第三章1.3可线性化的回归分析

合集下载

回归分析概述

回归分析概述
y f (x)
例 1:某保险公司承保汽车 x 万辆,每辆保费
为 1000 元,如果记保险公司的承保总收入为
y ,则 y 与 x 之间表现为一种确定性的关系:
y 1000x
变量之间具有密切关联而又不能由一个 或若干个变量唯一确定另外一个变量, 这样 的一种联系称为变量之间的相关关系.
例如,父亲身材较高时儿子的身材也较高,但是 父子身高之间的关系不能用一个确定的函数关系 来表达.又如,人的血压与年龄之间有密切的关 系,但是两者之间的关系不能用一个确定的函数 关系来表达.
回归分析是考察两个变量之间统计联系的一种重要 方法,它在许多领域中都有极其广泛的应用。本章 主要介绍回归分析中最基本的部分 — —(线性)回 归分析,内容包括一元(线性)回归分析与多元 (线性)回归分析,以及某些可以线性化的非线性 回归分析问题,回归分析的基本形式仍然是估计与 检验。因此,不妨把本章的内容视作估计与检验方 法在特殊的一类统计问题中的应用。
概率论中简化处理随机变量的常用方法是求其
数学期望.因此,我们来研究自变量 x 与因变量
Y 的均值E Y 之间的关系.当自变量x 的值给定 时,相应的均值E Y 跟着确定,即x 与给定 x 时
Y 的均值 E Y x ˆ y 之间存在一种函数关系, 记
这个函数关系为 y f x,并称它为回归函数.
回归函数反映了自变量 x 与因变量 Y 的均值E Y
之间的函数关系, 因此它近似地描述了自变量 x 与 因变量Y 之间的数量关系.
回归函数f x是未知的,为了数学上处理的方便,
首先假定回归函数是线性的,即 y 0 1x, 其中 0 , 1 待定, 称1 为这个一元线性回归函数的回归
系数.也即E Y 0 1x, 引进随机误差项 ,那么

《现代地理学中的数学方法》第3章 1 2相关分析方法 回归分析方法

《现代地理学中的数学方法》第3章 1 2相关分析方法 回归分析方法

第五章 地理系统要素间的相关分析与回归分析
• 二、地理相关程度的度量方法 • 计量地理学中用不同的指标来度量不同类型的地理相关的程度。 • (一)简单直线相关程度的度量 • 一般情况下,当两个地理要素间为直线相关时,需要分析其相关程度和
相关方向。所谓相关程度指两者关系的密切程度,而相关方向可分为正 相关与负相关。前者指两个要素间呈同方向变化,而后者相反。这两者 可用一个共同的指标度量,就是相关系数。 • 1. 一般常用的相关系数(r)计算公式 • 其中,
第五章 地理系统要素间的相关分析与回归分析
• (三)多要素相关与相关矩阵 • 对于多个地理要素,则可计算出各要素两两之间的相关系数,并构成相
关矩阵。 • 例3:现给出世界上自然植被的生产量与水热资源的原始地理数据(表5
-3),利用相关系数公式得到其相关矩阵,形式如下所示:
第五章 地理系统要素间的相关分析与回归分析
– 地理回归分析的主要内容包括:
• 1. 由一组地理数据确定这些要素间的定量数学表达式,即回归模型; • 2. 利用回归模型,根据自变量的值来预测或控制因变量的取值。
第五章 地理系统要素间的相关分析与回归分析
• 二、一元地理回归模型的建立
– 一元地理回归是要解决两个要素间的定量关系。由于两个要素之间 的数量关系类型的差别,一元地理回归包括线性回归模型和非线性 回归模型分述如下:
第五章 地理系统要素间的相关分析与回归分析
• 3. 一元线性地理回归模型的效果检验 • 当一元线性地理回归模型求出来以后,它的效果如何,它所揭示的地理
规律性强不强,用它来进行地理预测精度如何?所有这些问题都需要进 一步作出分析。 • (1)回归模型估计的误差 • 由线性回归模型所得到的y的估计值往往与实测值y不完全一致,它们之 间的误差称为估计误差,以标准差的形式表示为 • 在实际地理问题中,只要比较S与允许的偏差即可。

2-3回归分析导学案

2-3回归分析导学案

主备人: 审核 包科领导签字: 使用时间:第三章§1回归分析【学习目标】1、通过统计案例的探究,会对两个随机变量进行线性回归分析.。

2、理解相关系数的含义,会计算两个随机变量的相关系数,会通过线性相关系数判断它们之间的线性相关程度。

3、通过对数据之间散点图的观察,能够对两个随机变量进行可线性化的回归分析.【学习重点】1、熟练掌握回归分析的步骤 2、 掌握相关系数的计算方法.3、 可线性化的回归分析.【学习难点】1、求回归系数 a , b. 2、 求相关系数r.【使用说明与学法指导】1.通过阅读教材,自主学习,思考,交流,讨论和概括,完成本节课的学习目标。

2.用红笔勾勒出疑点,合作学习后寻求解决方案。

【自主探究】1、样本点为),y x (,),(22y x ,…),(n n y x 。

设线性回归方程为bx a y +=,使这几个点与直线bx a y +=的“距离”平方之和最小,即使得 达到最小。

2、线性回归方程bx a y +=中,=b , =a .3、求线性回归方程的步骤:(1)(2)(3)(4)【合作探究】1.下列变量关系是函数关系的是( )(A )人的身高与视力 (B )角度的大小与所对的圆弧长(C )收入水平与纳税水平 (D )人的年龄与身高2.线性回归方程bx a y +=必定过点( )A (0,0)B (x ,0) C(0,y ) D( x ,y )3.设有一个回归直线方程x y 5.12-=,则变量x 每增加一个单位时( )A.y 平均增加1.5个单位B.y 平均增加2个单位C.y平均减少1.5个单位D.y平均减少2个单位,【巩固提高】1.下表是某厂14月份用水量(单位:百吨)的一组数据,(2)求线性回归方程,并在散点图中加上回归直线。

2.某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据假设x与y之间具有线性相关关系,(1)作出这些数据的散点图;(2)求这些数据的线性回归方程;(3)求当广告费支出为9百万元时的销售额【课堂小结】。

第3章 线性回归与非线性回归

第3章 线性回归与非线性回归

Yt B1 B2 X t ut
假设 u t u t -1 v t -1 1 其中,v满足OLS假定,并且 是已知的。
Yt 1 B1 B2 X t 1 ut 1
方程(9 - 2)的两边同时乘以 , 得到 :
Yt -1 B1 B2 X t -1 u t -1
View/Residual Tests/Heteroskedasticity Tests 或者 eq01.hettest(type=Glejser) c car pmg pop rgnp


斯皮尔曼(Spearman)秩相关检验。 戈德费尔德-匡特(Goldfeld-Quandt)检验 巴特莱特(Bartlett)检验 匹克(Peak)检验 布鲁尔什-培甘(Breusch-Pagan)检验 CUSUMSQ检验

在方程定义窗口的定义栏中输入: 线性化方法:ls log(Y) c log(K) log(L) 非线性方法:ls Y=c(1)*K^c(2)*L^c(3)

有时遇到估计结果不符合常规或显示出无法收敛 的错误信息时,需要设定选项重新估计。 (1)初始值(Start Value) 初始值是EViews进行第一次迭代计算时参数所取 的数值。这个值保存在与回归函数有关的系数向 量中。回归函数必须定义初始值。例如如果回归 函数包含表达式1/C (1),就不能把C (1)的初始值 设定为0,同样如果包含表达式LOG (C (2)),那C (2)必须大于零。



建模过程仍是先打开方程定义窗口,在定义栏中输 入模型的非线性表达式即可。不同的是有时候可能 迭代无法收敛,则需要通过修改选项设置来重新估 计。 与例3.6比较,可以看出,线性化与NLS法的参数估 计值完全一样,统计量输出相同,这是由于线性化 仅改变了变量的形式,而NLS法也没有改变y和1/x 的线性关系,在这两种情况下进行最小二乘估计对 于待估参数来说是等价的。

5、计量经济学【多元线性回归模型】

5、计量经济学【多元线性回归模型】

二、多元线性回归模型的参数估计
2、最小二乘估计量的性质 当 ˆ0, ˆ1, ˆ2, , ˆk 为表达式形式时,为随机变量, 这时最小二乘估计量 ˆ0, ˆ1, ˆ2, , ˆk 经过证明同样也 具有线性性、无偏性和最小方差性(有效性)。 也就是说,在模型满足那几条基本假定的前提 下,OLS估计量具有线性性、无偏性和最小方差性 (有效性)这样优良的性质, 即最小二乘估计量
用残差平方和 ei2 最小的准则: i
二、多元线性回归模型的参数估计
1、参数的普通最小二乘估计法(OLS) 即:
min ei2 min (Yi Yˆi )2 min Yi (ˆ0 ˆ1X1i ˆ2 X 2i ˆk X ki )2
同样的道理,根据微积分知识,要使上式最小,只 需求上式分别对 ˆj ( j 0,1, k) 的一阶偏导数,并令 一阶偏导数为 0,就可得到一个包含 k 1 个方程的正 规方程组,这个正规方程组中有 k 1个未知参数 ˆ0, ˆ1, ˆ2, , ˆk ;解这个正规方程组即可得到这 k 1 个参数 ˆ0, ˆ1, ˆ2, , ˆk 的表达式,即得到了参数的最小 二乘估计量;将样本数据代入到这些表达式中,即可 计算出参数的最小二乘估计值。
该样本回归模型与总体回归模型相对应,其中残差 ei Yi Yˆi 可看成是总体回归模型中随机误差项 i 的 估计值。
2、多元线性回归模型的几种形式: 上述几种形式的矩阵表达式: 将多元线性总体回归模型 (3.1) 式表示的 n 个随机方 程写成方程组的形式,有:
Y1 0 1 X11 2 X 21 .Y.2.........0.......1.X...1.2........2.X...2.2. Yn 0 1 X1n 2 X 2n
ˆ0, ˆ1, ˆ2, , ˆk 是总体参数真值的最佳线性无偏估计 量( BLUE );即高斯—马尔可夫定理 (GaussMarkov theorem)。

回归分析与相关分析

回归分析与相关分析

相关分析与回归分析
第11页
根据回归函数的意义,当X取xi时,Y的期望值 应为f(xi),由于随机误差,观察值yi与f(xi)之间有
一定的差距,即:
yi f (xi ) i
i是第i次试验的误差。 对于Y ( y1, y2 , , yn) , X (x1, x2 , , xn )和 (1, 2 , , n ) 有
27 May 2020
相关分析与回归分析
第22页
三、回归方程的检验
1.随机误差 2 的估计
由一元线性回归方程的模型:
yi a bxi i i ~ N (0 , 2 )
Y ~ N (a bx , 2 )
以D剩为基础作为 2的估计是合理的,其估计为
n
n
D剩
2 i
( yi (aˆ bˆxi ))2
27 May 2020
相关分析与回归分析
第8页
第二节 回归分析
一、确定回归函数的思想
要全面地考察两个变量 X、Y 之间的关系,我们就要研究Y 的
条件分布 F (y | X=x ) 随 X 取值 x 的变化情况. 很自然我们会 想到用 F ( y | X=x ) 的数学期望(平均值)来代替它,这样就可 以通过研究 x 与 Y 的条件期望值之间的关系来代表 X 与 Y 之 间的关系. 即:
显著. n个y值的总差异记为D总
n
D总= ( yi y) 2 l yy
程进行预测和控制.
27 May 2020
相关分析与回归分析
第6页
“回归” 一词的历史渊源
“回归”一词最早由Francis Galton引入。英国著
名人类学家Franics Galton(1822-1911)于1885年在

回归分析法概念及原理

回归分析法概念及原理

回归分析法概念及原理回归分析是一种统计学方法,用于研究变量之间的关系,并用这些关系来预测或解释一个或多个因变量。

它可以帮助我们理解自变量与因变量之间的线性关系,并根据这种关系进行预测和解释。

回归分析的核心原理是建立一个线性方程来描述自变量和因变量之间的关系。

这个线性方程也称为回归方程。

回归方程的一般形式如下:Y=β0+β1X1+β2X2+...+βkXk+ε其中,Y表示因变量,X1、X2、..、Xk表示自变量,β0、β1、β2、..、βk表示模型的系数,ε表示误差项。

回归方程中,自变量的系数β表示因变量在自变量变化一个单位时的变化量。

例如,假设自变量为X1,系数β1为2,那么当X1增加1个单位时,因变量Y将增加2个单位。

回归分析的目标是通过拟合回归方程来估计模型的系数,并使用这些系数进行预测或解释。

常用的回归分析方法有最小二乘法和最大似然估计法。

最小二乘法是一种常用的回归估计方法。

它通过最小化实际观测值与回归方程预测值之间的误差平方和,来确定最佳的回归系数。

最小二乘法的优点是计算简单,并且能够提供估计系数的置信区间和显著性检验。

最大似然估计法是另一种常用的回归估计方法。

它通过寻找使得观测值出现的概率最大的回归系数来进行估计。

最大似然估计法的优点是可以处理更加复杂的模型,并且提供了参数的置信区间和假设检验。

在进行回归分析之前,需要满足一些基本的假设。

其中最重要的是线性性和正态性假设。

线性性假设指的是自变量和因变量之间的关系是线性的,正态性假设则指的是误差项ε服从正态分布。

在回归分析中,还需要评估模型的拟合优度。

常用的指标包括决定系数(R-squared)和调整决定系数(adjusted R-squared)。

决定系数表示回归方程对因变量变异的解释程度,取值范围从0到1,越接近1表示模型的拟合优度越好。

调整决定系数则对变量的个数进行了修正,避免过拟合。

回归分析有很多应用领域,例如经济学、社会学、生物学和工程学等。

第三章 1.3可线性化的回归分析

第三章  1.3可线性化的回归分析

可线性化的回归分析[学习目标]1.进一步体会回归分析的基本思想.2.通过非线性回归分析,判断几种不同模型的拟合程度.[知识链接]1.有些变量间的关系并不是线性相关,怎样确定回归模型答首先要作出散点图,如果散点图中的样本点并没有分布在某个带状区域内,则两个变量不呈现线性相关关系,不能直接利用线性回归方程来建立两个变量之间的关系,这时可以根据已有函数知识,观察样本点是否呈指数函数关系或二次函数关系,选定适当的回归模型.2.如果两个变量呈现非线性相关关系,怎样求出回归方程答可以通过对解释变量进行变换,如对数变换或平方变换,先得到另外两个变量间的回归方程,再得到所求两个变量的回归方程.([预习导引]1.非线性回归分析对不具有线性相关关系的两个变量做统计分析,通过变量代换,转化为线性回归模型.2.非线性回归方程曲线方程曲线图形公式变换变换后的线性函数y=ax b·c=ln av=ln xu=ln yu=c+bvy =a e bxc =ln a u =ln yu =c +bxy =a e b x.c =ln a v =1xu =ln yu =c +bvy =a +b ln xv =ln x u =yu =a +bv#要点一 线性回归分析例1 某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 35 销售额y (万元)4926…3954(1)由数据易知y 与x 具有线性相关关系,若b =,求线性回归方程y =a +bx ; (2)据此模型预报广告费用为4万元时的销售额.解 (1)x -=4+2+3+54=,y -=49+26+39+544=42,∴a =y --b x -=42-×= ∴回归直线方程为y =+. (2)当x =4时,y =+×4=, 故广告费用为6万元时销售额为万元.跟踪演练1 为了研究3月下旬的平均气温(x )与4月20日前棉花害虫化蛹高峰日(y )的关系,某地区观察了2006年2011年的情况,得到了下面的数据:(1)对变量x,y进行相关性检验;(2)据气象预测,该地区在2012年3月下旬平均气温为27 ℃,试估计2012年4月化蛹高峰日为哪天.解制表.(1)r=∑6i=1xiyi-6x-y-(∑6i=1x2i-6x-2)(∑6i=1y2i-6y-2)≈- 8.由|r|>,可知变量y和x存在很强的线性相关关系.(2)b=错误!≈-,a=错误!-b错误!≈.所以,线性回归方程为y=-.当x=27时,y=-×27=.据此,可估计该地区2012年4月12日或13日为化蛹高峰日."要点二可线性化的回归分析例2 在一化学反应过程中,化学物质的反应速度y(g/min)与一种催化剂的量x(g)有关,现收集了8组观测数据列于表中:催化剂的量x/g15182124273033\ 36化学物质的反应速度y(g·min-1)6830277020565350解根据收集的数据,作散点图(如图),根据已有的函数知识,可以发现样本点分布在某一条指数函数曲数y=c1e c2x的周围,其中c1和c2是待定的参数.令z=ln y,则z=ln y=ln c1+c2x,即变换后的样本点应该分布在直线z=a+bx(a=ln c1,b=c2)的周围.由y与x的数据表可得到变换后的z与x的数据表:x15182124!27303336z,作出z与x的散点图(如图).由散点图可观察到,变换后的样本点分布在一条直线的附近,所以可用线性回归方程来拟合.由z与x的数据表,可得线性回归方程:z=+,所以y与x之间的非线性回归方程为y=e-+.*规律方法 可线性化的回归分析问题,画出已知数据的散点图,选择跟散点拟合得最好的函数模型进行变量代换,作出变换后样本点的散点图,用线性回归模型拟合.跟踪演练2 电容器充电后,电压达到100 V ,然后开始放电,由经验知道,此后电压U 随时间t 变化的规律用公式U =A e bt (b <0)表示,现测得时间t (s)时的电压U (V)如下表:t /s 0 1 2 3 4 56(7 8910U /V 100 75 55 40 30$2015101055试求:电压U 对时间t 的回归方程.(提示:对公式两边取自然对数,把问题转化为线性回归分析问题)解 对U =A e bt 两边取对数得ln U =ln A +bt ,令y =ln U ,a =ln A ,x =t ,则y =a +bx ,得y 与x 的数据如下表:x.1 2345678910{y/根据表中数据作出散点图,如下图所示,从图中可以看出,y 与x 具有较强的线性相关关系,由表中数据求得x -=5,y -≈,进而可以求得b ≈-,a =y --bx -=,所以y 对x 的线性回归方程为y =-.由y =ln U ,得U =e y ,U =-=·e -,因此电压U 对时间t 的回归方程为U =·e-.要点三非线性回归模型的综合应用例3 某地区不同身高的未成年男性的体重平均值如下表:身高x/cm60【708090100110体重y/kg-身高x/cm120130140150160170体重y/kg(试建立y与x之间的回归方程.解根据题干表中数据画出散点图如图所示.由图看出,样本点分布在某条指数函数曲线y=c1e c2x的周围,于是令z=ln y. *x 60708090100110120130140¥150160170z&画出散点图如图所示.由表中数据可得z与x之间的线性回归方程:z=+,则有y=+.规律方法根据已有的函数知识,可以发现样本分布在某一条指数型函数曲线y =c1e c2x的周围,其中c1和c2是待定参数;可以通过对x进行对数变换,转化为线性相关关系.*跟踪演练3 对两个变量x ,y 取得4组数据(1,1),(2,,(3,,(4,,甲、乙、丙三人分别求得数学模型如下: 甲 y =+1, 乙 y =-++,丙 y =-·+,试判断三人谁的数学模型更接近于客观实际. 解 甲模型,当x =1时,y =;当x =2时,y =; 当x =3时,y =;当x =4时,y =.乙模型,当x =1时,y =1;当x =2时,y =; 当x =3时,y =;当x =4时,y =.丙模型,当x =1时,y =1;当x =2时,y =; 当x =3时,y =;当x =4时,y =.观察4组数据并对照知,丙的数学模型更接近于客观实际.1.在一次试验中,当变量x 的取值分别为1,12,13,14时,变量y 的值分别为2,3,4,5,则y 与1x的回归方程为( )A .y =1x +1B .y =2x+3C .y =2x +1D .y =x -1 答案 A解析 由数据可得,四个点都在曲线y =1x+1上.2.某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据:广告费2~5 6 84销售额3040605070@则广告费与销售额间的相关系数为( )A. B.0.919 C. D.答案B3.根据统计资料,我国能源生产发展迅速.下面是我国能源生产总量(单位:亿吨标准煤)的几个统计数据:年份1996200120062011产量·根据有关专家预测,到2020年我国能源生产总量将达到亿吨左右,则专家所选择的回归模型是下列四种模型中的哪一种( )A.y=ax+b(a≠0) B.y=ax2+bx+c(a≠0)C.y=a x(a>0且a≠1) D.y=log a x(a>0且a≠1)答案A4.某种产品的广告费支出x与销售额y之间有下表关系,现在知道其中一个数据弄错了,则最可能错的数据是__________.x/万元)24568y/万元3040605070答案(6,50)一、基础达标1.下表提供了某厂节能降耗技术改造后生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据.根据表中提供的数据,求出y关于x的线性回归方程是y=+,那么表中t的值是( )x3456,yt4A.4.5 B.4 C.3 D.答案C2.下列数据x,y符合哪一种函数模型( )x1$2345678910y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3 可线性化的回归分析[学习目标]1.进一步体会回归分析的基本思想.2.通过非线性回归分析,判断几种不同模型的拟合程度.[知识链接]1.有些变量间的关系并不是线性相关,怎样确定回归模型?答首先要作出散点图,如果散点图中的样本点并没有分布在某个带状区域内,则两个变量不呈现线性相关关系,不能直接利用线性回归方程来建立两个变量之间的关系,这时可以根据已有函数知识,观察样本点是否呈指数函数关系或二次函数关系,选定适当的回归模型.2.如果两个变量呈现非线性相关关系,怎样求出回归方程?答可以通过对解释变量进行变换,如对数变换或平方变换,先得到另外两个变量间的回归方程,再得到所求两个变量的回归方程.[预习导引]1.非线性回归分析对不具有线性相关关系的两个变量做统计分析,通过变量代换,转化为线性回归模型.2.非线性回归方程曲线方程曲线图形公式变换变换后的线性函数y=ax bc=ln av=ln xu=ln yu=c+bvy=a e bxc=ln au=ln yu=c+bxy=a ebxc=ln av=1xu=ln yu=c+bvy=a+bln xv=ln x u=yu=a+bv要点一线性回归分析例1 某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元)423 5销售额y(万元)49263954(1)由数据易知y与x具有线性相关关系,若b=9.4,求线性回归方程y=a+bx;(2)据此模型预报广告费用为4万元时的销售额.解(1)x-=4+2+3+54=3.5,y-=49+26+39+544=42,∴a=y--b x-=42-9.4×3.5=9.1∴回归直线方程为y=9.1+9.4x.(2)当x=4时,y=9.1+9.4×4=46.7,故广告费用为6万元时销售额为46.7万元.跟踪演练1 为了研究3月下旬的平均气温(x)与4月20日前棉花害虫化蛹高峰日(y)的关系,某地区观察了2006年2011年的情况,得到了下面的数据:(1)对变量x,y进行相关性检验;(2)据气象预测,该地区在2012年3月下旬平均气温为27 ℃,试估计2012年4月化蛹高峰日为哪天.解制表.(1)r=∑6i=1x i y i-6x-y-(∑6i=1x2i-6x-2)(∑6i=1y2i-6y-2)≈-0.949 8.由|r|>0.75,可知变量y和x存在很强的线性相关关系.(2)b=1 222.6-6×29.13×7.55 130.92-6×29.132≈-2.3,a=y--bx-≈74.5.所以,线性回归方程为y=74.5-2.3x.当x=27时,y=74.5-2.3×27=12.4.据此,可估计该地区2012年4月12日或13日为化蛹高峰日.要点二可线性化的回归分析例2 在一化学反应过程中,化学物质的反应速度y(g/min)与一种催化剂的量x(g)有关,现收集了8组观测数据列于表中:催化剂的量x/g1518212427303336 化学物质的反应速度y(g·min-1)6830277020565350 解根据收集的数据,作散点图(如图),根据已有的函数知识,可以发现样本点分布在某一条指数函数曲数y=c1e c2x的周围,其中c1和c2是待定的参数.令z=ln y,则z=ln y=ln c1+c2x,即变换后的样本点应该分布在直线z=a+bx(a=ln c1,b=c2)的周围.由y与x的数据表可得到变换后的z与x的数据表:x 1518212427303336z 1.792 2.079 3.401 3.296 4.248 5.323 4.174 5.858作出z与x的散点图(如图).由散点图可观察到,变换后的样本点分布在一条直线的附近,所以可用线性回归方程来拟合.由z与x的数据表,可得线性回归方程:z=0.848+0.81x,所以y与x之间的非线性回归方程为y=e-0.848+0.81x.规律方法可线性化的回归分析问题,画出已知数据的散点图,选择跟散点拟合得最好的函数模型进行变量代换,作出变换后样本点的散点图,用线性回归模型拟合.跟踪演练2 电容器充电后,电压达到100 V,然后开始放电,由经验知道,此后电压U随时间t变化的规律用公式U=A e bt(b<0)表示,现测得时间t(s)时的电压U(V)如下表:t/s012345678910U/V10075554030201510105 5试求:电压U对时间t的回归方程.(提示:对公式两边取自然对数,把问题转化为线性回归分析问题)解对U=A e bt两边取对数得ln U=ln A+bt,令y=ln U,a=ln A,x=t,则y=a+bx,得y与x的数据如下表:x 012345678910y 4.6 4.3 4.0 3.7 3.4 3.0 2.7 2.3 2.3 1.6 1.6根据表中数据作出散点图,如下图所示,从图中可以看出,y与x具有较强的线性相关关系,由表中数据求得x-=5,y-≈3.045,进而可以求得b≈-0.313,a=y--bx-=4.61,所以y对x的线性回归方程为y=4.61-0.313x.由y=ln U,得U=e y,U=e4.61-0.313x=e4.16·e-0.313x,因此电压U对时间t的回归方程为U=e4.61·e-0.313x.要点三非线性回归模型的综合应用例3 某地区不同身高的未成年男性的体重平均值如下表:身高60708090100110x/cm体重y/kg 6.137.909.9912.1515.0217.50身高120130140150160170x/cm体重y/kg20.9226.8631.1138.8547.2555.05试建立y与x之间的回归方程.解根据题干表中数据画出散点图如图所示.由图看出,样本点分布在某条指数函数曲线y=c1e c2x的周围,于是令z=ln y. x 60708090100110120130140150160170z1.812.072.32.52.712.863.043.293.443.663.864.01 画出散点图如图所示.由表中数据可得z与x之间的线性回归方程:z=0.693+0.020x,则有y=e0.693+0.020x.规律方法根据已有的函数知识,可以发现样本分布在某一条指数型函数曲线y =c1e c2x的周围,其中c1和c2是待定参数;可以通过对x进行对数变换,转化为线性相关关系.跟踪演练3 对两个变量x,y取得4组数据(1,1),(2,1.2),(3,1.3),(4,1.37),甲、乙、丙三人分别求得数学模型如下:甲y=0.1x+1,乙y=-0.05x2+0.35x+0.7,丙y=-0.8·0.5x+1.4,试判断三人谁的数学模型更接近于客观实际.解甲模型,当x=1时,y=1.1;当x=2时,y=1.2;当x =3时,y =1.3;当x =4时,y =1.4. 乙模型,当x =1时,y =1;当x =2时,y =1.2; 当x =3时,y =1.3;当x =4时,y =1.3. 丙模型,当x =1时,y =1;当x =2时,y =1.2; 当x =3时,y =1.3;当x =4时,y =1.35.观察4组数据并对照知,丙的数学模型更接近于客观实际.1.在一次试验中,当变量x 的取值分别为1,12,13,14时,变量y 的值分别为2,3,4,5,则y 与1x的回归方程为( )A .y =1x +1B .y =2x+3C .y =2x +1D .y =x -1 答案 A解析 由数据可得,四个点都在曲线y =1x+1上.2.某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据:广告费 2 4 5 6 8 销售额3040605070则广告费与销售额间的相关系数为( ) A .0.819 B .0.919 C .0.923 D .0.95 答案 B3.根据统计资料,我国能源生产发展迅速.下面是我国能源生产总量(单位:亿吨标准煤)的几个统计数据:年份1996200120062011产量12.916.119.322.3根据有关专家预测,到2020年我国能源生产总量将达到27.6亿吨左右,则专家所选择的回归模型是下列四种模型中的哪一种( )A.y=ax+b(a≠0) B.y=ax2+bx+c(a≠0)C.y=a x(a>0且a≠1) D.y=log a x(a>0且a≠1)答案 A4.某种产品的广告费支出x与销售额y之间有下表关系,现在知道其中一个数据弄错了,则最可能错的数据是__________.x/万元24568y/万元3040605070答案(6,50)一、基础达标1.下表提供了某厂节能降耗技术改造后生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据.根据表中提供的数据,求出y关于x的线性回归方程是y=0.7x+0.35,那么表中t的值是( )x 345 6y 2.5t 4 4.5A.4.5 B .4 C .3 D .3.15答案 C2.下列数据x ,y 符合哪一种函数模型 ( )x 1 2 3 4 56 7 8910 y22.69 33.38 3.6 3.844.08 4.24.3A.y =2+13xB .y =2e xC .y =2e 1xD .y =2+ln x答案 D解析 取x =1,2,…,10分别代入各解析式判断. 3.指数曲线y =a e bx 的图像为( )答案 B解析 ∵y =a e bx ,∴a >0时y >0,排除A 、C ,且x ∈R ,排除D ,选B. 4.为研究广告费用x 与销售额y 之间的关系,有人抽取了5家餐厅,得到的数据如下表:广告费用x /千元 1.0 4.0 6.0 10.0 14.0销售额y /千元19.0 44.0 40.0 52.0 53.0在同一坐标系中画散点图,直线L:y=24+2.5x,曲线C:y=60x2+x,如图所示.更能表现这组数据之间的关系的是( )A.直线LB.曲线CC.直线L和曲线C都一样D.无法确定答案 B5.已知线性回归方程的斜率的估计值是0.5,样本点的中心为(4.5,5),则线性回归方程是__________.答案y=2.75+0.5x解析在回归方程中,已知b=0.5,则a=y--b·x-=2.75.6.对于回归方程y=257+4.75x,当x=28时,y的估计值是__________.答案390解析当x=28时,y=257+4.75×28=390,∴y的估计值为390.7.某医院用光电比色计检验尿汞时,得尿汞含量(mg/L)与消光系数读数结果如下.尿汞含量(x i)246810消光系数(y i)64138205285360(1)画出对应数据的散点图;(2)求线性回归方程;(3)根据(2)的结果,估计当x i为12 mg/L时的消光系数y i.解(1)(2)y=-11.3+36.95x.(3)当x i=12时代入y=-11.3+36.95x,得y i=432.二、能力提升8.观察下图中的4个散点图,适合用线性回归模型拟合其中两个变量的是( )A.①②B.①③C.②③D.③④答案 B解析在研究两个变量之间的关系时,可以根据散点图来粗略判断它们是否线性相关,是否可以用线性回归模型来拟合数据.这种方法既直观又方便,因而对解决相关性检验问题比较常用.9.下表是某厂1~4月份用水量(单位:百吨)的一组数据,由某散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是y=-0.7x+a,则a=__________.答案 5.25解析x-=2.5,y-=3.5,b=-0.7,∴a=3.5+0.7×2.5=5.25.10.已知某个样本点中的变量x,y线性相关,相关系数r<0,则在以(x-,y-)为坐标原点的坐标系下的散点图中,大多数的点都落在第__________象限.答案二、四解析∵r<0时b<0,∴大多数点落在第二、四象限.11.在一次抽样调查中测得样本的5个样本点,数值如下表:试建立y与x之间的回归方程.解根据散点图可知y与x近似地呈反比例函数关系,设y=kx,令t=1x,则y=kt,原数据变为t 4 2 1 0.5 0.25 y1612521由散点图也可以看出y 与t 呈近似的线性相关关系.列表如下:序号 t i y i t i y i t 2i y 2i 1 4 16 64 16 256 2 2 12 24 4 144 3 1 5 5 1 25 4 0.5 2 1 0.25 4 50.2510.250.062 5 1∑7.75 36 94.25 21.312 5430∴t -=1.55,y -=7.2.b =∑5i =1t i y i-5t - y -∑5i =1t 2i-5(t -)2≈4.134 4.a =y --b t -≈0.8.∴y =0.8+4.134t .∴y 与x 的回归方程是y =0.8+4.134x.12.某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对比表.气温/℃ 26 18 13 10 4 -1 杯数202434385064画出散点图并判断热茶销售量与气温之间是否具有线性相关关系. 解 画出散点图如图所示.x -=16(26+18+13+10+4-1)≈11.7,y -=16(20+24+34+38+50+64)≈38.3,∑6i =1x i y i =26×20+18×24+13×34+10×38+4×50-1×64=1 910, ∑6i =1x 2i=262+182+132+102+42+(-1)2=1 286,∑6i =1y 2i =202+242+342+382+502+642=10 172, 由r =∑h i =1x i y i -nx - y -∑n i =1x 2i-nx -2∑n i =1y 2i-ny -2可得r≈0.97.由于r的值较大,所以x与y具有很强的线性相关关系.三、探究与创新13.某地区不同身高的未成年男性的体重平均值如下表:身高60708090100110x/cm体重y/kg 6.137.909.9912.1515.0217.50身高120130140150160170x/cm体重y/kg20.9226.8631.1138.8547.2555.05(1)试建立y与x之间的回归方程;(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175 cm,体重为82 kg的在校男生体重是否正常?解(1)根据表中的数据画出散点图(如图所示).由图可看出,样本点分布在某条指数函数曲线y=c1e c2x的周围,于是令z=ln y,得下表:X 60708090100110120130140150160170Z1.812.072.32.52.712.863.043.293.443.663.864.01 作出散点图如图所示.由表中数据可得z与x之间的线性回归方程为z=0.693+0.020x,则有y=e0.693+0.020x.(2)当x=175时,预测平均体重为y=e0.693+0.020×175≈66.22,由于66.22×1.2≈79.47<82,所以这个男生偏胖.。

相关文档
最新文档