.【详解】 解:11=,=22ABC ABCS AC BE S BC AD ⋅⋅ AC BE BC AD ∴⋅=⋅402063BE ∴==. 【点睛】本题考查三角形面积的计算,利用等积法是解题关键.5、150°【解析】【分析】求∠BED的度数,应先求出∠ABC的度数,根据三角形的外角的性质可得,∠ABD=∠BDC﹣∠A=60°﹣45°=15°.再根据角平分线的定义可得,∠ABC=2∠ABD=2×15°=30°,根据两直线平行,同旁内角互补得∠BED的度数.【详解】解:∵∠BDC是△ABD的外角,∴∠ABD=∠BDC﹣∠A=60°﹣45°=15°.∵BD是△ABC的角平分线,∴∠DBC=∠ABD=15°,∴∠ABC=30°,∵DE∥BC,∴∠BED=180°﹣∠ABC=180°﹣30°=150°.【点睛】本题考查三角形外角的性质及角平分线的定义和平行线的性质,解答的关键是沟通外角和内角的关系.。

2021-2022学年基础强化冀教版七年级数学下册第九章 三角形专项测评试题(含详细解析)

2021-2022学年基础强化冀教版七年级数学下册第九章 三角形专项测评试题(含详细解析)

冀教版七年级数学下册第九章三角形专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有下列长度的三条线段,其中能组成三角形的是()A.4,5,9 B.2.5,6.5,10 C.3,4,5 D.5,12,172、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为()A.40°B.45°C.50°D.60°3、以下列长度的各组线段为边,能组成三角形的是()A .2cm ,4cm ,6cmB .2cm ,5cm ,9cmC .7cm ,8cm ,10cmD .6cm ,6cm ,13cm4、如图,已知ACD ∠为ABC 的外角,60ACD ∠=︒,20B ∠=︒,那么A ∠的度数是( )A .30°B .40°C .50°D .60°5、已知ABC 的三边长分别为a ,b ,c ,则a ,b ,c 的值可能分别是( )A .1,2,3B .3,4,7C .2,3,4D .4,5,106、如图,△AOB 绕点O 逆时针旋转65°得到△COD ,若∠COD =30°,则∠BOC 的度数是()A .30°B .35°C .45°D .60°7、如图,图形中的x 的值是( )A .50B .60C .70D .808、若一个三角形的两条边的长为5和7,那么第三边的长可能是( )A .2B .10C .12D .139、下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .10、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,OA =15米,OB =10米,A 、B 间的距离不可能是( )A .5米B .10米C .15米D .20米第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若等腰三角形两底角平分线相交所形成的钝角是128°,则这个等腰三角形的顶角的度数是_____.2、在△ABC 中,若AC =3,BC =7则第三边AB 的取值范围为________.3、已知ABC 中,AB =5,AC =7,BC =a ,则a 的取值范围是 ___.4、ABC 中,A ∠比B 大10°,50C ∠=︒,则A ∠=______.5、已知在△ABC 中,∠A +∠B <∠C ,则△ABC 是______三角形.(填“直角”、“锐角”或“钝角”)三、解答题(5小题,每小题10分,共计50分)1、完成下面的证明已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE//BA,DF//CA.求证:∠A+∠B+∠C=180°.证明:∵DE//BA,∴∠3=(),∠2=().∵DF//CA,∴∠1=(),∠BFD=().∴∠2=().∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).2、如图所示,AB//CD,G为AB上方一点,E、F分别为AB、CD上两点,∠AEG=4∠GEB,∠CFG=2∠GFD,∠GEB和∠GFD的角平分线交于点H,求∠G+∠H的值.3、如图1,我们把一副两个三角板如图摆放在一起,其中OA,OD在一条直线上,∠B=45°,∠C=30°,固定三角板ODC,将三角板OAB绕点O按顺时针方向旋转,记旋转角∠AOA'=α(0<α<(1)在旋转过程中,当α为 度时,A 'B '∥OC ,当α为 度时,A 'B '⊥CD ;(2)如图2,将图1中的△OAB 以点O 为旋转中心旋转到△OA 'B '的位置,求当α为多少度时,OB '平分∠COD ;拓展应用:(3)当90°<α<120°时,连接A 'D ,利用图3探究∠B 'A 'D +∠B 'OC +∠A 'DC 值的大小变化情况,并说明理由.4、如图,在△ABC 中,AD 是高,AE ,BF 是角平分线,它们相交于点O ,∠BAC =50°,∠C =60°,求∠DAC 和∠BOA 的度数.5、如图,ABC 中,AE 是角平分线,且52B ∠=︒,78C ∠=︒,求BAE ∠的度数.-参考答案-1、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,A 、459+=,不能够组成三角形,不符合题意;B 、2.5 6.5910+=<,不能够组成三角形,不符合题意;C 、3475,4315+=>-=<,能够组成三角形,符合题意;D 、51217+=,不能组成三角形,不符合题意;故选:C .【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.2、C【解析】【分析】根据三角形内角和定理确定50ABC ∠=︒,然后利用平行线的性质求解即可.【详解】解:∵40BAC ∠=︒,90ACB ∠=︒,∴50ABC ∠=︒,∵a b ∥,∴150ABC ∠=∠=︒,故选:C .【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.3、C【解析】【分析】根据三角形三条边的关系计算即可.【详解】解:A. ∵2+4=6,∴2cm ,4cm ,6cm 不能组成三角形;B. ∵2+5<9,∴2cm ,5cm ,9cm 不能组成三角形;C. ∵7+8>10,∴7cm ,8cm ,10cm 能组成三角形;D. ∵6+6<13,∴6cm ,6cm ,13cm 不能组成三角形;故选C .【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.4、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD =60°,∠B =20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.5、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.6、B【解析】【分析】由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.【详解】解:∵△AOB绕点O逆时针旋转65°得到△COD,∴∠AOC =65°,∵∠AOB =30°,∴∠BOC =∠AOC −∠AOB =35°.故选:B .【点睛】本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.7、B【解析】【分析】根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.【详解】解:由题意得:()1070x x x ++=+∴1070x x x ++=+,∴60x =,故选B .【点睛】本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.8、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B符合题意,故选:B.【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.9、D【解析】【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是ABC∆的高,再结合图形进行判断.【详解】解:线段BE是ABC∆的高的图是选项D.故选:D.【点睛】本题主要考查了三角形的高,解题的关键是掌握三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.10、A【解析】【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.二、填空题1、76 ##76度【解析】【分析】先根据角平分线的定义、三角形的内角和定理求出等腰三角形两底角的度数和,再根据三角形内角和求出顶角的度数即可.【详解】解:∵∠BOC=128°,∴∠OBC+∠OCB=180°﹣∠BOC=180°﹣128°=52°,∵BO平分∠ABC,CO平分∠ACB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=104°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣104°=76°.故答案为:76°.【点睛】本题主要考查角平分线的定义和三角形内角和定理,牢记角平分线分得的两个角相等,三角形内角和是180︒是解决本题的关键.2、4<AB<10【解析】【分析】根据三角形的三边关系,直接求解即可.【详解】解:∵在△ABC中,AC=3,BC=7,∴BC AC AB BC AC-<<+,即7373-<<+,AC解得410<<.AB故答案为:410AB <<.【点睛】本题考查的是三角形的三边关系,熟悉相关性质是解题的关键.三角形中第三边的长大于其他两边之差,小于其他两边之和.3、2<a <12【解析】【分析】直接利用三角形三边关系得出a 的取值范围.【详解】解:∵△ABC 中,AB =5,AC =7,BC =a ,∴7﹣5<a <7+5,即2<a <12.故答案为:2<a <12.【点睛】本题考查了三角形的三边关系,做题的关键是掌握三角形中任意两边之和大于第三边,两边之差小于第三边.4、70°【解析】【分析】根据三角形内角和定理可得130A B ∠+∠=︒,由题意A ∠比B ∠大10︒,可得10A B ∠-∠=︒,组成方程组求解即可.【详解】解:∵50C ∠=︒,∴130A B ∠+∠=︒,∵A ∠比B ∠大10︒,∴10A B ∠-∠=︒,∴13010A B A B ∠+∠=︒⎧⎨∠-∠=︒⎩, 解得:7060A B ∠=︒⎧⎨∠=︒⎩, 故答案为:70︒.【点睛】题目主要考查三角形内角和定理及二元一次方程组的应用,理解题意,列出代数式组成方程组是解题关键.5、钝角【解析】【分析】根据三角形内角和定理,当A B C ∠+∠<∠可求得90C ∠>︒可得到答案.【详解】解:180A B C ∠+∠+∠=︒,∴当A B C ∠+∠<∠时,可得90C ∠>︒,则ABC ∆为钝角三角形,故答案为:钝角.【点睛】本题主要考查三角形内角和定理,解题的关键是掌握三角形的三个内角和为180︒.三、解答题1、∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换【解析】【分析】先根据平行线的性质得出∠A=∠2,∠1=∠C,∠3=∠B,再由平角的定义即可得出结论.【详解】证明:∵DE//B∴∠3=∠B(两直线平行,同位角相等),∠2=∠BFD(两直线平行,内错角相等),∵DF//CA,∴∠1=∠C(两直线平行,同位角相等),∠A=∠BFD(两直线平行,同位角相等),∴∠2=∠A(等量代换).∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).故答案为:∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.2、∠G+∠H=36°.【解析】【分析】先设2GEB x ∠=,2GFD y ∠=,由题意可得8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,从而求出x y ,;根据题意得AEG G CFG ∠=∠+∠, AEH H CFH ∠=∠+∠, 从而得到G H ∠+∠的值.【详解】解:设2GEB x ∠=,2GFD y ∠=,由题意可得,8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,解得18x =︒,30y =︒;由靴子图AEGFC 知,AEG G CFG ∠=∠+∠,即84x G y =∠+由靴子图AEHFC 知,AEH H CFH ∠=∠+∠,即即84x G y =∠+,95x H y =∠+,179171893036G H x y ∠+∠=-=⨯︒-⨯︒=︒【点睛】本题考查平行线的性质,解题的关键是设2GEB x ∠=,2GFD y ∠=,由题意得到x y ,的关系式,正确将G H ∠+∠表示成x y ,的形式.3、(1)30,90;(2)105°;(3)不变,理由见解析【解析】【分析】(1)根据题意作出图形,根据所给的条件求解即可;(2)由旋转的性质可得∠AOB =∠A 'OB '=45°,由角的数量关系可求解;(3)由α可分别表示∠B 'A 'D ,∠B 'OC ,∠A 'DC 再求和即可.【详解】解:(1)当A 'B '∥OC 时,∴∠A′OC+∠A′=180°,∵∠A′=90°,∴∠A′OC=90°,∴∠AOA′=180°﹣90°﹣60°=30°,即α=30°;当A'B'⊥CD时,则OA′∥CD,∴∠AOA′=∠ODC=90°,即α=90°;故答案为:30;90.(2)∵△OAB以O为中心顺时针旋转得到△OA′B′,∴∠AOB=∠A'OB'=45°,∵∠COD=60°,OB′平分∠COD,∴∠DOB'=30°,∴∠AOA'=180°﹣∠DOB′﹣∠A'OB′=180°﹣30°﹣45°=105°,即当α为105°时,OB'平分∠COD;(3)不变,理由如下:∵∠AOA′=α,∴∠B′OD=180°﹣45°﹣α=135°﹣α,∴∠B′OC=60°﹣(135°﹣α)=α﹣75°,设∠A′DC=β,∴∠A′DO=90°﹣β,∴∠B′OD+∠A′DO=∠B'A'D+∠B′,即135°﹣α+90°﹣β=∠B'A'D+45°,解得∠B'A'D=180°﹣α﹣β,∴∠B'A'D+∠B'OC+∠A'DC=180°﹣α﹣β+α﹣75°+β=105°.【点睛】本题考查了三角板的角度计算,角平分线的定义,旋转的性质,三角形的内角和与外角的性质,平行线的性质,根据题意作出图形是解题的关键.4、∠DAC=30°,∠BOA=120°.【解析】【分析】根据三角形的内角和定理,高线、角平分线的定义进行解答即可.【详解】解:∵在△ABC中,AD是高,∴∠ADC=90°,∵在△ACD中,∠C=60°,∴∠DAC=90°-60°=30°,∵在△ABC中,∠C=60°,∠BAC=50°,∴∠ABC=70°,∵在△ABC中,AE,BF分别是∠BAC和∠ABC的角平分线,∴∠EAC=12∠BAC=25°,∠FBC=12∠ABC=35°,∴∠BOA=∠BEA+∠FBC=∠C+∠EAC+∠FBC=60°+25°+35°=120°.【点睛】本题考查了三角形的内角和定理,高线、角平分线的定义,熟记定义并准确识图,理清图中各角度之间的关系是解题的关键.5、25°【解析】【分析】根据三角形内角和求出∠CAB,再根据角平分线的性质求出∠BAE即可.【详解】解:∵∠B=52°,∠C=78°,∴∠BAC=180°-52°-78°=50°,∵AE平分∠BAC,∴∠BAE=12∠BAC=12×50°=25°.【点睛】本题考查了角的平分线的性质、三角形的内角和定理,熟记三角形内角和为180°是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章达标检测卷一、选择题(1~10题每题3分,11~16题每题2分,共42分)1.下列命题中,是真命题的是()A.三角形的角平分线与角的平分线都是射线B.三角形的角平分线与角的平分线都是线段C.三角形的角平分线是射线,角的平分线是线段D.三角形的角平分线是线段,角的平分线是射线2.下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9C.4,6,8 D.5,5,113.如图,D,E分别是△ABC的边AC,BC的中点,则下列说法错误的是() A.DE是△BCD的中线B.BD是△ABC的中线C.AD=CD,BE=CE D.只有DE是∠C的对边4.一个三角形的两个内角分别是55°和65°,下列度数的角不可能是这个三角形的外角的是()A.130°B.125°C.120°D.115°5.如图,AC⊥BC于C,CD⊥AB于D,图中可以作为三角形“高”的线段有() A.1条B.2条C.3条D.5条6.下列说法中错误的是()A.一个三角形中至少有一个角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的一条中线把三角形分成面积相等的两部分7.某等腰三角形的两边长分别为7 cm和13 cm,则它的周长是() A.27 cm B.33 cmC.27 cm或33 cm D.6 cm或20 cm8.如图,在△ABC中,AD平分∠BAC,∠C=30°,∠DAC=45°,则∠B的度数为()A.60°B.65°C.70°D.75°9.如图,AB∥CD,∠A=48°,∠C=22°,则∠E等于()A.70°B.26°C.36°D.16°10.如图,∠A,∠1,∠2的大小关系是()A.∠A>∠1>∠2 B.∠2>∠1>∠AC.∠A>∠2>∠1 D.∠2>∠A>∠111.具备下列条件的△ABC,不是直角三角形的是()A.∠A=2∠B=3∠C B.∠A-∠B=∠CC.∠A:∠B:∠C=2:3:5 D.∠A=12∠B=13∠C12.如图,∠B+∠C+∠D+∠E-∠A等于()A.360°B.300°C.180°D.240°13.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1 B.2 C.3 D.414.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°15.如图,P是等边三角形ABC中AC边上的任意一点,AD是△ABC的高,PE ⊥AB于点E,PF⊥BC于点F,则()A.PE+PF>AD B.PE+PF<ADC.PE+PF=AD D.以上都有可能16.如图,△ABC的角平分线CD,BE相交于F,∠A=90°,EG∥BC,且CG ⊥EG于G,下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=12∠CGE.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(17,18题每题3分,19题4分,共10分)17.已知a,b,c为△ABC的三边长,化简:|a+b-c|-|a-b-c|+|a-b+c|=______________.18.若一个三角形的三个内角的度数之比为1:2:3,则相应的三个外角的度数之比为______________.19.如图,AD,AE分别是△ABC的中线和高,BC=6 cm,AE=4 cm,△ABC 的面积为____________,△ABD的面积为__________.三、解答题(20,21题每题8分,22~25题每题10分,26题12分,共68分) 20.已知:如图,AC∥DE,∠ABC=70°,∠E=50°,∠D=75°.求∠A和∠ABD的度数.21.已知一等腰三角形的周长是16 cm.(1)若其中一边长为4 cm,求另外两边的长;(2)若其中一边长为6 cm,求另外两边的长.22.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.23.如图,在△ABC中,∠B=∠C,∠1=∠2,∠BAD=40°,求∠EDC的度数.24.如图,点D是△ABC的边BC上一点,且BD:CD=2:3,点E,F分别是线段AD,CE的中点,且△ABC的面积为20cm2.(1)求△CDE的面积;(2)求△BEF的面积.25.如图,△ABC的角平分线BE,CF相交于点P,过点P作直线MN∥BC,分别交AB和AC于点M和N.若∠A=α,试用含α的代数式来表示∠MPB+∠NPC的度数.若直线MN与BC不平行,上述结论仍成立吗?试说明理由.26.如图,在△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠EBC=32°,∠AEB=70°.(1)试说明∠BAD:∠CAD=1:2;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.答案一、1.D 2.C 3.D 4.A 5.D 6.B 7.C 8.A 9.B 10.B11.A 点拨:本题运用了方程思想.由∠A =2∠B =3∠C 可得∠B =12∠A ,∠C =13∠A ,又因为∠A +∠B +∠C =180°,所以∠A +12∠A +13∠A =116∠A=180°,所以∠A =⎝ ⎛⎭⎪⎫1 08011°,故△ABC 不可能是直角三角形;由B 选项可得∠A =∠B +∠C =12(∠A +∠B +∠C )=90°;C 选项中∠C =52+3+5(∠A +∠B +∠C )=12×180°=90°; 由D 选项可得2∠A +3∠A +∠A =180°,所以∠A =30°,所以∠C =3∠A =90°.所以选A.12.C13.B 点拨:易得S △ABE =13×12=4,S △ABD =12×12=6,所以S △ADF -S △BEF =S △ABD-S △ABE =2.14.B 点拨:正方形每个内角为90°,等边三角形每个内角为60°.利用平角定义可得以下三个式子:∠BAC =180°-90°-∠1=90°-∠1,∠ABC =180°-60°-∠3=120°-∠3,∠ACB =180°-60°-∠2=120°-∠2,在△ABC 中,∠BAC +∠ABC +∠ACB =180°,∴90°-∠1+120°-∠3+120°-∠2=180°,∴∠1+∠2=150°-∠3=150°-50°=100°.15.C 点拨:本题运用巧添辅助线法和等面积法.如图所示,连接BP ,则S △ABC=S △ABP +S △CBP ,即12BC ·AD =12AB ·PE +12BC ·PF .因为△ABC 是等边三角形,所以AB =BC ,所以PE +PF =AD .16.C 点拨:① ∵EG ∥BC ,∴∠CEG =∠ACB .又∵CD 是△ABC 的角平分线,∴∠ACB =2∠DCB ,∴∠CEG =2∠DCB .故①正确;② ∵∠CEG =∠ACB ,而∠GEC 与∠GCE 不一定相等,∴CA 不一定平分∠BCG ,故②错误;③ ∵∠A =90°,∴∠ADC +∠ACD =90°.∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴∠ADC +∠BCD =90°.∵EG ∥BC ,且CG ⊥EG ,∴∠GCB =90°,即∠GCD +∠BCD =90°,∴∠ADC =∠GCD ,故③正确;④ ∵∠ABC +∠ACB =90°,CD 平分∠ACB ,BE 平分∠ABC ,∴∠EBC =12∠ABC ,∠DCB =12∠ACB , ∴∠DFB =∠EBC +∠DCB =12(∠ABC +∠ACB )=45°.∵∠CGE =90°,∴∠DFB =12∠CGE ,故④正确.故选C.二、17.3a -b -c18.5:4:319.12 cm 2;6 cm 2三、20.解:∵AC ∥DE ,∠E =50°,∠D =75°,∴∠ACB =∠E =50°,∠BFC =∠D =75°.又∵∠ABC =70°,∴∠A =180°-∠ABC -∠ACB =180°-70°-50°=60°,∠ABD =∠BFC -∠A =75°-60°=15°.21.解:(1)当底边长为4 cm时,腰长为(16-4)÷2=6(cm).当腰长为4 cm时,底边长为16-4×2=8(cm).∵4+4=8,∴不能组成三角形.∴另外两边的长分别是6 cm,6 cm.(2)当底边长为6 cm时,腰长为(16-6)÷2=5(cm).当腰长为6 cm时,底边长为16-6×2=4(cm).∴另外两边的长分别是5 cm,5 cm或6 cm,4 cm.22.解:∵∠A+∠ABC+∠ACB=180°,且∠ABC=66°,∠ACB=54°,∴∠A=60°.在△ABE中,∵∠AEB=90°,∴∠ABE=90°-∠A=30°.又∠CFB=90°,∴∠BHF=60°.∵∠BHF+∠BHC=180°,∴∠BHC=120°.在△ACF中,∵∠AFC=90°,∴∠ACF=90°-∠A=30°.23.解:在△ABD中,由三角形外角的性质知:∠ADC=∠B+∠BAD,∵∠BAD=40°,∴∠EDC+∠1=∠B+40°.①同理,得∠2=∠EDC+∠C.∵∠1=∠2,∠B=∠C,∴∠1=∠EDC+∠B.②将②代入①得2∠EDC+∠B=∠B+40°,∴∠EDC=20°.24.解:(1)∵△ABD和△ADC不等底、等高,BD:CD=2:3,∴S△ABD=25S△ABC=25×20=8(cm2),S△ADC=20-8=12(cm2).∵E 是AD 的中点,∴S △CDE =12S △ADC =12×12=6(cm 2).(2)∵S △BDE =12S △ABD =12×8=4(cm 2),∴S △BCE =S △BDE +S △CDE =4+6=10(cm 2).∵F 是CE 的中点,∴S △BEF =12S △BCE =12×10=5(cm 2).25.解:∵BP ,CP 分别平分∠ABC ,∠ACB ,∴∠PBC =12∠ABC ,∠PCB =12∠ACB .∵∠A =α,∠A +∠ABC +∠ACB =180°,∴∠ABC +∠ACB =180°-α,∴∠PBC +∠PCB =12(∠ABC +∠ACB )=90°-12α.∵MN ∥BC ,∴∠MPB =∠PBC ,∠NPC =∠PCB ,∴∠MPB +∠NPC =∠PBC +∠PCB =90°-12α.若MN 与BC 不平行,上述结论仍成立.理由如下:∵∠MPB +∠BPC +∠NPC =180°,∠BPC +∠PBC +∠PCB =180°,∴∠MPB +∠NPC =180°-∠BPC =180°-[180°-(∠PBC +∠PCB )]=∠PBC +∠PCB =90°-12α.点拨:本题运用了整体思想.尤其当MN 与BC 不平行时,利用整体代换更能体现∠PBC +∠PCB 与∠A 的恒定关系.26.解:(1)∵BE 平分∠ABC ,∴∠ABC =2∠EBC =64°.∵AD ⊥BC ,∴∠ADB =∠ADC =90°.∴∠BAD =90°-∠ABD =90°-64°=26°.∵∠C =∠AEB -∠EBC =70°-32°=38°,∴∠CAD =90°-∠C =90°-38°=52°.∴∠BAD:∠CAD=26°:52°=1:2.(2)分两种情况:①当∠EFC=90°时,如图①所示,则∠BFE=90°.∴∠BEF=90°-∠EBC=90°-32°=58°;②当∠FEC=90°时,如图②所示,则∠EFC=90°-∠C=90°-38°=52°.∴∠BEF=∠EFC-∠EBF=52°-32°=20°..综上所述,∠BEF的度数为58°或20°11 / 11。

相关文档
最新文档