数学物理方法_7

合集下载

数学物理方法概述

数学物理方法概述

数学物理方法概述数学物理方法是一门交叉学科,它将数学工具和物理理论相结合,用数学方法来解决物理问题。

数学物理方法在现代物理学的发展中起着至关重要的作用,它不仅帮助我们理解自然界的规律,还推动了科学技术的进步。

本文将对数学物理方法进行概述,介绍其基本概念、应用领域以及在物理学中的重要性。

一、基本概念数学物理方法是一种将数学工具应用于物理问题的方法论。

它主要包括数学分析、微分方程、变分法、群论、复变函数等数学工具,以及量子力学、统计物理学、电磁学、流体力学等物理理论。

通过数学物理方法,我们可以建立物理模型,推导物理规律,解决物理问题。

1.1 数学分析数学分析是数学物理方法中的基础工具之一,它包括微积分、级数、极限等内容。

在物理学中,我们经常需要对物理量进行微分、积分运算,利用微积分理论可以描述物理系统的变化规律,求解运动方程等问题。

1.2 微分方程微分方程是描述物理系统演化规律的数学工具,它在数学物理方法中扮演着重要角色。

通过建立微分方程模型,我们可以预测物理系统的未来状态,研究系统的稳定性和动力学行为。

1.3 变分法变分法是一种优化方法,它在物理学中被广泛应用于求解最优控制问题、能量最小化问题等。

通过变分法,我们可以得到物理系统的最优解,优化系统的性能。

1.4 群论群论是一种抽象代数学,它研究对称性和变换的数学结构。

在物理学中,群论被用来研究对称性和守恒律,揭示物理规律背后的对称性原理。

1.5 复变函数复变函数是研究复数域上的函数的数学分支,它在量子力学、电磁学等领域有重要应用。

复变函数理论为我们提供了处理振荡、波动等问题的有效工具。

二、应用领域数学物理方法在物理学的各个领域都有广泛应用,包括量子力学、统计物理学、电磁学、流体力学等。

下面我们将分别介绍数学物理方法在这些领域的应用。

2.1 量子力学量子力学是描述微观世界的物理理论,它通过波函数和算符等数学工具来描述微粒的运动和相互作用。

数学物理方法在量子力学中扮演着至关重要的角色,它帮助我们理解量子力学的基本原理,推导薛定谔方程,研究量子力学中的对称性和守恒律。

数学物理方法 pdf

数学物理方法 pdf

数学物理方法 pdf
数学物理方法是一门重要的学科,它是数学和物理学的交叉领域,为研究物理
现象提供了强大的数学工具。

数学物理方法在理论物理、应用物理、工程技术等领域都有着广泛的应用。

本文将介绍数学物理方法的一些基本概念和应用,希望能够帮助读者更好地理解和应用这一学科。

首先,我们来介绍一些常见的数学物理方法。

微分方程是数学物理方法中的重
要工具,它描述了物理系统中的变化规律。

线性代数也是数学物理方法中的重要内容,它在量子力学、电磁学等领域有着广泛的应用。

除此之外,变分法、特殊函数、复变函数等数学工具也在数学物理方法中扮演着重要的角色。

在物理学中,数学物理方法有着广泛的应用。

比如,在量子力学中,薛定谔方
程描述了微观粒子的运动规律,它是通过数学物理方法得到的。

在热力学中,我们可以通过偏微分方程来描述热传导和热平衡的过程。

在电磁学中,麦克斯韦方程组描述了电磁场的演化规律,它也是通过数学物理方法得到的。

除了在理论物理中的应用,数学物理方法也在应用物理和工程技术中有着重要
的地位。

比如,在材料科学中,我们可以通过微分方程和变分法来描述材料的力学性质。

在电子工程中,复变函数和傅里叶变换被广泛应用于信号处理和通信系统。

总的来说,数学物理方法是一门重要的学科,它为我们理解和应用物理现象提
供了强大的数学工具。

通过学习数学物理方法,我们可以更好地理解自然界的规律,并且可以将这些方法应用于实际问题的解决中。

希望本文的介绍能够对读者有所帮助,激发大家对数学物理方法的兴趣,进一步深入学习和研究。

数学物理方法知识点

数学物理方法知识点

数学物理方法知识点数学物理方法是物理学中的重要工具,它涉及到了许多数学概念和方法的应用。

在物理学的研究中,数学物理方法可以帮助我们更好地理解物理现象,推导物理定律,解决物理问题。

本文将介绍一些数学物理方法的知识点,希望能够对读者有所帮助。

1. 微积分。

微积分是数学物理方法中的基础,它包括了微分和积分两个部分。

微分可以帮助我们求出函数的导数,从而得到函数的变化率;而积分可以帮助我们求出函数的不定积分和定积分,用来计算曲线下的面积、求解定积分方程等。

在物理学中,微积分常常被用来描述物理量的变化、计算物理量之间的关系等。

2. 线性代数。

线性代数是研究向量空间和线性变换的数学分支,它在物理学中有着广泛的应用。

在量子力学中,线性代数被用来描述量子态和算符的性质;在电磁学中,线性代数被用来描述电场和磁场的分布和变化。

因此,掌握线性代数的知识对于理解物理学中的许多问题至关重要。

3. 偏微分方程。

偏微分方程是描述多变量函数之间关系的数学方程,它在物理学中有着广泛的应用。

在热传导、波动方程、量子力学等领域,偏微分方程被用来描述物理系统的演化规律和性质。

因此,掌握偏微分方程的求解方法对于理解物理学中的许多现象至关重要。

4. 变分法。

变分法是一种数学工具,它在物理学中被用来寻找能量最小值或者最优路径。

在经典力学、量子力学、场论等领域,变分法被广泛应用。

通过变分法,我们可以得到物理系统的运动方程、稳定性条件等重要结果。

5. 特殊函数。

特殊函数是一类在物理学中经常出现的函数,如贝塞尔函数、勒让德多项式、超几何函数等。

这些特殊函数在解决物理问题时起着重要的作用,它们有着独特的性质和应用。

掌握特殊函数的性质和求解方法对于理解物理学中的许多问题至关重要。

总结:数学物理方法是物理学中不可或缺的工具,它涉及到了许多数学概念和方法的应用。

微积分、线性代数、偏微分方程、变分法、特殊函数等知识点在物理学中有着广泛的应用,掌握这些知识对于理解物理学中的许多问题至关重要。

数学物理方法总结

数学物理方法总结

数学物理方法总结第一章 复变函数复数的代数式:z=x+iy复数的三角式和指数式:(cos sin )z ρϕϕ=+和i z e ϕρ=欧拉公式:{1sin ()21cos ()2iz iz iz izz e e iz e e --=-=+柯西-黎曼方程(或称为柯西-黎曼条件):{u u x yv v x y∂∂=∂∂∂∂=-∂∂ (其中f(z)=u+iv)函数f(z)=u+iv 在点0z 及其领域上处处可导,则称f(z)在0z 点解析.在区域B 上每一点都解析,则称f(z)是在区域B 上的解析函数.解析函数的性质:1.若函数f(z)=u+iv 在区域B 上解析,则12(,),(,)u x y C v x y C ==(12,C C 为常数)是B 上的两组正交曲线族.2.若函数在区域B 上解析,则u,v 均为B 上的调和函数,即22220u vx y ∂∂+=∂∂ 例题: 已知某解析函数f(z)的实部22(,)u x y x y =-,求虚部和这个解析函数.解答: 由于22ux∂∂=2;22v y ∂∂=-2;则22220u v x y ∂∂+=∂∂曲线积分法u x ∂∂=2x;u y ∂∂=-2y.根据C-R 条件有:v x∂∂=2y;v y ∂∂=2x.于是 22dv ydx xdy =+;(,0)(,)(0,0)(,0)(,)(,)(,0)(22)(22)(22)22x x y x x y x y x v ydx xdy C ydx xdy ydx xdy Cxdy C xy C=++=++++=+=+⎰⎰⎰⎰凑全微分显式法 由上式可知 22dv ydx xdy =+则易得 (2)dv d xy = 则显然 2v xy C =+不定积分法 上面已有v x∂∂=2y;v y ∂∂=2x则第一式对y 积分,x 视为参数,有 2()2()v xy x xy x ϕϕ=+=+⎰. 上式对x 求导有 2'()vy x xϕ∂=+∂,而由C-R 条件可知 '()0x ϕ=, 从而()x C ϕ=.故 v=2xy+C.222()(2)f z x y i xy C z iC =-++=+第二章 复变函数的积分单连通区域柯西定理 如果函数f(z)在闭单连通区域B 上解析,则沿B 上任意一分段光滑闭合闭合曲线l(也可以是B 的边界),有()0lf z dz =⎰.复连通区域柯西定理 如果f(z)是闭复连通区域上的单值解析函数,则1()()0inll i f z dz f z dz =+=∑⎰⎰.式中l 为区域外边界线,诸i l 为区域内边界线,积分均沿边界线的正方向进行.即1()()inll i f z dz f z dz ==∑⎰⎰.柯西公式 1()()2l f z f dz i z απα=-⎰n 次求导后的柯西公式 ()1!()()2()n n l n f fz d i z ζζπζ+=-⎰第三章 幂级数展开幂级数200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-++-+∑其中0a ,1a ,2a ,3a ,……都是复常数. 比值判别法(达朗贝尔判别法) 1.若有110100limlim1k k k kk k kk a z z a z z a a z z +++→∞→∞-=-<- 则 2010200............kk a a z z a z z a z z +-+-++-+收敛,200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.若极限1lim /k k k a a +→∞存在,则可引入记号R,1limkk k a R a →∞+=,于是,若0z z R -<,则 200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.2.若0z z R ->,则后项与前项的模之比的极限1101l i m l i m 1k k k k k k kk a z z a R a a z z +++→∞→∞->=-,即说明200102000()()()......()k k k k k a z za a z z a z z a z z ∞=-=+-+-+-+∑发散.例题: 求幂级数2461.....z z z -+-+的收敛圆,z 为复变数. 解答: 由题意可得 1lim1kk k a R a →∞+== 故 246211......1z z z z -+-+=+ (1z <). 泰勒级数展开 设f(z)在以0z 为圆心的圆R C 内解析,则对圆内的任意z 点,f(z)可展为幂级数,0()()kkk f z a z z ∞==-∑,其中1()010()1()2()!R n k k C f z f a d iz k ζζπζ+==-⎰,1R C 为圆R C 内包含z 且与R C 同心的圆.例题: 在00z =的领域上将()zf z e =展开 解答: 函数()zf z e =的各阶导数()()n z fz e =,而()()0()(0)1k k f z f ==.则ze 在00z =的领域上的泰勒展开23401............1!2!3!4!!!k kzk z z z z z z e k k ∞==++++++=∑.双边幂级数212010010220......()()()()......a z z a z z a a z z a z z ----+-+-++-+-+洛朗级数展开 设f(z)在环形区域201R z z R <-<的内部单值解析,则对环域上的任一点z,f(z)可展为幂级数0()()kkk f z a z z ∞=-∞=-∑.其中101()2()k k Cf a d iz ζζπζ+=-⎰, 积分路径C 为位于环域内按逆时针方向绕内圆一周的任一闭合曲线.例题1: 在1z <<∞的环域上将2()1/(1)f z z =-展为洛朗级数.解答: 22222460211111111......111kk z z zz z z z z ∞=⎛⎫===+++ ⎪-⎝⎭-∑ 例题2: 在01z =的领域上将2()1/(1)f z z =-展为洛朗级数. 解答: 由题意得21111()()1211f z z z z ==---+ 则有z-1的-1次项,而0111111(1)()111222212kk k z z z z ∞=-===--+-++∑ (12z -<) 故 01111()(1)()2142k kk z f z z ∞=-=---∑.第四章 留数定理留数定理 设函数f(z)在回路l 所围区域B 上除有限个孤立奇点1b ,2b ,……,n b 解析,在闭区域B 上除1b ,2b ,……, n b 外连续,则11()2R e ()2nj lj f z d z i s f b i aππ-===∑⎰. 其中,1111Re ()lim {[()()]}(1)!j m m j j m z b d a sf b z b f z m dz---→==--.推论1: 单极点的留数为000Re ()lim[()()]z z sf z z z f z →=-.推论2: 若f(z)可以表示为P(z)/Q(z)的特殊形式,其中P(z)和Q(z)都在0z 点解析,0z 是Q(z)的一阶零点(0()0Q z =).0()0P z ≠,则000000()()'()()()Re ()lim()lim ()'()'()z z z z P z z z P z P z P z sf z z z Q z Q z Q z →→+-=-==. 上式最后一步应用了罗毕达法则.留数定理的应用 类型一20(cos ,sin )R x x dx π⎰.作自变量代换 ix z e =.则式子变为111(,)22z z z z z dzI R iz--=+-=⎰.例题: 计算 202cos dxI xπ=+⎰.解答: 21201122cos 41(2)2z z dxdz dzI i i z z xzz z π-====-=-+++++⎰⎰⎰,Z的单极点为1,2422z -+==- 则221Re(22241z s i z z z π→--=+-=++, 由于2-1z =内.故 I =. 类型二()f x dx ∞-∞⎰.积分区间是(,)-∞∞;复变函数f(z)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,zf(z)一致地0→.则式子可以变为()2I f x d x i π∞-∞==⎰{f(z)在上半平面所有奇点的留数之和}.例题: 计算21dx x ∞-∞+⎰. 解答: 21dzI z ∞-∞=+⎰的单极点为1,2z i =±.21Re ()2lim()1z i sf i i z i z ππ→=-=+,故21dxx π∞-∞=+⎰.类型三()cos F x mxdx ∞⎰,0()sin G x mxdx ∞⎰,积分区间是[0,]+∞;偶函数F(x)和奇函数G(x)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面或实轴上→∞,F(z)及G(z)一致地0→.则式子可以变为0()c o s {()i m xF x m x d x i F x e π∞=⎰在上半平面所有奇点的留数之和;()s i n {()i m xG x m x d x G x eπ∞=⎰在上半平面所有奇点的留数之和. 若类型二,类型三的实轴上有有限个奇点,则有()2Re ()Re ()f x dx isf z isf z ππ∞-∞=+∑∑⎰在上平面实轴上.其中,在类型三中f(x)应理解为()imzF x e或()imxG x e.第五章 Fourier 变换傅里叶级数 周期为2l 的函数f(x)可以展开为级数01()(c o s s i n k kk k x k x f x a a b llππ∞==++∑. 其中,{1()cos1()sin lk lk lk l k a f d l lk b f d l lπξξξδπξξξ--==⎰⎰,k δ={2(0)1(0)k k =≠.注: 积分上下限只要满足 上-下=2l 即可. 复数形式的傅里叶级数 ()k xilkk f x c eπ∞=-∞=∑其中 *1()[]2k x i ll k l c f e d lπξξ-=⎰. 傅里叶积分 0()()cos ()sin f x A xd B xd ωωωωωω∞∞=+⎰⎰傅里叶变换式 {1()()cos 1()()sin A f d B f d ωξωξξπωξωξξπ∞-∞∞-∞==⎰⎰复数形式的傅里叶积分{*()()()()[]i xi x f x F e d F f x e dx ωωωωω∞-∞∞-∞==傅里叶变换的性质(1) 导数定理 F [f ’(x)]=iwF(w)(2) 积分定理 F [()()x f d ξξ⎰]=1()F w iw(3) 相似性定理 F [f(ax)]=1()wF a a(4) 延迟定理 F [0()f x x -]=0()iwx e F w -(5) 位移定理 F [0()iw xef x ]=0()f w w -(6) 卷积定理 若F [1()f x ]=1()F w ,F [2()f x ]=2()F w ,则 F [1()f x *2()f x ]=122()()F w F w π. 其中1212()*()()()f x f x f f x d ξξξ∞-∞=-⎰称为1()f x 和2()f x 的卷积.δ函数()x δ={0(0)(0)x x ≠∞=.()bax dx δ=⎰{0(,0,0)1(a<0<b)a b <>都或都.δ函数的一些性质1.()x δ是偶函数.()()'()'()x x x x δδδδ-=-=-2. ()()xH x t dt δ-∞==⎰{0(0)1(0)x x <>.3.00()()()f t d f t τδττ∞-∞-=⎰.第六章 Laplace 变换拉普拉斯变换 0()()pt f p f t e dt ∞-=⎰拉普拉斯变换的一些性质 (1) 线性定理 若11()()f t f p ,22()()f t f p ,则 1121122()()()(c f t c f t c f pc f++. (2) 导数定理 '()()(0)f t p f p f -.(3) 积分定理1()td p ϕττ⎰L [()p ϕ]. (4) 相似性定理 1()()p f at f p a. (5) 位移定理 ()()tef t f p λλ-+.(6) 延迟定理 00()()pt f t t e f p --. (7) 卷积定理 若11()()f t f p ,22()()f t f p ,则1212()*()()(f t f t f p f p, 其中12120()*()()()tf t f t f f t d τττ=-⎰称为1()f t 和2()f t 的卷积.第七章 数学物理定解问题(1) 均匀弦的微小振动,均匀杆的纵振动,传输线方程,均匀薄膜的微小横振动,流体力学与声学方程,电磁波方程的形式为20tt xx u a u -=或220tt u a u -∆=或230tt u a u -∆=.(2) 扩散方程,热传导方程的形式为20t xx u a u -=或20t u a u -∆=.(3) 稳定浓度分布,稳定温度分布,静电场,稳定电流场方程的形式为(拉普拉斯方程)0u ∆=.(4) 以上方程中x u 意为u x∂∂,xx u 意为22ux ∂∂.若以上各方程均为有源,则方程为 各方程=f(x,y,z,t).定解条件初始条件 初始”位移” 0(,,,)(,,)t u x y z t x y z ϕ==, 初始”速度” 0(,,,)(,,)t t u x y z t x y z ψ==. 边界条件 第一类边界条件 (,)(,)u r t f M t ∑=第二类边界条件(,)uf M t n ∑∂=∂ 第三类边界条件 ()(,)uu Hf M t n ∑∂+=∂ 衔接条件 00(0,)(0,)u x t u x t -=+00(0,)(0,)()x x Tu x t Tu x t F t +--=-.(T 为张力) 达朗贝尔公式 定界问题 达朗贝尔公式 11(,)[()()]()22x at x at u x t x at x at d aϕϕψξξ+-=++-+⎰. 其中0()t u x ϕ==,0()tt u x ψ==.()x -∞<<∞第八章 分离变数法泛定方程 20tt xx u a u -=(若该方程可以使用分离变量法,则可以化成2''()''()()()T t X x a T t X x λ==-). ''()()0X x X x λ+=在不同的边界条件下解不同.边界条件(1) {(0)0()0X X l == , X(x)的解为 {2()()sin n n n ln X x C x lπλπ== 其中 n=1,2,3……(2) {'(0)0()0X X l ==, X(x)的解为 {21()2[]1()2()cosn n k lk X x C x lπλπ+=+= 其中 k=0,1,2……(3) {(0)0'()0X X l ==, X(x)的解为 {21()2[]1()2()sinn n k lk X x C x lπλπ+=+= 其中 k=0,1,2……(4) {'(0)0'()0X X l ==, X(x)的解为 {2()()cosn n n ln X x C x lπλπ== 其中 n=0,1,2……T(t)的方程在有n 且n=0时的解为 ()T t At B =+; 在0n ≠时的解为()sincos n a n aT t A t B t l lππ=+; 在有k 的情况下为(21)(21)()sincos 22k a k aT t A t B t l lππ++=+.初始条件 将u(x,t)=T(t)X(x)带入初始条件,确定u(x,t)中的常数项.欧拉型常微分方程 22220d R dRm R d d ρρρρ+-=. 解法为做代换t e ρ=.第九章 二阶常微分方程级数解法 本征值问题拉普拉斯方程 0u ∆=(1) 球坐标系下 2222222111()(sin )0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂++=∂∂∂∂∂. 分解为 2222(1)0R R r r l l R r r ∂∂+-+=∂∂ 其解为 11()ll R r Cr D r+=+. 和22211(sin )(1)0sin sin Y Y l l θθθθθϕ∂∂∂+++=∂∂∂(球方程,(,)()()Y θϕθϕ=ΘΦ) 球方程又可以分离为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为 {2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2……和 22222(1)2[(1)]01d d m x x l l dx dx x ΘΘ--++-Θ=- (连带勒让德方程).(2) 柱坐标系下 2222211()0u u u z ρρρρρϕ∂∂∂∂++=∂∂∂∂.分解为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为{2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2…… 和 ''0Z Z μ-=和 22221()0d R dR m R d d μρρρρ++-=. 当0μ=时,Z=C+Dz,()R ρ={ln (0)/(1,2,3......)m m E F m E F m ρρρ+=+=; 当0μ>时,()Z z De =+,方程R 转换为 22222()0d R dR x x x m R dx dx++-=(x =,m 阶贝塞尔方程). 当0μ<时,()Z z C D =+,方程R 转换为22222()0d R dR x x x m R dx dx +-+=(x =,m 阶虚宗量贝塞尔方程). 亥姆霍兹方程 20v k v ∆+=.在00x =的领域上l 阶勒让德方程的解为 0011()y x a y a y =+ 其中 2402()(1)(2)()(1)(3)1...2!4!(22)(24)...()(1)(3)...(21)......(2)!k l l l l l l y x x k l k l l l l l k x k -+--++=+++-----+++-++ 35121(1)(2)(3)(1)(2)(4)...3!5!(21)(23)...(1)(2)(4)...(2)......(21)!k l l l l l l y x x x k l k l l l l l k x k +-+--++=+++-----++++++第十章 球函数高次项l x 的系数 2(2)!2(!)l l l a l = (在乘以适当的常数之后),用递推公式改写后为2(2)(1)()(1)k k k k a a k l k l +++=-++,则 22(22)!(1)!2()!(2)!l n l l n a n l n l n --=---.则勒让德多项式为 [/2]20(22)!()(1)!2()!(2)!l kl k l l k l k P x x k l k l k -=-=---∑.[/2]l ={/2()(1)/2()l l l l -为偶数为奇数. ()1o P x =1()cos P x x θ==2211()(31)(3cos 21)24P x x θ=-=+ 3311()(53)(5cos33cos )28P x x x θθ=-=+ 42411()(35303)(35cos 420cos 29)864P x x x θθ=-+=++…… 勒让德多项式是正交的例题1: 以勒让德多项式为基,在区间[-1,1]上把f(x)=3234x x ++展开为广义傅里叶级数.解答: 3234x x ++=00112233()()()()f P x f P x f P x f P x +++ = 23012311(31)(53)22f f x f x f x x ++-+- 则有 02142f f -=, 13332f f -=, 2302f =, 3522f =. 故有3234x x ++=0132144()()()55P x P x P x ++. 例题2: 在半径0r r =的球的内部求解拉普拉斯方程使满足边界条件02cos r r u θ==. 解答: 边界条件与ϕ无关,故选择球坐标,则有10(,)()(cos )l l l l l l B u r A r P r θθ∞+==+∑. 又有自然边界条件 0r u =有限故0l B =.则有(,)(cos )ll ll u r A r P θθ∞==∑. 而02202012cos (cos )()()33l l l r r l u A r P x P x P x θθ∞======+∑,则22200121(,)(cos )(cos )33l l l l u r A r P r P r θθθ∞===+∑.。

电子课件 [数学物理方法与仿真(第3版)][杨华军][电子教案(PPT版本)]chapter7

电子课件 [数学物理方法与仿真(第3版)][杨华军][电子教案(PPT版本)]chapter7
若 f (x) 为奇函数,我们可推得奇函数 f (x)
的傅里叶积分为傅里叶正弦积分:
f (x) 0 B() sin xd
(7.2.7)
式(7.2.7)满足条件 f (0) 0 .其中 B() 是
f (x) 的傅里叶正弦变换:
B() 2
f (x) sin xdx
0
(7.2.8)
3. 偶函数的傅里叶积分
i kπx
f (x) Cke l
k
(7.1.9)
利用复指数函数族的正交性,可以求出复数形式的傅里叶系数
Ck
1 2l
l
f
(
i
x)[e
kπx l
]*
d
x
1
l
2l
l
i kπx
f (x)[e l ]d x
l
(7.1.10)
式中“*”代表复数的共轭.
上式(7.1.9)的物理意义为一个周期为 2l 的
l
kπx
f (x) cos( ) d x
l
l
bk
1 l
l l
f (x)sin( kπx) d x l
( 7. 1. 4)
其中
k
2 1
(k 0) (k 0)
关于傅里 叶级数的收敛性问题 ,有如下定
理:
狄利克雷(Dirichlet)定理 7.1.1 若函数
f (x) 满足条件:(1)处处连续,或在每个周期内
f (x) F ()eixd
其中
(7.2.13)
F
()
[
[ A() A(| |)
iB()]/ 2, iB(| |)]/ 2,
( 0) ( 0)
将(7.2.4)代入上式可以证明无论对于 0 ,还 是 0 均可以合并为

数学物理方法习题解答完整

数学物理方法习题解答完整

数学物理方法习题解答一、复变函数局部习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。

证明:令Re z u iv =+。

Re z x =,,0u x v ∴==。

于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。

2、试证()2f z z=仅在原点有导数。

证明:令()f z u iv =+。

()22222,0f z z x y u x y v ==+ ∴ =+=。

所以除原点以外,,u v 不满足C -R 条件。

而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。

或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。

【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,那么上式中**1z zz z∆∆==∆∆】 3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。

证明:令()()(),,f z u x y iv x y =+,那么()f z ∴ 在原点上满足C -R 条件。

但33332200()(0)()lim lim ()()z z f z f x y i x y zx y x iy →→--++=++。

令y 沿y kx =趋于0,那么依赖于k ,()f z ∴在原点不可导。

4、假设复变函数()z f 在区域D 上解析并满足以下条件之一,证明其在区域D 上必为常数。

〔1〕()z f 在区域D 上为实函数; 〔2〕()*z f 在区域D 上解析; 〔3〕()Re z f 在区域D 上是常数。

证明:〔1〕令()(,)(,)f z u x y iv x y =+。

由于()z f 在区域D 上为实函数,所以在区域D 上(,)0v x y =。

数学物理方法姚端正CH7作业解答

数学物理方法姚端正CH7作业解答

uΙ =
1 x+t sin αdα = sin x sin t 2 ∫x − t 1 t 2 ∫0
t 0
由无界纯强迫振动解的公式,得
u ΙΙ =

x + ( t −τ )
x − ( t −τ )
τ sin αdαdτ =
1 t {cos[ x − (t − τ )] − cos[ x + (t − τ )]}τdτ 2 ∫0
t 0
= ∫ sin x sin( t − τ )τdτ = sin x ∫ sin( t − τ )τdτ = t sin x − sin x sin t
(上式最后一步用了分部积分法) 则 u = u + u = t sin x
Ι ΙΙ
3
utt − a 2u xx = x (3) u ( x,0) = 0 u ( x,0) = 3 t
① ② ③
① 即 f1 ( x) − f 2 ( x) = −ϕ ( x) ②
解:方程 utt = u xx 的通解为: u ( x, t ) = f1 ( x + t ) + f 2 ( x − t ) 将④式代入定解条件②得: f1 (0) + f 2 (2 x) = ϕ ( x )


1
将④式代入定解条件③得:
2
u xx − u yy = 8 (2) u ( x,0) = 0 u ( x,0) = 0 y 解:由冲量原理,原定解问题可转化为以下定解问题: v yy − vxx = 0 v( x,τ ) = 0 v ( x,τ ) = −8 y 由 D ' Alembert 公式,该问题的解为: v( x, y;τ ) = 1 x + a ( y −τ ) − 8dα =8τ − 8 y 2 ∫x − a ( y −τ )

数学物理方法课件第七章

数学物理方法课件第七章

数学物理方法课件第七章第二篇数学物理方程第七章数学物理定解问题一、数理方程的概念凡包含未知函数及它的偏导数的方程称为偏微分方程。

一般地说,描写连续体运动规律的方程式都是偏微分方程。

这种将物理规律用偏微分方程表达出来,叫作数学物理方程(P135)。

在数学上,数学物理方程本身(不连带定解条件)叫作泛定方程。

偏微分方程所含有最高偏导数的阶数称为该偏微分方程的阶。

在许多物理问题中,遇到的数学物理方程,如波动方程、输运方程、拉普拉斯方程等都是二阶偏微分方程。

二、二阶偏微分方程的分类——P162二个自变数y x ,的二阶偏微分方程的一般形式为G Fu y u E x u D yu C y x u B x u A =+??+??+??++??22222式中系数G B A ,,, 是y x ,的已知函数或常数。

当0=G 时,则方程称为齐次的;当0≠G 时,则方程称为非齐次的。

二阶偏微分方程可按其系数C B A ,,所满足的条件划分为三类: 1、若042>-AC B 双曲型方程(一维波动方程) 2、若042=-AC B 抛物型方程(一维输运方程) 3、若042<-AC B 椭圆型方程(二维拉普拉斯方程)三、定解条件在数学上,我们把描写系统初始状态的表示式叫做初始条件,把描写系统边界状态的表示式叫做边界条件。

因数理方程满足初始条件和边界条件的解是完全确定的,所以将初始条件、边界条件(及连接条件)统称为定解条件。

这样,问题在数学上的完整提法是:在给定的定解条件下,求解数学物理方程。

这叫作数学物理定解问题或简称为定解问题。

——P135衔接条件边界条件初始条件定解条件数学物理方程泛定方程定解问题)(§7.1 数学物理方程的导出数学物理方程的导出步骤如下:——P135一、波动方程 02=-xx tt u a u(一)均匀弦的微小横振动——书P136 1、均匀弦的自由横振动在以下几个条件下推导弦的自由横振动方程:(1)、均匀细弦:弦的线密度ρ为常数;由于是细弦,所以作为一维空间的问题来处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学物理方法
课程类别校级优秀□省级优质 √省级精品□ 国家精品□
项目主持人李高翔
课程建设主要成

陈义成、王恩科、吴少平、刘峰数学物理方法是理科院校物理类学生的一门重要基础课,该课程所涉内容,不仅为其后续课程所必需,而且也为理论和实际研究工作广为应用。

因此,本课程教学质量的优劣,将直接影响到学生对后续课程的学习效果,以及对学生分析问题和解决问题的能力的培养。

数学物理方法是物理专业师生公认的一门“难教、难学、难懂”的课程,为了将其变为一门“易教、易学、易懂”的课程,我们对该课程的课程体系、内容设置、教学方法等方面进行了改革和建设,具体做法如下:
一、师资队伍建设
优化组合的教师队伍,是提高教学质量的根本保证。

本课程师资队伍为老、中、青三结合,其中45岁以下教师全部具有博士学位,均具有高级职称。

课程原责任教师汪德新教授以身作则,有计划地对青年教师进行传、帮、带,经常组织青年教师观摩老教师的课堂教学、参与数学物理方法教材编写的讨论;青年教师主动向老教师学习、请教,努力提高自身素质和教学水平。

现在该课程已拥有一支以中青年教师为主的教师队伍。

同时,系领导对该课程教师队伍的建设一直比较重视,有意识地安排青年教师讲授相关的后续课程,例如,本课程现责任教师李高翔教授为物理系本科生和函授生多次主讲过《电动力学》、《量子力学》、《热力学与统计物理》等课程,使得他们熟知本门课程与后续专业课程的连带关系,因此在教学中能合理取舍、突出重点,并能将枯燥的数学结果转化为具体的物理结论,有利于提高学生的学习兴趣。

培养学生独立分析问题和解决问题能力的一个重要前提是教师应该具有较强的科研能力,该课程的任课教师都是活跃在国际前沿的学术带头人或学术骨干,近5年来,他们承担国家自然科学基金项目共8项,在国内外重要学术刊物上发表科研论文60余篇,并将科研成果注入教学中。

此外,本课程大多数教师有多次出国合作研究的经历,并且在学校
教务处和外事处的支持下,吴少平副教授参加了由国家留学基金委员会组织的赴英“双语教学研修项目”,为本课程双语教学的开展打下了良好的基础。

二、教学内容
数学物理方法是联系高等数学和物理专业课程的重要桥梁,本课程的重要任务是教会学生如何把各种物理问题翻译成数学的定解问题,并掌握求解定解问题的多种方法。

本门课程的基本教学内容主要包括复变函数论、数学物理方程两部分。

与国内流行的教材和教学内容相比,在讲解数理方程的定解问题时,本门课程教学内容的特色之一是按解法分类而不按方程的类型分类,这样,可以避免同一方法的多次重复介绍;特色之二是把线性常微分方程的级数解法和
特殊函数置于复变函数论之后、数学物理方程之前,一方面可将这些内容作为
复变函数理论的一个直接应用,使学生进一步巩固已学的相关知识,另一方面可使正交曲线坐标系中分离变量法的叙述更加流畅,并通过与直角坐标系中分离变量法的横向对比,更鲜明地显示出它们在方法上的共同特征;同时,还将球函数和柱函数直接用于求解数理方程的定解问题,而不是仅仅停留在介绍这些函数的性质上。

在讲授本课程时,任课教师还结合自己的科研成果,对本课程教学内容进行改革和拓展。

例如,对复变函数论部分,除讲授解析函数、解析函数积分、无穷级数和留数理论以外,李高翔教授依据当前物理前沿课题(如光子晶体中原子的自发发射和受激发射等)研究中经常遇到一些多值复变函数的积分,重点讲授了多值函数和解析延拓,增强了教学内容的针对性。

在讲授积分变换时,他还将自己发表在Phys. Rev. A上发表的论文“囚禁于光腔中两个离子振动的纠缠和压缩”中发展的一些方法介绍给学生,不仅深化和拓宽了教学内容,而且还激发了学生独立思考和研究的兴趣。

此外,我们还依据学科的发展,增加了“小波变换法简介”等近期发展出的新理论方法。

总之,在教学内容的改革方面,我们一方面注重探讨出课程本身的一个最佳体系,另一方面,加强了该课程与各相关课程之间的联系,并能根据当前学科发展的情况,及时更新教学内容。

三、教学方法
采用启发式、讨论式的教学方式,老师在学生讲课时积极引导、启发学生,分析问题和解决问题。

这种教学方式改变了以老师为中心满堂灌的教学方式,而以学生为中心,学生学习的主动性大大提高,积极思考,勇于发言,而且对问题的讨论很深入、彻底,效果很好。

此外,我们引入现代化教学手段,进一步提高教学质量。

目前已制作完成本课程多媒体课件,并将课件放在物理学院的网页上供学生浏览,以便于学生课后复习和增加了信息量。

四、教材
教材是教学的基本工具。

物理学院对本门课程教材的建设一直十分重视,先后出版了三本教材,分别是:1. 李家荣 主编, 数学物理方法, 华中师范大学出版社, 1989年; 2. 刘连寿、王正清编著, 数学物理方法, 高等教育出版社,1990年;3. 汪德新,数学物理方法,华中科技大学出版社, 1997年(第一版),2001年(第二版)。

在教材的编写过程中,一方面教材的编著者们博览国内外有关数学物理方法的书籍和资料,对传统的去粗取精,推陈出新;另一方面注意积累教学中的经验和反馈信息,使得三本教材各具特色,各有千秋。

此外,根据近期国外出版的该课程的著名英文原版教材,如G. Arfken, Mathematical Methods for Physicsits(Fifth Edition), Academic Press (2001);K.F.Riley,M.P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering (Second Edition), Cambridge University Press (2002),李高翔编辑了数学物理方法补充材料,主要内容有:多值函数的积分、群论简介、小波变换及应用等。

五、教学管理
教学档案资料的收集、保存与管理也是本课程建设的一项重要工作,本课程有专人负责档案管理工作。

我们保存了近几年来所使用的教学大纲、教学日历、教材、教师参考书、习题、试卷及考试成绩分布等,不断收集学生对教学的反映、评价。

相关文档
最新文档