利用相似三角形测高-课后练习

合集下载

九年级上册4.6《利用相似三角形测高》当堂检测及课后作业(后附答案)

九年级上册4.6《利用相似三角形测高》当堂检测及课后作业(后附答案)

4.6利用相似三角形测高(九年级上册)一、学习目标通过测量旗杆的高度,综合运用三角形相似的判定定理和相似三角形的定义解决问题,发展应用意识,加深对相似三角形的理解和认识。

二、当堂检测A组1.如图,在测量旗杆高度的数学活动中,某同学在脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到旗杆的顶部.若眼睛距离地面AB=1.5m,同时量得BC=2m,CD=12m,则旗杆高度DE=()A.6m B.8m C.9m D.16m2.高4m的旗杆在水平地面上的影长6m,此时测得附近一个建筑物的影子长24m,则该建筑物的高度是_________m.3.如图,为了测量山坡的护坡石坝高,把一根长为4.5m的竹竿AC斜靠在石坝旁,量出竿上AD长为1m 时,它离地面的高度DE为0.6m,则坝高CF为m.4.某生利用标杆测量学校旗杆的高度,标杆CD等于3m ,标杆与旗杆的水平距离BD= 15m ,人的眼睛距地面的高度EF =1.6m ,人与标杆CD的水平距离DF = 2m .则旗杆AB的高度为m.5.如图,某位同学通过调整自己的位置测量树高AB,设法使三角板的斜边DF保持水平,并且边DE与点B在同一直线上.已知两条边DE=0.4m,EF=0.2m,测得边DF离地面距离AC=1.5m,人与树的距离CD=8m,求树高AB的值.6.在数学活动课上,老师带领数学小组测量大树AB的高度.如图,数学小组发现大树离教学楼有5m,高1.4m的竹竿在水平地面的影子长1m,此时大树的影子有一部分映在地面上,还有一部分映在教学楼的墙上,墙上的影子高CD为2m,那么这棵大树高m.三、课后作业A组1.如图1,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为米。

2.如图2,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8 m,窗户下檐到地面的距离BC=1 m,EC=1.2 m,那么窗户的高AB为m.图1 图2 图3 图43.如图3,小明用自制的直角三角形纸板DEF测量树AB的高度. 测量时,使直角边DE保持水平状态,其延长线交AB于点G,使斜边DF与点A在同一条直线上,测得边DE离地面的高度DC为1.4 m,点D到AB的距离DG为6 m. 已知DE=30 cm,EF=20 cm,那么树AB的高度为m.4.如图4,为了测量操场上一棵树的高度,小明拿来一面小镜子,将它平放在离树底部F10 m的地面上C 处,然后他沿着树底部和镜子所在直线后退,当他退了4 m到达B处时,正好在镜中看见树的顶端E,若小明目高AB为1.6 m,则树的高度EF是m.5.某学校九年级一班进行课外实践活动,王嘉同学想利用太阳光测量楼高. 他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如图,王嘉边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得王嘉落在墙上的影子高度CD=1.2m, CE=0.6m, CA=30m(点A、E、C在同一直线上) . 已知王嘉的身高EF 是1.7m ,请你帮王嘉求出楼高AB .C组:6.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯的高度CD. 如图所示,当李明走到点A处时,张龙测得李明直立时的身高AM与影子长AE正好相等; 接着李明沿AC方向继续向前走,走到点B处时,李明直立时的影子恰好是线段AB,并测得AB=1.25 m. 已知李明直立时的身高为1.75 m,求路灯的高度CD.4.7 利用相似三角形测高二、当堂检测A 组1.C 2. 16 3.2.7 4.13.5 5.5.5B 组6.9四、课后作业A 组:3. 3.24. 1.55. 5.46. 4B 组7. 26.2 C 组8. 849m。

专题03相似三角形的应用综合(五大类型)(题型专练)(原卷版)

专题03相似三角形的应用综合(五大类型)(题型专练)(原卷版)

专题03 相似三角形的应用综合(五大类型)【题型1 利用相似三角形测量高度平面镜测量法】【题型2 利用相似三角形测量高度影子测量法】【题型3 利用相似三角形测量高度手臂测量法】【题型4 利用相似三角形测量高度标杆测量法】【题型5 利用相似三角形测量距离】【题型1 利用相似三角形测量高度平面镜测量法】1.(2022秋•郑州期末)如图,小明探究“利用镜子反射测量旗杆的高度”.小明作为观测者,在旗杆和小明之间的地面上平放一面镜子,在镜子上作一个标记,小明看着镜子来回移动,当看到旗杆顶端在镜子中的像与镜子上的标记重合时,通过测量得到以下数据:小明的眼睛到地面的距离为1.5m,小明的站的位置到镜子上标记的距离是3.2m,旗杆的底部到小明的位置是19.2m,则旗杆的高度为()A.19.2B.16C.9D.7.5 2.(2023•龙华区一模)数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为()A.32米B.28米C.24米D.16米3.(2023•深圳模拟)如图,九年级(1)班课外活动小组利用平面镜测量学校旗杆的高度,在观测员与旗杆AB之间的地面上平放一面镜子,在镜子上做一个标记E,当观测到旗杆顶端在镜子中的像与镜子上的标记重合时,测得观测员的眼睛到地面的高度CD为1.6m,观测员到标记E的距离CE为2m,旗杆底部到标记E的距离AE为16m,则旗杆AB的高度约是()A.22.5m B.20m C.14.4m D.12.8m 4.(2023•青原区校级一模)为了测量校园内一棵树的高度,学校数学应用实践小组做了如下的探索实践.根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把镜子放在离树(AB)9m的水平地面点E处,然后一同学沿着直线BE后退到点D,这时该同学恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3m,该同学身高CD=1.6m.请你计算树(AB)的高度.5.(2023•新城区校级一模)【学科融合】如图1,在反射现象中,反射光线,入射光线和法线都在同一个平面内;反射光线和入射光线分别位于法线两侧;反射角r等于入射角i.这就是光的反射定律.【同题解决】如图2.小红同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙、木板和平面镜,手电筒的灯泡在点G处,手电筒的光从平面镜上点B处反射后,恰好经过木板的边缘点F,落在墙上的点E处,点E 到地面的高度DE=3.5m,点F到地面的高度CF=1.5m,灯泡到木板的水平距离AC=5.4m,本板到墙的水平距离为CD=4m.图中点A,B,C,D在同一条直线上.(1)求BC的长;(2)求灯泡到地面的高度AG.6.(2023•灞桥区校级模拟)小雁塔位于西安市南郊的荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志.小明同学对该塔进行了测量,测量方法如下,如图所示,先在点A处放一平面镜,从A处沿NA方向后退1米到点B处,恰好在平面镜中看到塔的顶部点M,再将平面镜沿NA方向继续向后移动15米放在D处(即AD=15米),从点D处向后退1.6米,到达点E处,恰好再次在平面镜中看到塔的顶部点M、已知小明眼睛到地面的距离CB=EF=1.74米,请根据题中提供的相关信息,求出小雁塔的高度MN﹒(平面镜的大小忽略不计)7.(2022秋•大名县校级期末)小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器CD,测得∠ACD=135°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动到点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF =1.6米,测量器的高度CD=0.5米.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,则这棵古树的高度AB为多少米?(小平面镜的大小忽略不计)【题型2 利用相似三角形测量高度影子测量法】8.(2021秋•蓝山县期末)如图,某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为米.9.(2022•兴化市模拟)如图,电线杆上的路灯距离地面8m,身高1.6m的小明(AB)站在距离电线杆的底部(点O)20m的A处,则小明的影子AM为m.【题型3 利用相似三角形测量高度手臂测量法】10.(2022秋•房山区期中)在设计“利用相似三角形的知识测量树高”的综合实践方案时,晓君想到了素描课上老师教的方法,如图,请一位同学右手握笔,手臂向前伸直保持笔杆与地面垂直,前后移动调整自己的位置,直到看见笔杆露出的部分刚好遮住树的主干,这时测量同学眼睛到笔的距离AB、同学到树干的距离AC,以及露出笔的长度DE,就可通过计算得到树的高度,这种实践方案主要应用了相似三角形的性质定理:相似三角形对应高的比等于相似比.(填写定理内容)11.(2022•姑苏区一模)小明把手臂水平向前伸直,手持小尺竖直,瞄准小尺的两端E、F,不断调整站立的位置,使在点D处时恰好能看到铁塔的顶部B 和底部A(如图).设小明的手臂长l=50cm,小尺长a=20cm,点D到铁塔底部的距离AD=20m,则铁塔的高度为m.12.(2023•长安区校级二模)如图,是位于西安市长安区香积寺内的善导塔,善导塔为楼阁式砖塔,塔身全用青砖砌成,平面呈正方形,原为十三层,现存十一层,建筑形式独具一格.数学兴趣小组测量善导塔的高度AB,有以下两种方案:方案一:如图1,在距离塔底B点45m远的D处竖立一根高1.5m的标杆CD,小明在F处蹲下,他的眼睛所在位置E、标杆的顶端C和塔顶点A三点在一条直线上.已知小明的眼睛到地面的距离EF=0.8m,DF=1m,AB⊥BM,CD ⊥BM,EF⊥BM,点B、D、F、M在同一直线上.方案二:如图2,小华拿着一把长为22cm的直尺CD站在离善导塔45m的地方(即点E到AB的距离为45m).他把手臂向前伸,尺子竖直,CD∥AB,尺子两端恰好遮住善导塔(即A、C、E在一条直线上,B、D、E在一条直线上),已知点E到直尺CD的距离为30cm.请你结合上述两个方案,选择其中的一个方案求善导塔的高度AB.我选择方案.【题型4 利用相似三角形测量高度标杆测量法】13.(2023•费县二模)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=10.8m,则建筑物CD 的高是m.14.(2021秋•吉林期末)小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为.15.(2022秋•花都区期末)如图,利用标杆BE测量建筑物的高度,如果标杆BE高1.2m,测得AB=1.6m,BC=12.4m,楼高CD是多少?16.(2023•雁塔区一模)为测量一棵大树的高度,设计的测量方案如图所示:标杆高度CD=3m,人的眼睛A、标杆的顶端C和大树顶端M在一条直线上,标杆与大树的水平距离DN=14m,人的眼睛与地面的高度AB=1.6m,人与标杆CD的水平距离BD=2m,B、D、N三点共线,AB⊥BN,CD⊥BN,MN⊥BN,求大树MN的高度.17.(2023•碑林区校级一模)某数学兴趣小组决定利用所学知识测量一古建筑的高度.如图2,古建筑的高度为AB,在地面BC上取E,G两点,分别竖立两根高为1.5m的标杆EF和GH,两标杆间隔EG为26m,并且古建筑AB,标杆EF和GH在同一竖直平面内.从标杆EF后退2m到D处(即ED=2m),从D处观察A点,A,F,D在一直线上;从标杆GH后退4m到C处(即CG =4m),从C处观察A点,A、H、C三点也成一线.已知B、E、D、G、C 在同一直线上,AB⊥BC,EF⊥BC,GH⊥BC,请你根据以上测量数据,帮助兴趣小组求出该古建筑AB的高度.18.(2022秋•高新区期末)某校同学参与“项目式学习”综合实践活动,小明所在的数学活动小组利用所学知识测量旗杆EF的高度,他在距离旗杆40米的D处立下一根3米高的竖直标杆CD,然后调整自己的位置,当他与标杆的距离BD为4米时,他的眼睛、标杆顶端和旗杆顶位于同一直线上,若小明的眼睛离地面高度AB为1.6米,求旗杆EF的高度.19.(2023•碑林区一模)杭州市西湖风景区的雷峰塔又名“皇妃塔”,某校社会实践小组为了测量雷峰塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,雷峰塔的塔尖点B正好在同一直线上,测得EC=3米,将标杆CD向后平移到点G处,这时地面上的点F,标杆的顶端点H,雷峰塔的塔尖点B正好又在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=5米,GC=60米,请你根据以上数据,计算雷峰塔的高度AB.20.(2022秋•益阳期末)大雁塔是现存最早规模最大的唐代四方楼阁式砖塔,被国务院批准列入第一批全国重点文物保护单位,某校社会实践小组为了测量大雁塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,古塔的塔尖点B正好在同一直线上,测得EC=1.28米,将标杆向后平移到点G处,这时地面上的点F,标杆的顶端点H,古塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与古塔底处的点A在同一直线上),这时测得FG=1.92米,CG=20米,请你根据以上数据,计算古塔的高度AB.21.(2022秋•雁塔区校级期中)青龙寺是西安最著名的樱花观赏地,品种达到了13种之多,每年3、4月陆续开放的樱花让这里成为了花的海洋,一天,小明和小刚去青龙守游玩,想利用所学知识测量一棵樱花树的高度(樱花树四周被围起来了,底部不易到达).小明在F处竖立了一根标杆EF,小刚走到C处时,站立在C处看到标杆顶端E和树的顶端B在一条直线上.此时测得小刚的眼睛到地面的距离DC=1.6米;然后,小明在地面上放一个镜子,恰好在G处时,小刚刚好能从镜子里看到树的顶端B.已知EF=3.2米,CF =3米,CG=2米,点小C、F、G在一条直线上,CD⊥AC,EF⊥AC,AB ⊥AC.根据以上测量过程及测量数据,请你求出这棵樱花树AB的高度.【题型5 利用相似三角形测量距离】22.(2022秋•开封期末)如图,某“综合实践”小组为估算开封护城河的宽度,可以在河对岸选定一个目标点P,在近岸取点A和点C,使AC=30m,且AC ⊥AP,再过点C作CD⊥BC,且CD=20m,PD与AC交于点B,若测得AB =20m,则河宽AP的宽度为()A.40m B.30m C.20m D.10m 23.(2022秋•上海月考)如图,A,B是河边上的两根水泥电线杆,C,D是河对岸不远处的两根木质线杆,且电线、线及河两边都是平行的.O是A、B对岸河边上一点,且O与A、C在同一直线上,与B、D也在同一直线上,已知AB=35m,CD=20m,OD=20m,根据所给的已知条件是否一定能求出河的大约宽度能(填能或不能或不一定).24.(2023•山西模拟)如图,为了估算河的宽度,我们可以在河对岸选定一个目标点A,在近岸取点B和点C,观察者在点E.适当调整,使得AB与EC 都与河岸BC垂直.此时AE与BC相交于点D,若测得BD=100m,DC=50m,EC=45m,请利用这些数据计算河的宽度.25.(2022秋•济南期末)如图,矩形ABCD为台球桌面,AD=280cm,AB=140cm,球目前在E点位置,AE=35cm,如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.26.(2023•西吉县一模)如图,A,B两点被池塘隔开,在AB外取一点C,连接AC,BC,在AC上取点M,使AM=3MC,作MN∥AB交BC于点N,量得MN=38m,求AB的长.27.(2023•莲湖区模拟)如图,为了测量平静的河面的宽度(EP),在离河岸D点3m远的B点,立一根长为1.5m的标杆AB,已知河岸高出水面0.6m,即DE=0.6m.在河对岸的水里有一棵高出水面4.6m的大树MP,大树的顶端M在河里的倒影为点N,即PM=PN.经测量此时A,D,N三点在同一直线上,并且点M,P,N共线,若AB,DE,MP均垂直于河面EP,则河宽EP 是多少米?。

2021—2022学年北师大版数学九年级上册《利用相似三角形测高》课后练习

2021—2022学年北师大版数学九年级上册《利用相似三角形测高》课后练习

利用相似三角形测高(课后练习)-2021年九年级上册北师大版一.选择题(共10小题)1.1m长的标杆直立在水平地面上,它在阳光下的影子长度为0.8m,同一时刻,某电视塔的影子长度为100m,则该电视塔的高度为()A.150m B.125m C.120m D.80m2.如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为()A.1.5米B.2.3米C.3.2米D.7.8米3.在小孔成像问题中,根据如图所示,若O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物AB长的()A.3倍B.C.D.不知AB的长度,无法判断4.数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为()A.32米B.28米C.24米D.16米5.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE =40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB是()A.4米B.4.5米C.5米D.5.5米6.如图,测量小玻璃管口径的量具ABC,AB的长为12cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是()A.8cm B.10cm C.20cm D.60cm7.如图,小颖为测量学校旗杆AB的高度,她想到了物理学中平面镜成像的原理,她在与旗杆底部A同一水平线上的E处放置一块镜子,然后退到C处站立,使得刚好可以从镜子E看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.6m,她离镜子的水平距离CE=1.2m,镜子E离旗杆的底部A处的距离AE=3.6m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.2.7m B.3.6m C.4.8m D.6.4m8.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.3.25m B.4.25m C.4.45m D.4.75m9.如图,有一块直角三角形余料ABC,∠BAC=90°,G,D分别是AB,AC边上的一点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,若BF=4.5cm,CE=2cm,则GF 的长为()A.3cm B.2cm C.2.5cm D.3.5cm10.如图所示,在离某建筑物4m处有一棵树,在某时刻,1.2m长的竹竿垂直地面,影长为2m,此时,树的影子有一部分映在地面上,还有一部分影子映在建筑物的墙上,墙上的影高为2m,则这棵树高约有多少米()A.6.4米B.5.4米C.4.4米D.3.4米二.填空题(共5小题)11.如图,小亮要测量一座钟塔的高度CD,他在与钟塔底端处在同一水平面上的地面放置一面镜子,并在镜子上做一个标记E,当他站在B处时,看到钟塔的顶端在镜子中的像与标记E重合.已知B、E、D在同一直线上,小亮的眼睛离地面的高度AB=1.6m,BE =1.4m,DE=14.7m,则钟塔的高度CD为m.12.如图,小明在墙上挂了一面镜子AB,调整好标杆CD,正好通过标杆顶部在镜子上边缘A处看到旗杆的顶端E的影子,已知AB=2m,CD=1.5m,BD=2m,BF=20m,则旗杆EF的高度为.13.如图,在Rt△ABC纸片上可按如图所示方式剪出一正方体表面展开图,直角三角形的两直角边与正方体展开图左下角正方形的边共线,斜边恰好经过两个正方形的顶点,已知BC=24cm,则这个展开图可折成的正方体的体积为cm3.14.如图,为测量出湖边不可直接到达的A、B间的距离,测量人员选取一定点O,使A、O、C和B、O、D分别在同一直线上,测出CD=150米,且OB=3OD,OA=3OC,则AB=米.15.如图是一块三角形的木板,其一边BC=150cm,高AD=100cm,现要将其加工成一正方形小桌面PQRS,其中P、Q在BC边上,R、S分别在AC、AB边上,则该正方形PQRS 的边长为cm.三.解答题(共5小题)16.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A 点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?17.数学活动课上,老师带领学生测量教学大楼的高度.在阳光下,测得身高1.6米的某同学身高AB的影长BC为1.2米,与此同时,测得教学楼DE的影长EF为18.5米.(1)请你在图中用三角板画出此时教学楼DE在阳光下的投影EF.(2)请你根据已测得的数据,求出教学楼DE的高度(精确到0.1米).18.阅读理解:给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的一半,则这个矩形是给定矩形的“减半”矩形.如图,矩形A1B1C1D1是矩形ABCD的“减半”矩形.请你解决下列问题:(1)当矩形的长和宽分别为1,2时,它是否存在“减半”矩形?请作出判断,并请说明理由;(2)边长为a的正方形存在“减半”正方形吗?如果存在,求出“减半”正方形的边长;如果不存在,说明理由.19.汪老师要装修自己带阁楼的新居(下图为新居剖面图),在建造客厅到阁楼的楼梯AC 时,为避免上楼时墙角F碰头,设计墙角F到楼梯的竖直距离FG为1.75m.他量得客厅高AB=2.8m,楼梯洞口宽AF=2m.阁楼阳台宽EF=3m.请你帮助汪老师解决下列问题:(1)要使墙角F到楼梯的竖直距离FG为1.75m,楼梯底端C到墙角D的距离CD是多少米?(2)在(1)的条件下,为保证上楼时的舒适感,楼梯的每个台阶高度小于20cm,每个台阶宽要大于20cm,问汪老师应该将楼梯建几个台阶?为什么?20.“福龙丽景”的居民筹集资金650元,计划在楼前一块上底5m、下底10m的梯形(如图①)空地上种植花草,美化环境.(1)试求△AED与△BEC的面积比;(2)他们在△AED和△BEC地带上种康乃馨,单价为10元/m2,共花250元.若其余地带(△ABE和△DCE)可种兰花或茉莉花,单价分别为20元/m2、15元/m2,那么应选择种哪种花,刚好用完所筹集资金?(3)若梯形ABCD为等腰梯形(如图②),请你设计一种花坛图案,即在梯形内找到一点P,使得△APB≌△DPC,S△APD=S△BPC,并说明理由.。

4.6+ 利用相似三角形测高 同步练习 2024—2025学年北师大版数学九年级上册

4.6+ 利用相似三角形测高 同步练习 2024—2025学年北师大版数学九年级上册

6 利用相似三角形测高基础过关全练知识点 1 利用阳光下的影子测量高度1.如图,小明同学利用相似三角形测量旗杆的高度,若测得标杆AB 长2m,它的影长BC为1m,同一时刻下,测得旗杆DE 的影长EF 为6m,则旗杆 DE 的高度为 ( )A.9 mB.10mC.11 mD.12m2.古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF 长2米,它的影长 FD 是4米,同一时刻测得 OA 是268米,则金字塔的高度 BO 是米.知识点 2 利用标杆测量高度3.小明利用中国古代“计里画方”(比例缩放和直角坐标网格体系)的方法测量涂岭镇下炉村的“玉笏朝天”的高度.如图所示,“玉笏朝天”的高度记为AB,“玉笏朝天”在照板“内芯”上的高度记为EF,小明的眼睛P 点与BF 在同一水平线上.则选项中结论正确的是 ( )A.EFAB =PFBFB.EFAB=PFBPC.PEAP =PFBFD.PEAE=PFBP4.某数学小组开展测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量,测量报告如下:课题测量旗杆的高度说明:在水平地面上直立一根标杆EF,观测者沿着直线BF 后退到点D,使眼睛C、标杆的顶端E、旗杆的顶端A 在同一直线上知识点 3 利用镜子的反射测量高度5.如图,小明为了测量一凉亭的高度AB,在凉亭的旁边放置一个与凉亭台阶BC等高的台阶D E,DE=BC=1m,A,B,C三点共线),把一面镜子水平放置在平台上的点G处,测得CG=10m,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得EG=2m,观测者身高EF=1.7 m,则凉亭的高度为 ( )A.8.5mB.9mC.9.5mD.10m6.【学科融合】如图1,在反射现象中,反射光线,入射光线和法线都在同一个平面内;反射光线和入射光线分别位于法线两侧;反射角r等于入射角 i.【问题解决】如图2,小亮在 P 处放置一面平面镜(平面镜的大小忽略不计),他站在 C 处通过平面镜恰好能看到塔的顶端A,此时测得小亮到平面镜的距离CP为4米.已知平面镜到塔底部中心的距离PB 为247.5米,小亮眼睛到地面的距离DC为1.6米,C,P,B在同一水平直线上,且DC,AB 均垂直于 CB.请你计算塔的高度AB.能力提升全练7.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB,他调整自己的位置,设法使斜边 DF 保持水平,并且边 DE 与点 B 在同一直线上,已知纸板的两条直角边 DE=40 cm, EF=20cm,测得边 DF离地面的高度AC=1.5m,CD=9m,则树高 AB 为 ( )A.4mB.4.5mC.5mD.6m8.四分仪是一种十分古老的测量仪器.图1是古代测量员用四分仪测量一方井的深度的示意图,将四分仪置于方井上的边沿上,通过窥衡杆测望井底点F,窥衡杆与四分仪的一边BC 交于点 H.图2 中,四分仪为正方形 ABCD,方井为矩形BEFG.若测量员从四分仪中读得AB 为1,BH 为0.5,实地测得 BE 为2.5,则井深 BG 为( )A.4B.5C.6D.79.下面是小明进行数学学科项目学习时,填写活动报告的部分内容.项目主题:测量河流的宽度.项目探究:河流宽度不能直接测量,需要借助一些工具,比如:镜子,标杆,皮尺,自制的直角三角形模板,……各组确定方案后,选择测量工具,画出测量示意图,并进行实地测量,得到具体数据,从而计算出河流的宽度.项目成果:下表是小明进行交流展示时的部分测量方案及测量数据:请你参与这个项目学习,并完成下列任务:(1)任务一:请你借助小明的测量数据,计算河流的宽度 AB.(2)任务二:请你写出这个方案中求河流宽度时用到的数学知识: (写出一条即可).(3)任务三:请你设计一个与小明不同的测量方案,并画图简要说明.素养探究全练10.小军想用镜子测量一棵古松树的高度,但因树旁有一条小河,故不能测量镜子与树之间的距离,于是他利用镜子进行两次测量,如图,第一次他把镜子放在点C处,他在点 F 处正好在镜中看到树顶 A 的像;第二次他把镜子放在点C'处,他在点 F'处正好在镜中看到树顶 A 的像.已知AB⊥BF',EF⊥BF',E'F'⊥BF',小军的眼睛距地面1.7m(即.EF=E′F′=1.7m),量得CC′=12m,CF=1.8m,C′F′=4.2m.求这棵古松树的高度AB.(镜子大小忽略不计)11.如图,广场上有两盏高度相同的路灯A、C,相距20m,晚上身高为1.8m的张明站在两个路灯之间的E 处,此时 ED 为张明在路灯A 照射下的影子,GE 为张明在路灯C照射下的影子,已知 DG=5m,求路灯的高度.。

北师大版九年级上册数学 4.6利用相似三角形测高 同步习题(含解析)

北师大版九年级上册数学 4.6利用相似三角形测高 同步习题(含解析)

4.6利用相似三角形测高同步习题一.选择题1.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m2.如图,小明为了测量大楼MN的高度,在离N点30米放了一个平面镜,小明沿NA方向后退1.5米到C点,此时从镜子中恰好看到楼顶的M点,已知小明的眼睛(点B)到地面的高度BC是1.6米,则大楼MN的高度是()A.32米B.米C.36米D.米3.《孙子算经》是我国古代重要的数学著作,其有题译文如下:“有一根竹竿在太阳下的影子长15尺.同时立一根1.5尺的小标杆,它的影长是0.5尺.如图所示,则可求得这根竹竿的长度为()尺.A.50B.45C.5D.4.54.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm5.数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为()A.32米B.28米C.24米D.16米6.如图,某同学拿着一把12cm长的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60cm,则电线杆的高度是()A.2.4m B.24m C.0.6m D.6m7.相邻两根电杆都用钢索在地面上固定,如图,一根电杆钢索系在离地面4米处,另一根电杆钢索系在离地面6米处,则中间两根钢索相交处点P离地面()A.2.4米B.8米C.3米D.必须知道两根电线杆的距离才能求出点P离地面距离8.已知:如图,某学生想利用标杆测量一棵大树的高度,如果标杆EC的高为1.6m,并测得BC=2.2m,CA=0.8m,那么树DB的高度是()A.6m B.5.6m C.5.4m D.4.4m9.如图,A,B两点被一河隔开,为了测量A,B两点间的距离,小明过点B作BF⊥AB,在BF上取两点C,D,使BC=2CD,过点D作DE⊥BF且使点A,C,E在同一条直线上,测得DE=20m,则A,B两点间的距离是()A.60m B.50m C.40m D.30m10.如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为()A.4 m B.m C.5m D.m二.填空题11.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为m.12.小明身高是1.6m,影长为2m,同时刻教学楼的影长为24m,则楼的高是.13.利用标杆CD测量建筑物的高度的示意图如图所示,若标杆CD的高为1.5米,测得DE=2米,BD=18米,则建筑物的高AB为米.14.根据测试距离为5m的标准视力表制作一个测试距离为3m的视力表.如果标准视力表中“E”的长a是3.6cm,那么制作出的视力表中相应“E”的长b是.15.小慧要测量校园内大树高AB.她运用物理课上学习的“光在反射时,入射角等于反射角”的知识解决了问题.如图,在水平地面上E点处放一面平面镜,镜子与大树的距离EA=8米.小慧沿着AE的方向走到C点时,她刚好能从镜子中看到大树的顶端B.已知CE=2米,小慧的眼睛距地面的高度DC=1.5米.则该棵大树的高度AB=米.三.解答题16.如图,花丛中一根灯杆AB上有一盏路灯A,灯光下,小明在D点处的影长DE=3米,沿BD方向走到点G,DG=5米,这时小明的影长GH=4米,如果小明的身高为1.7米,求路灯A离地面的高度.17.随着人们对生活环境的要求逐渐提高,环境保护问题受到越来越多人的关注,环保宣传也随处可见.如图,小云想要测量窗外的环保宣传牌AB的高度,她发现早上阳光恰好从窗户的最高点C处射进房间的地板F处,中午阳光恰好从窗户的最低点处射进房间的地板E处,小云测得窗户距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF =3m.请根据以上测量数据,求环保宣传牌AB的高度.参考答案1.解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴,∵BE=1.5m,AB=1.2m,BC=12.8m,∴AC=AB+BC=14m,∴,解得,DC=17.5,即建筑物CD的高是17.5m,故选:A.2.解:∵BC⊥CA,MN⊥AN,∴∠C=∠MNA=90°,∵∠BAC=∠MAN,∴△BCA∽△MNA.∴=,即=,∴MN=32(m),答:楼房MN的高度为32m.故选:A.3.解:设竹竿的长度为x尺,由题意得:=,解得:x=45,答:竹竿的长度为45尺,故选:B.4.解:∵AB∥DE,∴△CAB∽△CDE,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.5.解:根据题意,易得到△ABP∽△PDC.即=故CD=×AB=×1=32米;那么该大厦的高度是32米.故选:A.6.解:作AN⊥EF于N,交BC于M,∵BC∥EF,∴AM⊥BC于M,∴△ABC∽△AEF,∴=,∵AM=0.6,AN=30,BC=0.12,∴EF===6(m).故选:D.7.解:作PE⊥BC于E.∵CD∥AB,∴△APB∽△CDP,∴====,∵CD∥PE,∴△BPE∽△BDC,∴=,解得PE=2.4.故选:A.8.解:∵EC∥AB,BD⊥AB,∴EC∥BD,∠ACE=∠ABD=90°,在Rt△ACE∽Rt△ABD中,∠A=∠A,∠ACE=∠ABD=90°,∴Rt△ACE∽Rt△ABD,∴=,即=,解得BD=6m.故选:A.9.解:∵AB⊥BF,ED⊥BF,∴AB∥DE,∴△ABC∽△EDC,∴,即,解得:AB=40,故选:C.10.解:∵AB∥CD,∴△ABM∽△DCM,∴===,(相似三角形对应高的比等于相似比),∵MH∥AB,∴△MCH∽△ACB,∴==,解得MH=.故选:B.11.解:设这栋建筑物的高度为xm,由题意得,=,解得x=24,即这栋建筑物的高度为24m.故答案为:24.12.解:设教学楼高度为xm,列方程得:解得x=19.2,故教学楼的高度为19.2m.故答案为:19.2m.13.解:∵AB∥CD,∴△EBA∽△ECD,∴=,即,∴AB=15(米).故答案为:15.14.解:根据题意得=,所以b=×3.6=2.16(cm).故答案为2.16.15.解:根据题意可得:∠AEB=∠CED,∠BAE=∠DCE=90°,∴△ABE∽△CDE,∴=,∴,∴AB=6(米),故答案为:6.16.解:∵CD∥AB,∴△EAB∽△ECD,∴=,即=①,∵FG∥AB,∴△HFG∽△HAB,∴=,即=②,由①②得=,解得BD=15,∴=,解得AB=10.2.答:路灯A离地面的高度为10.2m.17.解:∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,设AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF ,∴=,=,解得:x=10.经检验:x=10是原方程的解.答:AB的高度是10m.。

北师大版九年级上册 4.6 利用相似三角形测高专题(包含答案)

北师大版九年级上册  4.6 利用相似三角形测高专题(包含答案)

2019-2020利用相似三角形测高专题(含答案)一、单选题1.如图,小雅同学在利用标杆BE 测量建筑物的高度时,测得标杆BE 高1.2m ,又知:1:8AB BC =,则建筑物CD 的高是( )A .9.6mB .10.8mC .12mD .14m2.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根 长为 1 米的竹竿的影长为 0.4 米,同时另一名同学测量树的高度时, 发现树的影子不全落在地面上,有一部分落在教学楼的第一级台 阶水平面上,测得此影子长为 0.2 米,一级台阶高为 0.3 米,如图 所示,若此时落在地面上的影长为 4.4 米,则树高为( )A.11.8 米B.11.75 米C.12.3 米D.12.25 米3.《孙子算经》是我国古代重要的数学著作,其下卷有题如下:“今有竿不知长短,度其影得一丈五尺.别立一表,长一尺五寸,影得五寸.问竿长几何?”译文:“有一根竹竿不知道它的长短,量出它在太阳下的影子长一丈五尺.同时立一根一尺五寸的小标杆,它的影长是五寸,则这根竹竿的长度为多少尺?”可得这根竹竿的长度为( ) (提示:1丈10=尺,1尺10=寸)A.五丈B.四丈五尺C.五尺D.四尺五寸4.如图,为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离树底B端8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,则树AB的高度约为()A.4.2米B.4.8米C.6.4米D.16.8米5.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5mB.4.8mC.5.5mD.6 m二、填空题6.某同学要测量某烟囱的高度,他将一面镜子放在他与烟囱之间的地面上某一位置,然后站到与镜子、烟囱成一条直线的地方,刚好从镜中看到烟囱的顶部,如果这名同学身高为1.65米,他到镜子的距离是2米,测得镜面到烟囱的距离为20米,烟囱的高度_____ 米.7.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高CD =1.2m ,CE =0.6m ,CA =30m (点A 、E 、C 在同一直线上).已知小明身高EF 是1.6m ,则楼高AB 为______m .8.如图,在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆2AB m =,它的影子1.6BC m =,木杆PQ 的影子有一部分落在了墙上, 1.2PM m =,0.8MN m =,则木杆PQ 的长度为______m .9.为了测量校园水平地面上一棵树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树AB 的高度为 米.三、解答题10.如图,晚上小明由路灯AD走向路灯BC,当他行至点P处时,发现他在路灯BC下的影长为2m,且影子的顶端恰好在A点,接着他又走了6.5m至点Q处,此时他在路灯AD下的影子的顶端恰好在B点,已知小明的身高为1.8m,路灯BC的高度为9m.(1)计算小明站在点Q处时在路灯AD下影子的长度;(2)计算路灯AD的高度。

九年级数学上册 4.6 利用相似三角形测高课后作业2 (新版)北师大版

九年级数学上册 4.6 利用相似三角形测高课后作业2 (新版)北师大版

利用相似三角形测高一、教材题目:P105,T1-T41.高4m的旗杆在水平地面上的影子长6m,此时测得附近一个建筑物的影子长24m,求该建筑物的高度。

2.旗杆的影子长6m,同时测得旗杆顶端到其影子顶端的距离是10m,如果此时附近小树的影子长3m,那么小树有多高?3.一盗窃犯于夜深人静之时潜入某单位作案,该单位的自动摄像系统摄下了他作案的全过程。

请你为警方设计一个方案,估计该盗窃犯的大致身高。

4.如图,AB表示一个窗户的高,AM和BN表示射入室内的光线,窗户的下端到地面的距离BC=1m。

已知某一时刻BC=1m在地面的影长CN=1.5Mm,AC在地面的影长CM=4.5m,求窗户的高度.二、补充题目:部分题目来源于《点拨》1.小芳在打网球时,她击球的高度是2.4 m,为使球恰好能过网(网高0.8 m),且落在对方区域离网5 m的位置上(如图),则她应站在离网( )(第1题)A.15 m处B.10 m处C.8 m处D.75 m处7.如图,铁道口栏杆的短臂长为1.2 m,长臂长为8 m,当短臂端点下降0.6 m时,长臂端点升高______m(杆的粗细忽略不计).(第7题)12.如图是小孔成像原理的示意图,根据图中标注的尺寸,如果物体AB的高度为36 cm,那么它在暗盒中所成的像CD的高度应为________cm.(第12题)答案教材1.解:设该建筑物的高度为x m ,根据题意,得46=x 24,x =4×246=16,所以该建筑物的高度为16 m .2.解:设小树有x m 高,则树顶到树影顶端的距离是x 2+9 m .根据题意,得106=x 2+93,即x 2=16,所以x 1=4,x 2=-4(舍去),所以小树有4 m 高.3.解:以现场的某实物为参照物,测量出该实物的高度,摄像中盗窃犯的影长以及该实物的影长,根据物高物影=身高盗窃犯的影长,可估计出该盗窃犯的大致身高. 4.解:易知NB∥MA,∴BC AC =CN CM .∴AC=BC·CM CN =1×4.51.5=3(m ).∴AB=AC -BC =3-1=2(m ),即窗户的高度为2 m .点拨1.B 7. 4 12.16。

利用相似三角形测高基础训练含详细答案

利用相似三角形测高基础训练含详细答案

利用相似三角形测高基础训练一.选择题(共8小题)1.《孙子算经》是我国古代重要的数学著作,其有题译文如下:“有一根竹竿在太阳下的影子长15尺.同时立一根1.5尺的小标杆,它的影长是0.5尺.如图所示,则可求得这根竹竿的长度为()尺.A.50B.45C.5D.4.52.如图,小卓利用标杆EF测量旗杆AB的高度,测得小桌的身高CD=1.8米,标杆EF=2.4米,DF=1米,BF=11米,则旗杆AB的高度是()A.6.4米B.7.2米C.9米D.9.6米3.如图,小明为了测量大楼MN的高度,在离N点30米放了一个平面镜,小明沿NA方向后退1.5米到C点,此时从镜子中恰好看到楼顶的M点,已知小明的眼睛(点B)到地面的高度BC是1.6米,则大楼MN的高度是()A.32米B.米C.36米D.米4.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m5.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm6.数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为()A.32米B.28米C.24米D.16米7.据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈五尺,人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”译文如下:如图,今有山AB位于树的西面.山高AB为未知数,山与树相距53里,树高9丈5尺,人站在离树3里的地方,观察到树梢C恰好与山峰A处在同一斜线上,人眼离地7尺,则山AB 的高为(保留到整数,1丈=10尺)()A.162丈B.163丈C.164丈D.165丈8.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6 m二.填空题(共5小题)9.如图,利用镜子M的反射(入射角等于反射角),来测量旗杆CD的长度,在镜子上作一个标记,观测者AB看着镜子来回移动,直到看到旗杆顶端在镜子中的像与镜子上的标记相重合,若观测者AB的身高为1.6m,量得BM:DM=2:11,则旗杆的高度为m.10.如图,有一个广告牌OE,小明站在距广告牌OE10米远的A处观察广告牌顶端,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则广告牌OE的高度为米.11.如图,利用标杆BE测量建筑物的高度.已知标杆BE高1.5m,测得AB=2m,BC=6m,则建筑物CD的高是m.12.如图,身高1.8米的小石从一盏路灯下B处向前走了8米到达点C处时,发现自己在地面上的影子CE长是2米,则路灯的高AB为米.13.小明用这样的方法来测量某建筑物的高度:如图,在地面上放一面镜子,调整位置,直至刚好能从镜子中看到建筑物的顶端.如果此时小明与镜子的距离是2m,镜子与建筑物的距离是20m.他的眼睛距地面1.5m,那么该建筑物的高是.三.解答题(共3小题)14.福建省会福州拥有“三山两塔一条江”,其中报恩定光多宝塔(别名白塔),位于山风景区,利用标杆可以估算白塔的高度.如图,标杆BE高1.5m,测得AB=0.9m,BC=39.1m,求白塔的高CD.15.如图是小明设计利用光线来测量某古城墙CD高度的示意图,如果镜子P与古城墙的距离PD=12米,镜子P与小明的距离BP=1.5米,小明刚好从镜子中看到古城墙顶端点C,小明眼睛距地面的高度AB=1.2米,那么该古城墙的高度是?16.《铁血红安》在中央一台热播后,吸引了众多游客前往影视基地游玩.某天小明站在地面上给站在城楼上的小亮照相时发现:他的眼睛、凉亭顶端、小亮头顶三点恰好在一条直线上(如图).已知小明的眼睛离地面1.65米,凉亭顶端离地面2米,小明到凉亭的距离为2米,凉亭离城楼底部的距离为40米,小亮身高1.7米.请根据以上数据求出城楼的高度.利用相似三角形测高基础训练参考答案与试题解析一.选择题(共8小题)1.《孙子算经》是我国古代重要的数学著作,其有题译文如下:“有一根竹竿在太阳下的影子长15尺.同时立一根1.5尺的小标杆,它的影长是0.5尺.如图所示,则可求得这根竹竿的长度为()尺.A.50B.45C.5D.4.5【答案】B【解答】解:设竹竿的长度为x尺,由题意得:=,解得:x=45,答:竹竿的长度为45尺,故选:B.2.如图,小卓利用标杆EF测量旗杆AB的高度,测得小桌的身高CD=1.8米,标杆EF=2.4米,DF=1米,BF=11米,则旗杆AB的高度是()A.6.4米B.7.2米C.9米D.9.6米【答案】C【解答】解:CG的延长线交AB于H,如图,易得GF=BH=CD=1.8m,CG=DF=1m,GH=BF=11m,∴EG=EF﹣GF=2.4m﹣1.8m=0.6m,∵EG∥AH,∴△CGE∽△CHA,∴=,即=,∴AH=7.2,∴AB=AH+BH=7.2+1.8=9(m),即旗杆AB的高度是9m.故选:C.3.如图,小明为了测量大楼MN的高度,在离N点30米放了一个平面镜,小明沿NA方向后退1.5米到C点,此时从镜子中恰好看到楼顶的M点,已知小明的眼睛(点B)到地面的高度BC是1.6米,则大楼MN的高度是()A.32米B.米C.36米D.米【答案】A【解答】解:∵BC⊥CA,MN⊥AN,∴∠C=∠MNA=90°,∵∠BAC=∠MAN,∴△BCA∽△MNA.∴=,即=,∴MN=32(m),答:楼房MN的高度为32m.故选:A.4.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m【答案】A【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴,∵BE=1.5m,AB=1.2m,BC=12.8m,∴AC=AB+BC=14m,∴,解得,DC=17.5,即建筑物CD的高是17.5m,故选:A.5.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm【答案】D【解答】解:∵AB∥DE,∴△CAB∽△CDE,∴=,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.6.数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为()A.32米B.28米C.24米D.16米【答案】A【解答】解:根据题意,易得到△ABP∽△PDC.即=故CD=×AB=×1=32米;那么该大厦的高度是32米.故选:A.7.据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈五尺,人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”译文如下:如图,今有山AB位于树的西面.山高AB为未知数,山与树相距53里,树高9丈5尺,人站在离树3里的地方,观察到树梢C恰好与山峰A处在同一斜线上,人眼离地7尺,则山AB 的高为(保留到整数,1丈=10尺)()A.162丈B.163丈C.164丈D.165丈【答案】D【解答】解:由题意得,BD=53里CD=95尺,EF=7尺,DF=3里,过E作EG⊥AB于G,交CD于H,则BG=DH=EF=7尺,GH=BD=53里,HE=DF=3里,∵CD∥AB,∴△ECH∽△EAG,∴=,∴=,∴AG≈164.2丈,AB=AG+0.7=164.9≈165丈.答:山AB的高为165丈.故选:D.8.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6 m【答案】D【解答】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABE∽△EDC,∴=,即=,解得:AB=6,故选:D.二.填空题(共5小题)9.如图,利用镜子M的反射(入射角等于反射角),来测量旗杆CD的长度,在镜子上作一个标记,观测者AB看着镜子来回移动,直到看到旗杆顶端在镜子中的像与镜子上的标记相重合,若观测者AB的身高为1.6m,量得BM:DM=2:11,则旗杆的高度为8.8 m.【答案】见试题解答内容【解答】解:根据题意得:△ABM∽△CDM,∴AB:CD=BM:DM,∵AB=1.6m,BM:DM=2:11,∴1.6:CD=2:11,解得:CD=8.8m,故答案为:8.8.10.如图,有一个广告牌OE,小明站在距广告牌OE10米远的A处观察广告牌顶端,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则广告牌OE的高度为2.5米.【答案】见试题解答内容【解答】解:作BF⊥OE于点F交CD于点G,根据题意得:AB=CG=OF=1.5米,BF=10米,BG=5米,DG=CD﹣CG=2﹣1.5=0.5米,∵DG∥EF,∴,∴,解得:EF=1,∴EO=EF+OF=1+1.5=2.5(米),故答案为:2.5.11.如图,利用标杆BE测量建筑物的高度.已知标杆BE高1.5m,测得AB=2m,BC=6m,则建筑物CD的高是6m.【答案】6.【解答】解:由题意可得:BE∥DC,则△ABE∽△ACD,故=,∵标杆BE高1.5m,AB=2m,BC=6m,∴=,解得:DC=6.故答案为:6.12.如图,身高1.8米的小石从一盏路灯下B处向前走了8米到达点C处时,发现自己在地面上的影子CE长是2米,则路灯的高AB为9米.【答案】见试题解答内容【解答】解:由题意知,CE=2米,CD=1.8米,BC=8米,CD∥AB,则BE=BC+CE=10米,∵CD∥AB,∴△ECD∽△EBA∴=,即=,解得AB=9(米),即路灯的高AB为9米;故答案为:9.13.小明用这样的方法来测量某建筑物的高度:如图,在地面上放一面镜子,调整位置,直至刚好能从镜子中看到建筑物的顶端.如果此时小明与镜子的距离是2m,镜子与建筑物的距离是20m.他的眼睛距地面1.5m,那么该建筑物的高是15m.【答案】见试题解答内容【解答】解:∵∠APB=∠CPD,∠ABP=∠CDP,∴△ABP∽△CDP∴=,即:,解得:CD=15(米).故答案为:15.三.解答题(共3小题)14.福建省会福州拥有“三山两塔一条江”,其中报恩定光多宝塔(别名白塔),位于山风景区,利用标杆可以估算白塔的高度.如图,标杆BE高1.5m,测得AB=0.9m,BC=39.1m,求白塔的高CD.【答案】见试题解答内容【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴=,∵BE=1.5,AB=0.9,BC=39.1,∴AC=16,∴=,∴CD=.∴白塔的高CD为米.15.如图是小明设计利用光线来测量某古城墙CD高度的示意图,如果镜子P与古城墙的距离PD=12米,镜子P与小明的距离BP=1.5米,小明刚好从镜子中看到古城墙顶端点C,小明眼睛距地面的高度AB=1.2米,那么该古城墙的高度是?【答案】见试题解答内容【解答】解:∵∠APB=∠CPD,∠ABP=∠CDP,∴△ABP∽△CDP∴=,即:=,解得:PD=9.6(米).答:该古城墙的高度是9.6m.16.《铁血红安》在中央一台热播后,吸引了众多游客前往影视基地游玩.某天小明站在地面上给站在城楼上的小亮照相时发现:他的眼睛、凉亭顶端、小亮头顶三点恰好在一条直线上(如图).已知小明的眼睛离地面1.65米,凉亭顶端离地面2米,小明到凉亭的距离为2米,凉亭离城楼底部的距离为40米,小亮身高1.7米.请根据以上数据求出城楼的高度.【答案】见试题解答内容【解答】解:过点A作AM⊥EF于点M,交CD于点N,由题意可得:AN=2m,CN=2﹣1.65=0.35(m),MN=40m,∵CN∥EM,∴△ACN∽△AEM,∴=,∴=,解得:EM=7.35,∵AB=MF=1.65m,故城楼的高度为:7.35+1.65﹣1.7=7.3(米),答:城楼的高度为7.3m.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.6 利用相似三角形测高
中所用力的大小将(

A.变大 B 。

变小 C 。

不变 D 。

无法判断
2 •小华做小孔成像实验(如图所示),已知蜡烛与成像板之间的距离为
15cm 贝鵬烛
与成像板之间的小孔纸板应放在离蜡烛 ______________ c m 的地方时,蜡烛焰 AB 是像
A '
B '的一半。

4.有点光源S 在平面镜上方,若在 P 点初看到点光源的反 射光线,并测得 AB=10cm
BC=20cm.PCL AC,且PC=24cm 试求点光源 S 到平面镜的距离即 SA 的长度。

5.冬至时是一年中太阳相对于地球位置最低的时刻, 只要此时能采到阳光, 一年四季
就均能受到 阳光照射。

此时竖一根 a 米长的竹杆,其影长为 b 米,某单位计划想建 m 米高的南北两幢宿舍楼(如图所示)。

试问两幢楼相距多少米时,后楼的采光一年 四季不受影响(用
m,a,b 表示)
1.如图,慢慢将电线杆竖起, 如果所用力F 的方向始终竖直向上, 则电线杆竖起过程
0。

5米时,长
S
A B
P
6 •—位同学想利用树影测出树高,他在某时刻测得直立的标杆高1米,影长是0. 9
米,但他去测树影时,发现树影的上半部分落在墙CD上,(如图所示)他测得 BC=
2 • 7米,CD=1.2米。

你能帮他求出树高为多少米吗?
7 •我侦察员在距敌方200米的地方发现敌人的一座建筑物,但不知其高度又不能靠近建筑物测
量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住。

若此时眼睛到食指的距离约为40 cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路。

D 手指位置
&如图,阳光透过窗口照到室内,在地面上留下 2.7米宽的亮区,已知亮区一边到窗下的墙脚距离 CE=8.7米,窗口高 AB=1.8米,试求窗口下底与地面之间的距离BC 的大小。

2.T米
答案:1.C 2.5 3.8 4. 由
AB 知塹工10
,故SA = 12cm. PC BC 24 20
5
•由旦二竺,故B^b
m 米。

b BC
a
6 .由丄二
AB
— CD = AB
一1.2
得 AB-1.2=3 ,故 AB=4.2 米即树高为 4.2 米.
0.9 BC
2.7
7.
过A 作AG 丄BC 于G 交DE 于F 。

又BC// DE 故AF 丄DE 易知"ADE^" ABC
BC
AB
DE
AG,故 DE =^C
2000 8
=400cm = 40m 40
BC 知,BC = AB EC EC DE
1.8 8.7
2.7
-5.8米.
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

相关文档
最新文档