煤矿自动化控制系统

合集下载

煤矿综合自动化系统

煤矿综合自动化系统

数据采集与监控模块
数据采集
实时获取井上和井下的各 种数据,包括但不限于设 备运行状态、环境参数、 生产数据等。
数据处理
对采集到的数据进行处理 ,包括数据清洗、数据分 析、数据存储等。
监控与预警
对设备运行状态、环境参 数等进行实时监控,当出 现异常情况时,及时发出 预警信号。
生产调度模块
生产计划
根据矿山的实际情况,制定合 理的生产计划,包括采煤、掘
光纤传输系统
总结词
光纤传输系统具有高可靠性、高速传输和抗干扰能力强的特 点,适用于煤矿复杂环境下的数据传输。
详细描述
光纤传输系统采用光信号进行数据传输,具有传输距离远、 传输速度快、抗电磁干扰能力强等优点。在煤矿综合自动化 系统中,光纤传输系统可以用于各种传感器、执行器和监控 中心之间的数据传输。
05
煤矿综合自动化系统的应用实例
某矿井工况监测与预警系统
总结词
实时监测、预警、决策
详细描述
该系统可实时监测矿井内的工况,如气体浓度、温度、 压力等,当监测到异常数据时,系统会立即发出预警, 为矿井工作人员提供决策支持,确保安全作业。
某矿井人员定位与调度系统
总结词
人员定位、调度、管理
详细描述
该系统通过特定设备对矿井内工作人员进行定位管理 ,可实时掌握人员分布情况,进行合理调度,提高矿 井作业效率,降低意外事故发生概率。
总结词
电力监控系统负责对矿井下的电力设备进行监控和管理,保障矿井安全运行。
详细描述
电力监控系统采用多种传感器和监控设备,对矿井下的电力设备进行实时监控,包括电压、电流、功率因数等参 数。同时,电力监控系统还具备故障预警和保护功能,能够及时发现并处理电力故障,确保矿井的安全运行。

煤矿自动化控制系统

煤矿自动化控制系统

煤矿自动化控制系统 >> 主、副井提升自动控制系统主、副井提升自动控制系统一、系统概述:矿井提升机常被人们称为矿山的咽喉,是矿山最重要的关键设备,是地下矿井与外界的唯一通道,肩负着提升煤炭、矿石、下放材料、升降人员和设备等的重要运输责任,其电控技术的发展对促进矿井生产效率的提高和安全作业,无疑具有极其重大的影响。

近年来,随着我国经济的快速发展和对矿山资源需求的高速增长,对矿山生产技术提出了越来越高的要求。

因此为使用现代化信息技术,充分发挥煤矿管理信息网络和各生产控制系统应有的功效,实现监管控一体化的理想格局,并达到减员增效的目的;我公司特为现矿井提升机配置新型工业监控系统,组成原煤生产运输的集中监控系统,由地面计算机统一管理,对主副井提升电控系统进行自动化控制。

二、系统功能原理图:(主井定量装载提升系统图)(副井操车提升系统图)(定量装载流程图)(箕斗提升及卸载流程图)(箕斗定量装载上位机主画面图)三、系统功能:我国目前正在服务的矿井提升机的电控系统主要有以下四种方案:交直交变频调速系统、转子电路串电阻的交流调速系统、直流发电机与直流电动机组成的GM直流调速系统和晶闸管整流装置供电的V-M直流调速系统。

公司本系统以安全、可靠、高效、经济为出发点,以可靠性原则为依据,使系统不仅适用于煤矿井下有瓦斯,煤尘爆炸危险的恶劣环境,也适用于地面恶劣环境,而且它可完成提升行程的测量和设定;本系统实现了对提升过程的程序控制,精度高,甚至可以取消爬行段;实现了速度、电流以及矢量的数字交换等,对提升机进行闭环调节;实现行程、速度等重要参数及提升状态的监视;具有良好的控制监视系统;实现了显示、记录和打印等有关数据的全部自动化,并能和全矿井监控系统联网运行。

在配备一至二名巡检员之后,各点无需再配备专门人员,所有监控均由集控室来操作完成。

因此该系统明显降低了设备故障率、简化了操作、减轻了工人劳动强度、提高了生产运行的安全可靠性、最大限度地缩减装卸载的时间,达到了提高产量,实现增效的目的。

煤矿电气自动化控制系统优化设计

煤矿电气自动化控制系统优化设计

煤矿电气自动化控制系统优化设计随着经济的发展和人民生活水平的提高,煤矿开采逐年加大,从而使得矿山电气自动化控制系统的重要性日益凸显。

本文旨在探讨煤矿电气自动化控制系统的优化设计,介绍其设计过程、需要注意的问题以及优化后的效果。

一、煤矿电气自动化控制系统的设计过程1. 系统架构设计煤矿电气自动化控制系统的架构设计是整个系统设计的基础,关系到整个系统的功能实现和性能表现。

其设计过程主要包括以下几个方面:(1)灵活性设计:为了能够适应煤矿不断变化的需求,系统需要具有灵活的设计方式。

在设计过程中,需要考虑到各种不同的工作环境和工作形式,为用户提供多种方案和灵活的使用方式。

(2)安全性设计:煤矿电气自动化控制系统的安全性设计是至关重要的。

需要将所有的安全要求考虑进去,确保系统的运行过程中不会导致人员伤亡或事故发生。

(3)可靠性设计:煤矿电气自动化控制系统需要长期、稳定地运行,因此系统的可靠性设计也是至关重要的。

需要考虑到系统可能发生的各种状况,并为之提供解决方案。

2. 控制逻辑设计控制逻辑设计是将煤矿电气自动化控制系统的功能和任务具体实现的过程。

其设计过程主要包括以下几个方面:(1)控制对象:控制对象是指煤矿电气自动化控制系统中需要进行控制的物理设备或过程。

在设计过程中,需要确定每个控制对象的具体功能和操作流程。

(2)控制算法:控制算法是指对控制对象进行逻辑处理和控制的算法。

在设计过程中,需要根据具体的控制对象和控制要求,选择合适的算法来进行控制。

(3)控制器选择:控制器是指实现控制算法的具体设备。

在设计过程中,需要考虑控制器的功能和性能,选择合适的控制器来实现控制算法。

3. 电气设计电气设计是指电气部分的设计工作,包括电力设备的选型、电气接线和布线等。

其设计过程主要包括以下几个方面:(1)电力设备选型:电力设备是煤矿电气自动化控制系统的基础设施。

在设计过程中,需要根据具体需求和工作环境,选择合适的电力设备。

煤矿智能化与自动化控制系统设计

煤矿智能化与自动化控制系统设计

煤矿智能化与自动化控制系统设计随着科技的不断发展,煤矿行业也在逐渐向智能化和自动化方向发展。

智能化与自动化控制系统的设计在煤矿生产过程中起着至关重要的作用。

本文将探讨煤矿智能化与自动化控制系统设计的相关问题。

一、智能化与自动化控制系统的意义煤矿作为重要的能源供应来源,其生产过程中安全和效率是两个关键因素。

传统的人工操作存在一定的安全隐患,而且效率相对较低。

智能化与自动化控制系统的设计可以大大提高生产过程的安全性和效率。

首先,智能化与自动化控制系统可以减少人为操作的风险。

煤矿作业环境恶劣,存在着各种危险因素,如瓦斯爆炸、塌方等。

通过引入智能化与自动化控制系统,可以减少人员在危险环境中的工作时间,从而降低事故发生的概率。

其次,智能化与自动化控制系统可以提高生产效率。

传统的人工操作需要大量的人力和时间,而且容易受到人为因素的影响。

而智能化与自动化控制系统可以实现生产过程的自动化,提高生产效率,减少资源的浪费。

二、智能化与自动化控制系统设计的关键要素智能化与自动化控制系统设计需要考虑多个关键要素,包括传感器技术、数据处理技术、通信技术等。

传感器技术是智能化与自动化控制系统设计的基础。

传感器可以将煤矿生产过程中的各种参数转化为电信号,以供系统进行分析和处理。

传感器的选择和布置需要考虑到煤矿的具体情况,如瓦斯浓度传感器、温度传感器等。

数据处理技术是智能化与自动化控制系统设计的核心。

通过对传感器采集到的数据进行处理和分析,可以实现对煤矿生产过程的监控和控制。

数据处理技术包括数据采集、数据存储、数据分析等,需要根据煤矿的具体需求进行设计。

通信技术是智能化与自动化控制系统设计的重要组成部分。

煤矿通常是一个庞大的系统,涉及到多个工作面和设备。

通过建立稳定可靠的通信网络,可以实现各个设备之间的信息交换和协同工作。

通信技术包括有线通信和无线通信两种方式,需要根据煤矿的具体情况选择合适的通信方式。

三、智能化与自动化控制系统设计的挑战与解决方案智能化与自动化控制系统设计面临着一些挑战,如复杂的矿井结构、恶劣的工作环境等。

浅谈煤矿综合自动化系统

浅谈煤矿综合自动化系统

浅谈煤矿综合自动化系统煤矿综合自动化系统是现代煤矿生产中的关键技术之一,它通过应用先进的信息技术和自动控制技术,实现对煤矿生产全过程的监测、控制和管理,提高煤矿的安全性和生产效率。

煤矿综合自动化系统包括采掘自动化系统、综合通信系统、矿井监测系统、支护控制系统、输送系统、通风系统等子系统。

采掘自动化系统是煤矿生产的核心系统,它主要包括采掘工作面综合自动化控制系统和采煤机自动化控制系统。

采掘工作面综合自动化控制系统通过监测和控制采煤工作面的参数,实现对采煤过程的自动化控制。

而采煤机自动化控制系统则实现对采煤机切割、运输和支护等关键参数的自动化控制,提高采煤机的工作效率和安全性。

综合通信系统是煤矿生产中的重要支撑系统,它通过无线通信技术和传输技术,实现矿井各个子系统之间的信息交换和传输。

综合通信系统可以将煤矿各个分散的子系统连接起来,形成一个统一的信息网络,方便管理人员对矿井的生产情况进行实时监测和控制。

矿井监测系统是煤矿安全生产的重要保障系统,它通过布设传感器和监测仪器,实时监测矿井内各个环境参数和安全隐患。

矿井监测系统可以监测矿井的气体浓度、温度、湿度、压力等参数,及时发现矿井内的安全隐患,并通过综合通信系统传输给管理人员。

支护控制系统是保障矿井安全和稳定的重要系统,它通过控制液压支架的运行,保证矿井巷道的稳定性。

支护控制系统可以自动调整液压支架的压力和高度,根据巷道的煤岩厚度和地质条件,确保巷道支护的牢固性和稳定性。

输送系统是煤矿生产过程中的重要环节,它通过自动控制技术,实现对煤矿输送设备的运行和管理。

输送系统可以自动调节输送设备的速度和运行状态,确保煤矿生产的连续性和高效性。

通风系统是煤矿安全生产的关键环节,它通过自动控制技术,实现对矿井通风设备的运行和管理。

通风系统可以根据矿井内的气体浓度和温湿度等参数,自动调节通风设备的风量和方向,确保矿井内空气质量的良好,防止瓦斯和粉尘等有害气体积聚。

煤矿综合自动化系统的应用,不仅提高了煤矿的生产效率,降低了劳动强度,还大大提高了煤矿的安全性和环境保护能力。

煤矿开采自动化控制系统

煤矿开采自动化控制系统

安全监控系统
1 2
人员定位系统
实时监测井下人员的位置,保障人员安全。
通风监控系统
实时监测矿井通风情况,保证矿井通风的稳定。
3
瓦斯监控系统
实时监测瓦斯浓度,预防瓦斯事故的发生。
矿井通风与排水系统
矿井通风自动化控制
通过自动化控制系统,实现矿井通风的自动调节和远程监控 。
矿井排水自动化控制
通过自动化控制系统,实现矿井排水的自动调节和远程监控 。
平煤集团智能化矿井建设
平煤集团在智能化矿井建设中,采用了多种自动化技术,包括无人驾驶矿车、 智能通风系统等。这些技术的应用降低了工人的劳动强度,提高了矿井的生产 效率和安全性。
国际典型案例
澳大利亚必和必拓公司矿山的自动化采矿系统
必和必拓公司采用了一套自动化采矿系统,该系统通过无人驾驶的采矿设备进行矿石采集和运输。该系统提高了 采矿效率,降低了人工成本和安全风险。
煤矿开采自动化控制系统
汇报人:可编辑
2023-12-31
目录
CONTENTS
• 引言 • 煤矿开采自动化控制系统概述 • 自动化控制系统在煤矿开采中的应用 • 煤矿开采自动化控制系统的优势与挑战 • 案例分析 • 结论与建议
01 引言
CHAPTER
背景介绍
01
煤炭作为全球能源的主要来源之 一,其开采和加工过程对经济发 展和能源安全具有重要意义。
美国梅萨里特公司的远程控制采矿系统
梅萨里特公司开发了一套远程控制采矿系统,该系统通过遥控操作进行采矿作业。该系统的应用减少了采矿作业 中的人员数量,提高了作业的安全性和效率。
案例比较与启示
技术应用差异
国内外的自动化采矿系统在技术应用上存在一定差异。国内系统更注 重实用性,而国外系统则更注重技术创新和研发。

浅谈煤矿综合自动化系统

浅谈煤矿综合自动化系统

浅谈煤矿综合自动化系统煤矿综合自动化系统是指利用自动控制、信息处理和通信技术对煤矿生产过程进行全面控制和管理的系统。

随着科技的不断发展,煤矿综合自动化系统已经在我国煤矿行业得到了广泛的应用,它极大地提高了煤矿的生产效率和安全性。

本文将从煤矿综合自动化系统的概念、特点、应用及发展趋势等方面进行深入探讨。

煤矿综合自动化系统的核心是自动控制技术,它采用计算机、传感器、执行机构等设备,对煤矿生产系统进行监测、控制和调节,实现对煤矿生产过程的自动化管理。

煤矿综合自动化系统还涉及到信息处理技术和通信技术,它可以实现对煤矿生产数据的采集、处理和传输,为管理者提供及时、准确的信息,从而为煤矿生产提供决策支持。

二、煤矿综合自动化系统的特点1. 高效性:煤矿综合自动化系统可以实现对煤矿生产过程的全面监控和管理,提高了煤矿生产的效率和质量。

2. 安全性:煤矿综合自动化系统可以实现对煤矿生产过程的全面监控,及时发现和处理安全隐患,保障了煤矿生产的安全性。

3. 灵活性:煤矿综合自动化系统可以根据煤矿的实际情况,对系统进行灵活调整和扩展,满足不同煤矿的需求。

2. 安全监控自动化煤矿综合自动化系统可以实现对煤矿的安全设备的自动监测和控制,及时发现和处理安全隐患,保障了煤矿生产的安全性。

它还可以实现对煤矿的安全数据的采集和分析,为管理者提供全面的安全信息,为煤矿的安全管理提供支持。

四、煤矿综合自动化系统的发展趋势随着科技的不断发展,煤矿综合自动化系统也在不断完善和发展,未来它的发展趋势主要体现在以下几个方面:1. 智能化发展未来的煤矿综合自动化系统将向智能化方向发展,它将采用先进的智能控制技术,实现对煤矿生产过程的智能化控制和管理,提高了煤矿的生产效率和质量。

煤矿自动化控制系统整合

煤矿自动化控制系统整合

提升安全性
整合后,可以实时监控矿井内的各种 参数,及时发现并处理异常情况,从 而提高矿井的安全性。
降低运营成本
整合可以简化管理流程,减少人力和 物力的投入,从而降低运营成本。
促进技术创新
整合过程中需要解决各种技术难题, 从而推动相关技术的创新和发展。
02煤矿自动化控制系统现状 Nhomakorabea现有系统概述
现有煤矿自动化控制系统主要 包括安全监控系统、生产监控 系统、人员定位系统等,这些 系统在各自的领域内发挥着重
缺乏容错机制
系统缺乏有效的容错机制,一旦出现故障可能导致整个系统瘫痪。
对策建议
选用高可靠性设备,加强设备维护和保养,建立容错机制,提高系 统稳定性。
人员培训与操作问题
人员技能水平不足
操作人员可能缺乏必要的技能和知识,无法熟练操作 新系统。
培训资源有限
培训课程、教材和师资力量可能不足,影响培训效果 。
支持。
研究不足与展望
当前煤矿自动化控制系统整合仍存在一些技术 瓶颈和挑战,如数据安全、系统稳定性、兼容 性等问题。
未来研究需要进一步加强技术创新和系统优化 ,提高自动化控制系统的可靠性和稳定性。
随着物联网、云计算等技术的发展,煤矿自动 化控制系统将迎来更多的发展机遇和挑战,需 要不断探索新的技术应用和解决方案。
数据转换过程中可能涉及大量数据处理和转 换成本,增加了整合的复杂性和成本。
数据接口标准不统一
不同系统间的数据接口标准不一致,增加了 数据交换的难度。
对策建议
统一数据格式和接口标准,建立数据转换工 具或平台,降低数据转换成本。
系统稳定性问题
系统故障频率高
自动化控制系统中的设备或模块可能出现故障,影响系统的稳定 运行。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤矿自动化控制系统 >> 主、副井提升自动控制系统
主、副井提升自动控制系统
一、系统概述:
矿井提升机常被人们称为矿山的咽喉,是矿山最重要的关键设备,是地下矿井与外界的唯一通道,肩负着提升煤炭、矿石、下放材料、升降人员和设备等的重要运输责任,其电控技术的发展对促进矿井生产效率的提高和安全作业,无疑具有极其重大的影响。

近年来,随着我国经济的快速发展和对矿山资源需求的高速增长,对矿山生产技术提出了越来越高的要求。

因此为使用现代化信
息技术,充分发挥煤矿管理信息网络和各生产控制系统应有的功效,实现监管控一体化的理想格局,并达到减员增效的目的;我公司特为现矿井提升机配置新型工业监控系统,组成原煤生产运输的集中监控系统,由地面计算机统一管理,对主副井提升电控系统进行自动化控制。

二、系统功能原理图:
(主井定量装载提升系统图)(副井操车提升系统图)
(定量装载流程图)
(箕斗提升及卸载流程图)
(箕斗定量装载上位机主画面图)
三、系统功能:
我国目前正在服务的矿井提升机的电控系统主要有以下四种方案:交直交变频调速系统、转子电路串电阻的交流调速系统、直流发电机与直流电动机组成的GM直流调速系统和晶闸管整流装置供电的V-M直流调速系统。

公司本系统以安全、可靠、高效、经济为出发点,以可靠性原则为依据,使系统不仅适用于煤矿井下有瓦斯,煤尘爆炸危险的恶劣环境,也适用于地面恶劣环境,而且它可完成提升行程的测量和设定;本系统实现了对提升过程的程序控制,精度高,甚至可以取消爬行段;实现了速度、电流以及矢量的数字交换等,对提升机进行闭环调节;实现行程、速度等重要参数及提升状态的监视;具有良好的控制监视系统;实现了显示、记录和打印等有关数据的全部自动化,并能和全矿井监控系统联网运行。

在配备一至二名巡检员之后,各点无需再配备专门人员,所有监控均由集控室来操作完成。

因此该系统明显降低了设备故障率、简化了操作、减轻了工人劳动强度、提高了生产运行的安全可靠性、最大限度地缩减装卸载的时间,达到了提高产量,实现增效的目的。

四、系统组成与特点:
1、本集控系统由监控主站和上井口PLC(提升)、下井口PLC(定量或信号)的监控分站、视频监控子系统组成。

2、地面监控主站:监控主站由上位工控机、不间断电源、信号传输接口和
集控软件、视频监控子系统等部分组成。

该主站可单机监控各设备,并可通过以太网接口与全矿网络联接。

主站设在地面集控室,为2台工业PC机。

上位机系统:上位机系统含工控机、大屏幕LCD、打印机、不间断电源等,2台工控机的配置完全相同,组成同时工作的冗余系统。

平时,可1台作为操作员站工作于监控方式、另1台作为工程师站工作于管理方式,也可2台都工作于监控方式,均可实现对运输系统设备的监控和开、停各运输系统。

组态软件:上位机组态软件选用SIMENS公司WINCC6.0(正版)实时监控组态软件,工作于Window 2000平台,完成所需的图形监控、动态图形显示、历史数据采集、状态趋势图、自诊断、报警等诸多功能。

集控系统的组网功能,上位PC机可通过以太网接口与全矿综合自动化网络连接,实现信息共享。

3、监控分站:在上井口和下井口分别设KJD24Z 可编程控制机,实现各系统设备的监控及自动控制;通过PROFIBUS总线接口与监控主站连接。

此可编程控制机为本系统的核心主控单元,它采用高性能进口西门子PLC技术,从根本上提高了系统的工作可靠性及使用寿命。

其多CPU 并行处理技术、多重抗干扰技术、模块化结构和高防护等级设计,配以电源继电器箱、各种传感器保护装置、通信信号装置以及与驱动装置相应的控制设备构成适用于各种类型提升系统的高可靠性电控成套设备。

并具备完善的保护和通信信号联络功能。

4、变频、高开通信软件:选用本公司开发的实时监控通信软件,工作于PC 平台,通过RS485总线完成对高开柜的保护模块(PA150微机综合保护)及高压变频控制器的数据采集及控制任务,及时将所需的数据、历史数据记录、故障及动作记录参数融入WINCC组态系统中,实现实时在线式的远程监控功能。

5、高开柜、低压配电柜:高开室内安装多台高开柜,采用双回路供电,其中2台是进线柜,1台PT柜,电机启动柜(根据电机台数确定);高开柜内使用小车式高压BC开关,具有运行稳定,更换方面,维护简单等特点;高开柜的线路和设备保护选用PA150微机综合保护装置,具有检测精度高,保护动作反应快,数据处理记录功能强大等特点。

在集控室配置多台GGD低压配电柜,采用双回路供电,低压配电柜主要为提升电控保护系统和盘型闸泵站电机提供电源,同时也为小型负荷提供电源。

6、提升系统保护及数据采集:采用智能数据采集技术、其通过采集模块以RS485总线与可编程控制机进行通信,实时在线不间断地采集现场保护数据;本系统保护不但动作灵敏度高、反应及时;而且在安装施工及维护中,大大节约电缆的使用量、减少施工工程进度和日常维护量。

7、提升系统故障保护:
⑴、立即安全制动故障。

该类故障综合在硬软件安全电路中, 安全电路正常时吸合, 有紧急故障时释放, 一旦安全电路释放, 就会立即封锁变频器、跳制动油泵, 并控制油压系统电磁阀实施安全制动、抱安全闸。

主要安全制动故障有: ①转动系统故障。

如主回路和控制回路电源故障, 主电机过热、堵转, 变频器故障等; ②过卷故障; ③超速故障。

如等速、超速、减速段定点超速和连续超速等; ④紧急故障; ⑤液压制动系统故障。

如制动油泵跳, 系统油压高等; ⑥错向; ⑦测速轴编码器断线; ⑧松绳故障。

⑵、先电气制动、后安全制动故障。

故障发生后, 转动系统会自动进行减速, 当速度降到爬行速度时会立即转为紧急制动。

故障主要有事故停车和闸瓦磨损等。

⑶、完成本次开车后, 不允许再次开车故障。

开车前如出现这类故障, 则开不起车; 如在运行过程中出现, 则允许本次开车完成, 但不允许下次开车, 除故障解除。

故障主要有电机过热报警、液压站油温过高等。

8、视频监控子系统:在提升系统重要岗点安装防爆广角度红外摄像头,进行现场信息采集,以光纤为载体传入集控室主机柜,经视频分配器输出至各监视器和显示服务器,实现了各岗点设备运行状态和生产情况的24小时全天候监控,发现问题可以及时处理,有效降低了事故发生率,提高了生产效率。

9.系统特点主要概括:
⑴、主、副井提升信号及自动装卸载各自具有集控、自动、手动三种工件方式,手动方式用于装卸载的调试和检修。

信号在检修状态只有慢车信号。

⑵、自动装载定量、定容、定时保护及显示。

⑶、故障自动报警功能,及传感器的故障自诊断。

⑷、提升次数记忆功能和提升信号的断电记忆功能。

⑸、有工业光纤环网冗余通讯功能。

⑹、上、下井口信号间的闭锁功能、检测箕斗的装卸载位置异常功能。

⑺、防止二次装载保护功能。

⑻、主、副井提升信号及自动装卸载有上位机系统、能监测各个设备的运行状态、故障记忆查询、产量的累计及报表、空载、满载、超载的标定,及定量斗假余煤的校零功能。

⑼、与绞车控制回路的闭锁功能、及PROFIBUS-DP软件通讯回路闭锁。

⑽、有联络呼叫功能。

⑾、有井上下煤仓煤位的连续实时监测功能。

⑿、有与全矿井综合自动化的以太网接口。

⒀、系统有供电电源的绝缘监测与电压监测功能。

⒁、箕斗的卸载状态监视功能,检测箕斗是否卸空。

⒂、有对装载皮带的温度、烟雾、跑偏、堆煤、断带及拉线急停等八大保护功能。

⒃、有对动力负荷的保护上位机监测功能,如缺相,短路,堵转,过载,相不平衡,漏电等故障进行监测保护。

⒄、整个系统的通过网络访问维护功能。

五、依据的标准及规范:
GB3836.1-2000爆炸性气体环境用电气设备第1部分:通用要求
GB3836.2-2000爆炸性气体环境用电气设备第1部分:隔爆型“d”
GB3836.4-2000爆炸性气体环境用电气设备第1部分:本质安全型“i”
GB4942.2 低压电器外壳防护等级
MT209 煤矿通信、检测、控制用电工电子产品通用技术要求
煤矿安全规程(2004)。

相关文档
最新文档