感知器的学习算法

合集下载

多层感知器算法原理

多层感知器算法原理

多层感知器算法原理多层感知器(Multilayer Perceptron,MLP)是一种前馈结构的人工神经网络,可以对一组输入向量进行非线性映射,从而实现分类或回归等任务。

MLP由多个节点层组成,每一层都与上一层和下一层相连,每个节点都是一个带有非线性激活函数的神经元。

MLP 的学习过程主要依赖于反向传播算法,即通过计算输出误差对网络权重进行反向调整,从而达到最优化的目的。

网络结构MLP的网络结构一般包括三层或以上,分别是输入层、隐藏层和输出层。

输入层接收外部输入的数据,输出层产生网络的预测结果,隐藏层位于输入层和输出层之间,可以有多个,用于提取输入数据的特征。

每一层中的节点都与相邻层中的所有节点相连,每条连接都有一个权重,表示该连接的强度。

每个节点除了接收来自上一层的加权输入外,还有一个偏置项,表示该节点的阈值。

每个节点的输出由其输入和激活函数共同决定,激活函数的作用是引入非线性,增强网络的表达能力。

常用的激活函数有Sigmoid函数、双曲正切函数、ReLU函数等。

学习过程MLP的学习过程主要分为两个阶段,即前向传播和反向传播。

前向传播是指从输入层到输出层逐层计算节点的输出,反向传播是指从输出层到输入层逐层计算节点的误差,并根据误差对权重进行更新。

具体步骤如下:前向传播从输入层开始,将输入数据乘以相应的权重,加上偏置项,得到每个节点的输入。

对每个节点的输入应用激活函数,得到每个节点的输出。

将每个节点的输出作为下一层的输入,重复上述过程,直到达到输出层。

在输出层,根据预测结果和真实标签,计算损失函数,评估网络的性能。

反向传播从输出层开始,根据损失函数对每个节点的输出求导,得到每个节点的误差。

对每个节点的误差乘以激活函数的导数,得到每个节点的梯度。

将每个节点的梯度作为上一层的误差,重复上述过程,直到达到输入层。

在每一层,根据节点的梯度和输入,计算权重的梯度,并根据学习率对权重进行更新。

MLP的学习过程可以采用批量梯度下降、随机梯度下降或小批量梯度下降等优化方法,也可以使用动量、自适应学习率或正则化等技术来提高收敛速度和泛化能力。

delta规则

delta规则

delta规则Delta规则,也称为delta学习规则或感知器算法,是一个经典的人工神经网络学习算法。

这个算法主要用于训练一个由具有权重的神经元构成的网络,使得网络能够正确地预测给定的输入和输出。

当神经元收到一个输入时,它会计算输入与其权重的加权和作为神经元的激活函数输入。

激活函数通常采用一些非线性的函数,例如sigmoid函数,以产生更高的复杂性。

Delta规则的核心思想是基于误差的学习,即对于给定的输入,通过比较神经元的实际输出和期望输出之间的差异来调整权重。

这个差异被称为误差项,也可以被看作是网络预测与实际结果之间的差异。

具体来说,Delta规则可以被描述为下面的步骤:1.随机初始化权重。

2.使用网络进行预测。

3.计算误差项。

4.根据误差项调整权重。

5.重复以上步骤,直到误差收敛或达到预定的迭代次数。

在第一步中,权重的初始值通常被设置为随机值,以便训练开始时网络能够探索许多可能的解决方案。

在第二步中,网络接收输入并根据初始的权重计算输出。

这个输出通常与期望输出不同,因此满足误差项的条件。

在第三步中,误差项被计算为期望输出与实际输出之间的差异。

这个差异可以使用一个成本函数来度量。

在第四步中,权重被通过误差项的反向传播来调整,即越大的误差项产生更多的权重调整。

在第五步中,程序使用新的权重再次执行第二至第四步,以获得更准确的输出结果。

这个过程持续进行直到误差足够小,或达到规定的迭代次数。

需要注意的是,Delta规则的效率和准确度很大程度上取决于两个因素:学习速率和激活函数。

学习速率决定了神经元根据误差项调整权重的幅度,如果学习速率太大,网络可能会无法收敛;如果太小,网络的训练过程可能会变得过于缓慢。

激活函数对网络所能解决的问题的复杂度具有重要的影响。

如果激活函数是线性的,那么神经网络只能处理线性可分问题,并且不能处理高度非线性的问题。

总之,Delta规则是一种简单而有效的网络训练算法,它在许多机器学习应用中被广泛使用。

感知器算法的基本原理与应用

感知器算法的基本原理与应用

感知器算法的基本原理与应用感知器算法是一种简单而有效的机器学习算法,于1957年被Frank Rosenblatt所提出。

在过去几十年里,感知器算法一直被广泛应用在识别模式,分类数据和垃圾邮件过滤等领域。

本文将会介绍感知器算法的基本原理,如何使用感知器完成模式分类,以及如何优化感知器算法。

感知器算法的基本原理感知器算法基于神经元(Perceptron)模型构建,神经元模型的基本原理是对输入信号进行加权,然后通过激活函数的计算输出结果。

通常情况下,神经元被认为是一个输入层节点,一个或多个输入是接收的,以及一个输出层。

感知器算法的核心思想是,给定一组输入和对应的输出(通常成为标签),通过多个迭代来调整模型中的权重,以最大限度地减少模型的误差,并尽可能准确地预测未知输入的输出。

感知器算法的主要流程如下:1. 初始化感知器参数,包括权重(最初为随机值)和偏置(通常为零)。

2. 对于每个输入,计算预测输出,并将预测输出与实际标签进行比较。

3. 如果预测输出与实际标签不同,则更新权重和偏置。

更新规则为$\omega_{j} \leftarrow \omega_{j} + \alpha(y-\hat{y})x_{j}$,其中$x_{j}$是输入的第$j$个特征,$\alpha$是学习率(控制权重和偏置的更新量),$y$是实际标签,而$\hat{y}$是预测输出。

4. 重复步骤2和步骤3,直到满足停止条件(例如,经过N次重复迭代后误差不再显著降低)。

如何使用感知器完成分类让我们考虑一个简单的情况:我们要学习使用感知器进行两类别(正面和负面)的文本情感分类。

我们可以将文本转换为一组数字特征,例如文本中出现特定单词的频率或数量,并将每个文本的情感作为输入,正面或负面情感被记为1或0。

我们可以将感知器视为一个二元分类器,用它来预测每个输入文本的情感值。

对于每个输入,我们计算出感知器的输出,并将其与实际情感进行比较。

如果它们没有匹配,那么我们将使用上面提到的更新规则调整每个特征的权重,重复该过程,直到达到收敛为止。

感知器算法

感知器算法
i
y = f (∑ wi xi − θ )
i =1
d
而且f为一阶跃函数, 而且 为一阶跃函数,即: 为一阶跃函数
d 1, ∑ wi xi − θ ≥ 0 i =1 y = f ( x) = = sgn( w0T x − θ ) d −1, w x − θ < 0 ∑ i i i =1
四、感知器训练算法在多类问题中的应用 就第二章中的第三种情况为例说明) (就第二章中的第三种情况为例说明) 判决规则:对于c种类型 存在k个判决函 种类型, 判决规则:对于 种类型,存在 个判决函 数 d j ( x)( j = 1, 2,⋯, k ) ,若 di ( x) > d j ( x)( j = 1, 2,⋯ , k , j ≠ i) , x ∈ ωi 则判: 则判: 假设k=c, 多类问题的感知器算法的步骤如下: 多类问题的感知器算法的步骤如下: 假设 (1) 赋给初值: 赋给初值: 赋初值,选择正常数c, 给 Wi 赋初值,选择正常数 把训练样本 变成增广型, 变成增广型,k=0; x (2) 输入训练样本 xk,k ∈{x1 , x2 ,⋯, xn },假定 x ∈ ωi ;
训练样本
x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 1011 0111 1101 0101 1011 0111 1101 0101 1011 0111 1101 0101 1011 0111 1101 0101
W(K)Tx
+ + + 0 0 + 0 + + + -
(3) 计算 个判决函数值: 计算c个判决函数值 个判决函数值:
di ( xk ) = [Wi (k )]T xk , i = 1, 2,⋯ , c

多层感知器学习算法研究

多层感知器学习算法研究

多层感知器学习算法研究中文摘要多层感知器学习算法研究中文摘要多层感知器是一种单向传播的多层前馈网络模型,由于具有高度的非线性映射能力,是目前神经网络研究与应用中最基本的网络模型之一,广泛应用于模式识别、图像处理、函数逼近、优化计算、最优预测和自适应控制等领域。

而多层感知器采用的是BP算法。

BP算法的收敛速度慢是个固有的缺点,因为它是建立在基于只具有局部搜索能力的梯度法之上的,是只具有局部搜索能力的方法,若用于多个极小点的目标函数时,是无法避免陷入局部极小和速度慢的缺点的。

因此,对BP算法的研究一直以来都是非常重要的课题。

毕业设计课题旨在对多层感知器的学习算法进行研究,并提出一种新的学习算法。

由于BPWE (权值外推BP)算法和TBP (三项BP)算法都是基于权值调整的改进算法,而考虑将TBP算法中的均衡因子融入到BPWE算法中,从而使后者对权值的调整由原来的两项增加为三项,从而提出一种新的学习算法---TWEBP算法。

为了验证本算法的优点,采用了三个例子,分别对异或问题、三分类问题和函数逼近问题进行了实验,发现其收敛速度和逃离局部极小点的能力都优于传统算法。

关键词:多层感知器学习算法趋势外推均衡因子TWEBP作者:王之仓指导教师:邓伟Research on Multilayer Perceptron Learning AlgorithmABSTRACTMultilayer Perceptron is a sort of multilayer feed-forward single direct propagation network model. Because of its good nonlinear mapping ability, it is one of the basic models in the research and application of neural network at present, which has been widely applied to pattern recognition, image processing, function approximation, optimization computation, optional prediction, adaptation control and so on. Multilayer Perception trained with BP algorithm often has a low convergence speed as a natural drawback,because it is based on gradient descent method which is only local searching. When applied to an object function with many local minimums, it is not possible for BP algorithm toAbstract Research on Multilayer Perceptron Learning Algorithm avoid being trapped in local minimum and to have a low converges speed. In a word, the research on BP algorithm has become very important for a long time.The purpose of this design task is to study the algorithms of Multilayer Perceptron, and a new BP algorithm is presented. Both BPWE algorithm (back-propagation by weight extrapolation) and TBP algorithm (a three-term back propagation algorithm) are based on weight value adjusted. Considered to add the proportional factor of the TBP algorithm into BPWE algorithm, it made the latter can adjust weight value by three terms too. A new BP algorithm,named TWEBP (the three-term weight extrapolation back propagation algorithm), is presented based on the two algorithm proposed just now. This new TWEBP algorithm is tested on three examples and the convergence behavior of the TWEBP and BP algorithm are compared. The results show that the proposed algorithm generally out-perfoims the conventional algorithm in terms of convergence speed and the ability to escape from local minima. Keywords:Multilayer Perceptron, learning algorithm, extrapolation, proportional factor, TWEBP目录攸顺 ......................................... ............. .. (I)ABSTRACT .................... (II)第一章绪论 (1)1.1基本概念 (1)1.2神经网络的发展过程 (2)1.2.1产生背景 (2)1.2.2发展历史 (2)1.2.3现状 (4)1.3多层感知器 (5)1.3.1基本概念 (5)1.3.2多层感知器学习算法存在的问题 (6)1.3.3多层感知器学习算法的研究成果 (7)1.4毕业设计工作及论文结构 (8)1.4.1毕业设计工作 (8)1.4.2论文结构 .......................................................... . (8)第二章反向传播算法 (9)2.1反向传播算法 (9)2.1.1学习规则 (9)2.1.2学习过程 (9)2.1.3反向传播算法的步骤 (11)2.2反向传播算法的贡献和局限性 (12)2.2.1反向传播算法的贡献 (12)2.2.2反向传播算法的局限性 (12)2.3对反向传播算法的进一步讨论 (13)2.3.1激活函数 (13).2.3.2 ............................... ...................................................................................... ;162.3.3云力量项 (16)2.3.4学习速率 (17)2.3.5误差函数.................. . (19)2.4小结 (20)第三章性能优化 (21)3.1性能优化的理论基础 (21)3.2最速下降法 (23)3.3牛顿法 (24)3.4共轭梯度法 (25)3.5小结 (27)第四章TWEBP算法 (29)4.1趋势外推思想 (29)4.1.1趋势外推 (29)4.1,2 BPWE 算法 (30)4.2TBP 算法 (32)4.3TWEBP 算法 (32)4.4计算机仿真 (33)4.4.1 XOR 问题 (33)4.4.2三分类问题 (37)4.4.3函数逼近问题 (42)4.5 4^ (46)第五章总结与展望 (47)#%娜.......... .. (48)攻读学位期间公幵发表的论文 (50)® (51)第一章绪论一个神经元有两种状态,即兴奋和抑制,平时处于抑制状态的神经元,其树突和胞体接收其他神经元经由突触传来的兴奋电位,多个输入在神经元中以代数和的方式叠加;如果输多层感知器学习算法研究第一韋绪论入兴奋总量超过某个阈值,神经元就会被激发进入兴奋状态,发出输出脉冲,并由轴突的突触传递给其他神经元。

感知器的训练算法

感知器的训练算法

感知器的训练算法
已知两个训练模式集分别属于ω1类和ω2类,权向量的初始值为w(1),可任意取值。

若0x )k (w ,x k T 1k >∈ω,若0x )k (w ,x k T 2k ≤∈ω,则在用全部训练模式集进行迭代训练时,第k 次的训练步骤为:
- 若1k x ω∈且0x )k (w k T ≤,则分类器对第k 个模式x k 做了错误分类,此时应校正权向量,使得w(k+1) = w(k) + Cx k ,其中C 为一个校正增量。

- 若2k x ω∈且0x )k (w k T >,同样分类器分类错误,则权向量应校正如下:w(k+1) = w(k) - Cx k
- 若以上情况不符合,则表明该模式样本在第k 次中分类正确,因此权向量不变,即:w(k+1) = w(k)
若对2x ω∈的模式样本乘以(-1),则有:
0x )k (w k T ≤时,w(k+1) = w(k) + Cx k
此时,感知器算法可统一写成:
⎩⎨⎧≤+>=+0
x )k (w if Cx )k (w 0x )k (w if )k (w )1k (w k T k k T。

单层感知器实现逻辑‘与’功能

单层感知器实现逻辑‘与’功能

单层感知器实现逻辑‘与’功能1.感知器实现逻辑‘与’功能的学习算法单层感知器,即只有一层处理单元的感知器。

感知器结构如下图所示:图1:感知器结构表1:与运算的真值表x 1 x 2 y 0 0 0 0 1 0 1 0 0 111分界线的方程(w 1x 1+w 2x 2-T=0)可以为: 0.5x 1+0.5x 2-0.75=0输入为k x 1、k x 2,输出为yk 。

当k x 1和k x 2均为1时,yk 为1,否则yk 为0。

设阈值θ=0.05,训练速率系数η=0.02,初始设置加权为058.0)0(1=w ,065.0)0(2=w 。

由于只有一个输出,得加权修正公式为:k k i i x n w n w ηδ+=+)()1(k k k y T -=δ第一步:w(0)=(0.058, 0.065),加入x1=(0, 0),05.01221111-=-+=θxwxws,则y1=0。

由于T1=0,δ1= T1- y1=0,故w(1)=(0.058, 0.065)第二步:加入x2=(0, 1),015.02222112=-+=θxwxws,则y2=1。

由于T 2=0,则δ2= T2- y2=-1,故w(2)=w(1)+0.02(-1)x2=(0.058, 0.045)第三步:加入x3=(1, 0),008.03223113=-+=θxwxws,则y3=1。

由于T 3=0,则δ3= T3- y3=-1,故w(3)=w(2)+0.02(-1)x3=(0.038, 0.045)第四步:加入x4=(1, 1),033.04224114=-+=θxwxws,则y4=1。

由于T 4=1,则δ4= T4- y4=0,故w(4)=w(3)=(0.038, 0.045)第五步:加入x1=(0, 0),S1=-0.05,则y1=0。

由于T1=0,δ1=0,故w(5)=(0.038,0.045)第六步:加入x2=(0, 1),S2=-0.005,则y2=0。

感知器模型及其学习算法

感知器模型及其学习算法

感知器模型及其学习算法1感知器模型感知器模型是美国学者罗森勃拉特(rosenblatt)为研究大脑的存储、学习和认知过程而提出的一类具有自学习能力的神经网络模型,它把神经网络的研究从纯理论探讨引向了从工程上的实现。

rosenblatt明确提出的感知器模型就是一个只有单层排序单元的前向神经网络,称作单层感知器。

2单层感知器模型的自学算法算法思想:首先把连接权和阈值初始化为较小的非零随机数,然后把有n个连接权值的输入送入网络,经加权运算处理,得到的输出如果与所期望的输出有较大的差别,就对连接权值参数按照某种算法进行自动调整,经过多次反复,直到所得到的输出与所期望的输出间的差别满足要求为止。

?为简单起见,仅考虑只有一个输出的简单情况。

设xi(t)是时刻t感知器的输入(i=1,2,......,n),ωi(t)是相应的连接权值,y(t)是实际的输出,d(t)是所期望的输出,且感知器的输出或者为1,或者为0。

3线性不可分问题单层感知器无法抒发的问题被称作线性不容分后问题。

1969年,明斯基证明了“异或”问题就是线性不容分后问题:“异或”(xor)运算的定义如下:由于单层感知器的输出为y(x1,x2)=f(ω1×x1+ω2×x2-θ)所以,用感知器实现简单逻辑运算的情况如下:(1)“与”运算(x1∧x2)令ω1=ω2=1,θ=2,则y=f(1×x1+1×x2-2)显然,当x1和x2均为1时,y的值1;而当x1和x2有一个为0时,y的值就为0。

(2)“或”运算(x1∨x2)令ω1=ω2=1,θ=0.5y=f(1×x1+1×x2-0.5)显然,只要x1和x2中有一个为1,则y的值就为1;只有当x1和x2都为0时,y的值才为0。

(3)“非”运算(~x1)令ω1=-1,ω2=o,θ=-0.5,则y=f((-1)×x1+1×x2+0.5))显然,无论x2为何值,x1为1时,y的值都为0;x1为o时,y的值为1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

感知器的学习算法
1.离散单输出感知器训练算法
设网络输入为n 维向量()110-=n x x x ,,, X ,网络权值向量为()110-=n ωωω,,, W ,样本集为(){}i i d ,X ,神经元激活函数为f ,神经元的理想输出为d ,实际输出为y 。

算法如下:
Step1:初始化网络权值向量W ;
Step2:重复下列过程,直到训练完成:
(2.1)对样本集中的每个样本()d ,X ,重复如下过程:
(2.1.1)将X 输入网络;
(2.1.2)计算)(T =WX f y ;
(2.1.3)若d y ≠,则当0=y 时,X W W ⋅+=α;否则X W W ⋅-=α。

2.离散多输出感知器训练算法
设网络的n 维输入向量为()110-=n x x x ,,, X ,网络权值矩阵为{}ji n m ω=⨯W ,网络理想输出向量为m 维,即()110-=m d d d ,,, D ,样本集为(){}i i D X ,,神经元激活函数为f ,
网络的实际输出向量为()110-=m y y y ,,, Y 。

算法如下:
Step1:初始化网络权值矩阵W ;
Step2:重复下列过程,直到训练完成:
(2.1)对样本集中的每个样本()D X ,,重复如下过程:
(2.1.1)将X 输入网络;
(2.1.2)计算)(T =XW Y f ;
(2.1.3)对于输出层各神经元j (110-=m j ,,, )执行如下操作: 若j j d y ≠,则当0=j y 时,i ji ji x ⋅+=αωω,110-=n i ,,, ; 否则i ji ji x ⋅-=αωω,110-=n i ,,, 。

3.连续多输出感知器训练算法
设网络的n 维输入向量为()110-=n x x x ,,, X ,网络权值矩阵为{}ji n m ω=⨯W ,网络理想输出向量为m 维,即()110-=m d d d ,,, D ,实际输出向量()110-=m y y y ,,, Y ,样本集为(){}i i D X ,,神经元激活函数为f ,ε为训练的精度要求。

算法如下:
Step1:初始化网络权值矩阵W (小的伪随机数);
Step2:设置精度控制参数ε,学习率α,设精度控制变量1+=εδ; Step3:若εδ≥,重复下列过程:
(3.1)令0=δ;
(3.2)对样本集中的每个样本()D X ,,重复如下过程: (3.2.1)将X 输入网络;
(3.2.2)计算)(T =XW Y f ;
(3.2.3)按如下方法修改网络权值:
i j j ji ji x y d )(-+=αωω,110-=m j ,,, ,110-=n i ,,, (3.2.4)计算累积误差:
2)(j j y d -+=δδ,110-=m j ,,,。

相关文档
最新文档