2018北京西城区高三二模文科数学试题及答案

合集下载

2018年北京市西城区高考数学模拟试卷(二)

2018年北京市西城区高考数学模拟试卷(二)

2018年北京市西城区高考数学模拟试卷(二)一、选择题(每小题3分,共75分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的.1. 已知全集U={1, 2, 3},集合A={1, 3},那么集合∁U A等于()A.{1}B.{2}C.{3}D.{1, 2}2. 点(1, −1)到直线x+y−1=0的距离是()A.1 2B.√22C.√2D.√323. 函数f(x)=log a(1−x)的定义域是()A.(−1, 0)B.(0, 1)C.(−1, 1)D.(−∞, 1)4. 已知向量a→=(−1, 2)与向量b→=(2, x)平行,那么x等于()A.−1B.−2C.−3D.−45. 已知点A(3, 4)是角α终边上的一点,那么cosα等于()A.3 4B.43C.35D.456. 已知圆x2+y2=1与圆(x−3)2+y2=4,那么两圆的位置关系()A.内切B.相交C.外切D.外离7. 在平面直角坐标系xOy中,函数y=2sin(x−π6)的图象()A.关于直线x=π6对称B.关于点(π6,0)对称C.关于直线x=−π6对称D.关于点(−π6,0)对称8. 给出下列四个函数:①y=−2x−1;②y=x2;③y=lnx;④y=x3.其中在定义域内是奇函数且单调递增函数的序号是()A.①B.②C.③D.④9. 在△ABC中,∠C=60∘,AC=2,BC=3,那么AB等于()A.√5B.√6C.√7D.2√210. 已知某三棱锥的三视图如图所示,那么该三棱锥的体积是()A.13B.1C.32D.92 11. 如果幂函数f(x)=x α的图象经过点(3,19),则α=( )A.−2B.2C.−12D.1212. log 223+log 26等于( )A.1B.2C.5D.6 13. 在△ABC 中,已知a =3√2,cosC =13,S △ABC =4√3,则b =( )A.√3B.2√3C.4√3D.3√214. 函数f(x)={2x −1,x ≤01x−2,x >0 零点的个数为( ) A.0B.1C.2D.315. 已知sinα=45,且α∈(π2,π),那么cos2α等于( )A.−725B.725C.925D.−92516. 设m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列四个命题: ①如果m // α,n ⊂α,那么m // n ;②如果m ⊥α,m ⊥β,那么α // β;③如果α⊥β,m ⊥α,那么m // β;④如果α⊥β,α∩β=m ,m ⊥n ,那么n ⊥β.其中正确的命题是( )A.①B.②C.③D.④17. 如图,在△ABC 中,B =45∘,D 是BC 边上一点,AD =√7,AC =3,DC =2,则AB 的长为( )A.√22B.3√62C.3√32D.3√2218. 某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是()A.计算机行业好于化工行业B.建筑行业好于物流行业C.机械行业最紧张D.营销行业比贸易行业紧张19. 盒中装有大小形状都相同的5个小球,分别标以号码1,2,3,4,5,从中随机取出一个小球,其号码为偶数的概率是()A.1 5B.25C.35D.4520. 已知向量a→=(0, 2),b→=(1, 0),那么向量a→−2b→与b→的夹角为()A.135∘B.120∘C.60∘D.45∘21. 某车站在春运期间为了改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t(以下简称购票用时,单位:min).下面是这次抽样的频率分布表和频率分布直方图,则旅客购票用时的平均数可能落在哪一个小组()A.第二组B.第三组C.第四组D.第五组22. 已知点A(−2, 0),B(2, 0),如果直线3x−4y+m=0上有且只有一个点P使得PA⊥PB,那么实数m等于()A.±4B.±5C.±8D.±1023. 一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的A处测得水柱顶端的仰角为45∘,沿A向北偏东30∘方向前进100m到达B处,在B处测得水柱顶端的仰角为30∘,则水柱的高度是()A.50mB.100mC.120mD.150m24. 如图,在圆O中,已知弦AC=4,那么AO→∗AC→的值为()A.8B.6C.4D.225. 2011年7月执行的《中华人民共和国个人所得税法》规定:公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额.此项税款按下表分段累进计算:某调研机构数据显示,纳税人希望将个税免征额从元上调至元.若个税免征额上调至7000元(其它不变),某人当月少交纳此项税款332元,则他的当月工资、薪金所得介于()A.5000∼6000元B.6000∼8000元C.8000∼9000元D.9000∼16000元二、解答题(共分)已知函数f(x)=√3sin2x+cos2x,x∈R.)=________.(Ⅰ)f(π4brack的最大值和最小值.(Ⅱ)求函数f(x)的最小正周期及在x∈[0,π2如图,三棱柱ABC−A1B1C1中,A1A⊥底面,AB=AC,D是BC的中点.(Ⅰ)求证:BC⊥平面A1AD;(Ⅱ)若∠BAC=90∘,BC=A1D=4,求三棱柱ABC−A1B1C1的体积.在平面直角坐标系xOy中,以原点O为圆心的圆经过点A(−1, 0).(Ⅰ)⊙O的方程________;(Ⅱ)设M是直线3x+y−4=0上的一个动点,ME,MF是⊙O的两条切线,切点为E,F.(ⅰ)如果∠EMF=60∘,求点M的横坐标;(ⅱ)求四边形MEOF面积的最小值.已知函数f(x)的定义域是{x|x>0},并且满足:当x>1时,f(x)>2;∀x1,x2∈(0, +∞),都有f(x1x2)=f(x1)f(x2)−f(x1)−f(x2)+2(1)求f(1)(2)求证函数f(x)在(1, +∞)上单调递增.(3)当f(2)=5时,求不等式f(x)<17的解集.参考答案与试题解析2018年北京市西城区高考数学模拟试卷(二)一、选择题(每小题3分,共75分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的.1.【答案】B【考点】补集及其运算【解析】利用补集定义直接求解.【解答】∵全集U={1, 2, 3},集合A={1, 3},∴集合∁U A={2}.2.【答案】B【考点】点到直线的距离公式【解析】利用点到直线的距离公式直接求解.【解答】点(1, −1)到直线x+y−1=0的距离:d=√2=√22.3.【答案】D【考点】函数的定义域及其求法【解析】由对数式的真数大于0求解得答案.【解答】由1−x>0,得x<1.∴函数f(x)=log a(1−x)的定义域是(−∞, 1).4.【答案】D【考点】平行向量的性质【解析】根据平面向量的共线定理列出方程求x的值.【解答】向量a→=(−1, 2)与向量b→=(2, x)平行,则−1⋅x−2×2=0,解得x=−4.5.【答案】C【考点】三角函数【解析】由题意利用任意角的三角函数的定义,求得cosα的值.【解答】∵点A(3, 4)是角α终边上的一点,∴x=3,y=4,r=|OA|=5,那么cosα=xr =35,6.【答案】C【考点】圆与圆的位置关系及其判定【解析】根据两圆的圆心距与半径的关系,判断两圆的位置关系.【解答】圆x2+y2=1的圆心为M(0, 0),半径为r1=1;圆(x−3)2+y2=4的圆心为N(3, 0),半径为r2=2;|MN|=3,且r1+r2=3,∴两圆的位置关系是相外切.7.【答案】B【考点】正弦函数的奇偶性【解析】直接利用正弦型函数的性质求出结果.【解答】利用排除法和代入法求解,当x=π6时,y=2sin(π6−π6)=0,8.【答案】D【考点】奇偶性与单调性的综合【解析】四种基本初等函数,分别是一次函数,二次函数,对数函数,三次函数(幂函数),需要对每种函数的函数性质进行分析即可.【解答】①一次函数y=kx+b的单调性由k决定,k>0时,函数递增,k<0时,函数递减,故y=−2x−1是减函数,且其不是奇函数.不合题意.②二次函数的单调性由开口方向和对称轴决定,函数y=x2在(−∞, 0)单调递减,在(0, +∞)是单调递增,且其不是奇函数,不合题意.③对数函数是非奇非偶函数,不符合题意.④幂函数y=x3,在R是单调递增,且f(−x)=−f(x),为奇函数,符合题意.9.【答案】C【考点】余弦定理【解析】由已知及余弦定理即可求值得解.【解答】∵∠C=60∘,AC=2,BC=3,∴由余弦定理可得:AB=√AC2+BC2−2AB∗AC∗cosC=√4+9−2×2×3×12=√7.10.【答案】C【考点】柱体、锥体、台体的体积计算【解析】由三棱锥的三视图得该三棱锥是三棱锥P−ABC其中PO⊥平面ABCD,O在AC上,AO=2,CO=BO=1,PO=3,由此能求出该三棱锥的体积.【解答】由三棱锥的三视图得该三棱锥是如图所示的三棱锥P−ABC,其中PO⊥平面ABCD,O在AC上,AO=2,CO=BO=1,PO=3,∴该三棱锥的体积:V P−ABC=1×S△ABC×PO=13×12×AC×BO×PO=13×12×3×1×3=32.11.【答案】A【考点】幂函数的概念、解析式、定义域、值域【解析】把点的坐标代入幂函数f(x)的解析式,解方程求出α的值.【解答】幂函数f(x)=xα的图象经过点(3,19),则3α=19,解得α=−2.12.【答案】B【考点】对数的运算性质【解析】利用对数运算性质即可得出.【解答】原式=log 2(23×6)=log 222=2.13.【答案】B【考点】正弦定理【解析】由已知利用同角三角函数基本关系式可求sinC 的值,进而根据三角形面积公式即可计算得解.【解答】∵ cosC =13,∴ sinC =√1−cos 2C =2√23, 又∵ 由已知可得S △ABC =4√3=12absinC =12×3√2×b ×2√23, ∴ 解得b =2√3.14.【答案】C【考点】分段函数的应用【解析】画出分段函数的图象,数形结合得答案.【解答】作出函数f(x)={2x −1,x ≤01x−2,x >0 的图象如图,由图可知,函数f(x)={2x −1,x ≤01x−2,x >0 零点的个数为2. 15.【答案】A【考点】二倍角的三角函数【解析】由已知利用二倍角的余弦函数公式即可计算得解.【解答】∵ sinα=45,且α∈(π2,π),∵ cos2α=1−2sin 2α=1−2×(45)2=−725.16.【答案】B【考点】空间中直线与平面之间的位置关系【解析】利用空间中线线、线面、面面间的位置关系求解.【解答】①如果m // α,n ⊂α,m 与n 平行或异面,故①错误;②如果m ⊥α,m ⊥β,那么由平面与平面平行的判定定理得α // β,故②正确; ③如果α⊥β,m ⊥α,那么m // β或m ⊂β,故③错误;④如果α⊥β,α∩β=m ,m ⊥n ,那么n 与β相交,平行或n ⊂β,故④错误. 17.【答案】B【考点】解三角形【解析】先根据余弦定理求出∠C 度数,最后根据正弦定理可得答案【解答】在△ADC 中,AD =√7,AC =3,DC =2,由余弦定理得cosC =AC 2+DC 2−AD 22×AC×DC =9+4−72×3×2=12, ∴ ∠C =60∘,在△ABC 中,AC =3,∠B =45∘,∠C =60∘,由正弦定理得 AC sinB =AB sinC ,∴ AB =ACsinC sinB =3×√32√22=3√62, 18.【答案】B【考点】分布和频率分布表 【解析】观察两个表中前五位的行业,建筑行业招聘人数是76516,而应聘人数没有排在前五位,小于65280,建筑行业人才是供不应求,观察物流行业是物流行业是供大于求,得到结论. 【解答】∵ 用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况, ∴ 建筑行业招聘人数是76516,而应聘人数没有排在前五位,小于65280, 建筑行业人才是供不应求,∵ 物流行业应聘人数是74570,而招聘人数不在前五位,要小于70436, ∴ 物流行业是供大于求,∴ 就业形势是建筑行业好于物流行业, 19.【答案】 B【考点】古典概型及其概率计算公式 【解析】从5个球中随机取出一个小球共有5种方法,其中号码为偶数的为:2,4,共两种,由古典概型的概率公式可得答案. 【解答】解:从5个球中随机取出一个小球共有5种取法, 其中号码为偶数的为:2,4,共两种 由古典概型的概率公式可得: 其号码为偶数的概率是25. 故选B . 20.【答案】 A【考点】数量积表示两个向量的夹角 【解析】利用向量的坐标运算转化求解向量的夹角即可. 【解答】向量a →=(0, 2),b →=(1, 0), 向量a →−2b →=(−2, 2), 向量a →−2b →与b →的夹角为θ, cosθ=(a →−2b →)∗b→|a →−2b →||b →|=2√2×1=−√22. 可得θ=135∘. 21.【答案】C【考点】频率分布直方图【解析】由频率分布表和频率分布直方图得第四组的频率为0.5,从而求得旅客购票用时的平均数,由此得到旅客购票用时的平均数落第四小组.【解答】由频率分布表和频率分布直方图得第四组的频率为:1−0.1−0.1−0.3=0.5,由频率分布表和频率分布直方图得旅客购票用时的平均数为:7.5×0.10+12.5×0.10+17.5×0.50+22.5×0.3=17.5,∴旅客购票用时的平均数落第四小组.22.【答案】D【考点】两条直线垂直与倾斜角、斜率的关系【解析】直线3x−4y+m=0上有且只有一个点P使得PA⊥PB,则此直线与圆:x2+y2=4相切.【解答】直线3x−4y+m=0上有且只有一个点P使得PA⊥PB,则此直线与圆:x2+y2=4相切.∴=2,解得m=±10.√32+(−4)223.【答案】A【考点】根据实际问题选择函数类型【解析】如图所示,AO⊥平面OCD.CD=100.∠ACO=30∘,∠ADO=45∘.∠ODC=60∘.设OA=ℎ.在Rt△OAD,可得OD=ℎ.同理可得:OC=√3ℎ.在△OCD中,利用余弦定理即可得出.【解答】如图所示,AO⊥平面OCD.CD=100.∠ACO=30∘,∠ADO=45∘.∠ODC=60∘.设OA=ℎ.在Rt△OAD,则OD=ℎ.同理可得:OC=√3ℎ.在△OCD中,OC2=OD2+CD2−20D⋅CD⋅cos60∘.∴(√3ℎ)2=ℎ2+1002−2×ℎ×100×1,2化为:ℎ2+50ℎ−5000=0,解得ℎ=50.因此水柱的高度是50m.24.【答案】A【考点】平面向量数量积的性质及其运算律【解析】由已知结合向量在向量上投影的概念求解.【解答】∵O为三角形ABC的外接圆的圆心,∴AO→在AC→上的投影为12|AC→|,又AC=4,∴AO→∗AC→=|AO→|∗|AC→|cos∠OAC=12|AC→|2=12×16=8.25.【答案】C【考点】函数解析式的求解及常用方法【解析】根据列表即可分别求出个税免征额为3500元和7000元时,此人当月所缴纳的税款,进而即可得出此人当月少缴纳此项税款的值.【解答】解:设该人当月工资、薪金所得为x元,由题意得:1500×3%+3000×10%+(x−8000)×20%−(x−7000)×3%=332,整理,得:0.17x=1377,解得x=8100.故选C.二、解答题(共分)【答案】√3【考点】两角和与差的三角函数三角函数的周期性及其求法三角函数的最值【解析】(Ⅰ)直接利用函数的关系式求出函数的值.(Ⅱ)首先通过三角函数关系式的恒等变换,求出函数的关系式,进一步利用正弦型函数的性质求出结果.【解答】(Ⅰ)f(x)=√3sin2x+cos2x,x∈R,所以f(π4)=√3.(Ⅱ)因为f(x)=√3sin2x+cos2x=2(√32sin2x+12cos2x)=2(sin2xcosπ6+cos2xsinπ6)=2sin(2x+π6).所以函数f(x)的最小正周期T=2π|ω|=2π2=π.由x∈[0,π2brack,可得2x+π6∈[π6,7π6brack,所以−12≤sin(2x+π6)≤1.所以−1≤2sin(2x+π6)≤2,所以当2x+π6=7π6,即x=π2时,函数f(x)的最小值为−1;当2x+π6=π2,即x=π6时,函数f(x)的最大值为2.【答案】证明:(Ⅰ)因为D是BC的中点,AB=AC,所以BC⊥AD.因为A1A⊥底面ABC,BC⊂平面ABC,所以A1A⊥BC,又因为AA1∩AD=D,所以BC⊥平面A1AD.(Ⅱ)因为∠BAC=90∘,BC=A1D=4,D是BC的中点,所以AD=12BC=2,AB=AC=2√2.因为A1A⊥底面ABC,所以AA1=√A1D2−AD2=√42−22=2√3.所以三棱柱ABC−A1B1C1的体积:V=S△ABC∗AA1=12×2√2×2√2×2√3.=8√3.【考点】柱体、锥体、台体的体积计算直线与平面垂直【解析】(Ⅰ)推导出BC⊥AD,A1A⊥BC,由此能证明BC⊥平面A1AD.(Ⅱ)推导出AD=12BC=2,AB=AC=2√2.由A1A⊥底面ABC,得AA1=√A1D2−AD2=√42−22=2√3,由此能求出三棱柱ABC−A1B1C1的体积.【解答】证明:(Ⅰ)因为 D 是BC 的中点,AB =AC , 所以 BC ⊥AD .因为 A 1A ⊥底面ABC ,BC ⊂平面ABC , 所以 A 1A ⊥BC ,又因为 AA 1∩AD =D , 所以 BC ⊥平面A 1AD .(Ⅱ)因为∠BAC =90∘,BC =A 1D =4,D 是BC 的中点, 所以 AD =12BC =2,AB =AC =2√2. 因为 A 1A ⊥底面ABC ,所以 AA 1=√A 1D 2−AD 2=√42−22=2√3. 所以三棱柱ABC −A 1B 1C 1的体积:V =S △ABC ∗AA 1=12×2√2×2√2×2√3.=8√3.【答案】 x 2+y 2=1 【考点】圆的切线方程 【解析】(Ⅰ)由|OA|=1,直接得到圆O 的方程为x 2+y 2=1.(Ⅱ)(ⅰ)连接OM ,由题意可知△OEM 为直角三角形.可得|OM|=2|OE|=2.由M 是3x +y −4=0直线上的动点,设点M 的坐标为(t, −3t +4).结合|OM|=2,解得t .则点M 的横坐标可求.(ⅱ)|OM|的最小值即为原点O 到直线3x +y −4=0的距离d =√32+1=√10,由△OEM为直角三角形,可得|ME|2=|OM|2−12≥35.即|ME|最小值是√155.代入面积公式可得四边形MEOF 面积的最小值. 【解答】(1)∵ |OA|=1,∴ 圆O 的方程为x 2+y 2=1, 故答案为:x 2+y 2=1. (2)(ⅰ)如图,连接OM ,由题意可知△OEM 为直角三角形. ∵ ∠EMF =60∘,∴ ∠OME =30∘. ∴ |OM|=2|OE|=2.∵ M 是3x +y −4=0直线上的动点, ∴ 设点M 的坐标为(t, −3t +4).∴ |OM|=√(t −0)2+[(−3t +4)−0]2=2,解得t =6−√65,或t =6+√65.∴ 点M 的横坐标为6−√65或6+√65.(ⅱ)∵ 原点O 到直线3x +y −4=0的距离d =√32+1=√10,∴ |OM|的最小值是√10.∵ △OEM 为直角三角形,∴ |ME|2=|OM|2−12≥35. ∴ |ME|最小值是√155.∵ S 四边形MEOF =2S △MEO =2×12×1×|ME|=|ME|, 四边形MEOF 面积的最小值是√155.【答案】∀x 1,x 2∈(0, +∞),都有f(x 1x 2)=f(x 1)f(x 2)−f(x 1)−f(x 2)+2, 则令x 1=x 2=1,则f(1)=f 2(1)−2f(1)+2,解得f(1)=1或2,若f(1)=1,则令x 1=1,x 2=x ,则有f(x)=f(1)f(x)−f(1)−f(x)+2,即有f(x)=1.这与当x >1时,f(x)>2矛盾,故f(x)=1舍去,若f(1)=2,令x 1=1,x 2=x ,则有f(x)=f(1)f(x)−f(1)−f(x)+2恒成立, 故有f(1)=2;证明:令1<x 1<x 2,则x 2x 1>1,由于当x >1时,f(x)>2,则有f(x2x 1)>2,则f(x 2)=f(x 1⋅x 2x 1)=f(x 1)⋅f(x 2x 1)−f(x 1)−f(x 2x 1)+2=f(x 2x 1)(f(x 1)−1)−f(x 1)+2 >2f(x 1)−2−f(x 1)+2=f(x 1), 则函数f(x)在(1, +∞)上单调递增;令x 1=x 2=2,则f(4)=f 2(2)−2f(2)+2=25−10+2=17, 则不等式f(x)<17即为f(x)<f(4),由f(1)=2,则f(x ∗1x )=f(x)f(1x )−f(x)−f(1x )+2=2, 即有f(1x )=f(x)f(x)−1,令0<x<1,则1x >1,f(1x)>2,解得1<f(x)<2,同(2)可得(0, 1)也为增区间,故f(x)在(0, +∞)递增,则有f(x)<f(4)得到0<x<4.即解集为(0, 4).【考点】抽象函数及其应用【解析】(1)令x1=x2=1,则f(1)=1或2,检验得到f(1)不成立,f(1)=2;(2)令1<x1<x2,则x2x1>1,由于当x>1时,f(x)>2,则有f(x2x1)>2,则f(x2)=f(x1⋅x2x1)再由条件即可得到得证;(3)令x1=x2=2,则f(4)=17,不等式f(x)<17即为f(x)<f(4),同(2)可得(0, 1)也为增区间,故f(x)在(0, +∞)递增,即可解出不等式.【解答】∀x1,x2∈(0, +∞),都有f(x1x2)=f(x1)f(x2)−f(x1)−f(x2)+2,则令x1=x2=1,则f(1)=f2(1)−2f(1)+2,解得f(1)=1或2,若f(1)=1,则令x1=1,x2=x,则有f(x)=f(1)f(x)−f(1)−f(x)+2,即有f(x)=1.这与当x>1时,f(x)>2矛盾,故f(x)=1舍去,若f(1)=2,令x1=1,x2=x,则有f(x)=f(1)f(x)−f(1)−f(x)+2恒成立,故有f(1)=2;证明:令1<x1<x2,则x2x1>1,由于当x>1时,f(x)>2,则有f(x2x1)>2,则f(x2)=f(x1⋅x2x1)=f(x1)⋅f(x2x1)−f(x1)−f(x2x1)+2=f(x2x1)(f(x1)−1)−f(x1)+2>2f(x1)−2−f(x1)+2=f(x1),则函数f(x)在(1, +∞)上单调递增;令x1=x2=2,则f(4)=f2(2)−2f(2)+2=25−10+2=17,则不等式f(x)<17即为f(x)<f(4),由f(1)=2,则f(x∗1x )=f(x)f(1x)−f(x)−f(1x)+2=2,即有f(1x )=f(x)f(x)−1,令0<x<1,则1x >1,f(1x)>2,解得1<f(x)<2,同(2)可得(0, 1)也为增区间,故f(x)在(0, +∞)递增,则有f(x)<f(4)得到0<x<4.即解集为(0, 4).。

2018年北京市西城区高三一模文科数学试题及参考答案

2018年北京市西城区高三一模文科数学试题及参考答案

2018年北京市西城区高三一模文科数学试题及参考答案西城区高三统一测试数学(文科) 2018.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的 四个选项中,选出符合题目要求的一项.1.若集合{|320}A x x =∈+>R ,2{|230}B x x x =∈-->R ,则AB =(A ){|1}x x ∈<-R (B )2{|1}3x x ∈-<<-R (C )2{|3}3x x ∈-<<R (D ){|3}x x ∈>R2.若复数(i)(34i)a ++的实部与虚部相等,则实数a = (A )7(B )7-(C )1(D )1-7.已知O 是正方形ABCD 的中心.若DO AB AC λμ−−→−−→−−→=+,其中λ,μ∈R ,则λμ= (A )2- (B )12- (C)(D8.如图,在长方体1111ABCD A B C D -中,12AA AB ==,1BC =,点P 在侧面11A ABB 上.满足到直线1AA 和CD的距离相等的点P(A )不存在(B )恰有1个(C )恰有2个(D )有无数个第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.函数1()ln f x x =的定义域是____.10.已知x ,y 满足条件1,1,10, x y x y x +⎧⎪-⎨⎪+⎩≤≤≥则2z x y =+的最小值为____.11.已知抛物线28yx=-的焦点与双曲线2221(0)x y a a-=>的一个焦点重合,则a =____; 双曲线的渐近线方程是____.12.在△ABC 中,7b =,5c =,3B 2π∠=,则a =____.13.能够说明“存在不相等的正数a ,b ,使得a b ab +=”是真命题的一组a ,b 的值为____.14.某班共有学生40名,在乒乓球、篮球、排球三项运动中每人至少会其中的一项,有些人会其中的两项,没有人三项均会.若该班18人不会打乒乓球,24人不会打篮球,16人不会打排球,则该班会其中两项运动的学生人数是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)设等差数列{}na 的公差不为0,21a,且2a ,3a ,6a 成等比数列.(Ⅰ)求{}na 的通项公式;(Ⅱ)设数列{}na 的前n 项和为nS ,求使35nS成立的n的最小值.16.(本小题满分13分)函数π()2cos cos()3f x x x m =⋅-+的部分图象如图所示. (Ⅰ)求m 的值; (Ⅱ)求0x 的值.17.(本小题满分13分)某企业2017年招聘员工,其中A 、B 、C 、D 、E 五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;(Ⅱ)从应聘E 岗位的6人中随机选择1名男性和1名女性,求这2人均被录用的概率; (Ⅲ)表中A 、B 、C 、D 、E 各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论) 18.(本小题满分14分)如图1,在△ABC 中,D ,E 分别为AB ,AC 的中点,O 为DE 的中点,AB AC ==,4BC =.将△ADE 沿DE折起到△1A DE 的位置,使得平面1A DE ⊥平面BCED ,F 为1A C的中点,如图2.(Ⅰ)求证://EF 平面1A BD ; (Ⅱ)求证:平面1A OB ⊥平面1A OC ;(Ⅲ)线段OC 上是否存在点G ,使得OC ⊥平面EFG ?说明理由.图1 图219.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为,以椭圆C 的任意三个顶点为顶点的三角形的面积是(Ⅰ)求椭圆C 的方程;(Ⅱ)设A 是椭圆C 的右顶点,点B 在x 轴上.若椭圆C 上存在点P ,使得90APB ∠=,求点B 横坐标的取值范围.20.(本小题满分13分)已知函数()e (ln )xf x a x =⋅+,其中a ∈R .(Ⅰ)若曲线()y f x =在1x =处的切线与直线e xy =-垂直,求a 的值;(Ⅱ)记()f x 的导函数为()g x .当(0,ln 2)a ∈时,证明:()g x 存在极小值点0x ,且0()0f x <.西城区高三统一测试数学(文科)参考答案及评分标准2018.4一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.B 3.C 4.A5.D 6.B 7.A 8.D二、填空题:本大题共6小题,每小题5分,共30分.9.(0,1)(1,)+∞ 10.5-110x ±= 12.313.3,32(答案不唯一) 14.22注:第11题第一空3分,第二空2分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)设等差数列{}na 的公差为d ,0d ≠.因为2a ,3a ,6a 成等比数列, 所以2326a a a =⋅. [ 2分]即2(1)14d d+=+,[ 4分]解得2d =,或d =(舍去).[ 6分]所以{}n a 的通项公式为2(2)23n a a n d n =+-=-. [ 8分](Ⅱ)因为23n a n =-,所以 2121()()222n n n n a a n a a S n n -++===-.[10分]依题意有 2235n n ->,解得 7n >.[12分]使35nS 成立的n的最小值为8. [13分]16.(本小题满分13分)解:(Ⅰ)依题意,有2π()13f =-,[ 2分]所以 2ππ2cos cos 133m ⋅+=-, 解得12m =-.[ 4分](Ⅱ)因为π1()2cos cos()32f x x x =⋅--112cos (cos )22x x x =⋅-[ 6分]21cos cos 2x x x =+-12cos22x x =+[ 9分]πsin(2)6x =+.[10分]所以 ()f x 的最小正周期2ππ2T ==. [11分]所以02ππ7π326x =+=.[13分]17.(本小题满分13分)解:(Ⅰ)因为 表中所有应聘人员总数为5334671000+=,被该企业录用的人数为 264169433+=. 所以从表中所有应聘人员中随机选择1人,此人被录用的概率约为4331000P =. 3分](Ⅱ)记应聘E 岗位的男性为1M ,2M ,3M ,被录用者为1M ,2M ;应聘E 岗位的女性为1F ,2F ,3F ,被录用者为1F ,2F .[ 4分]从应聘E 岗位的6人中随机选择1名男性和1名女性,共9种情况,即:111213212223313233,,,,,,,,M F M F M F M F M F M F M F M F M F .[ 7分]这2人均被录用的情况有4种,即:11122122,,,M F M F M F M F . [ 8分]记“从应聘E 岗位的6人中随机选择1名男性和1名女性,这2人均被录用”为事件K ,则4()9P K =.[10分](Ⅲ)这四种岗位是:B 、C 、D 、E . [13分] 18.(本小题满分14分) 解:(Ⅰ)取线段1A B 的中点H ,连接HD ,HF . [ 1分]因为 在△ABC 中,D ,E 分别为AB ,AC 的中点,所以 //DE BC ,12DE BC =. 因为 H ,F 分别为1A B ,1A C 的中点, 所以 //HF BC ,12HF BC =, 所以 //HF DE ,HF DE =,所以 四边形DEFH 为平行四边形, [ 3分]所以//EF HD. [ 4分]因为 EF ⊄平面1A BD , HD ⊂平面1A BD , 所以 //EF 平面1A BD. [ 5分](Ⅱ)因为 在△ABC 中,D ,E 分别为AB ,AC 的中点,所以 AD AE =.所以11A D A E=,又O 为DE 的中点,所以 1A O DE⊥.[ 6分]因为 平面1A DE ⊥平面BCED ,且1A O ⊂平面1A DE ,所以 1A O ⊥平面BCED , [ 7分]所以1CO A O⊥. [ 8分]在△OBC 中,4BC =,易知 OB OC ==所以 CO BO ⊥, 所以 CO ⊥平面1A OB, [ 9分] 所以平面1A OB ⊥平面1A OC.[10分](Ⅲ)线段OC 上不存在点G ,使得OC ⊥平面EFG. [11分]否则,假设线段OC 上存在点G ,使得OC ⊥平面EFG ,连接 GE ,GF ,则必有 OC GF ⊥,且OC GE ⊥.在 Rt △1A OC 中,由F 为1A C 的中点,OC GF ⊥,得 G 为OC 的中点. [12分]在 △EOC 中,因为OC GE⊥,所以 EO EC =,这显然与1EO =,EC 矛盾! 所以 线段OC 上不存在点G ,使得OC ⊥平面EFG . [14分] 19.(本小题满分14分)解:(Ⅰ)设椭圆C 的半焦距为c .依题意,得c a =ab =222ab c =+.[ 3分]解得2a =,b 所以椭圆C的方程为22142x y +=.[ 5分](Ⅱ)“椭圆C 上存在点P ,使得90APB ∠=”等价于“存在不是椭圆左、右顶点的点P,使得0PA PB −−→−−→⋅=成立”. [ 6分]依题意,(2,0)A .设(,0)B t ,(,)P m n ,则2224m n +=,[ 7分]且 (2,)(,)0m n t m n --⋅--=, 即2(2)()0m t m n --+=.[ 9分]将 2242m n -=代入上式, 得2(2)()24m m t m ---+=.[10分]因为 22m -<<,所以 202mt m +-+=,即 22m t =+. [12分]所以 2222t -<+<, 解得 20t -<<,所以 点B 横坐标的取值范围是(2,0)-. [14分] 20.(本小题满分13分) 解:(Ⅰ)11()e (ln )e e (ln )x x x f x a x a x x x'=⋅++⋅=⋅++. [ 2分]依题意,有 (1)e (1)ef a '=⋅+=,[ 3分]解得a =.[ 4分](Ⅱ)由(Ⅰ)得 1()e (ln )x g x a x x=⋅++,所以2211121()e (ln )e ()e (ln )x x xg x a x a x x x xx x'=⋅+++⋅-=⋅+-+. [ 6分] 因为e 0x >,所以()g x '与221ln a x x x+-+同号. 设221()ln h x a xx x=+-+,[ 7分]则223322(1)1()x x x h x x x -+-+'==.所以 对任意(0,)x ∈+∞,有()0h x '>,故()h x 在(0,)+∞单调递增. [ 8分]因为 (0,ln 2)a ∈,所以 (1)10h a =+>,11()ln 022h a =+<, 故存在01(,1)2x ∈,使得0()0h x =. [10分]()g x 与()g x '在区间1(,1)上的情况如下: 所以 ()g x 在区间01(,)2x 上单调递减,在区间0(,1)x 上单调递增. 所以 若(0,ln 2)a ∈,存在01(,1)2x ∈,使得0x 是()g x 的极小值点. [11分]令 0()0h x =,得 02012ln x a x x -+=,所以第 18 页 共 4 页 000002012()e (ln )e 0x x x f x a x x -=⋅+=⋅<.[13分]。

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。

2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题纸上,写在本试卷上无效。

3.考试结束后,将本试卷和答题纸一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。

$(-4,-3)$B。

$[-4,-3]$C。

$(-\infty,-3)\cup(4,+\infty)$D。

$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。

$-\frac{2}{5}+\frac{1}{5}i$B。

$-\frac{2}{5}-\frac{1}{5}i$C。

$\frac{2}{5}+\frac{1}{5}i$D。

$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。

$\frac{2}{3}$B。

$\frac{1}{5}$C。

$\frac{2}{5}$D。

$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。

北京市西城区高三毕业班第二次模拟测试文科数学试题参考答案

北京市西城区高三毕业班第二次模拟测试文科数学试题参考答案

北京市西城区高三毕业班第二次模拟测试文科数学试题&参考答案第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|11}A x x =∈-<<R ,{|(2)0}B x x x =∈⋅-<R ,那么A B = (A ){|01}x x ∈<<R (B ){|02}x x ∈<<R (C ){|10}x x ∈-<<R(D ){|12}x x ∈-<<R2.设向量(2,1)=a ,(0,2)=-b .则与2+a b 垂直的向量可以是 (A )(3,2)(B )(3,2)-(C )(4,6)(D )(4,6)-3.下列函数中,值域为[0,1]的是 (A )2y x = (B )sin y x =(C )211y x =+ (D )y 4.若抛物线2y ax =的焦点到其准线的距离是2,则 (A )1±(B )2±(C )4±(D )8±5.设a ,0b ≠,则“a b >”是“11a b<”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件6.在平面直角坐标系中,不等式组,020,0y x y -+⎨⎪⎪⎩≤≥≥表示的平面区域的面积是(A(B(C )2 (D)7.某四面体的三视图如图所示,该四面体的体积为 (A )43(B )2 (C )83(D )48.函数()||f x x x =.若存在[1,)x ∈+∞,使得(2)0f x k k --<,则k 的取值范围是(A )(2,)+∞(B )(1,)+∞(C )1(,)2+∞(D )1(,)4+∞第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.在复平面内,复数z 对应的点是(1,2)Z -,则复数z 的共轭复数z =____. 10.执行如图所示的程序框图,输出的S 值为____.11.在ABC △中,角A ,B ,C 的对边分别是a ,b ,c .若π3A =,a 1b =,则c =____.12.已知圆22:1O x y +=.圆O '与圆O 关于直线20x y +-=对称,则圆O '的方程是____.13.函数22, 0,()log , 0.x x f x x x ⎧=⎨>⎩≤则1()4f =____;方程1()2f x -=的解是____.14.某班开展一次智力竞赛活动,共a ,b ,c 三个问题,其中题a 满分是20分,题b ,c 满分都是25分.每道题或者得满分,或者得0分.活动结果显示,全班同学每人至少答对一道题,有1名同学答对全部三道题,有15名同学答对其中两道题.答对题a 与题b 的人数之和为29,答对题a 与题c 的人数之和为25,答对题b 与题c 的人数之和为20.则该班同学中只答对一道题的人数是____;该班的平均成绩是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数π()tan()4f x x =+. (Ⅰ)求()f x 的定义域;(Ⅱ)设β是锐角,且π()2sin()4f ββ=+,求β的值. 16.(本小题满分13分)某大学为调研学生在A ,B 两家餐厅用餐的满意度,从在A ,B 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A 餐厅分数的频率分布直方图,和B 餐厅分数的频数分布表:(Ⅰ)在抽样的100人中,求对A 餐厅评分低于30的人数;(Ⅱ)从对B 餐厅评分在[0,20)范围内的人中随机选出2人,求2人中恰有1人评分在[0,10)范围内的概率;(Ⅲ)如果从A ,B 两家餐厅中选择一家用餐,你会选择哪一家?说明理由. 17.(本小题满分13分)设{}n a 是首项为1,公差为2的等差数列,{}n b 是首项为1,公比为q 的等比数列.记n n n c a b =+,1,2,3,n =.(Ⅰ)若{}n c 是等差数列,求q 的值; (Ⅱ)求数列{}n c 的前n 项和n S . 18.(本小题满分14分)如图,在几何体ABCDEF 中,底面ABCD 为矩形,//EF CD ,CD EA ⊥,22CD EF ==,ED M 为棱FC 上一点,平面ADM 与棱FB 交于点N .(Ⅰ)求证:ED CD ⊥; (Ⅱ)求证://AD MN ;(Ⅲ)若AD ED ⊥,试问平面BCF 是否可能与平面ADMN 垂直?若能,求出FMFC的值;若不能,说明理由. 19.(本小题满分13分)B 餐厅分数频数分布表已知函数()ln 2af x x x =+-,其中a ∈R . (Ⅰ)给出a 的一个取值,使得曲线()y f x =存在斜率为0的切线,并说明理由;(Ⅱ)若()f x 存在极小值和极大值,证明:()f x 的极小值大于极大值. 20.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率是2,且过点P .直线2y x m =+与椭圆C 相交于,A B 两点. (Ⅰ)求椭圆C 的方程; (Ⅱ)求PAB △的面积的最大值;(Ⅲ)设直线,PA PB 分别与y 轴交于点,M N .判断||PM ,||PN 的大小关系,并加以证明.参考答案及评分标准一、选择题:本大题共8小题,每小题5分,共40分. 1.A 2.A 3.D4.C 5.D6.B7.A8.D二、填空题:本大题共6小题,每小题5分,共30分. 9.12i +10.711.212.22(2)(2)1x y -+-=13.2-;114.4;42 注:第13、14题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分.15.(本小题满分13分) 解:(Ⅰ)由πππ42x k +≠+,得ππ4x k ≠+,k ∈Z . [ 3分]所以 函数()f x 的定义域是π{|π,}4x x k k ≠+∈Z .[ 4分](Ⅱ)依题意,得ππtan()2sin()44ββ+=+. [ 5分]所以πsin()π42sin()π4cos()4βββ+=++.① [ 7分] 因为β是锐角,所以 ππ3π444β<+<,[ 8分] 所以πsin()04β+>,[ 9分]①式化简为π1cos()42β+=. [10分]所以 ππ43β+=,[12分]所以π12β=. [13分] 16.(本小题满分13分)解:(Ⅰ)由A 餐厅分数的频率分布直方图,得对A 餐厅评分低于30的频率为(0.0030.0050.012)100.2++⨯=,[ 2分]所以,对A餐厅评分低于30的人数为1000.220⨯=. [ 3分](Ⅱ)对B 餐厅评分在[0,10)范围内的有2人,设为12M ,M ;对B 餐厅评分在[10,20)范围内的有3人,设为123N ,N ,N . 从这5人中随机选出2人的选法为:12(M ,M ),11(M ,N ),12(M ,N ),13(M ,N ),21(M ,N ),22(M ,N ),23(M ,N ),12(N ,N ),13(N ,N ),23(N ,N ),共10种.[ 7分]其中,恰有1人评分在[0,10)范围内的选法为:11(M ,N ),12(M ,N ),13(M ,N ),21(M ,N ),22(M ,N ),23(M ,N ),共6种.[ 9分]故2人中恰有1人评分在[0,10)范围内的概率为63105P ==.[10分] (Ⅲ)从两个餐厅得分低于30分的人数所占的比例来看:由(Ⅰ)得,抽样的100人中,A 餐厅评分低于30的人数为20, 所以,A 餐厅得分低于30分的人数所占的比例为20%. B 餐厅评分低于30的人数为23510++=,所以,B 餐厅得分低于30分的人数所占的比例为10%. 所以会选择B餐厅用餐. [13分]注:本题答案不唯一.只要考生言之合理即可.17.(本小题满分13分)解:(Ⅰ)因为{}n a 是首项为1,公差为2的等差数列,所以 21n a n =-.[ 2分]因为 {}n b 是首项为1,公比为q 的等比数列, 所以1n n b q -=.[ 4分]所以121n n n n c a b n q -=+=-+.[ 5分] 因为 {}n c 是等差数列, 所以2132c c c =+,[ 6分]即 22(3)25q q +=++,解得 1q =.[ 7分]经检验,1q =时,2n c n =,所以{}n c 是等差数列.[ 8分](Ⅱ)由(Ⅰ)知121(1,2,)n n c n q n -=-+=.所以121111111(21)nnnnnnk k n k k k k k k k k k S c a b k qn q --========+=-+=+∑∑∑∑∑∑.[10分]当1q =时,2n S n n =+.[11分]当1q ≠时,211n n q S n q -=+-.[13分]18.(本小题满分14分)解:(Ⅰ)因为ABCD 为矩形,所以CD AD ⊥.[ 1分]又因为CD EA ⊥,[ 2分] 所以CD ⊥平面EAD .[ 3分] 所以ED CD ⊥.[ 4分](Ⅱ)因为ABCD 为矩形,所以//AD BC ,[ 5分]所以//AD 平面FBC .[ 7分] 又因为平面ADMN 平面FBC MN =,所以//AD MN .[ 8分](Ⅲ)平面ADMN 与平面BCF 可以垂直.证明如下:[ 9分]连接DF .因为AD ED ⊥,AD CD ⊥, 所以AD ⊥平面CDEF .[10分] 所以AD DM ⊥.因为//AD MN ,所以DM MN ⊥.[11分] 因为平面ADMN 平面BCF MN =, 若使平面ADMN ⊥平面BCF ,则DM ⊥平面BCF ,所以DM FC ⊥.[12分]在梯形CDEF 中,因为//EF CD ,ED CD ⊥,22CD EF ==,ED = 所以2DF DC ==.所以若使DM FC ⊥能成立,则M 为FC 的中点. 所以12FM FC =.[14分] 19.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域是{|0D x x =>,且2}x ≠,且21()(2)a f x x x '=-+-.[ 2分]当1a =时,曲线()y f x =存在斜率为0的切线.证明如下:[ 3分] 曲线()y f x =存在斜率为0的切线⇔方程()0f x '=存在D 上的解.令2110(2)x x -+=-,整理得2540x x -+=,解得1x =,或4x =.所以当1a =时,曲线()y f x =存在斜率为0的切线.[ 5分] 注:本题答案不唯一,只要0a >均符合要求.(Ⅱ)由(Ⅰ)得 21()(2)a f x xx '=-+-.①当0a ≤时,()0f x '>恒成立,函数()f x 在区间(0,2)和(2,)+∞上单调递增,无极值,不合题意.[ 6分] ②当0a >时,令()0f x '=,整理得2(4)40x a x -++=. 由2[(4)]160a ∆=-+->,所以,上述方程必有两个不相等的实数解1x ,2x ,不妨设12x x <.由121244,4,x x a x x +=+>⎧⎨=⎩得1202x x <<<.[ 8分]()f x ',()f x 的变化情况如下表:所以,()f x 存在极大值1()f x ,极小值2()f x .[10分]2121212121()()(ln )(ln )()(ln ln )2222a a a af x f x x x x x x x x x -=+-+=-+-----. [11分]因为1202x x <<<,且0a >,所以21022a a x x ->--,21ln ln 0x x ->, 所以 21()()f x f x >.所以()f x 的极小值大于极大值.[13分]20.(本小题满分14分)解:(Ⅰ)设椭圆2222:1(0)x y C a b a b+=>>的半焦距为c . 因为椭圆C , 所以 2222222112c a b b a a a -==-=, 即 222a b =.[ 1分] 由22222,211,a b ab ⎧=⎪⎨+=⎪⎩ 解得 224,2.a b ⎧=⎪⎨=⎪⎩[ 3分] 所以椭圆C 的方程为22142x y +=.[ 4分] (Ⅱ)将y x m =+代入22142x y +=, 消去y 整理得2220x m +-=.[ 5分]令2224(2)0m m ∆=-->,解得22m -<<.设1122(,),(,)A x y B x y .则12x x +=,2122x x m =-.所以AB ==[ 6分]点P 到直线0x -=的距离为d ==. [7分]所以PAB △的面积12S AB d =⋅=,[ 8分]当且仅当m =时,S =.所以PAB △的面积的最大值是.[ 9分](Ⅲ)||||PM PN =.证明如下:[10分]设直线PA ,PB 的斜率分别是1k ,2k ,则12k k +==[11分]由(Ⅱ)得1221(1)((1)(y x y x -+--0=,所以直线PA ,PB 的倾斜角互补.[13分]所以12∠=∠,所以PMN PNM ∠=∠.所以||||.[14分] PM PN。

2018年高三最新 北京市西城区2018年抽样测试高三数学

2018年高三最新 北京市西城区2018年抽样测试高三数学

北京市西城区2018年抽样测试高三数学试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合要求的.1.设全集为R ,若集合}50|{},1|{<≤=≥=x x N x x M ,则N ( )等于A .}5|{≥x xB .}10|{<≤x xC .}5|>x xD .}51|{<≤x x2.函数1)62sin(3)(--=πx x f 的最小值和最小正周期分别是A .π,13--B .π,13+-C .π,3-D .π2,13--3. 函数)0(12>+=x x y 的反函数是 A .)0(12>-=x x y B .)0(12>--=x x yC .)1(12>-=x x yD .)1(12>--=x x y3.等差数列6427531,4,}{a a a a a a a a n ++=+++则中=A .3B .4C .5D .64.设命题p :若001:;11,<⇔<<>ab bq b a b a 则. 给出下列四个复合命题:①p 或q ;②p 且q ;③ p ;④q 其中真命题的个数有A .0个B .1个C .2个D .3个5.函数])5,2[)(1(log )(21∈-=x x x f 的最大值与最小值之和是A .-2B .-1C .0D .26.已知直线21,l l 与平面α. 则下列结论正确的是 A .若A l l =⊂αα 21,,则21,l l 为异面直线. B .若α//,//121l l l ,则α//2l . C .若,,121α⊥⊥l l l 则.//2αlD .若,,21αα⊥⊥l l ,则21//l l .7.直线02=-y x 与圆9)1()2(:22=++-y x C 交于A ,B 两点,则△ABC (C 为圆心)的面积等于A .52B .32C .34D .548.某人上午7:00乘汽车以匀速1υ千米/时(30≤1υ≤100)从A 地出发到距300公里的B地,在B 地不作停留,然后骑摩托车以匀速2υ千米/时(4≤2υ≤20)从B 地出发到距50公里的C 地,计划在当天16:00至21:00到达C 地。

2018北京市各城区二模数学(文科)分类汇编之数列含答案

2018北京市各城区二模数学(文科)分类汇编之数列含答案

2018市各城区二模数学(文科)分类汇编之数列含答案【西城二模】15.(本小题满分13分)在等差数列{}n a 和等比数列{}n b 中,111a b ==,22a b =,432a b +=. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n n a b +的前n 项和n S .解:(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意,得21,2(13).d q d q +=⎧⎨++=⎩………………2分 解得2,3,d q =⎧⎨=⎩或1,0.d q =-⎧⎨=⎩(舍去)………………4分所以21n a n =-,13n n b -=.………………6分 (Ⅱ)因为1213n n n a b n -+=-+,………………7分所以21[135(21)](1333)n n S n -=++++-+++++………………9分[1(21)]13213nn n +--=+-………………11分 2312n n -=+.………………13分【海淀二模】(15)(本小题13分)已知等差数列{}n a 满足1223n n a a n +-=+ (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n n a b +是首项为1,公比为2的等比数列,求数列{}n b 的前n 项和.15.(本小题13分) 解:(Ⅰ)方法1: 因为数列{}n a 是等差数列,所以212n n n a a a +++=. 因为3221+=-+n a a n n ,所以223n a n +=+. 所以,当3n ≥时,2(2)321n a n n =-+=-. 所以21(1,2,3,).n a n n =-=………………6分方法2:设等差数列{}n a 的公差为d , 因为3221+=-+n a a n n ,所以21322527.a a a a -=⎧⎨-=⎩所以11+2537.a d a d =⎧⎨+=⎩所以112.a d =⎧⎨=⎩所以1(1)21(1,2,3,)n a a n d n n =+-=-=………………6分(Ⅱ)因为数列{}n n a b +是首项为1,公比为2的等比数列,所以12n n n a b -+=因为21n a n =-,所以12(21)n n b n -=--.设数列{}n b 的前n 项和为n S , 则1(1242)[135(21)]n n S n -=++++-++++-12(121)122n n n -+-=-- 221n n =--所以数列{}n b 的前n 项和为221.n n --. ………………13分 【东城二模】(15)(本小题13分)已知{}n a 是公差为2等差数列,数列{}n b 满足11b =,212b =,且1(1)n n n a b nb ++=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求{}n b 的前n 项和n S . (15)(共13分)解:(Ⅰ)因为1(1)n n n a b nb ++=,所以121(1)1a b b +=⨯. 因为11b =,212b =, 所以11a =.因为等差数列{}n a 的公差为2,所以21n a n =-,*n ∈N .……………6分 (Ⅱ)由(Ⅰ)知21n a n =-.因为1(1)n n n a b nb ++=, 所以11(21)12n n b n b n +==-+. 所以数列{}n b 是首项为1,公比为12的等比数列. 所以数列{}n b 的前n 项和n S 11()122[1()]1212nn -==--,*n ∈N .……………13分 【XX 二模】16.已知数列{}n a 的前n 项和2n S pn qn =+(p ,q ∈R ,*n ∈N )且13a =,424S =. (1)求数列{}n a 的通项公式;(2)设2n a n b =,求数列{}n b 的前n 项和n T . 【解析】解:(Ⅰ)∵数列{}n a 的前n 项和为2n S pn qn =+∴当1n =时,11a S p q ==+当2n ≥时,21(1)(1)n S p n q n -=-+-∴221()[(1)(1)]2nn n a S S pn qn p n q n pn q p -=-=---+-=+-检验1a p q =+符合2n a pn q p =+-∴数列{}n a 的通项公式为2n a pn q p =+-∵12(1)(2)2,()n na a p n q p pn q p p p +-=++--+-=∈R∴{}n a 是等差数列,设公差为d ∵143,24a S ==∴414342S a d ⨯=+解得2d = ∴数列{}n a 的通项公式为*3(1)221()n a n n n =+-⨯=+∈N(Ⅱ)由(Ⅰ)可知21n a n =+∴2122n a n nb +==设数列{}n b 的前n 项和为n T , 则12124242424n n nT -=⨯+⨯++⨯+⨯1212(4444)n n -=++++4(14)214n -=⨯- 8(41)3n -=所以数列{}n b 的前n 项和为8(41).3n n T -=【丰台二模】 (16)(本小题共13分)已知数列{}n a 的前n 项和2=3n S n ,等比数列{}n b 满足11=3a b ,242b b a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列21{}n b -的前n 项和n T . (16)(本小题共13分) 解:(Ⅰ)因为23n S n =,所以113a S ==.…………………1分 当2n ≥时,1n n n a S S -=-2233(1)n n =--63n =-.…………………3分因为当1n =时,16133a ⨯-==,…………………4分 所以数列{}n a 的通项公式是63n a n =-.…………………5分 (Ⅱ)设数列{}n b 的公比为q .因为113a b =,所以11b =.…………………6分 因为242b b a ⋅=,所以239b =.…………………8分因为2310b b q =>,所以33b =,且23q =.…………………10分因为{}n b 是等比数列,所以21{}n b -是首项为11b =,公比为23q =的等比数列.…………………11分所以212(1())131(31)1132n n nn b q T q --===---. 即1(31)2nn T =-.…………………13分 【昌平二模】 16.(本小题13分) 已知数列{}n a 满足1211,2a a ==,数列{}n b 是公差为2的等差数列,且11n n n n b a a na +++=. (I )求数列{}n b 的通项公式; (II )求数列{}n a 前n 项的和n S . 16.(共13分)解:(Ⅰ)因为11n n n nb a a na +++=,所以1221b a a a += . 又因为1212a a =1,=, 所以11b =.所以数列{}n b 的通项公式是2-1n b n =. --------------------7分 (Ⅱ)由(Ⅰ)知2-1n b n =,且11n n n n b a a na +++=.所以11(21)n n nn a a na ++-+=,得到112n n a a += .所以数列{}n a 是以1为首项,12为公比的等比数列. 那么数列{}n a 前n 项和111()222112nn n S --==--.--------------------13分 【顺义二模】15.(本小题满分13分)已知等差数列{}n a 的前n 项和为n S ,且151, 3.a a =-=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 满足2n a n b =,求数列{}n b 的前n 项和.【房山二模】 (15)(本小题13分)已知等差数列{}n a 满足1210a a +=,432a a -=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足23b a =,37b a =.问:5b 与数列{}n a 的第几项相等?解:(Ⅰ)设等差数列{}n a 的公差为d .因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+(1,2,)n =.…………6分 (Ⅱ)设等比数列{}n b 的公比为q .因为238b a ==,3716b a ==,所以2q =,14b =. 所以5154264b -=⨯=. 由6422n =+得31n =.所以5b 与数列{}n a 的第31项相等.…………13分。

高三数学-2018西城答案 精品

高三数学-2018西城答案 精品

北京市西城区抽样测试高三数学(文科)答案及评分标准2001 .5一、ACDCBCBACC DD 二、(13)1010-;(14)22;(15)1:10;(16)①②⑤. 三、解答题:其它解法仿此给分.(17)解:∵q =1时122na S n =,1na S =偶数项又01>a 显然11112na na ≠q ≠1 ………………………………………………2分 ∴2212121)1(1)1(q q q a S q q a S n n n --==--=偶数项 …………………………………4分 依题意221211)1(111)1(qq q a q q a n n --⋅=-- 解之101=q ……………………………………………………………………6分 又421422143),1(q a a a q q a a a =+=+, ………………………………………8分依题意4212111)1(q a q q a =+,将101=q 代入得101=a …………………10分 n n n a --=⋅=2110)101(10………………………………………………………12分 (18)解:由题设知20,πβαβ<<<==且x b tg x a tga …………………………………4分 ∴xabx a b tg tg tg tg tg +-=+-=-βααβαβ1)( …………………………………………6分 ∵ab xab x x ab x =⋅>>且0,0为定值…………………………………………9分 所以,当且仅当x ab x =即ab x =时,xab x +取得最小值ab 2………11分 此时)(αβ-tg 取最大值ab a b 2- ……………………………………………12分 (19)解:(Ⅰ)证明;已知C C F A E B B E A 1111,⊥⊥于于 F ,∵B B 1∥C C 1,∴F A B B 11⊥ ……………………………………………1分 又A F A E A =⋂11.∴EF A B B 11平面⊥所以,平面111BCC B EF A 平面⊥ ………………………………………3分(Ⅱ)因为1111111111,45C A B A C C A AC A AB A B B A =︒=∠==∠=∠,又2.90111111=︒=∠=∠B A FC A EB A∴E B A Rt 11∆≌F C A Rt 11∆,∴211==F A E A∴E B1F C 1,∴EF =211=C B∴22121EF F A E A =+∴EF A 1∆为等腰直角三角形……5分取EF 的中点N ,连N A 1,则EF N A ⊥1,所以111BCC B N A 平面⊥ ………………………………………………………………6分 所以N A 1为点1A 到平面11BCC B 的距离。

2018年北京市西城区高考数学二模试卷(文科)(解析版)

2018年北京市西城区高考数学二模试卷(文科)(解析版)

2018年北京市西城区高考数学二模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)若集合A={x|0<x<1},B={x|x2﹣2x<0},则下列结论中正确的是()A.A∩B=∅B.A∪B=R C.A⊆B D.B⊆A2.(5分)复数=()A.B.C.D.3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.B.y=x2C.y=cos x D.y=﹣ln|x| 4.(5分)某正四棱锥的正(主)视图和俯视图如图所示,该正四棱锥的侧棱长是()A.B.C.D.5.(5分)向量,,在正方形网格中的位置如图所示.若向量λ与共线,则实数λ=()A.﹣2B.﹣1C.1D.26.(5分)设a,b∈R,且ab≠0.则“ab>1”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)设不等式组表示的平面区域为D.若直线ax﹣y=0上存在区域D上的点,则实数a的取值范围是()A.B.C.[1,2]D.[2,3]8.(5分)地铁某换乘站设有编号为A,B,C,D,E的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下:则疏散乘客最快的一个安全出口的编号是()A.A B.B C.D D.E二、填空题(共6小题,每小题5分,满分30分)9.(5分)函数的最大值是.10.(5分)执行如图所示的程序框图,输出的k值为.11.(5分)在△ABC中,a=3,b=2,,则sin A=.12.(5分)双曲线的焦距是;若圆(x﹣1)2+y2=r2(r>0)与双曲线C的渐近线相切,则r=.13.(5分)为绿化生活环境,某市开展植树活动.今年全年植树6.4万棵,计划3年后全年植树12.5万棵.若植树的棵数每年的增长率均为a,则a=.14.(5分)已知函数,其中a∈R.如果函数f(x)恰有两个零点,那么a的取值范围是.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)在等差数列{a n}和等比数列{b n}中,a1=b1=1,a2=b2,2+a4=b3.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a n+b n}的前n项和S n.16.(13分)已知函数.(Ⅰ)求f(x)的定义域;(Ⅱ)求f(x)的取值范围.17.(13分)在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病.为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得到如下统计图:(Ⅰ)求样本中患病者的人数和图中a,b的值;(Ⅱ)试估计此地区该项身体指标检测值不低于5的从业者的人数;(III)某研究机构提出,可以选取常数X0=4.5,若一名从业者该项身体指标检测值大于X0,则判断其患有这种职业病;若检测值小于X0,则判断其未患有这种职业病.从样本中随机选择一名从业者,按照这种方式判断其是否患病,求判断错误的概率.18.(14分)如图,梯形ABCD所在的平面与等腰梯形ABEF所在的平面互相垂直,AB∥CD∥EF,AB⊥AD,G为AB的中点.CD=DA=AF=FE=2,AB =4.(Ⅰ)求证:DF∥平面BCE;(Ⅱ)求证:平面BCF⊥平面GCE;(Ⅲ)求多面体AFEBCD的体积.19.(13分)已知函数,曲线y=f(x)在x=1处的切线经过点(2,﹣1).(Ⅰ)求实数a的值;(Ⅱ)设b>1,求f(x)在区间上的最大值和最小值.20.(14分)已知椭圆C:的离心率为,经过点(0,1).(Ⅰ)求椭圆C的方程;(Ⅱ)设直线y=x与椭圆C交于A,B两点,斜率为k的直线l与椭圆C交于M,N两点,与直线y=x交于点P(点P与点A,B,M,N不重合).(ⅰ)当k=﹣1时,证明:|P A||PB|=|PM||PN|;(ⅱ)写出以k为自变量的函数式(只需写出结论).2018年北京市西城区高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)若集合A={x|0<x<1},B={x|x2﹣2x<0},则下列结论中正确的是()A.A∩B=∅B.A∪B=R C.A⊆B D.B⊆A【解答】解:∵集合A={x|0<x<1},B={x|x2﹣2x<0}={x|0<x<2},∴A⊆B.故选:C.2.(5分)复数=()A.B.C.D.【解答】解:原式==i.故选:C.3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.B.y=x2C.y=cos x D.y=﹣ln|x|【解答】解:y=为奇函数,且在区间(0,+∞)上单调递减;y=x2为偶函数,且在区间(0,+∞)上单调递增;y=cos x为偶函数,且在区间(0,+∞)上不具单调性;y=﹣ln|x|为偶函数,且在区间(0,+∞)上y=﹣lnx单调递减.故选:D.4.(5分)某正四棱锥的正(主)视图和俯视图如图所示,该正四棱锥的侧棱长是()A.B.C.D.【解答】解:由题意可知几何体是正四棱锥,底面边长为2,高为:3,所以正四棱锥的侧棱长为:=.故选:B.5.(5分)向量,,在正方形网格中的位置如图所示.若向量λ与共线,则实数λ=()A.﹣2B.﹣1C.1D.2【解答】解:根据图形可看出;满足与共线;∴λ=2.故选:D.6.(5分)设a,b∈R,且ab≠0.则“ab>1”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:若“ab>1”当a=﹣2,b=﹣1时,不能得到“”,若“”,例如当a=1,b=﹣1时,不能得到“ab>1“,故“ab>1”是“”的既不充分也不必要条件,故选:D.7.(5分)设不等式组表示的平面区域为D.若直线ax﹣y=0上存在区域D上的点,则实数a的取值范围是()A.B.C.[1,2]D.[2,3]【解答】解:由不等式组作出可行域如图,∵直线ax﹣y=0过定点O(0,0),要使直线ax﹣y=0上存在区域D上的点,则直线ax﹣y=0的斜率a∈[k OB,k OA],联立,得A(1,3),联立,得B(2,1),∴,.∴a,故选:B.8.(5分)地铁某换乘站设有编号为A,B,C,D,E的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下:则疏散乘客最快的一个安全出口的编号是()A.A B.B C.D D.E【解答】解:同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放D、E两个安全出口,疏散1000名乘客所需的时间为140s,得到D疏散乘客比A快;同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,得到A疏散乘客比E快;同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,得到A疏散乘客比C快;同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,同时开放C、D两个安全出口,疏散1000名乘客所需的时间为160s,得到D疏散乘客比B快.综上,疏散乘客最快的一个安全出口的编号是D.故选:C.二、填空题(共6小题,每小题5分,满分30分)9.(5分)函数的最大值是.【解答】解:函数是偶函数,x<0时是增函数,x>0时是减函数,所以x=0时函数取得最大值:.故答案为:.10.(5分)执行如图所示的程序框图,输出的k值为5.【解答】解:在执行首次循环时,S=1+12=2,k=1则:在执行第二次循环时,S=2+32=11,k=3,在执行第三次循环时,S=11+52=36,k=5.由于:S>20,所以:输出k=5.故答案为:511.(5分)在△ABC中,a=3,b=2,,则sin A=.【解答】解:在△ABC中,a=3,b=2,,sin B==,由正弦定理可得:,可得sin A==.故答案为:.12.(5分)双曲线的焦距是10;若圆(x﹣1)2+y2=r2(r>0)与双曲线C的渐近线相切,则r=.【解答】解:双曲线的焦距是:2c=2×=10;双曲线的渐近线方程为:3x±4y=0,圆(x﹣1)2+y2=r2(r>0)与双曲线C的渐近线相切,可得:r==.故答案为:10;.13.(5分)为绿化生活环境,某市开展植树活动.今年全年植树6.4万棵,计划3年后全年植树12.5万棵.若植树的棵数每年的增长率均为a,则a=25%.【解答】解:由题意可知6.4(1+a)3=12.5,∴(1+a)3=,∴1+a=,故a==25%.故答案为:25%.14.(5分)已知函数,其中a∈R.如果函数f(x)恰有两个零点,那么a的取值范围是.【解答】解:x≤1时,y=a+2x∈(a,2+a],x>1时,y=+a∈(,+∞),两个函数都是增函数,函数f(x)恰有两个零点,可得:,解得a∈[﹣2,).故答案为:[﹣2,).三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)在等差数列{a n}和等比数列{b n}中,a1=b1=1,a2=b2,2+a4=b3.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a n+b n}的前n项和S n.【解答】(本小题满分13分)解:(Ⅰ)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.依题意,得………………(2分)解得或(舍去)………………(4分)所以a n=2n﹣1,.………………(6分)(Ⅱ)因为,………………(7分)所以………………(9分)=………………(11分)=.………………(13分)16.(13分)已知函数.(Ⅰ)求f(x)的定义域;(Ⅱ)求f(x)的取值范围.【解答】解:(Ⅰ)由sin x+cos x≠0,得所以,其中k∈Z.所以f(x)的定义域为(Ⅱ)因为=cos x﹣sin x=由(Ⅰ)得,其中k∈Z,所以,所以f(x)的取值范围是.17.(13分)在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病.为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得到如下统计图:(Ⅰ)求样本中患病者的人数和图中a,b的值;(Ⅱ)试估计此地区该项身体指标检测值不低于5的从业者的人数;(III)某研究机构提出,可以选取常数X0=4.5,若一名从业者该项身体指标检测值大于X0,则判断其患有这种职业病;若检测值小于X0,则判断其未患有这种职业病.从样本中随机选择一名从业者,按照这种方式判断其是否患病,求判断错误的概率.【解答】(本小题满分13分)解:(Ⅰ)根据分层抽样原则,容量为100的样本中,患病者的人数为人.………………(2分)a=1﹣0.10﹣0.35﹣0.25﹣0.15﹣0.10=0.05,b=1﹣0.10﹣0.20﹣0.30=0.40.………………(4分)(Ⅱ)指标检测值不低于5的样本中,有患病者40×(0.30+0.40)=28人,未患病者60×(0.10+0.05)=9人,共37人.………………(6分)此地区该项身体指标检测值不低于5的从业者的人数约为人.………………(8分)(Ⅲ)当X0=4.5时,在100个样本数据中,有40×(0.10+0.20)=12名患病者被误判为未患病,………………(10分)有60×(0.10+0.05)=9名未患病者被误判为患病者,………………(12分)因此判断错误的概率为.………………(13分)18.(14分)如图,梯形ABCD所在的平面与等腰梯形ABEF所在的平面互相垂直,AB∥CD∥EF,AB⊥AD,G为AB的中点.CD=DA=AF=FE=2,AB =4.(Ⅰ)求证:DF∥平面BCE;(Ⅱ)求证:平面BCF⊥平面GCE;(Ⅲ)求多面体AFEBCD的体积.【解答】(本小题满分14分)(Ⅰ)证明:因为CD∥EF,且CD=EF,所以四边形CDFE为平行四边形,所以DF∥CE.……(2分)因为DF⊄平面BCE,……(3分)所以DF∥平面BCE.……(4分)(Ⅱ)连接FG.因为平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,AD⊥AB,所以AD⊥平面ABEF,所以BF⊥AD.………………(6分)因为G为AB的中点,所以AG∥CD,且AG=CD;EF∥BG,且EF=BG,所以四边形AGCD和四边形BEFG均为平行四边形.所以AD∥CG,所以BF⊥CG.………………(7分)因为EF=EB,所以四边形BEFG为菱形,所以BF⊥EG.………………(8分)所以BF⊥平面GCE.………………(9分)所以平面BCF⊥平面GCE.………………(10分)(Ⅲ)设BF∩GE=O.由(Ⅰ)得DF∥CE,所以DF∥平面GCE,由(Ⅱ)得AD∥CG,所以AD∥平面GCE,所以平面ADF∥平面GCE,所以几何体ADF﹣GCE是三棱柱.………………(11分)由(Ⅱ)得BF⊥平面GCE.所以多面体AFEBCD的体积V=V ADF+V B﹣GCE………………(12分)﹣GCE==.………………(14分)19.(13分)已知函数,曲线y=f(x)在x=1处的切线经过点(2,﹣1).(Ⅰ)求实数a的值;(Ⅱ)设b>1,求f(x)在区间上的最大值和最小值.【解答】(本小题满分13分)解:(Ⅰ)f(x)的导函数为,………………(2分)所以f'(1)=1﹣a.依题意,有,即,………………(4分)解得a=1.………………(5分)(Ⅱ)由(Ⅰ)得.当0<x<1时,1﹣x2>0,﹣lnx>0,所以f'(x)>0,故f(x)单调递增;当x>1时,1﹣x2<0,﹣lnx<0,所以f'(x)<0,故f(x)单调递减.所以f(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.………………(8分)因为,所以f(x)最大值为f(1)=﹣1.………………(9分)设,其中b>1.………………(10分)则,故h(b)在区间(1,+∞)上单调递增.………………(11分)所以h(b)>h(1)=0,即,………………(12分)故f(x)最小值为.………………(13分)20.(14分)已知椭圆C:的离心率为,经过点(0,1).(Ⅰ)求椭圆C的方程;(Ⅱ)设直线y=x与椭圆C交于A,B两点,斜率为k的直线l与椭圆C交于M,N两点,与直线y=x交于点P(点P与点A,B,M,N不重合).(ⅰ)当k=﹣1时,证明:|P A||PB|=|PM||PN|;(ⅱ)写出以k为自变量的函数式(只需写出结论).【解答】解:(Ⅰ)设椭圆C的半焦距为c.依题意,得,b=1,且a2=b2+c2.解得.所以椭圆C的方程是.(Ⅱ)证明(ⅰ)由得,.k=﹣1时,设直线l的方程为y=﹣x+t.由得4x2﹣6tx+3t2﹣3=0.令△=36t2﹣48(t2﹣1)>0,解得t2<4.设M(x1,y1),N(x2,y2),则,.由得.所以|P A|•|PB|=•|﹣||+|=|.因为,同理.所以==.所以|P A|•|PB|=|PM|•|PN|.(ⅱ).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西城区高三模拟测试数学(文科) 2018.5第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的 四个选项中,选出符合题目要求的一项.1.若集合{|01}A x x =<<,2{|20}B x x x =-<,则下列结论中正确的是 (A )AB =∅(B )A B =R(C )A B ⊆ (D )B A ⊆2.复数11i =- (A )1i 22+ (B )1i22-+(C )1i22--(D )1i 22- 3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是 (A )1y x=(B )2y x = (C )cos y x = (D )ln ||y x =-4.某正四棱锥的正(主)视图和俯视图如图所示,该正四棱锥的侧棱长是(A(B(C )(D )5.向量,,a b c 在正方形网格中的位置如图所示.若向量λ+a b 与c共线,则实数λ= (A )2-(B )1-(C )1(D )26.设,a b ∈R ,且0ab ≠.则“1ab >”是“1a b>”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7.设不等式组 1,3,25x x y x y ⎧⎪+⎨⎪+⎩≥≥≤ 表示的平面区域为D .若直线0ax y -=上存在区域D 上的点,则实数a 的取值范围是(A )1[,2]2(B )1[,3]2(C )[1,2](D )[2,3]8.地铁某换乘站设有编号为 A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安 全出口,疏散1000名乘客所需的时间如下:则疏散乘客最快的一个安全出口的编号是 (A )A (B )B(C )D(D )E第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.函数1||2y x =+的最大值是____.10.执行如右图所示的程序框图,输出的k 值为____.11.在△ABC 中,3a =,2b =,4cos 5B =,则sin A =____.12.双曲线22:1916y x C -=的焦距是____;若圆222(1)(0)x y r r -+=>与双曲线C 的渐近线相切,则r =____.13.为绿化生活环境,某市开展植树活动.今年全年植树6.4万棵,计划3年后全年植树12.5万棵.若植树的棵数每年的增长率均为a ,则a =____.14.已知函数2,1,()1,1,2x a x f x x a x ⎧+⎪=⎨+>⎪⎩≤ 其中a ∈R .如果函数()f x 恰有两个零点,那么a 的取值范围是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在等差数列{}n a 和等比数列{}n b 中,111a b ==,22a b =,432a b +=. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n n a b +的前n 项和n S .16.(本小题满分13分)已知函数cos2()sin cos xf x x x=+.(Ⅰ)求()f x 的定义域; (Ⅱ)求()f x 的取值范围.17.(本小题满分13分)在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病.为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得到如下统计图:(Ⅰ)求样本中患病者的人数和图中a ,b 的值; (Ⅱ)试估计此地区该项身体指标检测值不低于5的从业者的人数;(III )某研究机构提出,可以选取常数0 4.5X =,若一名从业者该项身体指标检测值大于0X ,则判断其患有这种职业病;若检测值小于0X ,则判断其未患有这种职业病.从样本中随机选择一名从业者,按照这种方式判断其是否患病,求判断错误的概率.18.(本小题满分14分)如图,梯形ABCD 所在的平面与等腰梯形ABEF 所在的平面互相垂直,////AB CD EF ,AB AD ⊥,G 为AB 的中点.2CD DA AF FE ====,4AB =.(Ⅰ)求证://DF 平面BCE ;(Ⅱ)求证:平面BCF ⊥平面GCE ; (Ⅲ)求多面体AFEBCD 的体积.19.(本小题满分13分)已知函数ln ()xf x ax x =-,曲线()y f x =在1x =处的切线经过点(2,1)-.(Ⅰ)求实数a 的值;(Ⅱ)设1b >,求()f x 在区间1[,]b b 上的最大值和最小值.20.(本小题满分14分)已知椭圆C :2222 1 (0)x y a b a b +=>>(0,1).(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线y x =与椭圆C 交于A ,B 两点,斜率为k 的直线l 与椭圆C 交于M ,N 两点,与直线y x =交于点P (点P 与点A ,B ,M ,N 不重合). (ⅰ)当1k =-时,证明:||||||||PA PB PM PN =; (ⅱ)写出||||||||PA PB PM PN 以k 为自变量的函数式(只需写出结论).西城区高三模拟测试数学(文科)参考答案及评分标准2018.5一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.A 3.D 4.B 5.D 6.D 7.B 8.C二、填空题:本大题共6小题,每小题5分,共30分.9.12 10.511.91012.10,35 13.25% 14.1[2,)2--注:第12题第一空3分,第二空2分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意,得 21,2(13).d q d q +=⎧⎨++=⎩ ……………… 2分解得 2,3,d q =⎧⎨=⎩或1,0.d q =-⎧⎨=⎩(舍去) ……………… 4分所以 21n a n =-,13n n b -=. (6)分(Ⅱ)因为 1213n n n a b n -+=-+, ……………… 7分所以 21[135(21)](1333)n n S n -=++++-+++++ ………………9分[1(21)]13213nn n +--=+-………………11分2312n n -=+. ………………13分16.(本小题满分13分)解:(Ⅰ)由 sin cos 0x x +≠, ……………… 2分得 π)04x +≠, ………………3分所以 ππ4x k +≠,其中k ∈Z . ……………… 4分所以()f x 的定义域为π{|π,}4x x k k ∈≠-∈R Z . ………………5分(Ⅱ)因为 22cos sin ()sin cos x xf x x x-=+ ………………7分cos sin x x =- ……………… 9分π)4x =+. ………………11分由(Ⅰ)得 ππ4x k +≠,其中k ∈Z , 所以 π1cos()14x -<+<, ………………12分所以 ()f x 的取值范围是(. ………………13分17.(本小题满分13分)解:(Ⅰ)根据分层抽样原则,容量为100的样本中,患病者的人数为3.4100408.5⨯=人. ……………… 2分10.100.350.250.150.100.05a =-----=,10.100.200.300.40b =---=. ………………4分(Ⅱ)指标检测值不低于5的样本中,有患病者40(0.300.40)28⨯+=人,未患病者60(0.100.05)9⨯+=人,共37人.………………6分此地区该项身体指标检测值不低于5的从业者的人数约为378500031450100⨯=人.………………8分(Ⅲ)当0 4.5X =时,在100个样本数据中, 有40(0.100.20)12⨯+=名患病者被误判为未患病, (10)分有60(0.100.05)9⨯+=名未患病者被误判为患病者, ………………12分因此判断错误的概率为21100. ………………13分18.(本小题满分14分)解:(Ⅰ)因为 //CD EF ,且CD EF =,所以 四边形CDFE 为平行四边形,所以 //DF CE . …… 2分因为 DF ⊄平面BCE ,…… 3分所以 //DF 平面BCE .…… 4分 (Ⅱ)连接FG .因为 平面ABCD ⊥平面ABEF ,平面ABCD I 平面ABEF AB =,AD AB ⊥, 所以 AD ⊥平面ABEF ,所以 BF AD ⊥. ………………6分因为 G 为AB 的中点,所以 //AG CD ,且AG CD =;//EF BG ,且EF BG =, 所以 四边形AGCD 和四边形BEFG 均为平行四边形.所以 //AD CG , 所以 BF CG ⊥. ………………7分因为 EF EB =,所以 四边形BEFG 为菱形,所以 BF EG ⊥. ………………8分所以 BF ⊥平面GCE . ………………9分所以 平面BCF ⊥平面GCE . ………………10分(Ⅲ)设 BF GE O =I .由(Ⅰ)得 //DF CE ,所以 //DF 平面GCE , 由(Ⅱ)得 //AD CG ,所以 //AD 平面GCE , 所以 平面//AD F 平面GCE ,所以 几何体AD F GCE -是三棱柱. ………………11分由(Ⅱ)得 BF ⊥平面GCE .所以 多面体AFEBCD 的体积 ADF GCE B GCE V V V --=+ ………………12分13GCE GCE S FO S BO ∆∆=⋅+⋅43GCE S FO ∆=⋅=. ………………14分19.(本小题满分13分)解:(Ⅰ)()f x 的导函数为221ln ()x ax f x x --'=, ………………2分所以(1)1f a '=-. 依题意,有 (1)(1)112f a --=--,即1112a a -+=--, ……………… 4分解得 1a =. ………………5分(Ⅱ)由(Ⅰ)得221ln ()x xf x x --'=.当0<<1x 时,210x ->,ln 0x ->,所以()0f x '>,故()f x 单调递增;当>1x 时,210x -<,ln 0x -<,所以()0f x '<,故()f x 单调递减.所以 ()f x 在区间(0,1)上单调递增,在区间(1,)+∞上单调递减. (8)分因为 101b b<<<,所以 ()f x 最大值为(1)1f =-. ……………… 9分设 111()()()()ln h b f b f b b b b b b=-=+-+,其中1b >. ………………10分则 21()(1)ln 0h b b b '=->, 故 ()h b 在区间(1,)+∞上单调递增. ………………11分所以 ()(1)0h b h >=, 即 1()()f b f b>, ………………12分故 ()f x 最小值为11()ln f b b b b=--. ………………13分20.(本小题满分14分)解:(Ⅰ)设椭圆C 的半焦距为c .依题意,得c a =1b =, 且 222a b c =+. ……………… 2分解得 a ………………3分所以 椭圆C 的方程是 2213x y +=. ………………4分(Ⅱ)(ⅰ)由 22,33,y x x y =⎧⎪⎨+=⎪⎩ 得A ,(B . ……………… 5分1k =-时,设直线l 的方程为y x t =-+.由 22,33,y x t x y =-+⎧⎪⎨+=⎪⎩ 得 2246330x tx t -+-=. ……………… 6分令223648(1)0t t ∆=-->,解得 24t <. 设 1122(,),(,)M x y N x y ,则 1232t x x +=,212334t x x -⋅=.……………… 8分由 ,,y x t y x =-+⎧⎨=⎩ 得(,)22t tP . ……………… 9分所以 23||||2t PA PB -==. ………………10分因为 1||PM x =,同理2||PN x =-.所以 12||||222t tPM PN x x =-⋅-2233324224t t t t -=-⋅+232t -=.所以 ||||||||PA PB PM PN =. ………………12分(ⅱ)22||||13||||2(1)PA PB k PM PN k +=+. ………………14分。

相关文档
最新文档