全国高考理科数学试题分类汇编—统计
近5年全国高考卷理科数学分类汇编-概率统计
近5年全国高考卷理科数学分类汇编-概率统计班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. (2016理II)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) (A )4n m (B )2n m (C )4m n (D )2mn2. (2016理II)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )(A )24 (B )18 (C )12 (D )93. (2016理I)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13 (B )12 (C )23 (D )344. (2012理)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A .12种 B .10种 C .9种D .8种5. (2013理II)已知(1+a x )(1+x )5的展开式中x 2的系数为5,则a =( )(A )-4(B )-3(C )-2(D )-16. (2013理I)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m =( ) A 、5B 、6C 、7D 、87. (2013理I)为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( ) A 、简单随机抽样 B 、按性别分层抽样 C 、按学段分层抽样 D 、系统抽样8. (2014理II)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .0.8 B .0.75 C .0.6 D .0.459. (2014理I)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A .81 B .83 C .85 D .87 10.(2015理II)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
高考数学真题汇编12 统计 理 解析 试题
卜人入州八九几市潮王学校2021高考真题分类汇编:统计1.【2021高考真题理17】设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,假设记21ξξD D 、分别为21ξξ、的方差,那么〔〕A .21ξξD D >B .21ξξD D =C .21ξξD D <D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关【答案】A【解析】由题意可知21ξξE E =,又由题意可知,1ξ的波动性较大,从而有21ξξD D >.注意:此题也可利用特殊值法。
2.【2021高考真题理6】从甲乙两个城分别随机抽取16台自动售货机,对其销售额进展统计,统计数据用茎叶图表示〔如下列图〕,设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,那么〔〕 A.x x <甲乙,m 甲>m 乙 B.x x <甲乙,m 甲<m 乙 C.x x >甲乙,m 甲>m 乙 D.x x >甲乙,m 甲<m 乙【答案】B.【解析】根据平均数的概念易计算出乙甲x x <,又2022218=+=甲m ,2923127=+=乙m 应选B. 3.【2021高考真题理4】采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .那么抽到的人中,做问卷B 的人数为〔A 〕7〔B 〕9〔C 〕10〔D 〕15 【答案】C【解析】从960中用系统抽样抽取32人,那么每30人抽取一人,因为第一组号码为9,那么第二组为39,公差为30.所以通项为2130)1(309-=-+=n n a n ,由7502130451≤-≤n ,即302125302215≤≤n ,所以25,17,16 =n ,一共有1011625=+-人,选C. 4.【2021高考真题理9】样本〔12,,,n x x x 〕的平均数为x ,样本〔12,,m y y y 〕的平均数为()y x y ≠,假设样本〔12,,,n x x x ,12,,m y y y 〕的平均数(1)z ax a y =+-,其中102α<<,那么n,m 的大小关系为 A .nm <B .n m >C .n m =D .不能确定【答案】A【解析】由题意知样本),,,(11m n y y x x 的平均数为y nm mx n m n n m y m x n z +++=++=,又y x z )1(αα-+=,即nm mn m n +=-+=αα1,。
历年(2019-2024)全国高考数学真题分类(统计与数字特征)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(统计与数字特征)汇编考点01 随机抽样1.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).A .4515400200C C ⋅种B .2040400200C C ⋅种 C .3030400200C C ⋅种D .4020400200C C ⋅种考点02 图表类统计图综合1.(2022∙天津∙高考真题)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .8B .12C .16D .182.(2021∙天津∙高考真题)从某网络平台推荐的影视作品中抽取400部,统计其评分数据,将所得400个评分数据分为8组:[)66,70、[)70,74、L 、[]94,98,并整理得到如下的频率分布直方图,则评分在区间[)82,86内的影视作品数量是( )A.20 B.40 C.64 D.804.(2021∙全国甲卷∙高考真题)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间5.(2020∙全国新Ⅱ卷∙高考真题)(多选)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A.这11天复工指数和复产指数均逐日增加;B.这11天期间,复产指数增量大于复工指数的增量;C.第3天至第11天复工复产指数均超过80%;D.第9天至第11天复产指数增量大于复工指数的增量;5.(2020∙天津∙高考真题)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[)[)[)[],并整理得到如下频率分布直方图,则在被抽取的零件中,5.31,5.33,5.33,5.35,,5.45,5.47,5.47,5.49直径落在区间[5.43,5.47)内的个数为()A.10 B.18 C.20 D.36考点03 样本的数字特征一、单选题1.(2024∙全国新Ⅱ卷∙高考真题)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg)并整理如下表亩产[900,950) [950,1000) [1000,1050) [1050,1100) [1100,1150) [1150,1200) 量频数 6 12 18 30 24 10根据表中数据,下列结论中正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg至300kg之间D.100块稻田亩产量的平均值介于900kg至1000kg之间2.(2022∙全国乙卷∙高考真题)分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C .甲同学周课外体育运动时长大于8的概率的估计值大于0.4D .乙同学周课外体育运动时长大于8的概率的估计值大于0.63.(2022∙全国甲卷∙高考真题)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差4.(2020∙全国∙高考真题)在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====5.(2020∙全国∙高考真题)设一组样本数据x 1,x 2,…,xn 的方差为0.01,则数据10x 1,10x 2,…,10xn 的方差为( )A .0.01B .0.1C .1D .106.(2019∙全国∙高考真题)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差二、多选题9.(2023∙全国新Ⅰ卷∙高考真题)有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则( ) A .2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数B .2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数C .2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差D .2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差10.(2021∙全国新Ⅱ卷∙高考真题)下列统计量中,能度量样本12,,,n x x x 的离散程度的是( )A .样本12,,,n x x x 的标准差B .样本12,,,n x x x 的中位数C .样本12,,,n x x x 的极差D .样本12,,,n x x x 的平均数11.(2021∙全国新Ⅰ卷∙高考真题)有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =⋅⋅⋅为非零常数,则( )A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样本数据的样本极差相同三、填空题12.(2020∙江苏∙高考真题)已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是 .13.(2019∙江苏∙高考真题)已知一组数据6,7,8,8,9,10,则该组数据的方差是 .考点04 变量间的相关关系1.(2024∙天津∙高考真题)下列图中,线性相关性系数最大的是( )A .B .C .D .2.(2023∙天津∙高考真题)鸢是鹰科的一种鸟,《诗经∙大雅∙旱麓》曰:“鸢飞戾天,鱼跃余渊”. 鸢尾花因花瓣形如鸢尾而得名,寓意鹏程万里、前途无量.通过随机抽样,收集了若干朵某品种鸢尾花的花萼长度和花瓣长度(单位:cm ),绘制散点图如图所示,计算得样本相关系数为0.8642r =,利用最小二乘法求得相应的经验回归方程为 0.75010.6105y x =+,根据以上信息,如下判断正确的为( )A .花瓣长度和花萼长度不存在相关关系B .花瓣长度和花萼长度负相关C .花萼长度为7cm 的该品种鸢尾花的花瓣长度的平均值为5.8612cmD .若从样本中抽取一部分,则这部分的相关系数一定是0.86423.(2020∙全国∙高考真题)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i = 得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A .y a bx =+B .2y a bx =+C .e x y a b =+D .ln y a b x =+参考答案考点01 随机抽样1.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).A .4515400200C C ⋅种B .2040400200C C ⋅种 C .3030400200C C ⋅种 D .4020400200C C ⋅种【答案】D【详细分析】利用分层抽样的原理和组合公式即可得到答案. 【答案详解】根据分层抽样的定义知初中部共抽取4006040600⨯=人,高中部共抽取2006020600⨯=, 根据组合公式和分步计数原理则不同的抽样结果共有4020400200C C ⋅种.故选:D.考点02 图表类统计图综合1.(2022∙天津∙高考真题)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .8B .12C .16D .18【答案】B 【详细分析】结合已知条件和频率分布直方图求出志愿者的总人数,进而求出第三组的总人数,从而可以求得结果. 【答案详解】志愿者的总人数为20(0.240.16)1+⨯=50, 所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.故选:B.2.(2021∙天津∙高考真题)从某网络平台推荐的影视作品中抽取400部,统计其评分数据,将所得400个评分数据分为8组:[)66,70、[)70,74、L 、[]94,98,并整理得到如下的频率分布直方图,则评分在区间[)82,86内的影视作品数量是( )A .20B .40C .64D .80【答案】D 【详细分析】利用频率分布直方图可计算出评分在区间[)82,86内的影视作品数量.【答案详解】由频率分布直方图可知,评分在区间[)82,86内的影视作品数量为4000.05480⨯⨯=.故选:D.4.(2021∙全国甲卷∙高考真题)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是( )A .该地农户家庭年收入低于4.5万元的农户比率估计为6%B .该地农户家庭年收入不低于10.5万元的农户比率估计为10%C .估计该地农户家庭年收入的平均值不超过6.5万元D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【详细分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【答案详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+⨯==,故B 正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++⨯==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.027.68⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C.故选:C.【名师点评】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于⨯频率组距组距. 5.(2020∙全国新Ⅱ卷∙高考真题)(多选)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A .这11天复工指数和复产指数均逐日增加;B .这11天期间,复产指数增量大于复工指数的增量;C .第3天至第11天复工复产指数均超过80%;D .第9天至第11天复产指数增量大于复工指数的增量;【答案】CD【详细分析】注意到折线图中有递减部分,可判定A 错误;注意考查第1天和第11天的复工复产指数的差的大小,可判定B 错误;根据图象,结合复工复产指数的意义和增量的意义可以判定CD 正确.【答案详解】由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A 错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B 错误;由图可知,第3天至第11天复工复产指数均超过80%,故C 正确;由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D 正确;【名师点评】本题考查折线图表示的函数的认知与理解,考查理解能力,识图能力,推理能力,难点在于指数增量的理解与观测,属中档题.5.(2020∙天津∙高考真题)从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[)[)[)[]5.31,5.33,5.33,5.35,,5.45,5.47,5.47,5.49 ,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A .10B .18C .20D .36【答案】B 【详细分析】根据直方图确定直径落在区间[)5.43,5.47之间的零件频率,然后结合样本总数计算其个数即可. 【答案详解】根据直方图,直径落在区间[)5.43,5.47之间的零件频率为:()6.25 5.000.020.225+⨯=, 则区间[)5.43,5.47内零件的个数为:800.22518⨯=.故选:B.【名师点评】本题主要考查频率分布直方图的计算与实际应用,属于中等题.考点03 样本的数字特征一、单选题1.(2024∙全国新Ⅱ卷∙高考真题)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并整理如下表 亩产量[900,950) [950,1000) [1000,1050) [1050,1100) [1100,1150) [1150,1200) 频数 6 12 18 30 24 10 根据表中数据,下列结论中正确的是( )A .100块稻田亩产量的中位数小于1050kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200kg 至300kg 之间D .100块稻田亩产量的平均值介于900kg 至1000kg 之间【答案】C【详细分析】计算出前三段频数即可判断A ;计算出低于1100kg 的频数,再计算比例即可判断B ;根据极差计算方法即可判断C ;根据平均值计算公式即可判断D.【答案详解】对于 A, 根据频数分布表可知, 612183650++=<,所以亩产量的中位数不小于 1050kg , 故 A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误; 对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误. 故选;C.2.(2022∙全国乙卷∙高考真题)分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h ),得如下茎叶图:则下列结论中错误的是( )A .甲同学周课外体育运动时长的样本中位数为7.4B .乙同学周课外体育运动时长的样本平均数大于8C .甲同学周课外体育运动时长大于8的概率的估计值大于0.4D .乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【详细分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【答案详解】对于A 选项,甲同学周课外体育运动时长的样本中位数为7.37.57.42+=,A 选项结论正确.对于B 选项,乙同学课外体育运动时长的样本平均数为:6.37.47.68.18.28.28.58.68.68.68.69.09.29.39.810.18.50625816+++++++++++++++=>, B 选项结论正确.对于C 选项,甲同学周课外体育运动时长大于8的概率的估计值60.3750.416=<, C 选项结论错误.对于D 选项,乙同学周课外体育运动时长大于8的概率的估计值130.81250.616=>, D 选项结论正确.故选:C3.(2022∙全国甲卷∙高考真题)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【详细分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解. 【答案详解】讲座前中位数为70%75%70%2+>,所以A 错; 讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;讲座后问卷答题的正确率的极差为100%80%20%-=,讲座前问卷答题的正确率的极差为95%60%35%20%-=>,所以D 错.故选:B.4.(2020∙全国∙高考真题)在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【答案】B【详细分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.【答案详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=; 对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=; 对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=; 对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=. 因此,B 选项这一组的标准差最大.故选:B.【名师点评】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题. 5.(2020∙全国∙高考真题)设一组样本数据x 1,x 2,…,xn 的方差为0.01,则数据10x 1,10x 2,…,10xn 的方差为( )A .0.01B .0.1C .1D .10【答案】C【详细分析】根据新数据与原数据关系确定方差关系,即得结果. 【答案详解】因为数据(1,2,,)i ax b i n +=L ,的方差是数据(1,2,,)i x i n =L ,的方差的2a 倍, 所以所求数据方差为2100.01=1⨯故选:C【名师点评】本题考查方差,考查基本详细分析求解能力,属基础题.6.(2019∙全国∙高考真题)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差【答案】A【详细分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【答案详解】设9位评委评分按从小到大排列为123489x x x x x x ≤≤≤≤≤ .则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x ≤≤≤ ,中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =+++++ ,后来平均数234817x x x x x '=+++ () 平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确 ③()()()222219119S x x x x x x ⎡⎤=-+-++-⎣⎦ ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦ 由②易知,C 不正确. ④原极差91=x -x ,后来极差82=x -x 可能相等可能变小,D 不正确.【名师点评】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.考点04 变量间的相关关系1.(2024∙天津∙高考真题)下列图中,线性相关性系数最大的是( )A .B .C .D .【答案】A【详细分析】由点的分布特征可直接判断【答案详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A2.(2023∙天津∙高考真题)鸢是鹰科的一种鸟,《诗经∙大雅∙旱麓》曰:“鸢飞戾天,鱼跃余渊”. 鸢尾花因花瓣形如鸢尾而得名,寓意鹏程万里、前途无量.通过随机抽样,收集了若干朵某品种鸢尾花的花萼长度和花瓣长度(单位:cm ),绘制散点图如图所示,计算得样本相关系数为0.8642r =,利用最小二乘法求得相应的经验回归方程为 0.75010.6105y x =+,根据以上信息,如下判断正确的为( )A .花瓣长度和花萼长度不存在相关关系B .花瓣长度和花萼长度负相关C .花萼长度为7cm 的该品种鸢尾花的花瓣长度的平均值为5.8612cmD .若从样本中抽取一部分,则这部分的相关系数一定是0.8642【答案】C【详细分析】根据散点图的特点及经验回归方程可判断ABC 选项,根据相关系数的定义可以判断D 选项.【答案详解】根据散点的集中程度可知,花瓣长度和花萼长度有相关性,A 选项错误散点的分布是从左下到右上,从而花瓣长度和花萼长度呈现正相关性,B 选项错误,把7x =代入 0.75010.6105y x =+可得 5.8612cm y =,C 选项正确;由于0.8642r =是全部数据的相关系数,取出来一部分数据,相关性可能变强,可能变弱,即取出的数据的相关系数不一定是0.8642,D 选项错误故选:C3.(2020∙全国∙高考真题)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i = 得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A .y a bx =+B .2y a bx =+C .e x y a b =+D .ln y a b x =+ 【答案】D【详细分析】根据散点图的分布可选择合适的函数模型.【答案详解】由散点图分布可知,散点图分布在一个对数函数的图象附近, 因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+. 故选:D.【名师点评】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.。
高考新课标全国卷理科数学分类汇编
新课标全国卷理科数学【2020年】数学真题分类汇编目录1、集合与常用逻辑用语 (1)2、函数及其性质 (2)3、导数及其应用 (4)4、三角函数、解三角形 (11)5、平面向量 (16)6、数列 (17)7、不等式、线性规划、推理与证明 (20)8、立体几何 (22)9、解析几何 (30)10、统计、概率分布、计数原理 (40)11、复数及其运算 (55)12、程序框图 (57)13、坐标系与参数方程 (60)14、不等式选讲 (66)1.集合与常用逻辑用语一、选择题【2019, 1】已知集合{}1A x x =<, {}31xB x =<, 则( )A .{|0}AB x x =<I B .A B =R UC .{|1}A B x x =>UD .A B =∅I 【2019, 1】设集合}034{2<+-=x x x A , }032{>-=x x B , 则A B =I ( )A .)23,3(--B .)23,3(-C .)23,1(D .)3,23(【2019, 3】设命题p :n ∃∈N , 22n n >, 则p ⌝为( )A .n ∀∈N , 22n n >B .n ∃∈N , 22n n ≤C .n ∀∈N , 22n n ≤D .n ∃∈N , 22n n =【2019, 1】已知集合A={x |2230x x --≥}, B={}22x x -≤<, 则A B ⋂=( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【2019, 1】已知集合A ={x |x 2-2x >0}, B ={x |x 则( ) A .A ∩B = B .A ∪B =R C .B ⊆A D .A ⊆B 【2019, 1】已知集合A={1, 2, 3, 4, 5}, B={(x , y )|x A ∈, y A ∈, x y A -∈}, 则B 中包含元素的个数为( )A .3B .6C .8D .10(2019·2)设集合{}1,2,4A =, {}240x x x m B =-+=.若{}1A B =I , 则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5(2019·2)已知集合A ={1, 2, 3}, B ={x |(x +1)(x -2)<0, x ∈Z }, 则A B =U ( )A .{1}B .{1, 2}C .{0, 1, 2, 3} D.{-1,0, 1, 2, 3}(2019·1)已知集合A ={-2, -1, 0, 2}, B ={x |(x -1)(x +2)<0}, 则A ∩B =( )A .{-1, 0}B .{0, 1}C .{-1, 0, 1}D .{0, 1,2}(2019·1)设集合M ={0, 1, 2}, N ={}2|320x x x -+≤, 则M N I =( )A .{1}B .{2}C .{0, 1}D .{1, 2}(2019·1)已知集合M ={x|(x -1)2 < 4, x ∈R }, N ={-1, 0, 1, 2, 3}, 则M ∩ N =( ) A .{0, 1, 2}B .{-1, 0, 1, 2}C .{-1, 0, 2, 3}D .{0, 1, 2, 3}(2019·1)已知集合A ={1, 2, 3, 4, 5}, B ={(x ,y )| x ∈A , y ∈A , x -y ∈A }, 则B 中所含元素的个数为( )A. 3B. 6C. 8D. 10(2019·10)已知a 与b 均为单位向量, 其夹角为θ, 有下列四个命题中真命题是( )12:+10,3P πθ⎡⎫>⇔∈⎪⎢⎣⎭a b 22:1,3P πθπ⎛⎤+>⇔∈⎥⎝⎦a b3:10,3P πθ⎡⎫->⇔∈⎪⎢⎣⎭a b 4:1,3P πθπ⎛⎤->⇔∈ ⎥⎝⎦a bA . P 1, P 4B .P 1, P 3C .P 2, P 3D .P 2, P 42.函数及其性质一、选择题【2019, 5】函数()f x 在(,)-∞+∞单调递减, 且为奇函数.若(11)f =- , 则满足21()1x f --≤≤的x 的取值范围是( ) A .[2,2]- B . [1,1]-C . [0,4]D . [1,3]【2019, 11】设,,x y z 为正数, 且235x y z ==, 则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z 【2019, 7】函数xe x y -=22在]2,2[-的图像大致为( )A .B .C .D .【2019, 8】若1>>b a , 10<<c , 则( ) A .c c b a < B .c c ba ab < C .c b c a a b log log <D .c c b a log log <【2019, 3】设函数()f x , ()g x 的定义域都为R, 且()f x 是奇函数,()g x 是偶函数, 则下列结论正确的是( )A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【2019, 11】已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax , 则a 的取值范围是( )A .(-∞, 0]B .(-∞, 1]C .[-2,1]D .[-2,0] 【2019, 10】已知函数1()ln(1)f x x x=+-, 则()y f x =的图像大致为( )【2019, 12】函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于( )A .2B .4C .6D .8【2019, 2】下列函数中, 既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = B .1y x =+ C .21y x =-+ D .2xy -=【2019, 13】若函数f (x )=x ln (x +2a x +)为偶函数, 则a =xy O 11A .1yxO 1xyO 111xy1O B .C .D .(2019·12)已知函数()()f x x ∈R 满足()2()f x f x -=- , 若函数1x y x+=与()y f x =图像的交点为11(,)x y , 22(,)x y , …, (,)m m x y , 则1()mi i i x y =+=∑ ( )A .0B .mC .2mD .4m(2019·8)设3log 6a =, 5log 10b =, 7log 14c =, 则( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>(2019·10)已知函数32()f x x ax bx c =+++, 下列结论中错误的是( )A .00,()0x f x ∃∈=RB .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点, 则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点, 则0()0f x '=(2019·2)下列函数中, 既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = B .||1y x =+ C .21y x =-+ D .||2x y -=(2019·15)已知偶函数f (x )在[0, +∞)单调递减, f (2)=0. 若f (x -1)>0, 则x 的取值范围是_________.3.导数及其应用一、选择题【2019, 11】已知函数()f x =3231ax x -+, 若()f x 存在唯一的零点0x , 且0x >0, 则a 的取值范围为A .(2, +∞)B .(-∞, -2)C .(1, +∞)D .(-∞, -1)【2019, 12】设点P 在曲线12xy e =上, 点Q 在曲线ln(2)y x =上, 则||PQ 的最小值为( )A .1ln2-B ln 2)-C .1ln2+D ln 2)+【2019, 9】由曲线y =, 直线2y x =-及y 轴所围成的图形的面积为( )A .103 B .4 C .163D .6 二、填空题【2019, 16】如图, 圆形纸片的圆心为O , 半径为5 cm, 该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点, △DBC , △ECA , △F AB 分别是以BC , CA , AB 为底边的等腰三角形.沿虚线剪开后, 分别以BC , CA , AB 为折痕折起△DBC , △ECA , △F AB , 使得D, E, F 重合, 得到三棱锥.当△ABC .的边长变化时, 所得三棱锥体积(单位:cm 3)的最大值为_______.【2019, 16】若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称, 则f (x )的最大值为__________.(2019·11)若2x =-是函数21`()(1)x f x x ax e -=+-的极值点, 则()f x 的极小值为( )A.1-B.32e --C.35e -D.1 (2019·12)已知函数()()f x x ∈R 满足()2()f x f x -=- , 若函数1x y x+=与()y f x =图像的交点为11(,)x y , 22(,)x y , …, (,)m m x y , 则1()mi i i x y =+=∑ ( )A .0B .mC .2mD .4m(2019·5)设函数211log (2)(1)()2(1)x x x f x x -+-<⎧=⎨≥⎩, 则2(2)(l og 12)f f -+=( ) A .3B .6C .9D .12(2019·10)如图, 长方形ABCD 的边AB =2, BC =1, O 是AB 的中点, 点P 沿着边BC , CD 与DA 运动, 记∠BOP =x. 将动点P 到A , B 两点距离之和表示为x 的函数f (x ), 则f (x )的图像大致为 ( )A .B .C .D .(2019·12)设函数()f x '是奇函数()()f x x R ∈的导函数, (1)0f -= , 当x >0时,()()0xf x f x '-<, 则使得f (x ) >0成立的x 的取值范围是( )A .(,1)(0,1)-∞-UB .(1,0)(1,)-+∞UC .(,1)(1,0)-∞--UD .(0,1)(1,)+∞U(2019·8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x , 则a =( )A .0B .1C .2D .3(2019·12)设函数()x f x m π= , 若存在()f x 的极值点0x 满足22200[()]x f x m +< ,则m 的取值范围是( ) A .(,6)(6,+)-∞-∞UB .(,4)(4,+)-∞-∞UC .(,2)(2,+)-∞-∞UD .(,1)(4,+)-∞-∞U(2019·8)设3log 6a =, 5log 10b =, 7log 14c =, 则( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>(2019·12)设点P 在曲线xe y 21=上, 点Q 在曲线)2ln(x y =上, 则||PQ 的最小值为( ) A. 2ln 1-B.)2ln 1(2-C. 2ln 1+D.)2ln 1(2+(2019·2)下列函数中, 既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = B .||1y x =+ C .21y x =-+ D .||2x y -=(2019·9)由曲线y =直线2y x =-及y 轴所围成的图形的面积为( )A .103B .4C .163D .6(2019·12)函数11y x =-的图像与函数2sin ,(24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) A .2B .4C .6D .8(2019·15)已知偶函数f (x )在[0, +∞)单调递减, f (2)=0. 若f (x -1)>0, 则x 的取值范围是_________.(2019·16)若直线y = kx +b 是曲线y = ln x +2的切线, 也是曲线y = ln(x +1)的切线, 则b = .三、解答题【2019, 12】已知函数()()22xx f x aea e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点, 求a 的取值范围.【2019, 12】已知函数2)1()2()(-+-=x a e x x f x有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点, 证明:221<+x x .【2019, 12】已知函数31()4f x x ax =++, ()ln g x x =-. (Ⅰ)当a 为何值时, x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值, 设函数min{),()(}()h x f x g x =(0x >), 讨论()h x 零点的个数.【2019, 21】设函数1(0ln x xbe f x ae x x-=+, 曲线()y f x =在点(1, (1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.【2019, 21】设函数f (x )=x 2+ax +b , g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2), 且在点P 处有相同的切线y =4x +2.(1)求a , b , c , d 的值;(2)若x ≥-2时, f (x )≤kg (x ), 求k 的取值范围.【2019, 21】已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=-. (1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(, 求b a )1(+的最大值.【2019, 21】已知函数ln ()1a x bf x x x=++, 曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >, 且1x ≠时, ln ()1x kf x x x>+-, 求k 的取值范围.三、解答题(2019·21)已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x , 且220()2e f x --<<.(2019·21)(Ⅰ)讨论函数2()2xx f x e x -=+ 的单调性, 并证明当x 0 时, (2)20x x e x -++>;(Ⅱ)证明:当[0,1)a ∈时, 函数2()=(0)x e ax ag x x x -->有最小值.设g (x )的最小值为()h a , 求函数()h a 的值域.14.(2019·21)设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞, 0)单调递减, 在(0, +∞)单调递增; (Ⅱ)若对于任意x 1,, x 2∈[-1, 1], 都有|f (x 1)- f (x 2)|≤ e -1, 求m 的取值范围.15.(2019·21)已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-, 当0x >时, ()0g x >, 求b 的最大值;(Ⅲ)已知1.4142 1.4143<<, 估计ln2的近似值(精确到0.001).16.(2019·21)已知函数()ln()x f x e x m =-+.(Ⅰ)设0x =是()f x 的极值点, 求m , 并讨论()f x 的单调性; (Ⅱ)当2m ≤时, 证明()0f x >.17.(2019·21)已知函数121()(1)(0)2x f x f ef x x -'=-+.(Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥221)(, 求b a )1(+的最大值.18.(2019·21)已知函数ln ()1a x bf x x x=++, 曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >, 且1x ≠时, ln ()1x kf x x x>+-, 求k 的取值范围.6.二项式定理一、选择题(2019·5)已知5(1)(1)ax x ++的展开式中2x 的系数为5, 则a =( )A .4-B .3-C .2-D .1-(2019·8)51()(2)a x x x x+-的展开式中各项系数的和为2, 则该展开式中常数项为( )A .- 40B .- 20C .20D .40(2019·15)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32, 则a =_______. (2019·13)10()x a +的展开式中, 7x 的系数为15, 则a =________.4.三角函数、解三角形一、选择题【2019, 9】已知曲线C 1:y =cos x , C 2:y =sin (2x +2π3), 则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍, 纵坐标不变, 再把得到的曲线向右平移π6个单位长度, 得到曲线C 2B.把C1上各点的横坐标伸长到原来的2倍, 纵坐标不变, 再把得到的曲线向左平移π12个单位长度, 得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍, 纵坐标不变, 再把得到的曲线向右平移π6个单位长度, 得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍, 纵坐标不变, 再把得到的曲线向左平移π12个单位长度, 得到曲线C2【2019, 12】已知函数)2,0)(sin()(πϕωϕω≤>+=xxf,4π-=x为)(xf的零点,4π=x为)(xfy=图像的对称轴, 且)(xf在)365,18(ππ单调, 则ω的最大值为()A.11B.9C.7D.5【2019, 8】函数()f x=cos()xωϕ+的部分图象如图所示, 则()f x的单调递减区间为()A.13(,),44k k kππ-+∈Z B.13(2,2),44k k kππ-+∈ZC.13(,),44k k k-+∈Z D.13(2,2),44k k k-+∈Z【2019, 2】sin20cos10cos160sin10-=o o o o()A.3-B.3C.12-D.12【2019, 6】如图, 圆O的半径为1, A是圆上的定点, P是圆上的动点, 角x的始边为射线OA, 终边为射线OP, 过点P作直线OA的垂线, 垂足为M, 将点到直线的距离表示为的函数, 则=在[0,]上的图像大致为()【2019, 8】设, , 且, 则M OP x()f x y()f xπ(0,)2πα∈(0,)2πβ∈1sintancosβαβ+=( ). . . .【2019, 9】已知 , 函数在(, )上单调递减, 则的取值范围是( )A .[, ] B .[, ] C .(0, ] D .(0, 2] 【2019, 5】已知角的顶点与原点重合, 始边与轴的正半轴重合, 终边在直线上, 则=A .B .C .D . 【2019, 11】设函数的最小正周期为,且, 则( ) A .在单调递减 B .在单调递减 C .在单调递增 D .在单调递增 (2019·7)若将函数y =2sin 2x 的图像向左平移12π个单位长度, 则平移后图象的对称轴为( )A .()26k x k Z ππ=-∈B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈(2019·9)若3cos()45πα-=, 则sin 2α =( ) A .725B .15C .15-D .725-(2019·4)钝角三角形ABC 的面积是12, AB =1, BC则AC =( )A .5 BC .2D .1二、填空题【2019, 16】在平面四边形中, , ,A 32παβ-=B 22παβ-=C 32παβ+=D 22παβ+=0ω>()sin()4f x x πω=+2ππω1254123412θx 2y x =cos2θ45-35-3545()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><π()()f x f x -=()f x 0,2π⎛⎫⎪⎝⎭()f x 3,44ππ⎛⎫⎪⎝⎭()f x 0,2π⎛⎫⎪⎝⎭()f x 3,44ππ⎛⎫⎪⎝⎭ABCD 75A B C ∠=∠=∠=o2BC =则的取值范围是 .【2019, 16】已知分别为的三个内角的对边, =2,且, 则面积的最大值为 .【2019, 15】设当x =θ时, 函数f (x )=sin x -2cos x 取得最大值, 则cos θ=__________.【2019, 16】在中,则的最大值为 .(2019·14)函数()23sin 4f x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 . (2019·13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 45A =, 1cos 53C =, a = 1, 则b = .(2019·14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________.(2019·15)设为第二象限角, 若, 则_________.三、解答题【2019, 17】△ABC 的内角A , B , C 的对边分别为a , b , c , 已知△ABC 的面积为(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长【2019, 17】的内角的对边分别为 , 已知.(Ⅰ)求;(Ⅱ)若, 的面积为, 求的周长.【2019, 17】如图, 在△ABC 中, ∠ABC =90°, AB =, BC =1,AB ,,a b c ABC ∆,,A B C a (2)(sin sin )()sin b A B c b C +-=-ABC ∆ABC V 60,B AC ==o2AB BC +θ1tan()42πθ+=sin cos θθ+=23sin a AABC ∆C B A ,,c b a ,,c A b B a C =+)cos cos (cos 2C 7=c ABC ∆233ABC ∆P 为△ABC 内一点, ∠BPC =90°.(1)若PB =, 求P A ;(2)若∠APB =150°, 求tan ∠PBA .【2019, 17】已知, , 分别为△ABC 三个内角A , B , C 的对边,.(1)求A ;(2)若, △ABC求, .(2019·17)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2B AC +=. (1)求cos B ;(2)若6a c += , ABC ∆面积为2, 求.b .12a b c cos sin 0a C C b c --=2a =b c(2019·17)在∆ABC中, D是BC上的点, AD平分∠BAC, ∆ABD面积是∆ADC 面积的2倍.(Ⅰ)求sinsinBC∠∠;(Ⅱ)若AD=1, DC=2, 求BD和AC的长.(2019·17)在△ABC内角A、B、C的对边分别为a, b, c, 已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2, 求△ABC面积的最大值.(2019·17)已知a, b, c分别为△ABC三个内角A, B, C的对边,sin3cos=--+cbCaCa.(Ⅰ)求A;(Ⅱ)若a=2, △ABC的面积为3, 求b, c.5.平面向量一、选择题【2019, 7】设为所在平面内一点, 则( )A .B .C .D .【2019, 10】已知a 与b 均为单位向量, 其夹角为, 有下列四个命题其中的真命题是( )A .B .C .D .【2019, 13】已知向量a , b 的夹角为60°, |a |=2, | b |=1, 则| a +2 b |= .【2019, 13】设向量a , b , 且 a b a b , 则.【2019, 15】已知A, B, C 是圆O 上的三点, 若,则与的夹角为 .【2019, 13】已知两个单位向量a , b 的夹角为60°, c =t a +(1-t )b .若b ·c =0, 则t =__________.【2019, 13】已知向量a r , b r 夹角为45°, 且||1a =r ,|2|a b -=r r,则||b =r_________.(2019·12)已知ABC ∆是边长为2的等边三角形, P 为平面ABC 内一点, 则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( )A.2-B.32-C. 43- D.1- (2019·3)已知向量(1)(32),,=,m =-a b , 且()⊥a +b b , 则m =( )A .-8B .-6C .6D .8D ABC ∆3BC CD =u u u r u u u r1433AD AB AC =-+u u u r u u ur u u u r 1433AD AB AC =-u u u r u u u r u u u r 4133AD AB AC =+u u u r u u u r u u u r 4133AD AB AC =-u u u r u u u r u u u r θ12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦14,P P 13,P P 23,P P 24,P P )1,(m =)2,1(=|+||2=||2+2|=m 1()2AO AB AC =+u u u r u u u r u u u rAB u u u r AC u u ur(2019·3)设向量a ,b rr满足|a b |+r r ,|a b |-r r 则a b ⋅r r =( )A .1B .2C .3D .5(2019·13)设向量a , b 不平行, 向量λ+a b 与2+a b 平行, 则实数λ ____________.(2019·13)已知正方形的边长为2, 为的中点, 则_______.(2019·13)已知向量a , b 夹角为45º, 且1=||a , 102=-||b a , 则=||b .6.数列一、选择题【2019, 4】记为等差数列的前项和.若, , 则的公差为( )A .1B .2C .4D .8【2019, 12】几位大学生响应国家的创业号召, 开发了一款应用软件.为激发大家学习数学的兴趣, 他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 1, 2, 4, 8, 16 , …, 其中第一项是20, 接下来的两项是20, 21, 再接下来的三项是20, 21, 22, 依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110【2019, 3】已知等差数列前项的和为 , , 则( )A .B .C .D .【2019, 7】设等差数列{a n }的前n 项和为S n , 若S m -1=-2, S m =0, S m +1=3, 则m =( ).A .3B .4C .5D .6【2019, 12】设△A n B n C n 的三边长分别为a n , b n , c n , △A n B n C n 的面积为S n , n =1,2,3, ….若b 1>c 1, b 1+c 1=2a 1, a n +1=a n , b n +1=, c n +1=, 则( ). A .{S n }为递减数列 B .{S n }为递增数列 C .{S 2n -1}为递增数列, {S 2n }为递减数列 D .{S 2n -1}为递减数列, {S 2n }为递增数列ABCD E CD AE BD ⋅=u u u r u u u rn S {}n a n 4524a a +=648S ={}n a }{n a 927810=a =100a 1009998972n nc a +2n nb a +【2019, 14】若数列{a n }的前n 项和 , 则{a n }的通项公式是a n =__________.【2019, 5】已知{}为等比数列, , , 则( )A .7B .5C .-5D .-7(2019·3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层, 红光点点倍加增, 共灯三百八十一, 请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯, 且相邻两层中的下一层灯数是上一层灯数的2倍, 则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 (2019·4)已知等比数列{a n }满足a 1=3, a 1+ a 3+ a 5=21, 则a 3+ a 5+ a 7 =( )A .21B .42C .63D .84(2019·3)等比数列{}n a 的前n 项和为n S , 已知32110S a a =+, 59a =, 则1a =( ) A .13B .13-C .19D .19-(2019·5)已知{a n }为等比数列, a 4 + a 7 = 2, a 5 a 6 = 8, 则a 1 + a 10 =( )A. 7B. 5C. -5D. -7(2019·15)等差数列{}n a 的前n 项和为n S , 33a = , 410S = , 则11nk kS ==∑ . (2019·16)设S n 是数列{a n }的前项和, 且11a =- , 11n n n a S S ++= , 则S n =________________.(2019·16)等差数列的前项和为, 已知, , 则的最小值为____.(2019·16)数列}{n a 满足12)1(1-=-++n a a n nn , 则}{n a 的前60项和为 .二、填空题【2019, 15】设等比数列满足 , , 则的最大值为 .【2019, 16】数列{n a }满足1(1)21nn n a a n ++-=- , 则{n a }的前60项和为__________.2133n n S a =+n a 472a a +=568a a =-110a a +={}n a n n S 100S =1525S =n nS }{n a 1031=+a a 542=+a a 12n a a a L三、解答题【2019, 17】为数列的前项和.已知>0,2243n n n a a S +=+.(Ⅰ)求的通项公式;(Ⅱ)设, 求数列的前项和.【2019, 17】已知数列{}的前项和为, =1, ,, 其中为常数.(Ⅰ)证明:;(Ⅱ)是否存在, 使得{}为等差数列?并说明理由.【2019, 17】等比数列的各项均为正数, 且(Ⅰ)求数列的通项公式;(Ⅱ)设 求数列的前n 项和.n S {}n a n n a {}n a 11n n n b a a +={}n b n n a n n S 1a 0n a ≠11n n n a a S λ+=-λ2n n a a λ+-=λn a {}n a 212326231,9.a a a a a +=={}n a 31323log log ......log ,n n b a a a =+++1n b ⎧⎫⎨⎬⎩⎭(2019·17)(满分12分)S n 为等差数列{a n }的前n 项和, 且a 1=1, S 7=28. 记b n =[lg a n ],其中[x ]表示不超过x 的最大整数, 如[0.9]=0, [lg99]=1. (Ⅰ)求b 1, b 11, b 101;(Ⅰ)求数列{b n }的前1 000项和.(2019·17)已知数列{a n }满足a 1 =1, a n +1 =3 a n +1. (Ⅰ)证明1{}2n a +是等比数列, 并求{a n }的通项公式;(Ⅱ)证明:123111…2n a a a +++<.(2019·17)等比数列{}n a 的各项均为正数, 且212326231,9.a a a a a +== (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设31323log log log n n b a a a =+++L L , 求数列1{}nb 的前n 项和.7.不等式、线性规划、推理与证明一、选择题【2019, 9)】不等式组的解集记为.有下面四个命题::;:; :; 4p :(,),21x y D x y ∃∈+≤-.其中真命题是( )A .2p , 3PB .1p , 4pC .1p , 2pD .1p , 【2019, 14】设x , y 满足约束条件, 则的最小值为 .【2019, 16】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg, 乙材料1kg, 用5个工时;生产一件产品B 需要甲材料0.5kg, 乙材料0.3kg, 用3个工时.生产一件产品A 的利润为2100元, 生产一件产品B 的利润为900元.该企业现有甲材料150kg, 乙材料90kg, 则在不超过600个工时的条件下, 生产产品A 、产品B 的利润之和的最大值为 元.【2019, 15】若x ,y 满足约束条件, 则的最大值为 .【2019, 14】甲、乙、丙三位同学被问到是否去过A, B, C 三个城市时,甲说:我去过的城市比乙多, 但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 .【2019, 14】设x , y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩, 则2z x y =-的取值范围为___________.124x y x y +≥⎧⎨-≤⎩D 1p (,),22x y D x y ∀∈+≥-2p (,),22x y D x y ∃∈+≥3P (,),23x y D x y ∀∈+≤3P 21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩32z x y =-10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩yx【2019, 13】若变量满足约束条件则的最小值为 .(2019·5)设x , y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩, 则2z x y =+的最小值是( )A .15-B .9-C .1D .9(2019·9)设x , y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩, 则2z x y =-的最大值为( )A .10B .8C .3D .2(2019·9)已知0a >, x , y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩, 若2z x y =+的最小值为1, 则a =( ) A .14B .12C .1D .2二、填空题(2019·14)若x , y 满足约束条件1020+220x y x y x y -+≥⎧⎪-≤⎨⎪-≤⎩, 则z x y =+的最大值为_______.(2019·14)设x , y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x , 则2z x y =-的取值范围为 . (2019·13)若变量x , y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩ , 则2z x y =+的最小值为 .8.立体几何(含解析)一、选择题【2019, 7】某多面体的三视图如图所示, 其中正视图和左视图都由正方形和等腰直角三角形组成, 正方形的边长为2, 俯视图为等腰直角三角形, 该多面体的各个面中有若干个是梯形, 这些梯形的面积之和为( ) A .10 B .12 C .14 D .16,x y 329,69,x y x y ≤+≤⎧⎨≤-≤⎩2z x y =+【2019, 11】平面过正方体的顶点, 平面, 平面, 平面, 则所成角的正弦值为A.B.C.D.【2019,6】如图, 某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是, 则它的表面积是()A.B.C.D.【2019, 6】《九章算术》是我国古代内容极为丰富的数学名著, 书中有如下问题:“今有委米依垣内角, 下周八尺, 高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图, 米堆为一个圆锥的四分之一), 米堆底部的弧长为8尺, 米堆的高为5尺, 问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺, 圆周率约为3, 估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【2019, 11】圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体, 该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为, 则()A.1 B.2 C.4 D.8【2019年, 11题】【2019年, 12题】【2019年,6题】【2019, 12】如图, 网格纸上小正方形的边长为1, 粗实线画出的是某多面体的三视图, 则该多面体的个条棱中, 最长的棱的长度为()...6 .4【2019, 6】如图, 有一个水平放置的透明无盖的正方体容器, 容器高8 cm, 将一个球放在容器口, 再向容器内注水, 当球面恰好接触水面时测得水深为 6 cm, 如果不计容器的厚度, 则球的体积为()A.cm3B.cm3 C.cm3D.cm3α1111DCBAABCD-A//α11DCBαI ABCD m=IαnAABB=11nm,23223331328ππ17π18π20π28r1620π+r=A62B42C D500π3866π31372π32048π3【2019, 8】某几何体的三视图如图所示, 则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2019年, 8】 【2019年, 7】 【2019年, 6】【2019, 7】如图, 网格纸上小正方形的边长为1, 粗线画出的是某几何体的三视图, 则此几何体的体积为( )A .6B .9C .12D .15 【2019, 11】已知三棱锥S -ABC 的所有顶点都在球O 的球面上, △ABC 是边长为1的正三角形, SC 为球O 的直径, 且SC =2, 则此棱锥的体积为( ) A.B .C .D .【2019, 6】在一个几何体的三视图中, 正视图和俯视图如右图所示, 则相应的侧视图可以为( )【2019, 15】已知矩形的顶点都在半径为4的球的球面上, 且,则棱锥的体积为 .26362322ABCD O 6,23AB BC ==O ABCD -(2019·4)如图, 网格纸上小正方形的边长为1, 学 科&网粗实线画出的是某几何体的三视图, 该几何体由一平面将一圆柱截去一部分所得, 则该几何体的体积为( )A .90πB .63πC .42πD .36π(2019·10)已知直三棱柱111C C AB -A B 中, C 120∠AB =o , 2AB =,1C CC 1B ==, 则异面直线1AB 与1C B 所成角的余弦值为( )A .3 B .15 C .10 D .3 (2019·6)右图是由圆柱与圆锥组合而成的几何体的三视图, 则该几何体的表面积为( ) A .2 πB .24πC .28πD .32π(2019·6)一个正方体被一个平面截去一部分后, 剩余部分的三视图如右图, 则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51 (2019·9)已知A , B 是球O 的球面上两点, ∠AOB =90º, C 为该球面上的动点, 若三棱锥O -ABC 体积的最大值为36, 则球O 的表面积为( ) A .36πB .64πC .144πD .256π(2019·6)如图, 网格纸上正方形小格的边长为1(表示1cm ), 图中粗线画出的是某零件的三视图, 该零件由一个底面半径为3cm, 高为6cm 的圆柱体毛坯切削得到, 则切削掉部分的体积与原来毛坯体积的比值为( ) A .1727B .59C .1027D .13(2019·11)直三棱柱ABC -A 1B 1C 1中, ∠BCA =90º, M , N 分别是A 1B 1, A 1C 1的中点, BC =CA =CC 1, 则BM 与AN 所成的角的余弦值为( ) A .110B .25C .30D .22(2019·4)已知,m n 为异面直线, m ⊥平面α , n ⊥平面β.直线l 满足l m ⊥ ,4423· 2 19, 62 19, 62 19, 6l n⊥, lα⊄, lβ⊄, 则()A.α // β且l // αB.αβ⊥且lβ⊥C.α与β相交, 且交线垂直于lD.α与β相交, 且交线平行于l (2019·7)一个四面体的顶点在空间直角坐标系O xyz-中的坐标分别是(1,0,1), (1,1,0), (0,1,1), (0,0,0), 画该四面体三视图中的正视图时, 以zOx平面为投影面, 则得到正视图可以为()(2019·7)如图, 网格纸上小正方形的边长为1, 粗线画出的是某几何体的三视图, 则此几何体的体积为()A. 6B. 9C. 12D. 18(2019·11)已知三棱锥S-ABC的所有顶点都在球O的球面上, △ABC是边长为1的正三角形, SC为球O的直径, 且SC=2, 则此棱锥的体积为()A.62 B.63 C.32 D.22(2019·6)在一个几何体的三视图中, 正视图和俯视图如右图所示, 则相应的侧视图可以为()A. B. C. D.(2019·14)α、β是两个平面, m、n是两条直线, 有下列四个命题:(1)如果m⊥n, m⊥α, n∥β, 那么α⊥β.(2)如果m⊥α, n∥α, 那么m⊥n.(3)如果α∥β, m⊂α, 那么m∥β.(4)如果m∥n, α∥β, 那么m与α所成的角和n与β所成的角相等.其中正确的命题有. (填写所有正确命题的编号.)(2019·15)已知矩形ABCD的顶点都在半径为4的球O的球面上, 且6,23AB BC==, 则棱锥O-ABCD的体积为 .三、解答题【2019, 18】如图, 在四棱锥P-ABCD中, AB//CD, 且90BAP CDP∠=∠=oA. B. C. D.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,,求二面角A-PB-C的余弦值.【2019, 18】如图, 在以为顶点的五面体中, 面为正方形, , 且二面角与二面角都是.(Ⅰ)证明:平面平面;(Ⅱ)求二面角的余弦值.【2019, 18】如图, 四边形为菱形, , 是平面同一侧的两点, ⊥平面, ⊥平面, , .(I)证明:平面⊥平面;(II)求直线与直线所成角的余弦值.90APD∠=oFEDCBA,,,,,ABEF︒=∠=90,2AFDFDAF EAFD--FBEC--︒60⊥ABEF EFDCABCE--ABCD120ABC∠=o,E FABCD BE ABCD DFABCD2BE DF=AE EC⊥AEC AFCAE CFABCDEF【2019, 19】如图三棱柱中, 侧面为菱形,.(Ⅰ) 证明:;(Ⅱ)若, , AB=BC, 求二面角的余弦值.【2019, 18】如图, 三棱柱ABC -A 1B 1C 1中, CA =CB , AB =AA 1, ∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B , AB =CB , 求直线A 1C 与平面BB 1C 1C 所成角的正弦值.111ABC A B C -11BB C C 1AB B C ⊥1AC AB =1AC AB ⊥o160CBB ∠=111A A B C --【2019, 19】如图, 直三棱柱ABC -A 1B 1C 1中, AC=BC=AA 1, D 是棱AA 1的中点, DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.【2019, 18】如图, 四棱锥P-ABCD 中, 底面ABCD 为平行四边形, ∠DAB=60°,AB=2AD ,PD ⊥底面ABCD .(Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD , 求二面角A-PB-C 的余弦值.(2019·19)如图, 四棱锥P -ABCD 中, 侧面PAD 为等比三角形且垂直于底面ABCD ,12AB BC AD ==, o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)证明:直线//CE 平面PAB ;(2)点M 在棱PC 上, 且直线BM 与底面ABCD 所成锐角为o 45 , 求二面角M -AB -D 的余弦值21A 1(2019·19)如图, 菱形ABCD 的对角线AC 与BD 交于点O , AB =5, AC =6, 点E , F 分别在AD , CD 上, AE =CF =54, EF 交BD 于点H . 将△DEF 沿EF 折到△D ´EF 的位置, 10OD '=. (Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.(2019·19)如图, 长方体ABCD -A 1B 1C 1D 1中AB =16, BC =10, AA 1=8, 点E , F 分别在A 1B 1, D 1C 1上, A 1E =D 1F =4, 过点E , F 的平面α与此长方体的面相交, 交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.(2019·18)如图, 四棱锥P -ABCD 中, 底面ABCD 为矩形, P A ⊥平面ABCD , E 为PD 的中点.(Ⅰ)证明:PB // 平面AEC ; (Ⅱ)设二面角D -AE -C 为60º, AP =1, AD =3, 求三棱锥E -ACD 的体积.OBACFDH E D '(2019·18)如图, 直三棱柱中, D , E 分别是AB ,1BB 的中点, 122AA AC CB AB ===. (Ⅰ)证明://平面1ACD ; (Ⅱ)求二面角1D ACE --的正弦值.(2019·19)如图, 直三棱柱ABC -A 1B 1C 1中, 121AA BC AC ==, D 是棱AA 1的中点, DC 1⊥BD . (Ⅰ)证明:DC 1⊥BC ;(Ⅱ)求二面角A 1-BD -C 1的大小.(2019·18)如图, 四棱锥P -ABCD 中, 底面ABCD 为平行四边形, ∠DAB =60°, AB =2AD , PD ⊥底面ABCD . (Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD , 求二面角A -PB -C 的余弦值.9.解析几何一、选择题【2019, 10】已知F 为抛物线C :y 2=4x 的焦点, 过F 作两条互相垂直的直线l 1, l 2, 直线l 1与C 交于A 、B 两点, 直线l 2与C 交于D 、E 两点, 则|AB |+|DE |的最小值为( )A .16B .14C .12D .10【2019, 10】以抛物线的顶点为圆心的圆交于两点, 交的准线于两点, 已知,, 则的焦点到准线的距离为( )A .2B .4C .6D .8111ABC A B C -1BC C C B A ,C E D ,24=AB 52=DE C C BAD CA 1B 1【2019, 5】已知方程表示双曲线, 且该双曲线两焦点间的距离为, 则的取值范围是( ) A .B .C .D .【2019, 5】已知是双曲线:上的一点, 是的两个焦点, 若, 则的取值范围是( )A .B .C .D . 【2019, 4】已知是双曲线:的一个焦点, 则点到的一条渐近线的距离为.3 .【2019, 10】已知抛物线:的焦点为,准线为, P 是l 上一点,Q 是直线PF 与C 的一个交点, 若4FP FQ =u u u r u u u r, 则||QF =( )A .72 B .52C .3D .2 【2019, 4】已知双曲线C :(a >0, b >0)的离心率为, 则C 的渐近线方程为( ).A .y =B .y =C .y =D .y =±x【2019, 10】已知椭圆E :(a >b >0)的右焦点为F (3,0), 过点F 的直线交E 于A , B 两点.若AB 的中点坐标为(1, -1), 则E 的方程为( )A .B .C .D . 【2019, 4】设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点, P 为直线32ax =上一点, 21F PF ∆是底角为30°的等腰三角形, 则E 的离心率为( )A .12 B .23 C .34 D .45132222=--+nm y n m x 4n )3,1(-)3,1(-)3,0()3,0(00(,)M x y C 2212x y -=12,F F C 120MF MF ⋅<u u u u r u u u u r0y (((33-(F C 223(0)x my m m -=>F C A B C D 3m C 28y x =F l 2222=1x y a b -214x ±13x ±12x ±2222=1x y a b+22=14536x y +22=13627x y +22=12718x y +22=1189x y +【2019, 8】等轴双曲线C的中心在原点, 焦点在轴上, C与抛物线的准线交于A, B两点, , 则C的实轴长为()AB.C.4D.8【2019, 7】设直线L过双曲线C的一个焦点, 且与C的一条对称轴垂直, L与C交于A ,B两点, 为C的实轴长的2倍, 则C的离心率为()A B C.2 D.3(2019·9)若双曲线C:22221x ya b-=(0a>, 0b>)的一条渐近线被圆()2224x y-+=所截得的弦长为2, 则C的离心率为()A.2 B C D(2019·4)圆2228130x y x y+--+=的圆心到直线10ax y+-=的距离为1, 则a =()A.43-B.34-C D.2(2019·11)已知F1, F2是双曲线E:22221x ya b-=的左, 右焦点, 点M在E上,M F1与x轴垂直,211sin3MF F∠=, 则E的离心率为()A B.32C D.2(2019·7)过三点A(1, 3), B(4, 2), C(1, -7)的圆交于y轴于M、N两点, 则MN=()A.B.8C.D.10(2019·11)已知A, B为双曲线E的左, 右顶点, 点M在E上, ∆ABM为等腰三角形, 且顶角为120°, 则E的离心率为()A B.2C D(2019·10)设F为抛物线C:23y x=的焦点, 过F且倾斜角为30º的直线交C于A, B两点, O为坐标原点, 则△OAB的面积为()A B C.6332D.94(2019·11)设抛物线2:2(0)C y px p=>的焦点为F,点M在C上, ||5MF=,若以MF为直径的园过点(0,2), 则C的方程为()A.24y x=或28y x=B.22y x=或28y x=C.24y x=或216y x=D.22y x=或x216y x=||AB=AB。
2020高考数学分类汇编--概率统计
2020年普通高等学校招生全国统一考试一卷理科数学5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+ D .ln y a b x =+19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束. 经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12, (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率. 5.D6.B7.C 8.C19.解:(1)甲连胜四场的概率为116. (2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况:甲连胜四场的概率为116;乙连胜四场的概率为116;丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为11131161684 ---=.(3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18.比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为116,18,18.因此丙最终获胜的概率为11117 8168816+++=.2020年普通高等学校招生全国统一考试理科数学3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()()20,,2,1,⋯=iyxii ,其中ix和i y分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑==20160iix,∑==2011200i iy,()∑==-201280i ix x,()∑==-20129000i iyy,()()080201∑==--i i iy y x x.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()()20,,2,1,⋯=i y x i i 的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数()()()()∑∑∑===----=ni ini i ni ii y y x x yyx x r 12121,414.12≈.2020年普通高等学校招生全国统一考试理科数学3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 A .14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====4.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:0.23(53)()=1e t K I t --+,其中K 为最大确诊病例数.当*()0.95I t K =时,标志着已初步遏制疫情,则t *约为(ln193)≈A .60B .63C .66D .6918.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关? 附:K3.B4.C18.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=.(3)根据所给数据,可得22⨯列联表:根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.2020年普通高等学校招生全国统一考试文科数学5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+17.(12分)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:乙分厂产品等级的频数分布表(1(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务? 5.D 17.解:(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A 级品的概率的估计值为400.4100=; 乙分厂加工出来的一件产品为A 级品的概率的估计值为280.28100=. (2)由数据知甲分厂加工出来的100件产品利润的频数分布表为因此甲分厂加工出来的100件产品的平均利润为65402520520752015100⨯+⨯-⨯-⨯=.由数据知乙分厂加工出来的100件产品利润的频数分布表为因此乙分厂加工出来的100件产品的平均利润为70283017034702110100⨯+⨯+⨯-⨯=.比较甲乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.2020年普通高等学校招生全国统一考试文科数学4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名 B .18名C .24名D .32名18. (12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i ) (i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i ) (i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r=))niix y x y --∑((=1.414.4.B18.解:(1)由己知得样本平均数20160120i iy y===∑,从而该地区这种野生动物数量的估计值为60×200= 12 000. (2)样本(,)i i x y (1,2,,20)i =的相关系数20))0.943i ix yrx y--===≈∑((.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.2020年普通高等学校招生全国统一考试文科数学3.设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为A.0.01B.0.1C.1D.104.Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:0.23(53)()=1e tIKt--+,其中K为最大确诊病例数.当I(*t)=0.95K时,标志着已初步遏制疫情,则*t约为(ln19≈3)A.60B.63C.66D.6918.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,3.C4.C18.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=. (3)根据所给数据,可得22⨯列联表:根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.2020年普通高等学校招生全国统一考试(北京卷)数 学(18)(本小题14分)某校为举办甲乙两项不同活动,分别设计了相应的活动方案:方案一、方案二、为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率,该校女生支持方案一的概率:(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案二的概率估计值记为0p,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p,试比较0p与1p的大小.(结论不要求证明)2020年普通高等学校招生全国统一考试(江苏卷)4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是▲ .4.1 923.(本小题满分10分)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1,q1和p2,q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示) .23.满分10分.解:(1)113111133C C 1C C 3p =⋅=,113211133C C 2C C 3q =⋅=,11113121211111*********C C C C 1270(1)C C C C 3927p p q p q p q =⋅⋅+⋅⋅+⋅--=+=,1111111133222112211111111111133333333C C C C C C C C ()(1)C C C C C C C C q p q p q =⋅⋅+⋅+⋅⋅+⋅⋅--11216=9327q -+=.(2)当2n ≥时,1111312111111111113333C C C C 120(1)C C C C 39n n n n n n n p p q p q p q ------=⋅⋅+⋅⋅+⋅--=+,①111111113322211211111111111133333333C C C C C C C C ()(1)C C C C C C C C n n n n n q p q p q ----=⋅⋅+⋅+⋅⋅+⋅⋅--112=93n q --+,②2⨯+①②,得()1111124121222399333n n n n n n n p q p q q p q -----+=+-+=++. 从而1112(211)3n n n n p q p q ---+-+=,又111312p q -+=,所以11112()1()3331n nn n p q -+++==,*n ∈N .③由②,有1313()595n n q q --=--,又135115q -=,所以1113()1595n n q -=-+,*n ∈N . 由③,有13111()210111()()33925n n n n n p q =+=-+-+[],*n ∈N . 故311111()()109235n n n n p q --=--+,*n ∈N . n X 的概率分布则*1()0(1)121(),3n n n n n n E X p q q p n =⨯--+⨯+⨯=+∈N .2020年普通高等学校招生全国统一考试(天津卷)数学4.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A.10 B.18 C.20 D.3613.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.4.B13.16;232020年普通高等学校招生全国统一考试5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62%B .56%C .46%D .42%12.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.A .若n =1,则H (X )=0B .若n =2,则H (X )随着i p 的增大而增大C .若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y )19.(12分)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,5.C 12.AC19.解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且2SO 浓度不超过150的天数为32186864+++=,因此,该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150的概率的估计值为640.64100=. (2)根据抽查数据,可得22⨯列联表:(3)根据(2)的列联表得22100(64101610)7.48480207426K ⨯⨯-⨯=≈⨯⨯⨯. 由于7.484 6.635>,故有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关.2020年普通高等学校招生全国统一考试(浙江卷)数 学16.盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则(0)P ξ==_______,()E ξ=_______. 16.1,13。
高考数学 试题汇编 第三节 统计、统计案例 文(含解析)
第三节统计、统计案例抽样方法考向聚焦高考对抽样方法的考查侧重于考查系统抽样和分层抽样中的数值计算问题,尤其是系统抽样中所抽样本的编号问题,分层抽样中各层所抽样本数量的计算等,多以小题形式出现,难度为中、低档,所占分值为4分左右1.(2012年四川卷,文3,5分)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )(A)101 (B)808 (C)1212 (D)2012解析:根据分层抽样的特点可知×N=96,解得N=808,故选B.答案:B.2.(2011年福建卷,文4)某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本.已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )(A)6 (B)8 (C)10 (D)12解析:设在高二年级的学生中应抽取的人数为x.由分层抽样的特点有30∶40=6∶x,则x=8,即在高二年级学生中应抽取8人.故选B.答案:B.3.(2010年重庆卷,文5)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为( )(A)7 (B)15 (C)25 (D)35解析:设样本容量为n,则由分层抽样的特点知=,得n=15,故选B.答案:B.4.(2012年浙江卷,文11,4分)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为.解析:本题主要考查分层抽样,因为560+420=980,所以560×=160.答案:1605.(2012年福建卷,文14,4分)一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是.解析:女运动员有98-56=42人,男女比例为:56∶42=4∶3,∴应抽取女运动员28×=12(人).答案:12本题考查分层抽样方法,属容易题.6.(2012年湖北卷,文11,5分)一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有人.解析:设抽取的女运动员为x人,则=,解得x=6.故抽取的女运动员为6人.答案:67.(2012年江苏数学,2,5分)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取名学生.解析:本题考查随机抽样中分层抽样.关键算出高二学生人数在总数中的比例.因为高二年级学生人数占总数的,样本容量为50,所以50×=15.答案:158.(2011年湖北卷,文11)某市有大型超市200家、中型超市400家、小型超市1400家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市家.解析:由分层抽样的特点知应抽取中型超市400×=20(家).答案:209.(2011年上海卷,文10)课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为.解析:∵抽取比例为=,∴丙组应抽取的城市数为×8=2.答案:210.(2011年山东卷,文13)某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为.解析:由题意知学生总人数为150+150+400+300=1000, 抽取比例为=,从丙专业抽取人数为400×=16.答案:16统计图表与数字特征的计算考向聚焦统计图表(频率分布直方图、茎叶图)与数字特征(平均数、中位数、方差)是高考的重点和热点内容,几乎每年必考,通常以茎叶图和频率分布直方图为载体,考查平均数、中位数、方差等的计算,难度为中、低档,主要以选择题、填空题形式出现,有时也可能以解答题的形式进行综合考查,所占分值5~12分备考指津(1)对于统计图表的题目,求解时,最重要的就是认真观察图表,从中发现有用的信息和数据.(2)计算平均数与方差时,要明确所有数据的个数,以防计算错误11.(2012年陕西卷,文3,5分)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )(A)46,45,56 (B)46,45,53(C)47,45,56 (D)45,47,53解析:由概念知中位数是中间两数的平均数,即=46,众数是45,极差为68-12=56.所以选A.答案:A.12.(2012年湖北卷,文2,5分)容量为20的样本数据,分组后的频数如下表:分组[10,20) [20,30) [30,40) [40,50) [50,60) [60,70) 频数 2 3 4 5 4 2则样本数据落在区间[10,40)的频率为( )(A)0.35 (B)0.45 (C)0.55 (D)0.65解析:由表格提供的数据可知,样本数据落在区间[10,40)的频数为2+3+4=9,则频率为=0.45.答案:B.13.(2012年山东卷,文4,5分)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( )(A)众数 (B)平均数(C)中位数(D)标准差解析:本题考查样本的平均数,标准差等的计算方法.根据标准差的性质,易知答案为D.答案:D.14.(2012年江西卷,文6,5分)小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( )(A)30% (B)10% (C)3% (D)不能确定解析:本题考查扇形图与条形图的实际应用.由图2可知,小波一星期的食品开支为30+40+100+80+50=300(元),由图1知,小波一星期的总开支为=1000(元),则小波一星期的鸡蛋开支占总开支的百分比为×100%=3%.故应选C.答案:C.统计图在实际中应用相当广泛,也是高考的必考点,难度一般都比较小,主要是读懂图中各阴影部分表示的意义.15.(2011年重庆卷,文4)从一堆苹果中任取10只,称得它们的质量如下(单位:克):125 120 122 105 130 114 116 95 120 134则样本数据落在[114.5,124.5)内的频率为( )(A)0.2 (B)0.3 (C)0.4 (D)0.5解析:在10个已测出的数值中,有4个数据落在[114.5,124.5)内,它们是120、122、116、120,故频率为=0.4,选C.16.(2011年湖北卷,文5)有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为( )(A)18 (B)36 (C)54 (D)72解析:样本数据在[10,12)内的频率为1-2×(0.02+0.05+0.15+0.19)=0.18.∴样本数据在[10,12)内的频数为200×0.18=36,故选B.答案:B.17.(2011年江西卷,文7)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m0,平均值为,则( )(A)m e=m0=(B)m e=m0<(C)m e<m0<(D)m0<m e<解析:由图知中位数为5.5,众数为5,平均值约为6.选D.答案:D.18.(2010年山东卷,文6)在某项体育比赛中,七位裁判为一选手打出的分数如下:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )(A)92,2 (B)92,2.8(C)93,2 (D)93,2.8解析:去掉一个最高分95,一个最低分89,剩下的5个数据是90,90,93,94,93,其平均值==92,方差s2=×[(90-92)2+(90-92)2+(93-92)2+(94-92)2+(93-92)2]=2.8.故选B.19.(2012年山东卷,文14,4分)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为.解析:本题主要考查频率分布直方图的意义.设样本容量为n,则(0.1+0.12)n=11,解得n=50,故气温不低于25.5 ℃的城市个数为:50×0.18=9.答案:920.(2012年广东卷,文13,5分)由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为.(从小到大排列)解析:本小题主要考查平均数、中位数、方差的概念,以及方程组的运算,由题,设x1≤x2≤x3≤x4,则x1+x2+x3+x4=8,x2+x3=4,=1,即(x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2=4,联立解得x1=1,x2=1,x3=3,x4=3.答案:1 1 3 321.(2012年湖南卷,文13,5分)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为.(注:方差s2=[(x1-)2+(x2-)2+…+(x n-)2],其中为x1,x2,…,x n的平均数)解析:由茎叶图知该运动员得分为8,9,10,13,15,所以=×(8+9+10+13+15)=11,所以s2=×[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=×(9+4+1+4+16)=6.8.22.(2011年江苏卷,6)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s2= .解析:10,6,8,5,6的平均数==7,∴10,6,8,5,6的方差s2==.答案:23.(2010年福建卷,文14)将容量为n的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n 等于.解析:∵=,∴n=60.答案:6024.(2010年浙江卷,文11)在如图所示的茎叶图中,甲、乙两组数据的中位数分别是, .解析:甲组数据为:28,31,39,42,45,55,57,58,66,中位数为45.乙组数据为:29,34,35,42,46,48,53,55,67,中位数为46.答案:45 4625.(2012年广东卷,文17,13分)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60) [60,70) [70,80) [80,90) x∶y 1∶1 2∶1 3∶4 4∶5解:(1)由(2a+0.02+0.03+0.04)×10=1知a=0.005.(2)估计这100名学生的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=7.5+26+22.5+17=73(分).(3)由频率分布直方图知,语文成绩在[50,60)之间的人数为100×0.05=5,[60,70)之间的人数为100×0.4=40,[70,80)之间的人数为100×0.3=30,[80,90)之间的人数为100×0.2=20,故数学成绩在这几个分数段内的人数分别为5,20,40,25,总人数为90,故在[50,90)之外的人数为100-90=10.26.(2012年北京卷,文17,13分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400 100 100可回收物30 240 30其他垃圾20 20 60(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.(注:s2=[(x1-)2+(x2-)2+…+(x n-)2],其中为数据x1,x2,…,x n的平均数)解:(1)由已知得厨余垃圾共有600吨,其中厨余垃圾投放正确的有400吨,∴厨余垃圾投放正确的概率为=.(2)由已知得厨余垃圾投放正确的有400吨,可回收物投放正确的有240吨,其他垃圾投放正确的有60吨,∴生活垃圾投放正确的有700吨,∴生活垃圾投放错误的有300吨,∴投放错误的概率为=.(3)当a=600,b=c=0时,s2最大.由已知a+b+c=600,∴a,b,c的平均数为200,∴s2==80000,∴方差s2最大值为80000.此题的难度在第三问,其余两问难度不大,第三问对学生有较高的能力要求.虽不要求证明,但要求学生对方差意义的理解非常深刻.27.(2012年安徽卷,文18,13分)若某产品的直径长与标准值的差的绝对值不超过1 mm时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品,计算这50件不合格品的直径长与标分组频数频率[-3,-2) 0.10[-2,-1) 8(1,2] 0.50(2,3] 10(3,4]合计50 1.00(1)将上面表格中缺少的数据填在答题卡的相应位置;(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数.解:(1)频率分布表分组频数频率[-3,-2) 5 0.10[-2,-1) 8 0.16(1,2] 25 0.50(2,3] 10 0.20(3,4] 2 0.04合计50 1.00(2)由频率分布表知,该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率约为0.50+0.20=0.70;(3)设这批产品中的合格品数为x,依题意有=,解得x=-20=1980.所以该批产品的合格品件数估计是1980.本题考查频率和频率分布表等统计学的基本知识,用频率估计概率的基本思想,考查运用统计和概率基本知识解决简单实际问题的能力.28.(2012年陕西卷,文19,12分)假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.解:(1)根据题意知:甲品牌产品寿命小于200小时的频率为=,因为用频率估计概率,所以甲品牌产品寿命小于200小时的概率为.(2)有抽样结果,寿命>200小时的产品有75+70=145个,其中甲品牌产品75个,因而在样本中寿命大于200小时的产品是甲品牌的频率是=,由此估计概率为.29.(2012年新课标全国卷,文18,12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单元:枝,n∈N)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n 14 15 16 17 18 19 20 频数10 20 16 16 15 13 10①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.解:(1)当日需求量n≥17时,利润y=85,当日需求量n<17时,利润y=10n-85,所以y关于n的函数为y=(n∈N).(2)①这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为(55×10+65×20+75×16+85×54)=76.4.②利润不低于75元当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为p=0.16+0.16+0.15+0.13+0.1=0.7.30.(2011年全国新课标卷,文19)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:指标值[90,94) [94,98) [98,102) [102,106) [106,110] 分组频数8 20 42 22 8指标值[90,94) [94,98) [98,102) [102,106) [106,110] 分组频数 4 12 42 32 10(1)分别估计用A配方,B配方生产的产品的优质品率;(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.解:(1)由试验结果知,用A配方生产的产品中优质品的频率为=0.3,所以用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为=0.42,所以用B配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B配方生产的一件产品的利润大于0,当且仅当其质量指标值t≥94.由试验结果知,质量指标值t≥94的频率为0.96.所以用B配方生产的一件产品的利润大于0的概率估计值为0.96.用B配方生产的产品平均一件的利润为×[4×(-2)+54×2+42×4]=2.68(元).31.(2011年广东卷,文17)在某次测验中,有6位同学的平均成绩为75分,x n表示编号为编号n 1 2 3 4 5成绩x n70 76 72 70 72(1)求第6位同学的成绩x6及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率. 解:(1)∵==75,∴x6=6×75-(70+76+72+70+72)=90,∴s2=×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=×(25+1+9+25+9+225)=49,∴s==7.即这6位同学成绩的标准差为7.(2)从5位同学中随机选两位有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种可能情况,记事件A=“恰有一位同学成绩在(68,75)”,A包含(1,2),(2,3),(2,4),(2,5)共4种可能情况,∴P(A)==.即恰有1位同学成绩在区间(68,75)的概率为.32.(2011年辽宁卷,文19)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.(1)假设n=2,求第一大块地都种植品种甲的概率;(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如下表:品种甲403 397 390 404 388 400 412 406 品种乙419 403 412 418 408 423 400 413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据x1,x2,…,x n的样本方差s2=[(x1-)2+(x2-)2+…+(x n-)2],其中为样本平均数.解:(1)设第一大块地中的两小块地编号为1、2,第二大块地中的两小块地编号为3、4,令事件A为“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).而事件A包含1个基本事件:(1,2).所以P(A)=.即第一大块地都种植品种甲的概率为.(2)品种甲的每公顷产量的样本平均数和样本方差分别为:=×(403+397+390+404+388+400+412+406)=400,=×[32+(-3)2+(-10)2+42+(-12)2+02+122+62]=57.25.品种乙的每公顷产量的样本平均数和样本方差分别为:=×(419+403+412+418+408+423+400+413)=412,=×[72+(-9)2+02+62+(-4)2+112+(-12)2+12]=56.由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且>,故应该选择种植品种乙.33.(2010年安徽卷,文18)某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85 ,75,71,49,45.(1)完成频率分布表;(2)作出频率分布直方图;(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.解:(1)频率分布表:分组频数频率[41,51) 2[51,61) 1[61,71) 4[71,81) 6[81,91) 10[91,101) 5[101,111] 2(2)频率分布直方图如图所示:(3)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的.有26天处于良的水平,占当月天数的,处于优或良的天数为28天,占当月天数的.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的.污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数共17天,占当月天数的,超过50%.说明该市空气质量有待进一步改善.本题以新颖的背景考查了用统计知识解决实际问题的能力,考查了对数据的处理能力以及应用意识.34.(2010年陕西卷,文19)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170~185 cm之间的概率;(3)从样本中身高在180~190 cm之间的男生中任选2人,求至少有1人身高在185~190 cm 之间的概率.解:(1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数约为400.(2)由统计图知,样本中身高在170~185 cm之间的学生有14+13+4+3+1=35(人),因为样本容量为70,所以样本中学生身高在170~185 cm之间的频率f==0.5,故由频率f估计该校学生身高在170~185 cm之间的概率P1=0.5.(3)样本中身高在180~185 cm之间的男生有4人,设其编号为①,②,③,④,样本中身高在185~190 cm之间的男生有2人,设其编号为⑤,⑥,从上述6人中任取2人的树状图为:故从样本中身高在180~190 cm之间的男生中任选2人的所有可能结果数为15,至少有1人身高在185~190 cm之间的可能结果数为9,因此,所求概率P2==.变量的相关性考向聚焦高考对变量间的相关性的考查呈逐年上升的趋势,主要考查借助于散点图直观地分析两个变量间的相关关系,知道回归直线经过样本中心,会求线性回归方程,并能利用方程对有关变量作出估计.一般以选择题、填空题的形式出现,属容易题,所占分值4~5分35.(2012年新课标全国卷,文3,5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为( )(A)-1 (B)0 (C)(D)1解析:由所有样本点都在直线y=x+1上,即相关性最强,且为正相关,故相关系数为1,故选D.答案:D.36.(2012年湖南卷,文5,5分)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是( )(A)y与x具有正的线性相关关系(B)回归直线过样本点的中心(,)(C)若该大学某女生身高增加1 cm,则其体重约增加0.85 kg(D)若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg解析:用回归方程预测已知身高同学的体重只能是预测,不能一定是.答案:D.37.(2011年江西卷,文8)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数父亲身高x(cm) 174 176 176 176 178儿子身高y(cm) 175 175 176 177 177则y对x的线性回归方程为( )(A)y=x-1 (B)y=x+1(C)y=88+x (D)y=176解析:由于回归直线经过样本中心点(176,176),经验证知C符合.答案:C.广告费用x(万元) 4 2 3 5销售额y(万元) 49 26 39 54根据上表可得回归方程=x+中的为9.4,据此模型预报广告费用为6万元时销售额为( )(A)63.6万元(B)65.5万元(C)67.7万元(D)72.0万元解析:据表可得==,==42,∵回归直线过样本中心点(,42),且=9.4,∴=9.1.即回归方程为=9.4x+9.1,∴当x=6时,=65.5,故选B.答案:B.39.(2011年陕西卷,文9)设(x1,y1),(x2,y2),…,(x n,y n)是变量x和y的n个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是( )(A)直线l过点(,)(B)x和y的相关系数为直线l的斜率(C)x和y的相关系数在0到1之间(D)当n为偶数时,分布在l两侧的样本点的个数一定相同解析:样本点的中心(,)必在回归直线上.故选A.答案:A.40.(2010年湖南卷,文3)某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是( )(A)=-10x+200 (B)=10x+200(C)=-10x-200 (D)=10x-200解析:∵销售量y(件)与销售价格x(元/件)负相关,∴x的系数为负.又∵y不能为负值,∴常数项必须是正值.故选A.答案:A.41.(2011年辽宁卷,文14)调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加万元.解析:由回归直线方程为=0.254x+0.321知年收入每增加1万元,年饮食支出平均增加0.254万元.答案:0.25442.(2012年福建卷,文18,12分)某工厂为了对新研发的一种产品进行合理定价,将该产品按单价x(元) 8 8.2 8.4 8.6 8.8 9 销量y(件) 90 84 83 80 75 68(1)求回归直线方程=bx+a,其中b=-20,a=-b;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)解:(1)∵=(x1+x2+x3+x4+x5+x6)=×(8+8.2+8.4+8.6+8.8+9)=8.5,=(y1+y2+y3+y4+y5+y6)=×(90+84+83+80+75+68)=80.∴a=-b=80+20×8.5=250,回归直线方程为=-20x+250.(2)设工厂获得的利润为L元,依题意得:L=x(-20x+250)-4(-20x+250)=-20x2+330x-1000=-20(x-)2+361.25当且仅当x==8.25时,L取得最大值,故当单价定为8.25元时,工厂可获得最大利润.本题主要考查回归分析,二次函数求最值等基础知识,考查学生的运算求解能力,应用意识和化归与转化思想,属中档题.43.(2011年安徽卷,文20)某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份2002 2004 2006 2008 2010 需求量(万吨) 236 246 257 276 286(1)利用所给数据求年需求量与年份之间的回归直线方程=x+;(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升,为求回归直线方程,对数据预处理如下:年份-2006 -4 -2 0 2 4需求量-257 -21 -11 0 19 29 对预处理后的数据得=0,=3.2,===6.5,=-=3.2,由上述计算结果知所求回归直线方程为-257=(x-2006)+=6.5(x-2006)+3.2,即=6.5(x-2006)+260.2.(2)利用(1)的结论,当x=2012时,=6.5×6+260.2=299.2,即预测该地2012年的粮食需求量为299.2万吨.独立性检验考向聚焦对独立性检验的考查是高考的一个方向,有时以一道选择题的形式出现,属容易题,4~5分;也有时以一道解答题的形式出现,属于中档偏下题目,12分左右备考指津通过独立性检验判断两个变量是否相关,列出列联表是关键.利用列联表进行独立性检验,不但能考查两个变量是否相关,而且能较准确地计算出这种判断的可靠程度44.(2011年湖南卷,文5)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如男女总计爱好40 20 60不爱好20 30 50总计60 50 110由K2=算得,K2=≈7.8.附表:P(K2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828参照附表,得到的正确结论是( )(A)有99%以上的把握认为“爱好该项运动与性别有关”(B)有99%以上的把握认为“爱好该项运动与性别无关”(C)在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”(D)在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”解析:∵K2≈7.8>6.635,∴有99%以上把握认为“爱好该项运动与性别有关”.故选A.答案:A.45.(2012年辽宁卷,文19,12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:。
高考数学真题汇编 12:统计理
高考数学真题汇编 12:统计理高考数学真题汇编 12:统计理一、选择题1、下列哪个选项是描述众数的? A. 出现次数最多的数据 B. 平均数以上的中位数 C. 最高分和最低分的平均值 D. 所有成绩的中位数2、某班级期末考试成绩,其中90分以上15人,80-89分30人,70-79分25人,60-69分10人,那么下列哪个图可以准确表示该班级的分数分布情况? A. 直方图 B. 折线图 C. 条形图 D. 饼图3、某班共有50名学生,期末考试数学科目及格人数为35人,及格率为70%。
若将该班学生分为不及格、及格和优秀三个层次,则下列哪个选项是正确的? A. 不及格人数为10人 B. 及格人数为25人 C. 优秀人数为15人 D. 及格率为70%二、填空题4、某商店本月销售额为10万元,同比增长5%,则上月销售额为多少万元?41、已知一组数据为10、20、30、40、50,则该组数据的平均数为多少?标准差为多少?三、解答题6、已知某城市2019年6月份的房价中位数为15000元/平方米,房价标准差为5000元/平方米。
若以该城市的房价中位数为基准,求出房价相对较高的前10%的家庭所拥有的房屋面积的平均值。
61、已知某班级期末考试成绩如下:(1)求该班级的及格率;(2)将该班级的学生按成绩分为不及格、及格和优秀三个层次,并给出相应的人数。
8、下表是某地区过去五年的年降雨量(单位:毫米)和年平均气温(单位:摄氏度):(1)计算过去五年年降雨量和年平均气温的平均值;(2)以年份为横坐标,分别以年降雨量和年平均气温为纵坐标,绘制一幅散点图;(3)根据散点图,分析年降雨量和年平均气温之间的关系。
9、若一组数据为3.2、3.7、4.1、4.6、5.3、5.7、6.4、7.1、7.6、8.2、8.8、9.5,则中位数和四分位数第3位分别是多少?三年高考高考数学真题分项汇编专题12数列理数列是数学中的一个重要概念,它是按照一定规律排列的一组数字序列。
2024高考数学真题分类汇编(解析)
一.复数1.(2024年新课标全国Ⅰ卷)若1i 1zz =+-,则z =()A .1i --B .1i-+C .1i -D .1i+【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.2.(2024年新课标全国Ⅱ卷)已知1i z =--,则z =()A .0B .1C D .2【详解】若1i z =--,则z ==故选:C.3.(2024年高考全国甲卷数学(理))设5i z =+,则()i z z +=()A .10iB .2iC .10D .2-【详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=.故选:A二.集合1.(2024年新课标全国Ⅰ卷)已知集合{}355,{3,1,0,2,3}A x x B =-<<=--∣,则A B = ()A .{1,0}-B .{2,3}C .{3,1,0}--D .{1,0,2}-【详解】因为{{}|,3,1,0,2,3A x x B =<=--,且注意到12<<,从而A B ={}1,0-.故选:A.2.(2024年高考全国甲卷数学(理))集合{}{}1,2,3,4,5,9,A B A ==∈,则()A A B ⋂=ð()A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,5【详解】因为{}{}1,2,3,4,5,9,A B A ==∈,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D三.命题与逻辑1.(2024年新课标全国Ⅱ卷)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B.2.(2024年高考全国甲卷数学(理))设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A .①③B .②④C .①②③D .①③④【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.四.向量1.(2024年新课标全国Ⅰ卷)已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥- ,则x =()A .2-B .1-C .1D .2【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-= ,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.2.(2024年新课标全国Ⅱ卷)已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A .12B C D .1【详解】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+= ,所以22144164a b b b +⋅+=+= ,从而2=b 故选:B.3.(2024年高考全国甲卷数学(理))已知向量()()1,,,2a x x b x =+=,则()A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b”的必要条件C .“0x =”是“a b ⊥”的充分条件D .“1x =-+”是“//a b ”的充分条件【详解】对A ,当a b ⊥时,则0a b ⋅= ,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅= ,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.5.解三角形1.(2024年新课标全国Ⅰ卷)记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-(1)求B ;(2)若ABC 的面积为3c .【详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而sin2C==,又因为sin C B=,即1cos2B=,注意到()0,πB∈,所以π3B=.(2)由(1)可得π3B=,cos2C=,()0,πC∈,从而π4C=,ππ5ππ3412A=--=,而5πππ1sin sin sin124622224A⎛⎫⎛⎫==+=⨯+⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin1234a b c==,从而,a b====,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c c==⋅=,由已知ABC的面积为32338c+=c=2.(2024年新课标全国Ⅱ卷)记ABC的内角A,B,C的对边分别为a,b,c,已知sin2A A+=.(1)求A.(2)若2a=sin sin2C c B=,求ABC的周长.【详解】(1)方法一:常规方法(辅助角公式)由sin2A A=可得1sin122A A+=,即sin()1π3A+=,由于ππ4π(0,π)(,333A A∈⇒+∈,故ππ32A+=,解得π6A=方法二:常规方法(同角三角函数的基本关系)由sin2A A=,又22sin cos1A A+=,消去sin A得到:24cos30(2cos0A A A-+=⇔-=,解得cos A=又(0,π)A∈,故π6A=方法三:利用极值点求解设()sin(0π)f x x x x=<<,则π()2sin(0π)3f x x x⎛⎫=+<<⎪⎝⎭,显然π6x=时,max()2f x=,注意到π()sin22sin(3f A A A A=+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos sin f A A A '==,即tan A =,又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅=+=,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A ⋅=⇔=又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22sin 21tA A t ==+整理可得,222(2(20((2t t t --+-==--,解得tan22A t ==22tan 13t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos 2B =,得到π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos C A B A B A B B A =--=+=+=由正弦定理可得,sin sin sin a b cA B C ==,即2ππ7πsin sin sin6412bc==,解得b c ==故ABC的周长为2+3.(2024年高考全国甲卷数学(理))在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A .32B C D 【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=.故选:C.6.概率统计1.(2024年新课标全国Ⅰ卷)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .2.(2024年新课标全国Ⅰ卷)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382k k k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.3.(2024年新课标全国Ⅱ卷)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是()A .100块稻田亩产量的中位数小于1050kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200kg 至300kg 之间D .100块稻田亩产量的平均值介于900kg 至1000kg 之间【详解】对于A,根据频数分布表可知,612183650++=<,所以亩产量的中位数不小于1050kg ,故A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误.故选;C.4.(2024年新课标全国Ⅱ卷)在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124⨯⨯⨯=种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=.故答案为:24;1125.(2024年高考全国甲卷数学(理))1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是.【详解】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎝⎭⎝⎭⎩,294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =,所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5.6.(2024年高考全国甲卷数学(理))有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤,故2()3c a b -+≤,故32()3c a b -≤-+≤,故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5,()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种,当5c =,则713a b ≤+≤,同理有10种,当6c =,则915a b ≤+≤,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=,故所求概率为56712015=.故答案为:7157.(2024年高考全国甲卷数学(理))某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ≥0.0500.0100.001k3.8416.63510.828【详解】(1)根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得()2215026302470754.687550100965416K ⨯-⨯===⨯⨯⨯,因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=,用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +++⨯≈,可知p p >+所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.8.(2024年新课标全国Ⅱ卷)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?【详解】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,∴比赛成绩不少于5分的概率()()3310.610.50.686P =--=.(2)(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q ⎡⎤=--⎣⎦甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p ⎡⎤=--⋅⎣⎦乙,0p q << ,3333()()P P q q pq p p pq ∴-=---+-甲乙()2222()()()()()()q p q pq p p q p pq q pq p pq q pq ⎡⎤=-+++-⋅-+-+--⎣⎦()2222()333p q p q p q pq =---3()()3()[(1)(1)1]0pq p q pq p q pq p q p q =---=---->,P P ∴>甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,数学成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q ⎡⎤==-+--⋅-⎣⎦,32123(5)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,3223(10)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,33(15)1(1)P X p q ⎡⎤==--⋅⎣⎦,()332()151(1)1533E X p q p p p q⎡⎤∴=--=-+⋅⎣⎦记乙先参加第一阶段比赛,数学成绩Y 的所有可能取值为0,5,10,15,同理()32()1533E Y q q q p=-+⋅()()15[()()3()]E X E Y pq p q p q pq p q ∴-=+---15()(3)p q pq p q =-+-,因为0p q <<,则0p q -<,31130p q +-<+-<,则()(3)0p q pq p q -+->,∴应该由甲参加第一阶段比赛.7.立体几何1.(2024年新课标全国Ⅰ卷)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高)A .B .C .D .【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r =即=,故3r =,故圆锥的体积为1π93⨯=.故选:B.2.(2024年新课标全国Ⅱ卷)已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为()A .12B .1C .2D .3【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D ==可知11111662222ABC A B C S S =⨯⨯⨯==⨯⨯ 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -==,解得h =如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,则1AA=DN AD AM MN x=--=,可得1DD==结合等腰梯形11BCC B可得22211622BB DD-⎛⎫=+⎪⎝⎭,即()221616433x x+=++,解得x=所以1A A与平面ABC所成角的正切值为11tan1A MA ADAMÐ==;解法二:将正三棱台111ABC AB C-补成正三棱锥-P ABC,则1A A与平面ABC所成角即为PA与平面ABC所成角,因为11113PA A BPA AB==,则111127P A B CP ABCVV--=,可知1112652273ABC A B C P ABCV V--==,则18P ABCV-=,设正三棱锥-P ABC的高为d,则116618322P ABCV d-=⨯⨯⨯⨯,解得d=,取底面ABC的中心为O,则PO⊥底面ABC,且AO=所以PA与平面ABC所成角的正切值tan1POPAOAO∠==.故选:B.3.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为1r和2r,母线长分别为()212r r-和()213r r-,则两个圆台的体积之比=VV甲乙.【详解】由题可得两个圆台的高分别为)12h r r==-甲,)12h r r==-乙,所以((21211313S S h V h V h S S h ++-==++甲甲甲乙乙乙4.(2024年新课标全国Ⅰ卷)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB =.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .【详解】(1)(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .(2)如图所示,过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角ACP D --的平面角,即sin 7DFE ∠=,即tan DFE ∠=因为AD DC⊥,设AD x =,则CD=DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故22tan4DFEx∠==x=AD=5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD中,8AB=,3CD=,AD=,90ADC︒∠=,30BAD︒∠=,点E,F满足25AE AD=,12AF AB=,将AEF△沿EF对折至PEF!,使得PC=.(1)证明:EF PD⊥;(2)求面PCD与面PBF所成的二面角的正弦值.【详解】(1)由218,,52AB AD AE AD AF AB====,得4AE AF==,又30BAD︒∠=,在AEF△中,由余弦定理得2EF,所以222AE EF AF+=,则AE EF⊥,即EF AD⊥,所以,EF PE EF DE⊥⊥,又,PE DE E PE DE=⊂、平面PDE,所以EF⊥平面PDE,又PD⊂平面PDE,故EF⊥PD;(2)连接CE,由90,3ADC ED CD︒∠===,则22236CE ED CD=+=,在PEC中,6PC PE EC===,得222EC PE PC+=,所以PE EC ⊥,由(1)知PE EF ⊥,又,EC EF E EC EF =⊂ 、平面ABCD ,所以PE ⊥平面ABCD ,又ED ⊂平面ABCD ,所以PE ED ⊥,则,,PE EF ED 两两垂直,建立如图空间直角坐标系E xyz -,则(0,0,0),(0,0,(2,0,0),(0,E P D C F A -,由F 是AB的中点,得(4,B ,所以(4,22(2,0,2PC PD PB PF =-===-,设平面PCD 和平面PBF 的一个法向量分别为111222(,,),(,,)n x y z m x y z ==,则11111300n PC x n PD ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,222224020m PB x m PF x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,令122,y x =11220,3,1,1x z y z ===-=,所以(0,2,3),1,1)n m ==-,所以cos ,m nm n m n ⋅===设平面PCD 和平面PBF 所成角为θ,则sin 65θ==,即平面PCD 和平面PBF所成角的正弦值为65.6.(2024年高考全国甲卷数学(理))如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.【详解】(1)因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;(2)如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM中点,所以OB =又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF =,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m = ,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则sin ,m n =故二面角F BM E --8.解析几何1.(2024年高考全国甲卷数学(理))已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D .2【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,()22164410PF =++=,()2226446PF =+-=,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.2.(2024年新课标全国Ⅰ卷)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O.且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A .2a =-B .点(22,0)在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+【详解】对于A :设曲线上的动点(),P x y ,则2x >-且()2224x y x a -+⨯-=,因为曲线过坐标原点,故()2202004a -+⨯-=,解得2a =-,故A 正确.对于B :又曲线方程为()22224x y x -+⨯+=,而2x >-,5.(2024年高考全国甲卷数学(理)22410++-=交于Ax y yA.2B.3C.4a b c成等差数列,所以【详解】因为,,++-=,即aax by b a20故选:C.(202427.(2024年新课标全国Ⅰ卷)已知(1)求C的离心率;(2)若过P的直线l交C于另一点⎧⎪⎪8.(2024年高考全国甲卷数学在C上,且MF x⊥轴.(1)求C的方程;由223412(4)x y y k x ⎧+=⎨=-⎩可得(34+故()(42Δ102443464k k =-+23264k由已知有22549m =-=,故当12k =时,过()15,4P 且斜率为22392x x +⎛⎫-= ⎪⎝⎭.解得3x =-或5x =,所以该直线与9.函数与导数1.(2024年新课标全国Ⅰ卷)已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A .3m -B .3m -C .3mD .3m【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.2.(2024年新课标全国Ⅰ卷)已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞【详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤,即a 的范围是[1,0]-.故选:B.3.(2024年新课标全国Ⅰ卷)当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A .3B .4C .6D .8【详解】因为函数sin y x =的的最小正周期为2πT =,函数π2sin 36y x ⎛⎫=- ⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=- ⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C4.(2024年新课标全国Ⅰ卷)已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.5.(2024年新课标全国Ⅰ卷)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x >,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D ,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.6.(2024年新课标全国Ⅰ卷)若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a .【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 27.(2024年新课标全国Ⅱ卷)设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A .1-B .12C .1D .2【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.8.(2024年新课标全国Ⅱ卷)设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为()A .18B .14C .12D .1【详解】解法一:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;若-≤-a b ,当(),1x b b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ∈-+∞时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥;可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b +<+>,此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤;()1,x b ∈-+∞时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=,则()2222211112222a b a a a ⎛⎫=++=++ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12.故选:C.9.(2024年新课标全国Ⅱ卷)对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有()A .()f x 与()g x 有相同零点B .()f x 与()g x 有相同最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图像有相同的对称轴【详解】A 选项,令()sin 20f x x ==,解得π,2k x k =∈Z ,即为()f x 零点,令π()sin(204g x x =-=,解得ππ,28k x k =+∈Z ,即为()g x 零点,显然(),()f x g x 零点不同,A 选项错误;B 选项,显然max max ()()1f x g x ==,B 选项正确;C 选项,根据周期公式,(),()f x g x 的周期均为2ππ2=,C 选项正确;D 选项,根据正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+⇔=+∈Z ,()g x 的对称轴满足πππ3π2π,4228k x k x k -=+⇔=+∈Z ,显然(),()f x g x 图像的对称轴不同,D 选项错误.故选:BC10.(2024年新课标全国Ⅱ卷)设函数32()231f x x ax =-+,则()A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增,(0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值,由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减,,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-,即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a-=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由题意(1,(1))f 也是对称中心,故122aa =⇔=,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD11.(2024年新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+=.【详解】法一:由题意得()tan tan tan1tan tan αβαβαβ++===--因为π3π2π,2π,2ππ,2π22k k m m αβ⎛⎫⎛⎫∈+∈++ ⎪⎝⎭⎝⎭,,Z k m ∈,则()()()22ππ,22π2πm k m k αβ+∈++++,,Z k m ∈,又因为()tan 0αβ+=-,则()()3π22π,22π2π2m k m k αβ⎛⎫+∈++++ ⎪⎝⎭,,Z k m ∈,则()sin 0αβ+<,则()()sin cos αβαβ+=-+()()22sin cos 1αβαβ+++=,解得()sin 3αβ+=-.法二:因为α为第一象限角,β为第三象限角,则cos 0,cos 0αβ><,cos α==cos β==则sin()sin cos cos sin cos cos (tan tan )αβαβαβαβαβ+=+=+4cos cos αβ=====故答案为:3-.12.(2024年高考全国甲卷数学(理))设函数()2e 2sin 1x xf x x +=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A .16B .13C .12D .23【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.13.(2024年高考全国甲卷数学(理))函数()()2e e sin x xf x x x -=-+-在区间[2.8,2.8]-的大致图像为()A .B .C .D .【详解】()()()()()22e e sin e e sin x x x xf x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.14.(2024年高考全国甲卷数学(理))已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A .1B .1C .2D .1【详解】因为cos cos sin ααα=-所以11tan =-α,tan 13⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+ ⎪-α⎝⎭,故选:B.15.(2024年高考全国甲卷数学(理))已知1a >,8115log log 42a a -=-,则=a .【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.16.(2024年新课标全国Ⅰ卷)已知函数3()ln (1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【详解】(1)0b =时,()ln 2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,(2)()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .(3)因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln 21102x x b x x+-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln201t t bt t +-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311t bt b g t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.17.(2024年新课标全国Ⅱ卷)已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.【详解】(1)当1a =时,则()e 1x f x x =--,()e 1x f x '=-,可得(1)e 2f =-,(1)e 1f '=-,即切点坐标为()1,e 2-,切线斜率e 1k =-,所以切线方程为()()()e 2e 11y x --=--,即()e 110x y ---=.(2)解法一:因为()f x 的定义域为R ,且()e '=-x f x a ,若0a ≤,则()0f x '≥对任意x ∈R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,则()120g a a a'=+>,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞;解法二:因为()f x 的定义域为R ,且()e '=-x f x a ,若()f x 有极小值,则()e '=-x f x a 有零点,令()e 0x f x a '=-=,可得e x a =,可知e x y =与y a =有交点,则0a >,若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;。
高考理科数学试题19个专题分类大汇编
全国高考理科数学试题分类汇编1:集合一、选择题1 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U=,集合{}=12A ,,{}=23B ,,则()=U AB ð( )A. {}134,,B. {}34,C. {}3D. {}4【答案】D2 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则A. ()01,B. (]02,C. ()1,2D. (]12, 【答案】D3 . (普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2},A = {x ∈R | x ≤1}, 则AB ⋂=(A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1]【答案】D4 . (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”. 以下集合对不是“保序同构”的是( ) A.*,A N B N==B.{|13},{|8010}A x x B x x x =-≤≤==-<≤或C. {|01},A x x B R =<<=D. ,A Z B Q ==【答案】D5 . (高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( ) (A) (,2)-∞(B) (,2]-∞ (C) (2,)+∞(D) [2,)+∞【答案】B.6 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={},x y x A y A -∈∈中元素的个数是 (A) 1 (B) 3 (C)5 (D)9【答案】C7 . (高考陕西卷(理))设全集为R , 函数()f x M , 则C M R 为(A) [-1,1] (B) (-1,1) (C) ,1][1,)(∞-⋃+∞- (D) ,1)(1,)(∞-⋃+∞-【答案】D8 . (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中的元素个数为(A)3 (B)4 (C)5 (D)6 【答案】B9 . (高考四川卷(理))设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )(A){2}- (B){2} (C){2,2}- (D)∅【答案】A10. (高考新课标1(理))已知集合{}{2|20,|A x x x B x x =->=<<,则( )A. A∩B=∅B. A∪B=RC. B ⊆AD. A ⊆B【答案】B.11. (高考湖北卷(理))已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R AC B =( )A. {}|0x x ≤B. {}|24x x ≤≤C. {}|024x x x ≤<>或D. {}|024x x x <≤≥或【答案】C12. (普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知集合{}{}2|(1)4,,1,0,1,2,3M x x x R N =-<∈=-,则=N M(A){}2,1,0 (B){}2,1,0,1- (C){}3,2,0,1- (D){}3,2,1,0【答案】A13. (普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )A .{}0B.{}0,2C.{}2,0-D.{}2,0,2-【答案】D14. (普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )(A. (2,1]-B. ]4,(--∞C. ]1,(-∞D. ),1[+∞【答案】C15. (普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设整数4n ≥,集合{}1,2,3,,X n =. 令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立,若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉ B. (),,y z w S ∈,(),,x y w S ∈C.(),,y z w S ∉,(),,x y w S ∈D.(),,y z w S ∉,(),,x y w S ∈(一)必做题(9~13题) 【答案】B16. (高考北京卷(理))已知集合A={-1,0,1},B={x |-1≤ x <1},则A∩B= ( )A. {0}B. {-1,0}C. {0,1}D. {-1,0,1} 【答案】B17. (上海市春季高考数学试卷(含答案))设全集U R =,下列集合运算结果为R 的是( ) (A)u ZN ð (B)u N N ð (C)()u u ∅痧 (D){0}u ð【答案】A 二、填空题18. (普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))集合}1,0,1{-共有___________个子集.【答案】8 三、解答题19. (普通高等学校招生统一考试重庆数学(理)试题(含答案))对正整数n ,记{}1,2,3,,m I n =,,m m m P I k I ⎫=∈∈⎬⎭. (1)求集合7P 中元素的个数;(2)若m P 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”. 求n 的最大值,使m P 能分成两人上不相交的稀疏集的并.【答案】全国高考理科数学试题分类汇编2:函数一、选择题20 . (高考江西卷(理))函数的定义域为A. (0,1)B. [0,1)C. (0,1]D. [0,1] 【答案】D21 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( ) A. (),a b 和(),b c 内 B. (),a -∞和(),a b 内 C. (),b c 和(),c +∞内 D. (),a -∞和(),c +∞内【答案】A22 . (上海市春季高考数学试卷(含答案))函数12()f x x -=的大致图像是( )【答案】A23 . (高考四川卷(理))设函数()f x =a R ∈,e 为自然对数的底数). 若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( ) (A)[1,]e (B)1[,-11]e -, (C)[1,1]e + (D)1[-1,1]e e -+【答案】A24 . (高考新课标1(理))已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A. (,0]-∞B. (,1]-∞C. [2,1]-D. [2,0]-【答案】D25 . (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))函数()()21=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x -(A)()1021x x >- (B)()1021xx ≠- (C)()21x x R -∈ (D)()210xx ->【答案】A26 . (普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知y x ,为正实数,则A. y x yx lg lg lg lg 222+=+ B. y x y x lg lg )lg(222∙=+ C. y x yx lg lg lg lg 222+=∙ D. y x xy lg lg )lg(222∙=【答案】D27 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -= (A) 2- (B) 0 (C) 1 (D) 2【答案】A28 . (高考陕西卷(理))在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x (单位m )的取值范围是(A) [15,20] (B) [12,25] (C) [10,30] (D) [20,30] 【答案】C29. (普通高等学校招生统一考试重庆数学(理)试题(含答案))y =()63a -≤≤的最大值为( )A. 9B.92 C. 3【答案】B30. (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为(A)()1,1- (B)11,2⎛⎫- ⎪⎝⎭ (C)()-1,0 (D)1,12⎛⎫⎪⎝⎭【答案】B31. (高考湖南卷(理))函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A. 3B. 2C. 1D. 0 【答案】B32. (高考四川卷(理))函数231x x y =-的图象大致是( )【答案】C33. (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A)2216a a -- (B)2216a a +- (C)16- (D)16【答案】B34. (普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4 B. 3C. 2D. 1【答案】C35. (普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若函数3()=+b +f x x x c有极值点1x ,2x ,且11()=f x x ,则关于x 的方程213(())+2()+=0f x f x b 的不同实根个数是 (A)3 (B)4 (C) 5 (D)6 【答案】A36. (普通高等学校招生统一考试天津数学(理)试题(含答案))函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4 【答案】B37. (高考北京卷(理))函数f (x )的图象向右平移1个单位长度,所得图象与y =e x关于y 轴对称,则f (x )= A. 1ex + B. 1ex - C. 1ex -+ D. 1ex --【答案】D38. (上海市春季高考数学试卷(含答案))设-1()f x 为函数()f x =,下列结论正确的是( )(A) 1(2)2f -= (B) 1(2)4f -= (C) 1(4)2f -= (D) 1(4)4f -=【答案】B39. (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))若函数()21=f x x ax x ++在1,+2⎛⎫∞ ⎪⎝⎭是增函数,则a 的取值范围是 (A)[-1,0] (B)[1,)-+∞ (C)[0,3] (D)[3,)+∞【答案】D二、填空题40. (上海市春季高考数学试卷(含答案))函数2log (2)y x =+的定义域是_______________ 【答案】(2,)-+∞ 41. (高考上海卷(理))方程1313313x x-+=-的实数解为________ 【答案】3log 4x =.42. (高考上海卷(理))对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y f x -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =【答案】02x =.43. (高考新课标1(理))若函数()f x =22(1)()xx ax b -++的图像关于直线2x =-对称,则()f x 的最大值是______.【答案】16.44. (上海市春季高考数学试卷(含答案))方程28x=的解是_________________ 【答案】345. (高考湖南卷(理))设函数(),0,0.x x x f x a b c c a c b =+->>>>其中(1)记集合{}(,,),,M a b c a b c a =不能构成一个三角形的三条边长,且=b ,则(,,)a b c M ∈所对应的()f x 的零点的取值集合为____.(2)若,,a b c ABC ∆是的三条边长,则下列结论正确的是______. (写出所有正确结论的序号)①()(),1,0;x f x ∀∈-∞>②,,,x x x x R xa b c ∃∈使不能构成一个三角形的三条边长; ③若()()1,2,0.ABC x f x ∆∃∈=为钝角三角形,则使【答案】(1)]10(,(2)①②③ 46. (普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))已知)(x f 是定义在R 上的奇函数. 当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为___________.【答案】()()+∞-,50,547. (高考上海卷(理))设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________ 【答案】87a ≤-. 三、解答题48. (普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22()(1)f x ax a x =-+,其中0a >,区间|()>0I x f x =(Ⅰ)求的长度(注:区间(,)αβ的长度定义为βα-); (Ⅱ)给定常数(0,1)k ∈,当时,求l 长度的最小值.【答案】解: (Ⅰ))1,0(0])1([)(22aa x x a a x x f +∈⇒>+-=. 所以区间长度为21a a+. (Ⅱ) 由(Ⅰ)知,aa a al 1112+=+=恒成立令已知k kk k k k a k k -1110-111.1-10),1,0(2>+∴>⇒>++≤≤<∈. 22)1(11)1(1111)(k kk k l k a a a a g -+-=-+-≥⇒-=+=⇒这时时取最大值在 所以2)1(111k kl k a -+--=取最小值时,当. 49. (上海市春季高考数学试卷(含答案))本题共有3个小题,第1小题满分5分,第2小题满分7分,第3小题满分6分.已知真命题:“函数()y f x =的图像关于点( )P a b 、成中心对称图形”的充要条件为“函数()y f x a b =+- 是奇函数”.(1)将函数32()3g x x x =-的图像向左平移1个单位,再向上平移2个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数()g x 图像对称中心的坐标; (2)求函数22()log 4xh x x=- 图像对称中心的坐标; (3)已知命题:“函数 ()y f x =的图像关于某直线成轴对称图像”的充要条件为“存在实数a 和b,使得函数()y f x a b =+- 是偶函数”. 判断该命题的真假. 如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).【答案】(1)平移后图像对应的函数解析式为32(1)3(1)2y x x =+-++,整理得33y x x =-,由于函数33y x x =-是奇函数,由题设真命题知,函数()g x 图像对称中心的坐标是(12)-,. (2)设22()log 4xh x x=-的对称中心为( )P a b ,,由题设知函数()h x a b +-是奇函数. 设()(),f x h x a b =+-则22()()log 4()x a f x b x a +=--+,即222()log 4x a f x b a x +=---. 由不等式2204x aa x+>--的解集关于原点对称,得2a =.此时22(2)()log (2 2)2x f x b x x+=-∈--,,. 任取(2,2)x ∈-,由()()0f x f x -+=,得1b =,所以函数22()log 4xh x x=-图像对称中心的坐标是(2 1),. (3)此命题是假命题.举反例说明:函数()f x x =的图像关于直线y x =-成轴对称图像,但是对任意实数a 和b ,函数()y f x a b =+-,即y x a b =+-总不是偶函数. 修改后的真命题:“函数()y f x =的图像关于直线x a =成轴对称图像”的充要条件是“函数()y f x a =+是偶函数”.全国高考理科数学试题分类汇编3:三角函数一、选择题50 . (普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43C. 43-D. 34-【答案】C51 . (高考陕西卷(理))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定 【答案】B52 . (普通高等学校招生统一考试天津数学(理)试题(含答案))在△ABC 中,,3,4AB BC ABC π∠===则sin BAC ∠ =【答案】C53 . (普通高等学校招生统一考试山东数学(理)试题(含答案))将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 (A) 34π (B) 4π (C)0 (D) 4π-【答案】B54 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠= A. 6π B. 3π C. 23π D. 56π【答案】A55 . (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数()=cos sin 2f x x x ,下列结论中错误的是(A)()y f x =的图像关于(),0π中心对称 (B)()y f x =的图像关于直线2x π=对称(C)()f x的最大值为2(D)()f x 既奇函数,又是周期函数 【答案】C56 . (普通高等学校招生统一考试山东数学(理)试题(含答案))函数cos sin y x x x =+的图象大致为【答案】D57 . (高考四川卷(理))函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A)2,3π-(B)2,6π-(C)4,6π-(D)4,3π 【答案】A58 . (上海市春季高考数学试卷(含答案))既是偶函数又在区间(0 )π,上单调递减的函数是( )(A)sin y x = (B)cos y x = (C)sin 2y x = (D)cos 2y x =【答案】B59. (普通高等学校招生统一考试重庆数学(理)试题(含答案))04cos50tan 40-=( )1 【答案】C60. (高考湖南卷(理))在锐角中ABC ∆,角,A B 所对的边长分别为,a b . 若2sin ,a B A 则角等于A.12π B. 6π C. 4π D. 3π【答案】D61. (高考湖北卷(理))将函数()sin yx x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( ) A.12π B.6π C.3π D.56π【答案】B 二、填空题62. (普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))ABC ∆中,090=∠C ,M是BC 的中点,若31sin =∠BAM ,则=∠BAC sin ________.【答案】63. (高考新课标1(理))设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______【答案】. 64. (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))如图ABC ∆中,已知点D在BC 边上,AD ⊥AC,sin 3BAC AB AD ∠===则BD 的长为_______________【答案】65. (上海市春季高考数学试卷(含答案))函数2sin y x =的最小正周期是_____________【答案】2π66. (高考四川卷(理))设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是_________.【答案】67. (高考上海卷(理))若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y +=【答案】2sin()3x y +=.68. (高考上海卷(理))已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示)【答案】1arccos3C π=- 69. (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知α是第三象限角,1sin 3a =-,则cot a =____________.【答案】70. (普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))函数)42sin(3π+=x y 的最小正周期为___________.【答案】π71. (上海市春季高考数学试卷(含答案))在ABC ∆中,角 A B C 、、所对边长分别为 a b c 、、,若5 8 60a b B ===,,,则b=_______ 【答案】772. (普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设ABC ∆的内角,,A B C所对边的长分别为,,a b c . 若2b c a +=,则3sin 5sin ,A B =则角C =_____.【答案】π3273. (普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=________.【答案】74. (高考江西卷(理))函数2sin2y x x =+的最小正周期为T 为_________.【答案】π75. (上海市春季高考数学试卷(含答案))函数4s i n 3c o s y x x =+的最大值是_______________ 【答案】5三、解答题76. (高考北京卷(理))在△ABC 中,a =3,b ,∠B =2∠A .(I)求cos A 的值; (II)求c 的值.【答案】解:(I)因为a =3,b =2,∠B =2∠A . 所以在△ABC 中,由正弦定理得3sin sin 2A A =. 所以2sin cos sin 3A A A =. 故cos 3A =.(II)由(I)知cos 3A =,所以s i n 3A ==. 又因为∠B=2∠A,所以21c o s 2c o s 13B A =-=. 所以sin 3B ==.在△ABC 中,sin sin()sin cos cos sin C A B A B A B =+=+=. 所以sin 5sin a Cc A==.77. (高考陕西卷(理))已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b . (Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】解:(Ⅰ)()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x . 最小正周期ππ==22T . 所以),62sin()(π-=x x f 最小正周期为π.(Ⅱ)上的图像知,在,由标准函数时,当]65,6-[sin ]65,6-[)62(]2,0[ππππππx y x x =∈-∈.]1,21[)]2(),6-([)62sin()(-=∈-=πππf f x x f . 所以,f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为21,1-.78. (普通高等学校招生统一考试重庆数学(理)试题(含答案))在ABC 中,内角,,A B C 的对边分别是,,a b c ,且222a b c +=.(1)求C ; (2)设()()2cos cos cos cos 5cos 5A B A B ααα++==,求tan α的值. 【答案】由题意得79. (普通高等学校招生统一考试天津数学(理)试题(含答案))已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】80. (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))设向量)()s i n ,s i n ,c o s ,s i n x ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I)若.a b x =求的值; (II)设函数()(),.f x a b f x =求的最大值【答案】81. (高考上海卷(理))(6分+8分)已知函数()2sin()f x x ω=,其中常数0ω>;(1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a -的最小值.【答案】(1)因为0ω>,根据题意有34202432ππωωππω⎧-≥-⎪⎪⇒<≤⎨⎪≤⎪⎩ (2) ()2sin(2)f x x =,()2sin(2())12sin(2)163g x x x ππ=++=++1()0sin(2)323g x x x k πππ=⇒+=-⇒=-或7,12x k k Z ππ=-∈,即()g x 的零点相离间隔依次为3π和23π,故若()y g x =在[,]a b 上至少含有30个零点,则b a -的最小值为2431415333πππ⨯+⨯=. 82. (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=. (I)求B(II)若1sin sin 4A C =,求C . 【答案】83. (高考四川卷(理))在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-.(Ⅰ)求cos A 的值;(Ⅱ)若a =5b =,求向量BA 在BC 方向上的投影.【答案】解:()I 由()()232cos cos sin sin cos 25A B B A B B A C ---++=-,得 ()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦, 即()()3cos cos sin sin 5A B B A B B ---=-,则()3cos 5A B B -+=-,即3cos 5A =-()II 由3cos ,05A A π=-<<,得4sin 5A =,由正弦定理,有sin sin a b A B =,所以,sin sin 2b A B a ==. 由题知a b >,则A B >,故4B π=.根据余弦定理,有(22235255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得1c =或7c =-(舍去).故向量BA 在BC方向上的投影为cos BA B =84. (普通高等学校招生统一考试山东数学(理)试题(含答案))设△ABC 的内角,,A B C 所对的边分别为,,a b c ,且6a c +=,2b =,7cos 9B =. (Ⅰ)求,a c 的值; (Ⅱ)求sin()A B -的值.【答案】解:(Ⅰ)由余弦定理2222cos b a c ac B =+-,得()222(1cos )b ac ac B =+-+,又6a c +=,2b =,7cos 9B =,所以9ac =,解得3a =,3c =.(Ⅱ)在△ABC中,sin 9B ==,由正弦定理得sin sin 3a B A b ==,因为a c =,所以A 为锐角,所以1cos 3A ==因此sin()sin cos cos sin A B A B A B -=-=.85. (普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知函数()4co s s i n (0)4f x x x πϖϖϖ⎛⎫=⋅+>⎪⎝⎭的最小正周期为π.(Ⅰ)求ϖ的值; (Ⅱ)讨论()f x 在区间[]0,2上的单调性.【答案】解:(Ⅰ)2)42sin(2)12cos 2(sin 2)cos (sin cos 22++=++=+⇒πωωωωωωx x x x x x122=⇒=⇒ωπωπ. 所以1,2)42sin(2)(=++=ωπx x f (Ⅱ) ;解得,令时,当8242]4,4[)42(]2,0[ππππππππ==++∈+∈x x x x 所以.]28[]8,0[)(上单调递减,上单调递增;在在πππx f y =86. (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点.【答案】解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω=又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,1sin 2x <<10cos 22x << 所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()04G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x ,即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin xh x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x +'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表当0x >且x 趋近于0时,()h x 趋向于-∞当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点87. (普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分. 已知(cos ,sin )(cos ,sin )a b ααββ==,,παβ<<<0. (1)若||2a b -=,求证:a b ⊥;(2)设(0,1)c =,若a b c +=,求βα,的值.【答案】解:(1)∵2||=-b a ∴2||2=-b a 即()22222=+-=-,又∵1sin cos ||2222=+==ααa a ,1sin cos ||2222=+==ββb b ∴222=-∴0=b a ∴b ⊥a(2)∵)1,0()sin sin ,cos (cos =++=+βαβα ∴⎩⎨⎧=+=+1sin sin 0cos cos βαβα即⎩⎨⎧-=-=βαβαsin 1sin cos cos 两边分别平方再相加得:βsin 221-= ∴21sin =β ∴21sin =α ∵παβ<<<0∴πβπα61,65==88. (普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知函数()co s 12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(Ⅰ) 求6f π⎛⎫- ⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.【答案】(Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(Ⅱ) 222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+⎪⎝⎭cos 2sin 2θθ=-72417252525⎛⎫=---= ⎪⎝⎭. 89. (高考湖南卷(理))已知函数2()sin()cos().()2sin 632xf x x xg x ππ=-+-=.(I)若α是第一象限角,且()f α=求()g α的值; (II)求使()()f x g x ≥成立的x 的取值集合.【答案】解:(I)533sin 3)(sin 3sin 23cos 21cos 21sin 23)(==⇒=++-=ααf x x x x x x f . 51cos 12sin 2)(,54cos )2,0(,53sin 2=-===⇒∈=⇒ααααπααg 且(II)21)6sin(cos 21sin 23cos 1sin 3)()(≥+=+⇒-≥⇒≥πx x x x x x g x f Z k k k x k k x ∈+∈⇒++∈+⇒],322,2[]652,62[6ππππππππ90. (普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分. 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径. 一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C . 现有甲.乙两位游客从A 处下山,甲沿AC 匀速步行,速度为min /50m . 在甲出发min 2后,乙从A 乘缆车到B ,在B 处停留min 1后,再从匀速步行到C . 假设缆车匀速直线运动的速度为min /130m ,山路AC 长为m 1260,经测量,1312cos =A ,53cos =C . (1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?【答案】解:(1)∵1312cos =A ,53cos =C ∴),(、20π∈C A ∴135sin =A ,54sin =C∴[]6563sin cos cos sin sin sin sin =+=+=+-=C A C A C A C A B )()(π 根据sinB sinC AC AB =得m C ACAB 1040sin sinB== (2)设乙出发t分钟后,甲.乙距离为d,则1312)50100(1302)50100()130(222⨯+⨯⨯-++=t t t t d ∴)507037(20022+-=t t d∵13010400≤≤t 即80≤≤t ∴3735=t 时,即乙出发3735分钟后,乙在缆车上与甲的距离最短.(3)由正弦定理sinBsinA ACBC =得50013565631260sin sinB ===A AC BC (m) 乙从B 出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C 设乙的步行速度为V min /m ,则350710500≤-v ∴3507105003≤-≤-v ∴14625431250≤≤v ∴为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎥⎦⎤⎢⎣⎡14625,431250范围内 CBA法二:解:(1)如图作BD ⊥CA 于点D , 设BD =20k ,则DC =25k ,AD =48k , AB =52k ,由AC =63k =1260m, 知:AB =52k =1040m.(2)设乙出发x 分钟后到达点M , 此时甲到达N 点,如图所示. 则:AM =130x ,AN =50(x +2),由余弦定理得:MN 2=AM 2+AN 2-2 AM ·AN cos A =7400 x 2-14000 x +10000, 其中0≤x ≤8,当x =3537 (min)时,MN 最小,此时乙在缆车上与甲的距离最短.(3)由(1)知:BC =500m,甲到C 用时:126050 =1265(min).若甲等乙3分钟,则乙到C 用时:1265 +3=1415 (min),在BC 上用时:865 (min) .此时乙的速度最小,且为:500÷865 =125043m/min.若乙等甲3分钟,则乙到C 用时:1265 -3=1115 (min),在BC 上用时:565 (min) .此时乙的速度最大,且为:500÷565 =62514 m/min.故乙步行的速度应控制在[125043 ,62514]范围内.91. (高考湖北卷(理))在ABC ∆中,角A ,B ,C 对应的边分别是a ,b ,c . 已知()cos23cos 1A B C -+=.(I)求角A 的大小;(II)若ABC ∆的面积S =,5b =,求sin sin B C 的值.【答案】解:(I)由已知条件得:cos23cos 1A A +=22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒(II)1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A == 25sin sin 47bc B C R ∴== 92. (普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))△ABC 在内角CBADMN,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+.(Ⅰ)求B ;(Ⅱ)若2b =,求△ABC 面积的最大值.【答案】93. (高考新课标1(理))如图,在△ABC中,∠ABC=90°,AB= 3 ,BC=1,P 为△ABC内一点,∠BPC=90°(1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA【答案】(Ⅰ)由已知得,∠PBC=o 60,∴∠PBA=30o ,在△PBA 中,由余弦定理得2PA=o 1132cos3042+-=74; (Ⅱ)设∠PBA=α,由已知得,PB=sin α,在△PBA 中,由正弦定理得osin sin(30)αα=-,化简得4sin αα=, ∴tan αtan PBA ∠. 94. (上海市春季高考数学试卷(含答案))本题共有2个小题,第一小题满分4分,第二小题满分9分.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记1n n n P AP θ+∠=,n N *∈. (1)若31arctan3θ=,求点A 的坐标; (2)若点A的坐标为(0,求n θ的最大值及相应n 的值.[解](1) (2)【答案】[解](1)设(0 )A t ,,根据题意,12n n x -=. 由31arctan 3θ=,知31tan 3θ=,而3443343223443()4tan tan()321x x t x x t t t OAP OAP x x t x x t t tθ--=∠-∠===+⋅++⋅, 所以241323t t =+,解得4t =或8t =. 故点A 的坐标为(0 4),或(0 8),. (2)由题意,点n P 的坐标为1(20)n -,,1tan n n OAP -∠=.111212tan tan()1n n n n n n n OAP OAP θ--+-=∠-∠===.n +≥,所以tan n θ≤=当且仅当2nn=,即4n =时等号成立. 易知0 tan 2n y x πθ<<=,在(0 )2π,上为增函数, 因此,当4n =时,n θ最大,其最大值为arctan4. 95. (高考江西卷(理))在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知cosC+(conA-错误!未找到引用源。
(学生版)2024年高考数学真题分类汇编08:计数原理与概率统计
计数原理与概率统计一、单选题1.(2024·全国)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(均在[)900,1200之间,单位:kg)并部分整理下表据表中数据,结论中正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg至300kg之间D.100块稻田亩产量的平均值介于900kg至1000kg之间2.(2024·全国)甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.233.(2024·北京)(4x的二项展开式中3x的系数为()A.15B.6C.4-D.13-4.(2024·天津)下列图中,相关性系数最大的是()A.B.C.D.二、多选题5.(2024·全国)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u s ,()0.8413P Z u s <+»)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><三、填空题6.(2024·全国)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为.7.(2024·全国)在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.8.(2024·全国)1013x æö+ç÷èø的展开式中,各项系数的最大值是.9.(2024·全国)有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是.10.(2024·天津),,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为;已知乙选了A 活动,他再选择B 活动的概率为.11.(2024·上海)在(1)n x +的二项展开式中,若各项系数和为32,则2x 项的系数为.12.(2024·上海)某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是.13.(2024·上海)设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值.四、解答题14.(2024·全国)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j £<£,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ³时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.15.(2024·全国)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?16.(2024·全国)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:(1)填写如下列联表:能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247»)附:22()()()()()n ad bcKa b c d a c b d-=++++17.(2024·北京)已知某险种的保费为0.4万元,前3次出险每次赔付0.8万元,第4次赔付0.6万元在总体中抽样100单,以频率估计概率:(1)求随机抽取一单,赔偿不少于2次的概率;(2)(i )毛利润是保费与赔偿金额之差.设毛利润为X ,估计X 的数学期望;(ⅱ)若未赔偿过的保单下一保险期的保费下降4%,已赔偿过的增加20%.估计保单下一保险期毛利润的数学期望.18.(2024·上海)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:()()()()22(),n ad bc a b c d a c b d -=++++c 其中n a b c d =+++,()2 3.8410.05P c ³».)。
全国高考理科数学试题分类汇编:概率与统计
()
126
A.
125
B. 6 5
C. 168 125
D. 7 5
【答案】 B
二、填空题
13.( 2019 年高考上海卷(理) ) 盒子中装有编号为 1, 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 的九个球, 从中
任意取出两个, 则这两个球的编号之积为偶数的概率是 ___________( 结果用最简分数表示 )
()
A. 45
【答案】 B
B . 50
C. 55
D. 60
2 .( 2019 年高考陕西卷(理) ) 某单位有 840 名职工, 现采用系统抽样方法,
抽取 42 人做问卷调查,
将 840 人按 1, 2 , , 840 随机编号, 则抽取的 42 人中, 编号落入区间 [481 , 720] 的人
数为(
2
2
【答案】 解:( Ⅰ) 由已知得 : 小明中奖的概率为 , 小红中奖的概率为 , 两人中奖与否互不影响,
3
5
记“这 2 人的累计得分 X 3”的事件为 A, 则 A 事件的对立事件为“ X 5 ”,
22 4
11
Q P( X 5)
, P( A) 1 P( X 5)
3 5 15
15
11 这两人的累计得分 X 3的概率为 .
差为 4, 且样本数据互相不相同, 则样本数据中的最大值为 ____________.
【答案】 10
19.( 2019 年高考上海卷(理) )设非零常数 d 是等差数列 x1, x2, x3 ,L , x19 的公差, 随机变量 等可能地取
值 x1 , x2, x3,L , x19 , 则方差 D _______
高考数学试题分类汇编 统计
七、统计一、选择题 1.(四川理1)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是A .16 B .13C .12 D .23【答案】B【解析】从31.5到43.5共有22,所以221663P ==。
2.(陕西理9)设(1x ,1y ),(2x ,2y ),…,(n x ,n y )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是 A .x 和y 的相关系数为直线l 的斜率 B .x 和y 的相关系数在0到1之间C .当n 为偶数时,分布在l 两侧的样本点的个数一定相同D .直线l 过点(,)x y 【答案】D3.根据上表可得回归方程ˆˆy bx a =+中的b 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元 【答案】B4.(江西理6)变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),1r表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则A .210r r <<B .210r r <<C .210r r<< D .21r r=【答案】C 5.(湖南理4由()()()()()22n ad bc K a b c d a c b d -=++++()22110403020207.8K ⨯⨯-⨯=≈.参照附表,得到的正确结论是A .再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关” 【答案】C 二、填空题6.(天津理9)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为___________ 【答案】127.(辽宁理14)调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x的回归直线方程:321.0254.0ˆ+=x y .由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元.【答案】0.2548.(江苏6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s 【答案】3.29.(广东理13)某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 和182cm .因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为_____cm . 【答案】185 三、解答题10.(北京理17)以下茎叶图记录了甲、乙两组个四名同学的植树棵树。
2013---2017年全国1卷高考理科数学分类汇编---统计
2013---2017年全国1卷高考理科数学分类汇编---统计(2015全国1.理数.19)(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i w =8118i i w w ==∑(Ⅰ)根据散点图判断,y =a +bx 与y =c +y关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题: (ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2)…….. (u n v n ),其回归线v =αβ+u 的斜率和截距的最小二乘估计分别为:121()(),()niii nii u u v v v u u u βαβ==--==--∑∑19.(本小题满分12分)解:(Ⅰ)由散点图可以判断,y c =+适宜作为年销售量y 关于年宣传费x 的回归方程类型.……2分(Ⅱ)令w=先建立y关于w的线性回归方程.由于()()()81821108.8681.6i iiiiw w y ydw w==--===-∑∑,56368 6.8100.6c y dw=-=-⨯=,所以y关于w的线性回归方程为100.668y w=+,因此y关于w的线性回归方程为100.6y=+6分(Ⅲ)(ⅰ)由(Ⅱ)知,当49x=时,年销售量y的预报值100.6576.6y=+=,年利润z的预报值0.2576.64966.32z=⨯-=.……9分(ⅱ)根据(Ⅱ)的结果知,年利润z的预报值(0.2100.620.12z x x=⨯+-=-+.13.66.82==,即46.24x=时,z取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.……12分(2013全国1.理数.3)为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【命题意图】本题主要考查分层抽样方法,是容易题.【解析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年高考真题理科数学解析分类汇编 12 统计1. 【 高 考 上 海 理 17 】 设 10 x1 x2 x3 x4 10 4 , x5 10 5 , 随 机 变 量 1 取 值x1、x 2、x 3、x 4、x 5 的 概 率 均 为 0.2 , 随 机 变 量 2 取 值x1 2x2、x2 2x3、x3 2x4、x4 2x5、x5 2x1的概率也均为 0.2,若记D1、D 2分别为1、2 的方差,则( )A. D1 D2B. D1 D2C. D1 D2D. D1 与 D 2 的大小关系与 x1、x2、x3、x4 的取值有关【答案】A【 解 析 】 由 随 机 变 量 1,2 的 取 值 情 况 , 它 们 的 平 均 数 分 别 为 :1 x1 5 (x1 x2 x3 x4 x5 ),,x21 5 x1 2x2x2 2x3x3 2x4x4 2x5x5 2x1 x1,且随机变量1 , 2 的概率都为 0.2 ,所以有 D1 > D 2 . 故选择 A.【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提 和基础,本题属于中档题. 2.【高考陕西理 6】从甲乙两个城市分别随机抽取 16 台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为 x甲 , x乙 ,中位数分别为 m甲 , m乙,则()A. x甲 x乙 , m甲 m乙B. x甲 x乙 , m甲 m乙C. x甲 x乙 , m甲 m乙D. x甲 x乙 , m甲 m乙【答案】B.【解析】根据平均数的概念易计算出x甲x乙,又 m甲18 22 220 ,m乙27 31 229故选 B.3.【高考山东理 4】采用系统抽样方法从 960 人中抽取 32 人做问卷调查,为此将他们随机编号为 1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为 9.抽到的 32人中,编号落入区间1, 450的人做问卷 A ,编号落入区间451, 750 的人做问卷 B ,其余的人做问卷 C .则抽到的人中,做问卷 B 的人数为(A)7 (B) 9 (C) 10 (D)15 【答案】C 【解析】从 960 中用系统抽样抽取 32 人,则每 30 人抽取一人,因为第一组号码为 9,则第二组为 39,公差为 30.所以通项为 an 9 30(n 1) 30n 21 ,由 451 30n 21 750 ,即15 22 n 25 21 ,所以 n 16,17,25,共有 25 16 1 10人,选 C.30304.【高考江西理 9】样本( x1, x2 , , xn )的平均数为 x ,样本( y1, y2 , ym )的平均数为y(x y) ,若样本( x1, x2 ,, xn ,y1, y2 ,ym)的平均数zax(1 a) y,其中01 2,则 n,m 的大小关系为A. n m B. n m C. n mD.不能确定【答案】A【解析】本题考查统计中的平均数,作差法比较大小以及整体思想.由统计学知识,可得 x1 x2 xn nx, y1 y2 ym my ,x1 x2 xn y1 y2 ym m n z m n x 1 y . m n x m n1 y ,所以 nx my m n x m n1 y .所以n m n, mmn1.故 n m (m n)[ (1)] (m n)(2 1).因为 0 1 ,所以 2 1 0 .所以 n m 0 .即 n m . 2【点评】要牢固掌握统计学中一些基本特征:如平均数,中位数,方差,标准差等的求法. 体现考纲中要求会用样本的基本数字特征估计总体的基本数 字特征.来年需要注意频率分 布直方图中平均值,标准差等的求解等. 5.【高考湖南理 4】设某大学的女生体重 y(单位:kg)与身高 x(单位:cm)具有线性相 关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为y =0.85x-85.71,则下列结论中不正确的是A.y 与 x 具有正的线性相关关系B.回归直线过样本点的中心( x , y )C.若该大学某女生身高增加 1cm,则其体重约增加 0.85kg D.若该大学某女生身高为 170cm,则可断定其体重比为 58.79kg【答案】D【解析】由回归方程为 y =0.85x-85.71 知 y 随 x 的增大而增大,所以 y 与 x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知 yˆ bx a bx y bx(a y bx) ,所以回归直线过样本点的中心( x , y ),利用回归方程可以预测估计总体,所以 D 不正确.【点评】本题组要考查两个变量间的相关性、最小二乘法及正相关、负相关的概念,并且是 找不正确的答案,易错. 6.【高考安徽理 5】甲、乙两人在一次射击比赛中各射靶 5 次,两人成绩的条形统计图如图 所示,则( A) 甲的成绩的平均数小于乙的成绩的平均数(B) 甲的成绩的中位数等于乙的成绩的中位数(C ) 甲的成绩的方差小于乙的成绩的方差(D) 甲的成绩的极差小于乙的成绩的极差【答案】C【命题立意】本题考查统计学中的数字特征与统计图。
【解析】x甲1 5(45678)6,x乙1 5(5 369)6,甲的成绩的方差为 1 (22 2 12 2) 2 ,乙的成绩的方差为 1 (12 3 32 1) 2.4.557.【高考天津理 9】某地区有小学 150 所,中学 75 所,大学 25 所. 现采用分层抽样的方法从这些学校中抽取 30 所学校对学生进行视力调查,应从小学中抽取_________所学校,中学中抽取________所学校.【答案】18,9【命题意图】本试题主要考查了统计中的分层抽样的概念以及样本获取的方法与计算.【解析】共有学校150 75 25 250所,抽取 30 所,所以从小学抽取 30 150 18 所, 250从中学抽取 30 75 9 所。
2508.【高考江苏 2】(5 分)某学校高一、高二、高三年级的学生人数之比为3 : 3 : 4 ,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为 50 的样本,则应从高二年级抽取 ▲名学生.【答案】15。
【考点】分层抽样。
【解析】分 层 抽 样 又 称 分 类 抽 样 或 类 型 抽 样 。
将 总 体 划 分 为 若 干 个 同 质 层 , 再 在 各 层内 随 机 抽 样 或 机 械 抽 样 ,分 层 抽 样 的 特 点 是 将 科 学 分 组 法 与 抽 样 法 结 合 在 一 起 ,分 组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。
因此,由 50 3 =15 知应从高二年级抽取 15 名学生。
3349.【高考辽宁理 19】(本小题满分 12 分)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了 100 名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于 40 分钟的观众称为“体育迷”(1)根据已知条件完成下面的 22 列联表,并据此资料你是否认为“体育迷“与性别有关?非体育迷 体育迷 合计男女1055合计(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取 1 名观众,抽取 3 次,记被抽取的 3 名观众中的“体育迷“人数为 X .若每次抽取的结果是相互独立的,求 X 的分布列,期望 E X 和方差 D X 附: 2 = nn11n22 -n12n212,n1+ n2 + n+1n+2 P 2 k0.050.01k3.8416.635【命题意图】本题主要考查频率分布直方图的应用、独立性检验、随机变量的分布列、期望、方差计算,考查运用所学知识解决实际问题能力,是中档题.【解析】(1)由频率分布直方图可知,在抽取的 100 人中,“体育迷”有 25 人,从而 22 列联表如下:非体育迷体育迷合计男301545女451055合计7525100将 22 列联表中的数据代入公式计算,得……3 分2= n n11n22 -n12n21 2100 30 10-45 152== 1003.030n1+ n2 + n+1n+275 25 4555 33因为 3.030<3.841,所以没有理由认为“体育迷”与性别有关.……6 分(2)由频率分布直方图知抽到“体育迷”的频率为 0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为 1 . 4由题意 XX PB 3,1 3 ,从而X的分布列为012327 27 9 164 64 64 64……10 分E X =np=3 1 = 3 , D X =np 1-p =3 1 3 = 9 .444 4 16……12 分【点评】本题主要考查统计中的频率分布直方图、独立性检验、离散型随机变量的分布列,期望 E( X ) 和方差 D( X ) ,考查分析解决问题的能力、运算求解能力,难度适中。
准确读取频率分布直方图中的数据是解题的关键。
。