异质结太阳能电池综述

合集下载

异质结(hjt)太阳能电池

异质结(hjt)太阳能电池

异质结(hjt)太阳能电池全文共四篇示例,供读者参考第一篇示例:异质结(HJT)太阳能电池是一种高效率的太阳能电池技术,它利用了两种或更多种不同材料的异质结的优势,以实现更高的光电转换效率。

该技术结合了传统晶体硅太阳能电池的稳定性和廉价性以及薄膜太阳能电池的高效率,因此备受学术界和产业界的关注。

HJT太阳能电池的基本结构是由p型非晶硅和n型单晶硅两种异质材料交替堆叠而成。

这种结构既保留了单晶硅的高电子迁移率和长寿命,又减轻了非晶硅层的缺陷导致的损耗,从而提高了电池的光电转换效率。

HJT太阳能电池还采用了透明导电氧化物(TCO)薄膜作为电极,使得光线更容易进入电池内部并提高光电转换效率。

与传统的多晶硅太阳能电池相比,HJT太阳能电池具有更高的光电转换效率和更低的温度系数,可以在高温环境下保持更稳定的性能。

HJT太阳能电池还具有更高的光谱响应范围,可以更好地利用太阳光的能量,提高发电效率。

HJT太阳能电池被认为是下一代太阳能电池技术的发展方向之一。

HJT太阳能电池的制造过程相对复杂,需要先在聚乙烯基板上制备n型多晶硅膜,然后在其表面沉积p型非晶硅层,最后再用透明导电氧化物薄膜覆盖。

这个过程需要高温退火和真空沉积等多道工艺步骤,并且需要精确控制每一步骤的温度和时间,以确保电池的性能和稳定性。

目前,HJT太阳能电池的研究和开发已经取得了一些重要进展,例如NREL(美国国家可再生能源实验室)最近宣布他们成功实现了24.5%的HJT太阳能电池效率,刷新了该技术的世界纪录。

随着技术的不断进步和成本的不断降低,HJT太阳能电池有望逐渐取代传统的多晶硅太阳能电池,成为未来太阳能发电的主流技术之一。

第二篇示例:异质结(hjt)太阳能电池是一种高效率的太阳能转换技术,通过利用不同材料的异质结构,可以实现更高的光电转换效率。

该技术在太阳能行业中备受关注,被认为是未来太阳能电池发展的一个重要方向。

异质结太阳能电池的工作原理是基于两种或更多种不同材料的结合。

异质结电池

异质结电池
• 高效率光伏市场的拓展 • 新兴市场的开发
异质结电池在新能源产业中的地位
• 技术创新与应用 • 市场需求的增长
异质结电池未来发展的前景与展望
异质结电池未来发展的前景
• 高效率、低成本的异质结电池 • 新型应用领域的拓展
异质结电池未来发展的展望
• 技术创新与应用 • 市场需求的增长
谢谢观看.
Thank you for watching.
异质结电池的电极材料研究与优化
电极材料的研究
• 高导电性的电极材料 • 良好的光学性能 • 优异的力学性能
电极材料的优化
• 纳米结构的电极材料 • 多层结构的电极材料 • 功能化修饰的电极材料
异质结电池的制备工艺与技术进步
制备工艺的研究
• 沉积工艺 • 刻蚀工艺 • 掺杂工艺
制备工艺的技术进步
• 激光辅助沉积工艺 • 化学气相沉积工艺 • 溶液沉积工艺
异质结电池:原理、应用及未来发展趋势
DOCS SMART CREATE
CREATE TOGETHER
DOCS
01
异质结电池的基本概念与原理
异质结电池的定义与结构
异质结电池是一种太阳能电池
• 由两种不同的半导体材料组成 • 具有异质结结构的太阳能电池
异质结电池的基本结构
• P-N结 • 本征半导体层 • 缓冲层 • 反射层
异质结电池的工作原理及能量转换过程
异质结电池的工作原理
• 光生电流的产生 • 光生电子空穴对的分离 • 电子空穴对的传输与复合
异质结电池的能量转换过程
• 光能转化为电能 • 电能转化为化学能 • 化学能转化为光能
异质结电池的性能特点及优势
异质结电池的性能特点

异质结电池简介

异质结电池简介

异质结电池简介HIT是Heterojunction with Intrinsic Thin-layer的缩写,意为本征薄膜异质结,因HIT已被日本三洋公司申请为注册商标,所以又被称为HJT或SHJ(Silicon Heterojunction solar cell)。

1992年三洋公司的Makoto Tanaka和Mikio Taguchi 第一次成功制备了HIT(HeterojunctionwithIntrinsic ThinLayer)电池。

日本Panasonic 公司于2009年收购三洋公司后,继续HIT电池的开发。

HIT电池结构,中间衬底为N型晶体硅,通过PECVD方法在P型a-Si和c-Si 之间插入一层10nm厚的i-a-Si本征非晶硅,在形成pn结的同时。

电池背面为20nm厚的本征a-Si:H和N型a-Si:H层,在钝化表面的同时可以形成背表面场。

由于非晶硅的导电性较差,因此在电池两侧利用磁控溅射技术溅射TCO膜进行横向导电,最后采用丝网印刷技术形成双面电极,使得HIT电池有着对称双面电池结构。

开路电压大的原因:除了掺杂浓度差形成的内建电池外;材料的禁带宽度的差别也会进一步增加电池的内建电势。

在电池正表面,由于能带弯曲,阻挡了电子向正面的移动,空穴则由于本征层很薄而可以隧穿后通过高掺杂的p+型非晶硅,构成空穴传输层。

同样,在背表面,由于能带弯曲阻挡了空穴向背面的移动,而电子可以隧穿后通过高掺杂的n+型非晶硅,构成电子传输层。

通过在电池正反两面沉积选择性传输层,使得光生载流子只能在吸收材料中产生富集然后从电池的一个表面流出,从而实现两者的分离。

最常见的是p型硅基异质结太阳能电池,其广泛应用于光伏产业,因为p 型硅片是常见的光伏材料且以p型单晶硅为衬底的电池接触电阻较低,但是由于硼和间隙氧的存在,使得以p型单晶硅为衬底的太阳电池有较严重的光照衰减问题。

且由于c-Si(p)/a-Si(i/p)界面氢化非晶硅价带带阶(0.45ev)要比导带带阶大(0.15ev),n型硅基比p型硅基更适合双面异质结太阳能电池。

异质结(hjt)太阳能电池

异质结(hjt)太阳能电池

异质结(HJT)太阳能电池,是一种高效率的太阳能电池技术。

它是由硅基异质结太阳能电池与薄膜太阳能电池结合而成的新型光伏电池。

HJT太阳能电池的结构由两个主要部分组成:一个是硅基太阳能电池,另一个是薄膜太阳能电池。

硅基太阳能电池负责收集长波长的太阳能光,而薄膜太阳能电池则负责收集短波长的太阳能光。

HJT太阳能电池的工作原理是:当太阳能光照射到硅基太阳能电池上时,主要产生较低能量的电流。

这些电子流通过异质结进入薄膜太阳能电池,被高能量的太阳能光诱导产生更多电流。

通过这种双重功效,HJT太阳能电池可以更高效地将太阳能转化为电能。

HJT太阳能电池具有以下一些优势:
1. 高效率:HJT太阳能电池可以达到较高的转换效率,甚至超过传统的多晶硅太阳能电池。

2. 宽光谱响应:HJT太阳能电池具有更广泛的光谱响应能力,可以有效地利用不同波长的太阳能光。

3. 低温系数:HJT太阳能电池的温度系数较低,意味着在高温环境下,其电池效率的下降相对较小。

4. 长寿命:HJT太阳能电池使用的是硅材料,具有较长的使用寿命,并且有较低的光衰减速率。

总而言之,异质结(HJT)太阳能电池是一种高效率、宽光谱响应和长寿命的太阳能电池技术。

它有望在太阳能发电领域发挥重要作用,并为可再生能源的发展做出贡献。

异质结太阳能电池

异质结太阳能电池
2.主流光伏设备供应商梅耶博格(MeyerBurger)日前正 式开启其与CSEM位于瑞士纳沙泰尔Hauterive的子公司 MeyerBurgerResearchAG的异质结(HJ)太阳能电池中试 线。
3.康奈尔大学的研究人员提出了一种优化钙钛矿太阳能 电池制造过程的方法,可生产薄的、可靠、高效且成本 低廉的太阳能电池。
优势
工序短
低温工艺
低温度系数
双面发电
具有代表性的太阳能电池类型
●高效HIT太阳能电池
结构就是在P型氢化非晶硅和n型氢化非晶硅 与n型硅衬底之间增加一层非掺杂(本征)氢化非 晶硅薄膜,采取该工艺措施后,改变了PN结的性 能
● GaAs异质结太阳能电池
GaAs属于III-V族化合物半导体材料,其能隙 与太阳光谱的匹配较适合且能耐高。与硅太阳电 池相比,GaAs太阳电池具有较好的性能。
3.表面窗口层对电池性能的影响 4.TCO对Jsc、FF的影响
氧分压7.2×10-4 Torr
射结 率论 ,: 能透 够明 提氧 高化 电物 池能 的够 转降 换低 效电 率池 。表
面 光 的 反
发展近况:
Country
Organization
Janpan Europe
Pansonic Choshu(CIC) EPFL/Switzerland EPFL/Switzerland RRS/Switzerland
INES/France
Area (cm2) 101.8 243/CZ 3.98/FZ/n 3.98/FZ/p 4/CZ
Voc (mV) 750 685 727 722 735
105/FZ
732
HZB/Germany
1
639

太阳井 异质结

太阳井 异质结

太阳井异质结引言太阳能是一种清洁、可再生的能源,具有广阔的应用前景。

太阳能电池作为太阳能利用的关键技术之一,其效率和稳定性对于太阳能发电系统的性能至关重要。

在太阳能电池中,异质结是一种常见且重要的结构,被广泛应用于各类光伏设备中。

本文将详细介绍太阳井异质结的原理、制备方法以及应用领域。

一、太阳井异质结原理太阳井异质结是由两种不同材料形成的电子级别不连续界面。

其中,n型材料具有过量电子,而p型材料则有缺失电子,这导致了在两种材料接触处形成了一个空穴浓度较高、自由电子浓度较低的区域。

这个空穴浓度梯度区域被称为p-n结。

在光照条件下,当光子击中p-n结时,会激发出一个电子-空穴对,并产生一个开路电压。

这个开路电压可以通过连接外部负载来释放,并转化为电能。

因此,太阳井异质结可以将光能转化为电能。

二、太阳井异质结制备方法太阳井异质结的制备方法多种多样,常见的方法包括物理气相沉积、化学气相沉积和溶液法等。

1.物理气相沉积(Physical Vapor Deposition, PVD):这是一种通过蒸发或溅射等方法,在真空环境中将材料沉积到基底上的技术。

其中,热蒸发和电子束蒸发是常用的物理气相沉积方法。

通过控制材料的温度和蒸发源与基底之间的距离,可以实现对异质结形貌和性能的调控。

2.化学气相沉积(Chemical Vapor Deposition, CVD):这是一种利用化学反应在基底表面生成所需材料的技术。

CVD技术具有较高的成膜速率和较好的均匀性,可以实现对异质结厚度和组分的精确控制。

常见的CVD方法包括热CVD、低压CVD和气相外延等。

3.溶液法(Solution Method):这是一种将材料溶解在溶液中,然后通过沉淀、蒸发或喷涂等方式在基底上形成薄膜的方法。

溶液法制备太阳井异质结具有成本低、工艺简单等优点,适用于大面积制备和柔性基底。

三、太阳井异质结的应用领域太阳井异质结作为一种高效的光电转换器件,在能源领域和电子学领域有着广泛的应用。

同质结,异质结,肖特基是光伏组件的结构

同质结,异质结,肖特基是光伏组件的结构

光伏组件是太阳能发电系统中的重要部件,其结构类型主要包括同质结和异质结。

而肖特基结构则是光伏组件中常见的一种特殊结构。

本文将从这三种结构的定义、特点、工作原理以及在光伏组件中的应用等方面进行详细介绍。

一、同质结1. 定义同质结是指由同一种半导体材料组成的结构。

在同质结光伏组件中,通常会选用单晶硅材料作为太阳能电池的主要材料,因为单晶硅具有较高的光电转换效率和稳定性。

2. 特点同质结光伏组件具有以下特点:- 材料纯度较高,电子迁移能力强,光电转换效率较高;- 制作工艺相对简单,成本相对较低;- 但由于材料的限制,其光电转换效率和性能受到一定限制。

3. 工作原理在同质结光伏组件中,当太阳光照射到太阳能电池表面时,光子与半导体材料发生作用,激发出电子-空穴对。

随着外加电场的作用,电子-空穴对被分离,从而产生电流,实现光电能的转换。

4. 应用同质结光伏组件在太阳能发电系统中被广泛应用,特别适用于大规模光伏电站建设。

二、异质结1. 定义异质结是由不同材料组成的半导体结构。

在异质结光伏组件中,常见的材料组合包括硅/硅-锗异质结、硅/铜铟镓硒(CIGS)异质结等。

2. 特点异质结光伏组件具有以下特点:- 可利用不同材料的优势,实现更高效率的光电转换;- 可通过调控能带结构和电子结构,以降低材料之间的能带偏移和界面态密度,从而提高光电转换效率;- 制备工艺相对复杂,成本相对较高。

3. 工作原理在异质结光伏组件中,不同材料的异质结使得电子-空穴对的分离效果更佳。

当太阳光照射到太阳能电池表面时,由于材料的不同,电子-空穴对在界面处更容易被分离,从而提高光电转换效率。

4. 应用异质结光伏组件在需求较高光电转换效率的领域得到广泛应用,尤其是在航空航天、卫星载荷等对能源密度和质量有较高要求的场合。

三、肖特基结1. 定义肖特基结构是一种由金属和半导体材料组成的二极管。

在光伏组件中,肖特基结构的应用主要是为了提高组件的光电转换效率。

异质结太阳能电池综述

异质结太阳能电池综述

异质结太阳能电池研究现状一、引言:进入21世纪,传统的化石能源正面临枯竭,人们越来越认识到寻求可再生能源的迫切性。

据《中国新能源与可再生能源发展规划1999白皮书统计,传统化石能源随着人们的不断开发已经趋于枯竭的边缘,各种能源都只能用很短的时间,石油:42年,天然气:67年,煤:200年。

而且,由于大量过度使用这些能源所造成的环境污染问题也日益严重,每年排放的二氧化碳达210万吨,并呈上升趋势,二氧化碳的过度排放是造成全球气候变暖的罪魁祸首;空气中大量二氧化碳、粉尘含量已严重影响人们的身体健康和人类赖以生存的自然环境。

正是因为这些问题的存在,人们需要一种储量丰富的洁净能源来代替石油等传统化石能源。

而太阳能作为一种可再生能源正符合这一要求。

太阳能每秒钟到达地面的能量高达80万千瓦,若把地球表面0.1%的太阳能转为电能,转变率5%,每年发电量就可达5.6×1012千瓦小时。

而我国太阳能资源非常丰富,理论储量达每年1700亿吨标准煤,太阳能资源开发利用的前景非常广阔。

在太阳能的有效利用中,太阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。

太阳能电池的研制和开发日益得到重视。

本文简要地综述了各种异质结太阳能电池的种类及其国内外的研究现状。

二、国外异质结太阳能电池1、TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池2005年5月份,Kohshin Takahashi等发表了TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池,电池结构如图1。

图1 ITO/PEDOT:PSS/CuPc/PTCBI/Al结构太阳能电池简图图2 TCO/TiO2/P3HT/Au电池结构示意图同时采用了卟啉作为敏化剂吸收光子,产生的电子注入到TiO2的导带,有效地增加了短路电流。

测得的短路电流JSC=1.11mA/cm2,开路电压VOC=0.50V,填充因子FF=48%,能量转化效率PCE=0.26%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

异质结太阳能电池研究现状一、引言:进入21世纪,传统的化石能源正面临枯竭,人们越来越认识到寻求可再生能源的迫切性。

据《中国新能源与可再生能源发展规划1999白皮书统计,传统化石能源随着人们的不断开发已经趋于枯竭的边缘,各种能源都只能用很短的时间,石油:42年,天然气:67年,煤:200年。

而且,由于大量过度使用这些能源所造成的环境污染问题也日益严重,每年排放的二氧化碳达210万吨,并呈上升趋势,二氧化碳的过度排放是造成全球气候变暖的罪魁祸首;空气中大量二氧化碳、粉尘含量已严重影响人们的身体健康和人类赖以生存的自然环境。

正是因为这些问题的存在,人们需要一种储量丰富的洁净能源来代替石油等传统化石能源。

而太阳能作为一种可再生能源正符合这一要求。

太阳能每秒钟到达地面的能量高达80万千瓦,若把地球表面0.1%的太阳能转为电能,转变率5%,每年发电量就可达5.6×1012千瓦小时。

而我国太阳能资源非常丰富,理论储量达每年1700亿吨标准煤,太阳能资源开发利用的前景非常广阔。

在太阳能的有效利用中,太阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。

太阳能电池的研制和开发日益得到重视。

本文简要地综述了各种异质结太阳能电池的种类及其国内外的研究现状。

二、国外异质结太阳能电池1、TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池2005年5月份,Kohshin Takahashi等发表了TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池,电池结构如图1。

图1 ITO/PEDOT:PSS/CuPc/PTCBI/Al结构太阳能电池简图图2 TCO/TiO2/P3HT/Au电池结构示意图同时采用了卟啉作为敏化剂吸收光子,产生的电子注入到TiO2的导带,有效地增加了短路电流。

测得的短路电流JSC=1.11mA/cm2,开路电压VOC=0.50V,填充因子FF=48%,能量转化效率PCE=0.26%。

2、PCBM/phthalocyanine(CuPc)异质结太阳能电池2006年,美国加州大学洛杉矶分校的Chih-wei Chu 等人用PCBM与phthalocyanine(CuPc)制成聚合物与有机小分子异质结太阳能电池,拓展了对光谱范围的吸收,并通过平衡施主和受主的载流子传输,使效率由0.74%提高到1.18%。

其器件结构如图3所示:图3(a)器件结构图(b)器件能带简图3、poly(3-hexylthiophene)(P3HT)/[[6,6]-phenyl-C71-butyric acid methylester(PCBM)/TiO2体异质结太阳能电池2007年,美国宾夕法尼亚大学的研究人员用poly(3-hexylthiophene)(P3HT)和[[6,6]-phenyl-C71-butyric acid methylester(PCBM)以及TiO2制作了体异质结太阳能电池[9],其开路电压为641mV,短路电流达到12.4mA/cm2。

图4为其器件结构图。

图4 器件结构图三、国内异质结太阳能电池1、P3HT/TiO2异质结太阳能电池吉林大学课题组对P3HT/TiO2异质结太阳能电池材料及器件进行了研究。

器件结构图如图5所示。

能级结构如图6所示。

图5 P3HT/TiO2异质结太阳能电池器件结构图图6 器件能级结构图用Keithley,SMU2601测得在AM1.5G光照下,该异质结太阳能电池开路电压达到0.75V,短路电流0.8mA,效率为0.24%。

对其吸收光谱进行了表征,发现在500-600nm波段有强吸收。

2、高效率n-nc-Si∶H/ p-c-Si 异质结太阳能电池中科院物理科学院采用热丝化学气相沉积技术( HWCVD) ,系统地研究了纳米晶硅层(尤其是本征缓冲层) 的晶化度以及晶体硅表面氢处理时间对nc-Si∶H/c-Si 异质结太阳能电池性能的影响,通过C-V 和C-F 测试分析了不同氢处理时间和本征缓冲层氢稀释度对nc-Si∶H/ c-Si 界面缺陷态的影响,运用高分辨透射电镜观察了不同的本征缓冲层晶化度的nc-Si∶H/ c-Si 异质结太阳能电池的界面,优化工艺参数,在p 型CZ 晶体硅衬底上制备出转换效率为17.27 %的n-nc-Si∶H/ i-nc-Si∶H/ p-c-Si异质结电池。

电池制备采用HWCVD 技术,钽丝(Ta) 作为热丝,本征层和掺杂层在同一腔体制备,衬底是p 型CZ 晶体硅,电阻率为3~5Ω·cm ,c-Si 背面电极为Al 背场接触,薄膜沉积前分别用HF 溶液和原子氢处理晶体硅表面。

发射极薄膜沉积参数为:热丝温度T f= 1800 ℃, 沉积气压Pg =2Pa , 衬底温度Ts =250 ℃,氢稀释度S H = H2 / ( H2 + Si H4 + PH3 ) =90 % ,掺杂浓度比R = PH3 / Si H4 = 015 %~2 %. 本征缓冲层沉积参数为: T f = 1800 ℃, Pg = 2Pa , Ts =250 ℃, S H = 0~99 %. 透明导电膜( ITO) 通过真空蒸发法制备. 通过C-V和C-F测试研究了异质结界面缺陷态,测量了不同沉积条件下n-nc-Si∶H/ i-nc-Si∶H/ p-c-Si异质结太阳能电池的量子效率和J-V曲线,电池的J-V 特性是在AM1.5 为100mW/ cm2太阳模拟器照射下测得。

3、II 型半导体异质结纳米晶的制备及其在太阳能电池中的应用中国科学院化学研究所有机固体院重点实验室对II 型半导体异质结纳米晶在太阳能电池中的应用进行了研究。

具有type II 型的半导体异质结纳米晶能级位错的纳米晶可以使得光照产生的激子在空间内电荷分离,因而是一类潜在光伏电池材料。

CdSe 和CdTe 都具有比较宽的吸收光谱,在薄膜太阳能电池和聚合物太阳能电池中具有优异的性能,并且其异质结能级交错为type II 结构。

在本研究中,我们首先通过溶液外延的办法,从CdTe 四臂棒进行外延制备了半导体CdTe-CdSe 的多臂棒状异质结纳米晶,从CdSe 纳米棒进行外延生长得到了CdSe-CdTe 球棒和棒状异质结纳米晶,并研究了制备的半导体异质结纳米晶的光学性质,进而研究了这些半导体异质结纳米晶在太阳能电池中的应用。

四、结论:目前,太阳能电池的应用已从军事领域、航天领域进入工业、商业、农业、通信、家用电器以及公用设施等部门,尤其可以分散地在边远地区、高山、沙漠、海岛和农村使用,以节省造价很贵的输电线路。

但是在目前阶段,它的成本还很高,发出1kW电需要投资上万美元,因此大规模使用仍然受到经济上的限制。

但是,从长远来看,随着太阳能电池制造技术的改进以及新的光—电转换装置的发明,各国对环境的保护和对再生清洁能源的巨大需求,太阳能电池仍将是利用太阳辐射能比较切实可行的方法,可为人类未来大规模地利用太阳能开辟广阔的前景。

五、参考文献:[1]杨金焕,陆钧,黄小橹,太阳能发电地面应用的前景及发展动向,新能源,1995,17(2):9-10.[2]M.Gladwell,The Tipping Point,Little,Brown and Company,Inc.,NewYork(2000)[3]梁宗存,沈辉,李戬洪.太阳能电池及材料研究.材料导报.2000,14(8):38~40[4]W.Shockley and H.J.Queisser.Detaied balance limit of efficiency of PNjunction solar cells.J.Appl.Phys.lett 1961,32:510[3]C.W.Tang.Two-layer organic photovoltaic cell[J].Appl.Phys.Lett.1986,48;183-185[4]朱道本,王佛松主编.有机固体[Ml.上海;上海科学技术出版社,1999.[5]Shriakawa H,et al.J Chem Soc Chem Commun,1977,16:578[6]胡玥,刘彦军.导电高分子聚噻吩及其衍生物的研究进展.材料导报.2006,20(1):64~68.[7]H.Shirakawa,S.Ikeda,Infrared Spectra of Poly(acetylene).Polym.J.1971,2:231-234[8]佟拉嘎,含烷基、烷氧基侧基聚噻吩的合成、表征与发光性能,大连理工大学博士学位论文[9]Gopal K.Mor,Karthik Shankar.High efficiency double heterojunctionpolymer photovoltaic cells using highly ordered TiO2 nanotube arrays.Appl.Phys.Lett.91,152111(2007)[10]Vignesh Gowrishankar,Christine K.Luscombe,Michael D.McGehee etal.Soalr Energy Materials&Solar Cells.Accepted 12 January 2007,Article inPress.[11]Jin Young Kim,et al.Efficient Tandem Polymer Solar Cells Fabricated byAll-Solution Processing.Science 317,222(2007); [12]Chih-Wei Chu,Vishal Shrotriya.Appl.Phys.Lett.88,153504(2006)[13]V.P.Singh,B.Parsarathy,R.S.Singh,A.Aguilera,J.A nthony,M.Payne.Solar Energy Materials&Solar Cells 90(2006)798~812[14]Kohshin Takahashi,Youhei Takano et al.Synthetic Metals 155(2005)51~55。

相关文档
最新文档