利用相似三角形测高专题训练

合集下载

利用相似三角形测高

利用相似三角形测高

《利用相似三角形测高》同步练习一、选择题1.某天同时同地,甲同学测得1m的测竿在地面上影长为0.8m,乙同学测得国旗旗杆在地面上的影长为9.6m,则国旗旗杆的长为()A.10m B.12m C.13m D.15m2.如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm,已知臂长60cm,则电线杆的高度为()A.2.4m B.24m C.0.6m D.6m第2题第6题3.已知一棵树的影长是30m,同一时刻一根长1.5m的标杆的影长为3m,则这棵树的高度是()A.15m B.60m C.20m D.10m4.要测量出一棵树的高度,除了测量出人高与人的影长外,还需要测出()A.仰角B.树的影长C.标杆的影长D.都不需要5.一斜坡长70米,它的高为5米,将重物从斜坡起点推到坡上20米处停下,停下地点的高度为()A.米B.米C.米D.米6.如图,有点光源S在平面镜上方,若在P点看到点光源的反射光线,并测得AB=10cm,BC=20cm,PC⊥AC,且PC=24cm,点光源S到平面镜的距离即SA的长度为()A.11cm B.12cm C.13cm D.14cm7.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为()A.5.3米B.4.8米C.4.0米D.2.7米8.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE为5m,AB为1.5m(即小颖的眼睛距地面的距离),那么这棵树高是()A.()m B.()mC.m D.4m二、填空题9.高6m的旗杆在水平面上的影长为8m,此时测得一建筑物的影长为48m,则该建筑的高度为m.10.如图所示,某校宣传栏后面2米处种了一排树,每隔2米一棵,共种了6棵,小勇站在距宣传栏中间位置的垂直距离3米处,正好看到两端的树干,其余的4棵均被挡住,那么宣传栏的长为米.(不计宣传栏的厚度)第10题第11题11.铁道上的栏杆的短臂长为1.25m,长臂为17.5m,如图要使长臂端点升高16m,则短臂端点要下降m.12.如图,要测量A、B两点间距离,在O点设桩,取OA中点C,OB中点D,测得CD=30m,则AB= m.第12题第14题13.高为3m的木条,在地面上的影长为12m,这时,测得一建筑物的影长为36m,则该建筑物的高度是m.14.如图,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为米.15.如图,小明从路灯下,向前走了5米,发现自己在地面上的影子长DE是2米.如果小明的身高为1.6米,那么路灯高地面的高度AB是米.第15题第16题16.一油桶高0.8m,桶内有油,一根木棒长1m,从桶盖小口斜插入桶内,一端到桶底,另一端到小口,抽出木棒,量得棒上浸油部分长0.8m,则桶内油面的高度为m.17.如图,小华在地面上放置一个平面镜E来测量铁塔AB的高度,镜子与铁塔的距离EB=20米,镜子与小华的距离ED=2米时,小华刚好从镜子中看到铁塔顶端点A.已知小华的眼睛距地面的高度CD=1.5米,则铁塔AB的高度是米.。

北师大版九年级上册 4.6 利用相似三角形测高专题(包含答案)

北师大版九年级上册  4.6 利用相似三角形测高专题(包含答案)

2019-2020利用相似三角形测高专题(含答案)一、单选题1.如图,小雅同学在利用标杆BE 测量建筑物的高度时,测得标杆BE 高1.2m ,又知:1:8AB BC =,则建筑物CD 的高是( )A .9.6mB .10.8mC .12mD .14m2.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根 长为 1 米的竹竿的影长为 0.4 米,同时另一名同学测量树的高度时, 发现树的影子不全落在地面上,有一部分落在教学楼的第一级台 阶水平面上,测得此影子长为 0.2 米,一级台阶高为 0.3 米,如图 所示,若此时落在地面上的影长为 4.4 米,则树高为( )A.11.8 米B.11.75 米C.12.3 米D.12.25 米3.《孙子算经》是我国古代重要的数学著作,其下卷有题如下:“今有竿不知长短,度其影得一丈五尺.别立一表,长一尺五寸,影得五寸.问竿长几何?”译文:“有一根竹竿不知道它的长短,量出它在太阳下的影子长一丈五尺.同时立一根一尺五寸的小标杆,它的影长是五寸,则这根竹竿的长度为多少尺?”可得这根竹竿的长度为( ) (提示:1丈10=尺,1尺10=寸)A.五丈B.四丈五尺C.五尺D.四尺五寸4.如图,为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离树底B端8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,则树AB的高度约为()A.4.2米B.4.8米C.6.4米D.16.8米5.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5mB.4.8mC.5.5mD.6 m二、填空题6.某同学要测量某烟囱的高度,他将一面镜子放在他与烟囱之间的地面上某一位置,然后站到与镜子、烟囱成一条直线的地方,刚好从镜中看到烟囱的顶部,如果这名同学身高为1.65米,他到镜子的距离是2米,测得镜面到烟囱的距离为20米,烟囱的高度_____ 米.7.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高CD =1.2m ,CE =0.6m ,CA =30m (点A 、E 、C 在同一直线上).已知小明身高EF 是1.6m ,则楼高AB 为______m .8.如图,在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆2AB m =,它的影子1.6BC m =,木杆PQ 的影子有一部分落在了墙上, 1.2PM m =,0.8MN m =,则木杆PQ 的长度为______m .9.为了测量校园水平地面上一棵树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树AB 的高度为 米.三、解答题10.如图,晚上小明由路灯AD走向路灯BC,当他行至点P处时,发现他在路灯BC下的影长为2m,且影子的顶端恰好在A点,接着他又走了6.5m至点Q处,此时他在路灯AD下的影子的顶端恰好在B点,已知小明的身高为1.8m,路灯BC的高度为9m.(1)计算小明站在点Q处时在路灯AD下影子的长度;(2)计算路灯AD的高度。

北师大版九年级上册数学 4.6利用相似三角形测高 同步习题(含解析)

北师大版九年级上册数学 4.6利用相似三角形测高 同步习题(含解析)

4.6利用相似三角形测高同步习题一.选择题1.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m2.如图,小明为了测量大楼MN的高度,在离N点30米放了一个平面镜,小明沿NA方向后退1.5米到C点,此时从镜子中恰好看到楼顶的M点,已知小明的眼睛(点B)到地面的高度BC是1.6米,则大楼MN的高度是()A.32米B.米C.36米D.米3.《孙子算经》是我国古代重要的数学著作,其有题译文如下:“有一根竹竿在太阳下的影子长15尺.同时立一根1.5尺的小标杆,它的影长是0.5尺.如图所示,则可求得这根竹竿的长度为()尺.A.50B.45C.5D.4.54.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm5.数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为()A.32米B.28米C.24米D.16米6.如图,某同学拿着一把12cm长的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60cm,则电线杆的高度是()A.2.4m B.24m C.0.6m D.6m7.相邻两根电杆都用钢索在地面上固定,如图,一根电杆钢索系在离地面4米处,另一根电杆钢索系在离地面6米处,则中间两根钢索相交处点P离地面()A.2.4米B.8米C.3米D.必须知道两根电线杆的距离才能求出点P离地面距离8.已知:如图,某学生想利用标杆测量一棵大树的高度,如果标杆EC的高为1.6m,并测得BC=2.2m,CA=0.8m,那么树DB的高度是()A.6m B.5.6m C.5.4m D.4.4m9.如图,A,B两点被一河隔开,为了测量A,B两点间的距离,小明过点B作BF⊥AB,在BF上取两点C,D,使BC=2CD,过点D作DE⊥BF且使点A,C,E在同一条直线上,测得DE=20m,则A,B两点间的距离是()A.60m B.50m C.40m D.30m10.如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为()A.4 m B.m C.5m D.m二.填空题11.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为m.12.小明身高是1.6m,影长为2m,同时刻教学楼的影长为24m,则楼的高是.13.利用标杆CD测量建筑物的高度的示意图如图所示,若标杆CD的高为1.5米,测得DE=2米,BD=18米,则建筑物的高AB为米.14.根据测试距离为5m的标准视力表制作一个测试距离为3m的视力表.如果标准视力表中“E”的长a是3.6cm,那么制作出的视力表中相应“E”的长b是.15.小慧要测量校园内大树高AB.她运用物理课上学习的“光在反射时,入射角等于反射角”的知识解决了问题.如图,在水平地面上E点处放一面平面镜,镜子与大树的距离EA=8米.小慧沿着AE的方向走到C点时,她刚好能从镜子中看到大树的顶端B.已知CE=2米,小慧的眼睛距地面的高度DC=1.5米.则该棵大树的高度AB=米.三.解答题16.如图,花丛中一根灯杆AB上有一盏路灯A,灯光下,小明在D点处的影长DE=3米,沿BD方向走到点G,DG=5米,这时小明的影长GH=4米,如果小明的身高为1.7米,求路灯A离地面的高度.17.随着人们对生活环境的要求逐渐提高,环境保护问题受到越来越多人的关注,环保宣传也随处可见.如图,小云想要测量窗外的环保宣传牌AB的高度,她发现早上阳光恰好从窗户的最高点C处射进房间的地板F处,中午阳光恰好从窗户的最低点处射进房间的地板E处,小云测得窗户距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF =3m.请根据以上测量数据,求环保宣传牌AB的高度.参考答案1.解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴,∵BE=1.5m,AB=1.2m,BC=12.8m,∴AC=AB+BC=14m,∴,解得,DC=17.5,即建筑物CD的高是17.5m,故选:A.2.解:∵BC⊥CA,MN⊥AN,∴∠C=∠MNA=90°,∵∠BAC=∠MAN,∴△BCA∽△MNA.∴=,即=,∴MN=32(m),答:楼房MN的高度为32m.故选:A.3.解:设竹竿的长度为x尺,由题意得:=,解得:x=45,答:竹竿的长度为45尺,故选:B.4.解:∵AB∥DE,∴△CAB∽△CDE,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.5.解:根据题意,易得到△ABP∽△PDC.即=故CD=×AB=×1=32米;那么该大厦的高度是32米.故选:A.6.解:作AN⊥EF于N,交BC于M,∵BC∥EF,∴AM⊥BC于M,∴△ABC∽△AEF,∴=,∵AM=0.6,AN=30,BC=0.12,∴EF===6(m).故选:D.7.解:作PE⊥BC于E.∵CD∥AB,∴△APB∽△CDP,∴====,∵CD∥PE,∴△BPE∽△BDC,∴=,解得PE=2.4.故选:A.8.解:∵EC∥AB,BD⊥AB,∴EC∥BD,∠ACE=∠ABD=90°,在Rt△ACE∽Rt△ABD中,∠A=∠A,∠ACE=∠ABD=90°,∴Rt△ACE∽Rt△ABD,∴=,即=,解得BD=6m.故选:A.9.解:∵AB⊥BF,ED⊥BF,∴AB∥DE,∴△ABC∽△EDC,∴,即,解得:AB=40,故选:C.10.解:∵AB∥CD,∴△ABM∽△DCM,∴===,(相似三角形对应高的比等于相似比),∵MH∥AB,∴△MCH∽△ACB,∴==,解得MH=.故选:B.11.解:设这栋建筑物的高度为xm,由题意得,=,解得x=24,即这栋建筑物的高度为24m.故答案为:24.12.解:设教学楼高度为xm,列方程得:解得x=19.2,故教学楼的高度为19.2m.故答案为:19.2m.13.解:∵AB∥CD,∴△EBA∽△ECD,∴=,即,∴AB=15(米).故答案为:15.14.解:根据题意得=,所以b=×3.6=2.16(cm).故答案为2.16.15.解:根据题意可得:∠AEB=∠CED,∠BAE=∠DCE=90°,∴△ABE∽△CDE,∴=,∴,∴AB=6(米),故答案为:6.16.解:∵CD∥AB,∴△EAB∽△ECD,∴=,即=①,∵FG∥AB,∴△HFG∽△HAB,∴=,即=②,由①②得=,解得BD=15,∴=,解得AB=10.2.答:路灯A离地面的高度为10.2m.17.解:∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,设AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF ,∴=,=,解得:x=10.经检验:x=10是原方程的解.答:AB的高度是10m.。

利用相似三角形测高基础训练含详细答案

利用相似三角形测高基础训练含详细答案

利用相似三角形测高基础训练一.选择题(共8小题)1.《孙子算经》是我国古代重要的数学著作,其有题译文如下:“有一根竹竿在太阳下的影子长15尺.同时立一根1.5尺的小标杆,它的影长是0.5尺.如图所示,则可求得这根竹竿的长度为()尺.A.50B.45C.5D.4.52.如图,小卓利用标杆EF测量旗杆AB的高度,测得小桌的身高CD=1.8米,标杆EF=2.4米,DF=1米,BF=11米,则旗杆AB的高度是()A.6.4米B.7.2米C.9米D.9.6米3.如图,小明为了测量大楼MN的高度,在离N点30米放了一个平面镜,小明沿NA方向后退1.5米到C点,此时从镜子中恰好看到楼顶的M点,已知小明的眼睛(点B)到地面的高度BC是1.6米,则大楼MN的高度是()A.32米B.米C.36米D.米4.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m5.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm6.数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为()A.32米B.28米C.24米D.16米7.据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈五尺,人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”译文如下:如图,今有山AB位于树的西面.山高AB为未知数,山与树相距53里,树高9丈5尺,人站在离树3里的地方,观察到树梢C恰好与山峰A处在同一斜线上,人眼离地7尺,则山AB 的高为(保留到整数,1丈=10尺)()A.162丈B.163丈C.164丈D.165丈8.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6 m二.填空题(共5小题)9.如图,利用镜子M的反射(入射角等于反射角),来测量旗杆CD的长度,在镜子上作一个标记,观测者AB看着镜子来回移动,直到看到旗杆顶端在镜子中的像与镜子上的标记相重合,若观测者AB的身高为1.6m,量得BM:DM=2:11,则旗杆的高度为m.10.如图,有一个广告牌OE,小明站在距广告牌OE10米远的A处观察广告牌顶端,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则广告牌OE的高度为米.11.如图,利用标杆BE测量建筑物的高度.已知标杆BE高1.5m,测得AB=2m,BC=6m,则建筑物CD的高是m.12.如图,身高1.8米的小石从一盏路灯下B处向前走了8米到达点C处时,发现自己在地面上的影子CE长是2米,则路灯的高AB为米.13.小明用这样的方法来测量某建筑物的高度:如图,在地面上放一面镜子,调整位置,直至刚好能从镜子中看到建筑物的顶端.如果此时小明与镜子的距离是2m,镜子与建筑物的距离是20m.他的眼睛距地面1.5m,那么该建筑物的高是.三.解答题(共3小题)14.福建省会福州拥有“三山两塔一条江”,其中报恩定光多宝塔(别名白塔),位于山风景区,利用标杆可以估算白塔的高度.如图,标杆BE高1.5m,测得AB=0.9m,BC=39.1m,求白塔的高CD.15.如图是小明设计利用光线来测量某古城墙CD高度的示意图,如果镜子P与古城墙的距离PD=12米,镜子P与小明的距离BP=1.5米,小明刚好从镜子中看到古城墙顶端点C,小明眼睛距地面的高度AB=1.2米,那么该古城墙的高度是?16.《铁血红安》在中央一台热播后,吸引了众多游客前往影视基地游玩.某天小明站在地面上给站在城楼上的小亮照相时发现:他的眼睛、凉亭顶端、小亮头顶三点恰好在一条直线上(如图).已知小明的眼睛离地面1.65米,凉亭顶端离地面2米,小明到凉亭的距离为2米,凉亭离城楼底部的距离为40米,小亮身高1.7米.请根据以上数据求出城楼的高度.利用相似三角形测高基础训练参考答案与试题解析一.选择题(共8小题)1.《孙子算经》是我国古代重要的数学著作,其有题译文如下:“有一根竹竿在太阳下的影子长15尺.同时立一根1.5尺的小标杆,它的影长是0.5尺.如图所示,则可求得这根竹竿的长度为()尺.A.50B.45C.5D.4.5【答案】B【解答】解:设竹竿的长度为x尺,由题意得:=,解得:x=45,答:竹竿的长度为45尺,故选:B.2.如图,小卓利用标杆EF测量旗杆AB的高度,测得小桌的身高CD=1.8米,标杆EF=2.4米,DF=1米,BF=11米,则旗杆AB的高度是()A.6.4米B.7.2米C.9米D.9.6米【答案】C【解答】解:CG的延长线交AB于H,如图,易得GF=BH=CD=1.8m,CG=DF=1m,GH=BF=11m,∴EG=EF﹣GF=2.4m﹣1.8m=0.6m,∵EG∥AH,∴△CGE∽△CHA,∴=,即=,∴AH=7.2,∴AB=AH+BH=7.2+1.8=9(m),即旗杆AB的高度是9m.故选:C.3.如图,小明为了测量大楼MN的高度,在离N点30米放了一个平面镜,小明沿NA方向后退1.5米到C点,此时从镜子中恰好看到楼顶的M点,已知小明的眼睛(点B)到地面的高度BC是1.6米,则大楼MN的高度是()A.32米B.米C.36米D.米【答案】A【解答】解:∵BC⊥CA,MN⊥AN,∴∠C=∠MNA=90°,∵∠BAC=∠MAN,∴△BCA∽△MNA.∴=,即=,∴MN=32(m),答:楼房MN的高度为32m.故选:A.4.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m【答案】A【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴,∵BE=1.5m,AB=1.2m,BC=12.8m,∴AC=AB+BC=14m,∴,解得,DC=17.5,即建筑物CD的高是17.5m,故选:A.5.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm【答案】D【解答】解:∵AB∥DE,∴△CAB∽△CDE,∴=,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.6.数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为()A.32米B.28米C.24米D.16米【答案】A【解答】解:根据题意,易得到△ABP∽△PDC.即=故CD=×AB=×1=32米;那么该大厦的高度是32米.故选:A.7.据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈五尺,人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”译文如下:如图,今有山AB位于树的西面.山高AB为未知数,山与树相距53里,树高9丈5尺,人站在离树3里的地方,观察到树梢C恰好与山峰A处在同一斜线上,人眼离地7尺,则山AB 的高为(保留到整数,1丈=10尺)()A.162丈B.163丈C.164丈D.165丈【答案】D【解答】解:由题意得,BD=53里CD=95尺,EF=7尺,DF=3里,过E作EG⊥AB于G,交CD于H,则BG=DH=EF=7尺,GH=BD=53里,HE=DF=3里,∵CD∥AB,∴△ECH∽△EAG,∴=,∴=,∴AG≈164.2丈,AB=AG+0.7=164.9≈165丈.答:山AB的高为165丈.故选:D.8.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6 m【答案】D【解答】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABE∽△EDC,∴=,即=,解得:AB=6,故选:D.二.填空题(共5小题)9.如图,利用镜子M的反射(入射角等于反射角),来测量旗杆CD的长度,在镜子上作一个标记,观测者AB看着镜子来回移动,直到看到旗杆顶端在镜子中的像与镜子上的标记相重合,若观测者AB的身高为1.6m,量得BM:DM=2:11,则旗杆的高度为8.8 m.【答案】见试题解答内容【解答】解:根据题意得:△ABM∽△CDM,∴AB:CD=BM:DM,∵AB=1.6m,BM:DM=2:11,∴1.6:CD=2:11,解得:CD=8.8m,故答案为:8.8.10.如图,有一个广告牌OE,小明站在距广告牌OE10米远的A处观察广告牌顶端,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则广告牌OE的高度为2.5米.【答案】见试题解答内容【解答】解:作BF⊥OE于点F交CD于点G,根据题意得:AB=CG=OF=1.5米,BF=10米,BG=5米,DG=CD﹣CG=2﹣1.5=0.5米,∵DG∥EF,∴,∴,解得:EF=1,∴EO=EF+OF=1+1.5=2.5(米),故答案为:2.5.11.如图,利用标杆BE测量建筑物的高度.已知标杆BE高1.5m,测得AB=2m,BC=6m,则建筑物CD的高是6m.【答案】6.【解答】解:由题意可得:BE∥DC,则△ABE∽△ACD,故=,∵标杆BE高1.5m,AB=2m,BC=6m,∴=,解得:DC=6.故答案为:6.12.如图,身高1.8米的小石从一盏路灯下B处向前走了8米到达点C处时,发现自己在地面上的影子CE长是2米,则路灯的高AB为9米.【答案】见试题解答内容【解答】解:由题意知,CE=2米,CD=1.8米,BC=8米,CD∥AB,则BE=BC+CE=10米,∵CD∥AB,∴△ECD∽△EBA∴=,即=,解得AB=9(米),即路灯的高AB为9米;故答案为:9.13.小明用这样的方法来测量某建筑物的高度:如图,在地面上放一面镜子,调整位置,直至刚好能从镜子中看到建筑物的顶端.如果此时小明与镜子的距离是2m,镜子与建筑物的距离是20m.他的眼睛距地面1.5m,那么该建筑物的高是15m.【答案】见试题解答内容【解答】解:∵∠APB=∠CPD,∠ABP=∠CDP,∴△ABP∽△CDP∴=,即:,解得:CD=15(米).故答案为:15.三.解答题(共3小题)14.福建省会福州拥有“三山两塔一条江”,其中报恩定光多宝塔(别名白塔),位于山风景区,利用标杆可以估算白塔的高度.如图,标杆BE高1.5m,测得AB=0.9m,BC=39.1m,求白塔的高CD.【答案】见试题解答内容【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴=,∵BE=1.5,AB=0.9,BC=39.1,∴AC=16,∴=,∴CD=.∴白塔的高CD为米.15.如图是小明设计利用光线来测量某古城墙CD高度的示意图,如果镜子P与古城墙的距离PD=12米,镜子P与小明的距离BP=1.5米,小明刚好从镜子中看到古城墙顶端点C,小明眼睛距地面的高度AB=1.2米,那么该古城墙的高度是?【答案】见试题解答内容【解答】解:∵∠APB=∠CPD,∠ABP=∠CDP,∴△ABP∽△CDP∴=,即:=,解得:PD=9.6(米).答:该古城墙的高度是9.6m.16.《铁血红安》在中央一台热播后,吸引了众多游客前往影视基地游玩.某天小明站在地面上给站在城楼上的小亮照相时发现:他的眼睛、凉亭顶端、小亮头顶三点恰好在一条直线上(如图).已知小明的眼睛离地面1.65米,凉亭顶端离地面2米,小明到凉亭的距离为2米,凉亭离城楼底部的距离为40米,小亮身高1.7米.请根据以上数据求出城楼的高度.【答案】见试题解答内容【解答】解:过点A作AM⊥EF于点M,交CD于点N,由题意可得:AN=2m,CN=2﹣1.65=0.35(m),MN=40m,∵CN∥EM,∴△ACN∽△AEM,∴=,∴=,解得:EM=7.35,∵AB=MF=1.65m,故城楼的高度为:7.35+1.65﹣1.7=7.3(米),答:城楼的高度为7.3m.。

利用相似三角形测高经典例题

利用相似三角形测高经典例题

第四章图形的相似一 、利用相似三角形测高知识点1:利用阳光下的影子来测量旗杆的高度操作方法:一名学生在直立于旗杆影子的顶端处测出该同学的_________和此时旗杆的_______.(点拨:把太阳的光线看成是平行的.)∵太阳的光线是_________的,∴________∥_________,∴∠AEB =∠CBD ,∵人与旗杆是________于地面的,∴∠ABE =∠CDB=_____°, ∴△_______∽△_______ ∴BD BE CD AB = 即CD=BE BD AB ⋅ 因此,只要测量出人的影长BE ,旗杆的影长DB ,再知道人的身高AB ,就可以求出旗杆CD 的高度了.知识点2:利用标杆测量旗杆的高度操作方法:选一名学生为观测者,在他和旗杆之间的地面上直立一根高度已知的标杆,观测者前后调整自己的位置,使旗杆顶部、标杆顶部与眼睛恰好在____________时,分别测出他的脚与旗杆底部,以及标杆底部的距离即可求出旗杆的高度.如图,过点A 作AN ⊥DC 于N ,交EF 于M .点拨:∵人、标杆和旗杆都_______于地面,∴∠ABF =∠EFD=∠CDH =_______°∴人、标杆和旗杆是互相_______的.∵EF ∥CN ,∴∠_____=∠_____,∵∠3=∠3,∴△______∽△______,∴CN EM AN AM ∵人与标杆的距离、人与旗杆的距离,标杆与人的身高的差EM都已测量出,∴能求出CN ,∵∠ABF =∠CDF =∠AND =90°,∴四边形ABND为________.∴DN =_______,∴能求出旗杆CD 的长度.知识点3:利用镜子的反射操作方法:选一名学生作为观测者.在他与旗杆之间的地面上平放一面镜子,固定镜子的位置,观测者看着镜子来回调整自己的位置,使自己能够通过镜子看到旗杆_______.测出此时他的脚与镜子的距离、旗杆底部与镜子的距离就能求出旗杆的高度.点拨:入射角=反射角∵入射角=反射角 ∴∠________=∠________∵人、旗杆都_________于地面 ∴∠B =∠D =_______°∴△________∽△________,∴DE BE CD AB 因此,测量出人与镜子的距离BE ,旗杆与镜子的距离DE ,再知道人的身高AB ,就可以求出旗杆CD 的高度.二、例题精讲例1:如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小华在点D 处测得自己的影长DF=3m ,沿BD 方向到达点F 处再测得自己的影长FG=4m ,如果小华的身高为1.5m ,求路灯杆AB 的高度。

4.6 利用相似三角形测高(分层练习)(解析版)

4.6 利用相似三角形测高(分层练习)(解析版)

第四章 图形的相似4.6 利用相似三角形测高精选练习一、单选题1.(2020·浙江嘉兴·八年级期末)直角三角形两条直角边长分别是5和12,则斜边上的高是( )A .3013B .6013C .132D .120132.(2021·云南省个旧市第二中学八年级期中)如图,在△ABC 中,∠C =90°,D ,E 是AC 上两点,且AE =DE ,BD 平分∠EBC ,那么下列说法中不正确的是( )A .BE 是△ABD 的中线B .BD 是△BCE 的角平分线C .∠1=∠2=∠3D .BC 是△ABE 的高【答案】C【分析】根据三角形的高、中线、角平分线的定义对各选项分析判断后利用排除法求解.【详解】解:A 、AE DE =Q ,BE \是ABD D 的中线,正确;B 、BD Q 平分EBC Ð,BD \是EBC D 的角平分线,正确;C 、BD Q 是EBC D 的角平分线,EBD CBD \Ð=Ð,BE Q 是中线,EBD ABE \йÐ,123\Ð=Ð=Ð不正确,符合题意;D 、90C Ð=°Q ,BC \是ABE D 的高,正确.故选:C .【点睛】本题考查了三角形的角平分线,高线,中线的定义,熟记概念并准确识图是解题的关键.3.(2022·江苏·灌南县新知双语学校七年级阶段练习)如图,ABC V 中,AE 是中线,AD 是角平分线,AF 是高,则下列说法中错误的是( )A .BE CE=B .C CAF 90ÐÐ+=°C .BAE CAE Ð=ÐD .ABC ABES 2S =△△【答案】C 【分析】由中线的性质可得BE CE =,ABC ABE S 2S =△△,由角平分线的定义可得BAD CAD Ð=Ð;由AF 是ABC V 的高,可得C CAF 90ÐÐ+=°.【详解】解:AE Q 是中线,BE CE \=,ABC ABE S 2S =△△,故A 、D 说法正确;AD Q 是角平分线,BAD CAD ÐÐ\=,BAE CAE ÐÐ\¹,故C 说法错误;AF Q 是ABC V 的高,AFC 90Ð\=°,C CAF 90ÐÐ\+=°,故B 说法正确;故选:C .【点睛】本题考查了三角形的面积,三角形的角平分线,中线和高,明确概念是本题的关键.4.(2022·全国·九年级课时练习)如图,ABC V 的高CD 、BE 相交于O ,如果55A Ð=°,那么BOC Ð的大小为( )A .35°B .105°C .125°D .135°【答案】C 【分析】先根据三角形的内角和定理结合高的定义求得∠ABC+∠ACB 、∠ABE 、∠ACD 的度数,即可求得∠OBC+∠OCB 的度数,从而可以求得结果.【详解】解:∵∠A=55°,CD 、BE 是高∴∠ABC+∠ACB=125°,∠AEB=∠ADC=90°∴∠ABE=180°-∠AEB -∠A=35°,∠ACD=180°-∠ADC -∠A=35°∴∠OBC+∠OCB=(∠ABC+∠ACB )-(∠ABE +∠ACD )=55°∴∠BOC=180º-(∠OBC+∠OCB )=125°故选C .【点睛】此题考查的是三角形的内角和定理和高,三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.5.(2021·全国·八年级专题练习)如图,在ABC V 中,AD ,AE 分别是边BC 上的中线与高,8AE =,ABC V 的面积为24,则CD 的长为( )A.2B.3C.4D.56.(2021·全国·九年级专题练习)如图,△ABC中,AD是高,角平分线BE交AD于点F,若∠BAC=60°,∠C=70°,则∠DFB的度数为( )A.75°B.65°C.60°D.55°高线定义,余角关系性质是解题关键.二、填空题7.(2020·山东·胶州市第七中学九年级阶段练习)小明和小红在太阳光下行走,小明身高1.5m,他的影长2.0m,小红比小明矮30cm,此刻小红的影长为______m.8.如图,在高20米的建筑物CD的顶部C测得塔顶A的仰角为60°,测得塔底B的俯角为30°,则塔高AB = ______米;【答案】80【分析】过点C作CE⊥AB后,图中将有两个直角三角形.先在△BCE中,利用已知角的正切值求出CE,然后在△CEA中,利用已知角的正切值求出AE即可解决问题.【详解】9.我军侦察员在距敌方100m的地方发现敌方的一座建筑物,但不知其高度又不能靠近建筑物物测量,机灵的侦察员将自己的食E指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住,如图所示.若此时眼睛到食指的距离约为40cm,食指的长约为8cm,则敌方建筑物的高度约是_______m.【答案】20【分析】由题意知△ABC∽△ADE,然后根据相似三角形对边的比与对应高的比相等列式求解即可.【详解】解:∵40cm=0.4m,8cm=0.08m∵BC∥DE,AG⊥BC,AF⊥DE.∴△ABC∽△ADE,∴BC:DE=AG:AF,∴0.08:DE=0.4:100,∴DE=20m.故答案为20.【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的对应高的比等于相似比,列出方程,通过解方程求解即可.此题是实际应用题,解题时首先要理解题意,将实际问题转化为三角形相似问题求解;相似三角形的对应边成比例.10.(2022·全国·九年级单元测试)如图,小颖同学用自制的直角三角形纸板DEF测量树的高度AB,她调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条边DE=8cm,DF=10cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=________m.三、解答题11.(2022·全国·九年级专题练习)如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S在一条直线上,且直线PS与河垂直,在过点S且与直线PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60m,ST=120m,QR=80m,求PQ的长.12.(2022·全国·九年级课时练习)下表是小明填写的实践活动报告的部分内容,请你借助小明的测量数据,计算小河的宽度.题目测量小河的宽度测量目标示意图相关数据BC=1m,DE=1.5m,BD=5m【答案】10m【分析】利用BC//DE,可得到△ABC∽△ADE,利用相似三角形的对应边成比例,可求出AB的长.一、填空题1.(2021·山东泰安·九年级期末)小明和他的同学在太阳下行走,小明身高1.4米,他的影长为1.75米,他同学的身高为1.6米,则此时他的同学的影长为__________米.2.(2022·全国·九年级单元测试)贺哲同学的身高1.86米,影子长3米,同一时刻金老师的影子长2.7米,则金老师的身高为________米(结果保留两位小数)。

【最新】九年级数学-4.6 利用相似三角形测高--精选练习

【最新】九年级数学-4.6  利用相似三角形测高--精选练习

4.6 利用相似三角形测高1. 如图,慢慢将电线杆竖起,如果所用力F 的方向始终竖直向上,则电线杆竖起过程中所用力的大小将( )A .变大B 。

变小C 。

不变D 。

无法判断2.小华做小孔成像实验(如图所示),已知蜡烛与成像板之间的距离为15cm ,则蜡烛 与成像板之间的小孔纸板应放在离蜡烛__________cm 的地方时,蜡烛焰AB 是像''B A 的一半。

3.如图,铁道口的栏杆短臂长1米,长臂长16米,当短臂的端点下降0。

5米时,长臂端点应升高_________.4.有点光源S 在平面镜上方,若在P 点初看到点光源的反射光线,并测得AB=10cm ,BC=20cm.PC ⊥AC,且PC=24cm,试求点光源S 到平面镜的距离即SA 的长度。

5.冬至时是一年中太阳相对于地球位置最低的时刻,只要此时能采到阳光,一年四季就均能受到阳光照射。

此时竖一根a 米长的竹杆,其影长为b 米,某单位计划想建m 米高的南北两幢宿舍楼(如图所示)。

试问两幢楼相距多少米时,后楼的采光一年四季不受影响(用m,a,b表示)6.一位同学想利用树影测出树高,他在某时刻测得直立的标杆高1米,影长是0.9米,但他去测树影时,发现树影的上半部分落在墙CD上,(如图所示)他测得BC=2.7米,CD=1.2米。

你能帮他求出树高为多少米吗?7.我侦察员在距敌方200米的地方发现敌人的一座建筑物,但不知其高度又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住。

若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路。

8.如图,阳光透过窗口照到室内,在地面上留下2.7米宽的亮区,已知亮区一边到窗下的墙脚距离CE=8.7米,窗口高AB=1.8 米,试求窗口下底与地面之间的距离B C的大小。

答案:1.C 2.5 3.8 4.由.12,201024cm SA SA BC AB PC SA ===故知 5.由米故abm ,==BC BC AB b a 。

利用相似三角形测高训练题

利用相似三角形测高训练题

利用相似三角形测高训练题1.XXX用自制的直角三角形纸板DEF测量树的高度AB。

他调整自己的位置,使斜边DF保持水平,边DE与点B在同一直线上。

已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m。

求树高AB。

2.在同一时刻,两根木竿在太阳光下的影子如图所示。

其中木竿AB=2米,它的影子BC=1.6米。

木竿PQ的影子有一部分落在墙上,PM=1.2米,MN=0.8米。

求木竿PQ的长度。

3.某校数学兴趣小组利用自制的直角三角形小硬纸板DEF 来测量操场旗杆AB的高度。

他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上。

已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米。

求旗杆的高度为多少米?4.数学兴趣小组的同学们想利用树影测量树高。

课外活动时他们在阳光下测得一根长为1米的竹竿的影子是0.9米,但当他们马上测量树高时,发现树的影子不落在地面上,有一部分影子落在教学楼的台阶上,且影子的末端刚好落在最后一级台阶的上端C处。

同学们认为继续量也可以求出树高,他们测得落在地面的影长为1.1米,台阶总的高度为1.0米,台阶水平总宽度为1.6米(每级台阶的宽度相同)。

请你和他们一起算一下,树高为多少。

(假设两次测量时太阳光线是平行的)5.如图,是一个照相机成像的示意图,像高MN,景物高度AB、CD为水平视线。

根据物体成像原理知:XXX,CD⊥XXX。

1)如果像高MN是35mm,焦距CL是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物的距离LD是多少?2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少毫米?6.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm。

动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(<t<2),连接PQ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用相似三角形测高
基础题
知识点1 利用阳光下的影子测量高度
1.要测量出一棵树的高度,除了测量出人高与人的影长外,还需要测出( )
A.仰角B.树的影长
C.标杆的影长D.都不需要
2.小玲和爸爸正在散步,爸爸身高1.8 m,他在地面上的影长为2.1 m,若小玲比爸爸矮0.3 m,则她的影长为( )
A.1.3 m B.1.65 m
C.1.75 m D.1.8 m
3.如图,夏季的一天,身高为1.6 m的小玲想测量一下屋前大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2 m,CA=0.8 m,于是得出树的高度为( )
A.8 m
B.6.4 m
C.4.8 m
D.10 m
4.(北京中考)在某一时刻,测得一根高为1.8 m的竹竿的影长为3 m,同时测得一根旗杆的影长为25 m,那么这根旗杆的高度为________m.
5.已知,如图,AB和DE是直立在地面上的两根立柱.AB=5 m,某一时刻AB在阳光下的投影BC=3 m.
(1)请你在图中画出此时DE在阳光下的投影;
(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6 m,请你计算DE的长.
知识点2 利用标杆测量高度
6.(娄底中考)如图,小明用长为3 m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12 m,则旗杆AB的高为________m.
7.如图,一天早上,小张正向着教学楼AB走去,他发现教学楼后面有一水塔DC,可过了一会抬头一看:“怎么看不到水塔了”心里很是纳闷.经过了解,教学楼、水塔的高分别为20 m和30 m,它们之间的距离为30 m,小张身高为1.6 m.小张要想看到水塔,他与教学楼的距离至少应有多少米?
知识点3 利用镜子的反射测量高度
8.(天水中考)如图是一位学生设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A发出经平面镜反射后刚好到古城墙CD的顶端C 处,已知AB⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是________米.
9.如图,球从A处射出,经球台边挡板CD反射到B,已知AC=10 cm,BD=15 cm,CD=50 cm,则点E到点C的距离是________cm.
中档题
10.小刚身高1.7 m,测得他站立在阳光下的影子长为0.85 m,紧接着他把手臂竖直举起,测得影子长为1.1 m,那么小刚举起的手臂超出头顶( )
A.0.5 m B.0.55 m
C.0.6 m D.2.2 m
11.(巴中中考)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为________米.
12.(陕西中考)晚饭后,小聪和小军在社区广场散步.小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)
综合题
13.为了测量一棵大树的高度,准备了如下测量工具:①镜子,②皮尺,③长为2 m 的标杆,④高为1.5 m的测角仪.请根据你所设计的测量方案,回答下列问题:
(1)在你设计的方案中.选用的测量工具是________;(用工具序号填写)
(2)画出测量方案示意图;
(3)你需要测量示意图中哪些数据,并用a、b、c、α、β等字母表示测得的数据;
(4)写出求树高的算式:AB=________m.(用a、b、c、α、β等字母表示)
参考答案
1.B 2.C 3.A 4.15 5.(1)略.(2)设DE 的长为x ,依题意,=,即=.解AB BC DE x 53x 6
得x =10,即DE 的长为10 m . 6.
9
7.如图所示,AH =18.4,DG =28.4,HG =30,由△EAH ∽△EDG ,得=,代EH EG AH DG
入数据,得=.解得EH =55.2.答:他与教学楼的距离至少应有55.2米. EH EH +3018.428.4
8.8 9.20 10.A 11.1.5 12.由题意得∠CAD =∠MND =90°,∠CDA =∠MDN.∴△CAD ∽△MND.∴=.∴=.∴MN =9.6.又∵∠EBF =∠MNF CA MN AD ND 1.6MN 1×0.8(5+1)×0.8
=90°,∠EFB =∠MFN ,∴△EBF ∽△MNF.∴=.∴=.∴EB MN BF NF EB 9.62×0.8(2+9)×0.8
EB≈1.75.∴小军的身高约为1.75米. 13.方法一:(1)①②.(2)测量示意图如图1所示.(3)MB(镜子离树的距离)=a.MD(人与镜子的距离)=b ,CD(眼睛与地面的距离)=
c(单位:m).(4).ac
b
方法二:(1)②③④.(2)测量示意图如图2所示.(3)DF(标杆与测角仪的距离)=a ,
BD(标杆到树底面的距离)=b(单位:m).(4)(+2).b 2a。

相关文档
最新文档