计量经济学读书笔记

合集下载

2024年计量经济学心得样本(2篇)

2024年计量经济学心得样本(2篇)

2024年计量经济学心得样本在我学习计量经济学的过程中,我意识到这门学科不仅仅是理论与方法的学习,更是一门能够帮助我们理解经济现象、预测经济变化和做出决策的实践性学科。

通过学习计量经济学,我不仅提高了自己的数据分析和统计建模的能力,还了解了经济学在实证研究、政策分析和商业决策中的应用。

在这篇文章中,我想总结一下我在学习计量经济学过程中的心得体会。

首先,计量经济学的核心思想是数据驱动的。

数据是计量经济学研究的基础,因此我们需要学习如何获取、处理和分析数据。

通过学习计量经济学,我对数据的重要性有了更加深刻的认识。

在实际研究中,我们需要搜集各种可靠的数据,然后通过合适的统计方法分析这些数据,得出可靠的结论。

这就要求我们掌握一些基本的数据处理和统计分析的方法,如数据的描述性统计、假设检验、回归分析等。

这些方法在计量经济学中被广泛使用,帮助我们理解经济现象和预测经济变化。

其次,计量经济学的模型是对现实世界的简化和抽象。

在计量经济学的学习过程中,我们学习了许多经济理论模型,如需求-供给模型、消费函数、投资函数等。

通过这些模型,我们可以理解经济决策者的行为规律和经济变量之间的关系。

然而,我们必须要注意到,这些模型只是对现实世界的一种简化和抽象,不能完全描述现实。

因此,在实际研究中,我们必须合适地选择模型,并根据实际情况对模型进行修正和拓展。

通过调整模型的参数,我们可以增加模型的准确性和解释力,提高我们对经济现象的理解和预测能力。

另外,计量经济学的核心问题是因果关系。

在计量经济学中,我们经常要回答一个非常重要的问题:某个变量的变动是由于什么原因而引起的?例如,我们经常要研究一个政策的效果,我们需要知道该政策对经济变量的影响。

而要回答这个问题,我们需要运用计量经济学的方法,如工具变量法、自然实验等,来解决内生性问题。

内生性问题是计量经济学中一个非常困难的问题,因为经济变量之间往往存在多种因果关系。

通过学习计量经济学,我对于如何解决内生性问题有了更深刻的理解,并学会了如何利用现有的数据和模型来分析因果关系。

李子奈《计量经济学》(第4版)笔记和课后习题(含考研真题)详解

李子奈《计量经济学》(第4版)笔记和课后习题(含考研真题)详解

李子奈《计量经济学》(第4版)笔记和课后习题(含考研真题)详解李子奈《计量经济学》(第4版)笔记和课后习题详解第1章绪论一、计量经济学1计量经济学计量经济学,又称经济计量学,是由经济理论、统计学和数学结合而成的一门经济学的分支学科,其研究内容是分析经济现象中客观存在的数量关系。

2计量经济学模型(1)模型分类模型是对现实生活现象的描述和模拟。

根据描述和模拟办法的不同,对模型进行分类,如表1-1所示。

表1-1 模型分类(2)数理经济模型和计量经济学模型的区别①研究内容不同数理经济模型的研究内容是经济现象各因素之间的理论关系,计量经济学模型的研究内容是经济现象各因素之间的定量关系。

②描述和模拟办法不同数理经济模型的描述和模拟办法主要是确定性的数学形式,计量经济学模型的描述和模拟办法主要是随机性的数学形式。

③位置和作用不同数理经济模型可用于对研究对象的初步研究,计量经济学模型可用于对研究对象的深入研究。

3计量经济学的内容体系(1)根据所应用的数理统计方法划分广义计量经济学根据所应用的数理统计方法包括回归分析方法、投入产出分析方法、时间序列分析方法等;狭义计量经济学所应用的数理统计方法主要是回归分析方法。

需要注意的是,通常所述的计量经济学指的是狭义计量经济学。

(2)根据内容深度划分初级计量经济学的主要研究内容是计量经济学的数理统计学基础知识和经典的线性单方程计量经济学模型理论与方法;中级计量经济学的主要研究内容是用矩阵描述的经典的线性单方程计量经济学模型理论与方法、经典的线性联立方程计量经济学模型理论与方法,以及传统的应用模型;高级计量经济学的主要研究内容是非经典的、现代的计量经济学模型理论、方法与应用。

(3)根据研究目标和研究重点划分理论计量经济学的主要研究目标是计量经济学的理论与方法的介绍与研究;应用计量经济学的主要研究目标是计量经济学模型的建立与应用。

理论计量经济学的研究重点是理论与方法的数学证明与推导;应用计量经济学的研究重点是建立和应用计量模型处理实际问题。

计量经济学读书笔记,李子奈

计量经济学读书笔记,李子奈

计量经济学读书笔记通过学习李子奈的“计量经济学应用研究的总体回归模型设定”这篇文章,我对计量经济学有了更深刻的认识,结合已学习的计量经济学知识,对真实总体回归模型的唯一性有了自己独到的见解。

一、真实总体回归模型的唯一性是否存在?对于这个问题,我认为这主要由人们所遵循的哲学观念来决定的。

如果人们遵循唯物主义哲学观,相信事物是客观存在的,那么就会认同我们目前所处的经济系统是客观存在的,则反映该经济系统变化的真实总体回归模型也是唯一的。

我同意李子奈所提出的真实总体回归模型应该具有唯一性的观点,因为这符合我们认识和研究世界的基本哲学观念。

当然,对于唯心主义者而言,由于每个人心目中的真实经济系统是不一样的,所以真实总体回归模型相应的也就不具有唯一性了。

现实中,人们在用计量经济学来研究客观现实世界时,一直在探求能够真实反映客观世界的真实总体回归模型。

目前主要从两方面进行探求:一是对于真实总体回归模型的形式的不断逼近,其中包括对影响因素的探求;二是对于其扰动项的真实分布形态的探求。

当然,人们对于真实总体回归模型的不断逼近,会受当时计量经济学研究的技术条件和人们对现实经济系统认识能力的限制,并随着它们的发展而不断发展。

由于我们对于客观存在的真实经济系统的认识总是有限的,而且该经济系统本身也受人类自身行为以及自然环境因素(如地震、海啸、疾病等)的影响,因此会表现出动态变化的一面。

所以,我认为,真实经济系统是不可知的(至少目前来说是不可知的),因为它本身的变化在很大程度上是人的行为活动作用的结果,因而我们前面所提出的唯一的真实总体回归模型事实上也是不可知的。

假定真实经济系统不受任何其他外在因素影响,仅受人自身行为因素的影响,也就是说该经济系统的变化是由处在系统中所有人的行为相互影响和相互作用结果的表现。

假定我们已经观测到唯一的真实总体回归模型,依此建立相应的回归模型用来刻画真实经济系统的变化,那么就会得出一个奇怪的结果!我们知道人是具有自我学习能力的,当我们发现能用一种真实总体回归模型来刻画现实经济时,所有人都会运用该计量模型来为自己谋利,那么这种行为往往会使经济系统表现得比以前更为复杂,从而使原有的真实总体回归模型变得不真实了。

计量经济学复习笔记

计量经济学复习笔记

2023计量经济学笔记PERSONAL NOTES计量经济学笔记目录CH1导论 (3)CH2简单线性回归模型 (5)CH3多元线性回归模型 (11)CH4多重共线性 (14)CH5异方差 (16)CH6自相关 (19)CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究主体是经济现象及其发展变化的规律。

2、运用计量分析研究步骤:●模型设定——确定变量和数学关系式●估计参数——分析变量间具体的数量关系●模型检验——检验所得结论的可靠性●模型应用——做经济分析和经济预测3、模型(1)变量A.解释变量:表示被解释变量变动原因的变量,也称自变量,回归元,X。

B.被解释变量:表示分析研究的对象,变动结果的变量,也成应变量,Y。

C.内生变量:其数值由模型所决定的变量,是模型求解的结果。

D.外生变量:其数值由模型意外决定的变量。

(外生变量数值的变化能够影响内生变量的变化,而内生变量却不能反过来影响外生变量。

)E.前定内生变量:过去时期的、滞后的或更大范围的内生变量,不受本模型研究范围的内生变量的影响,但能够影响我们所研究的本期的内生变量。

F.前定变量:前定内生变量和外生变量的总称。

(2)数据●时间序列数据:按照时间先后排列的统计数据(t)。

●截面数据:发生在同一时间截面上的调查数据(i)。

●面板数据:时间序列数据和截面数据结合的数据(t,i)。

●虚拟变量数据:表征政策,条件等,一般取0或1(d).4、估计评价统计性质的标准无偏:E(^β)=β有效:最小方差性一致:N趋近无穷时,β估计越来越接近真实值5、检验经济意义检验:所估计的模型与经济理论是否相等统计推断检验:检验参数估计值是否抽样的偶然结果,是否显著计量经济检验:是否符合计量经济方法的基本假定预测检验:将模型预测的结果与经济运行的实际对比6、计量经济学的研究过程CH2简单线性回归模型一、相关知识点:1、变量间的关系分为函数关系与相关关系(相关系数是对变量间线性相关程度的度量。

计量经济学笔记(总)

计量经济学笔记(总)

计量经济学三、课程大致安排 1、内容框架2、参考书目:初、中级教程:计量经济学 王维国 东北财经大学出版社计量经济学/Basic Econometrics (印度)古扎拉蒂 中国人民大学 计量经济学 赵国庆 中国人民大学出版社 计量经济学 李子奈 潘文卿 高等教育出版社 高级教程:计量经济模型与经济预测 平耿克 钱小军译 机械工业出版社 《经济计量分析》( Econometric Analysis )3、安装eview ,数据(演算一下)OLS 法(缺少数据)4、安装pdf第二部分 数学预备知识概率论第一章随机变量及其分布一、随机变量的定义设随机试验Ed样本空间为{}π=,如果对两个???,都有唯一w的实数()x w与之对应,并且对任意实数X,??是随机事件,则称事件,则称定义在π上的实单值函数()x w为随机变量。

通俗的说,在实验结果能取得不同数值的量,称为随机变量它的数值是随机试验结果而它由于试验的结果是随机的,所以它的值也是随机的。

二、分类(连续型和离散型)例子:在一个箱子里放着t个数字球,-2,1,1,3,3,3,3从中取一个球,取到球上面的数字是随着试验结果不同而变化。

又如:考四、六级,考过记为1,不过记为0。

再如:抛硬币,正面记为1,反面记为0。

引入话题:举一些现实中的例子,如考试,在公交场等车随机变量-事件-概率-频率-分布率-分布函数-连续随机变量上面我们讲的是一种事件有很多种不同的结果,但在现实中这些出现的结果的可能性并不是相同的。

例子:考六级出现的结果不同,大多数分数集中在50-60和60-70之间,也就是说出现2和3的可能性更大。

=0(0-50),1(50-60),2(60-70),3(70-80),4(80-100)问题:用什么衡量可能性呢?(概率)我们用的概率都是古典概型,即用事件发生概率来表示概率。

频率的定义:一随机事件的n个结果互斥且两个结果等可能发生,并且事件A会有m个基本结果,则事件A发生的概率即是()p A,就是() p A= mn=事件发生的总数/结果总数两点需要注意:1、试验结果互斥;2、等可能性相当。

计量经济学读书笔记

计量经济学读书笔记

计量经济学读书笔记在接触计量经济学这门学科之前,我一直觉得它是那种高深莫测、充满了复杂公式和抽象概念的学问。

但当我真正翻开教材,开始认真研读的时候,才发现它其实就像一个神秘的宝盒,里面装满了有趣又实用的宝贝。

我读的这本计量经济学教材,开篇并没有直接扔给我一堆让人眼花缭乱的公式,而是用了一个很通俗易懂的例子来引入主题。

说的是一家面包店,老板想要知道每天做多少面包才能既满足顾客需求,又不会有太多剩余造成浪费。

这看似简单的问题,背后却隐藏着计量经济学的原理。

随着阅读的深入,我了解到计量经济学其实就是通过建立数学模型,来分析各种经济现象之间的关系。

比如说,我们都知道房价和地段、面积、房屋年龄等因素有关,那到底这些因素是怎么具体影响房价的呢?计量经济学就能通过收集大量的数据,然后运用各种统计方法和工具,给我们一个相对准确的答案。

在学习回归分析这一部分的时候,我可真是费了不少劲。

书上的那些公式和图表,一开始让我感觉像是走进了一个迷宫。

但我静下心来,仔细琢磨每一个概念和步骤。

我就拿自己的零花钱做例子,想分析一下每个月零花钱的花费和我购买零食、文具、书籍等各类物品之间的关系。

我把每个月的支出都详细记录下来,然后试着建立一个简单的回归模型。

这过程中,我发现有时候数据并不像我想象的那么听话,总会有些偏差和异常值。

但也正是在处理这些问题的过程中,我对回归分析有了更深刻的理解。

还有一个让我印象特别深刻的是关于假设检验的内容。

书上说假设检验就像是法官判案,要根据证据来判断一个假设是否成立。

我就想到了之前在网上看到的一个关于某种减肥产品是否有效的争论。

有人说用了这个产品一个月瘦了好几斤,效果特别好;但也有人说根本没效果,纯粹是浪费钱。

这时候如果用计量经济学的假设检验方法,就可以通过收集使用该产品的人的体重数据,设定一个原假设(比如“该减肥产品无效”),然后根据数据计算出相关的统计量,来判断这个原假设是否应该被拒绝。

在学习多重共线性这个概念的时候,我发现它就像是一群人七嘴八舌地说话,让人分不清到底该听谁的。

计量经济学重点笔记第二讲

计量经济学重点笔记第二讲

第二讲 普通最小二乘估计量一、 基本概念:估计量与估计值所谓估计量就是指估计总体参数的一种方法。

在该方法下,给定一个样本,我们可以获得一个具体的估计结果,该结果就是所谓的估计值。

例如,基于一个样本容量为N 的样本,其中i y 为第i 次观测值,我们用样本均值1ˆi uy y N==∑来作为对总体均值u 的估计。

在这里,ˆu 就属于估计量,由于其取值随着样本的变化而变化,因此它是随机的。

现在假设我们持有A 、B 两个样本:12(,,...,)AA A N y y y 与12(,,...,)B B B N y y y ,则基于这两个样本,可以计算出:1ˆAA i uy N =∑ 1ˆB B i u y N=∑ ˆˆA B uu 、分别是估计量ˆu 可能的取值,它们就是估计值。

既然估计量是随机变量,那么它一定服从某种分布,由于估计量与抽样相联系,因此我们把估计量所服从的分布称为抽样分布。

有关统计学的一些基本知识请参见本讲附录一。

笔记:观测值i y 是随机变量y 的一个可能的取值。

我们用样本均值y 来估计总体均值,实际上就是用y 来估计()E y 。

在数理统计中,这被称为矩估计,因为y被称为样本(一阶)矩,而()E y 被称为总体(一阶)矩。

矩估计其要点可以归结为,符号1N∑与符号E 相对应。

我们再来看看矩估计思想的一个应用。

为了估计随机变量y 的方差E[y - E(y )]2(也即总体方差),在矩估计法下,则方差估计量将是:22111)()(i i i y y y NNNy --=∑∑∑。

应该注意到,这个方差估计量是有偏估计,而21)1(i y y N --∑才是方差的无偏估计。

如果样本容量很大,这两个估计量相差无几,事实上两者都是方差的一致估计量。

这个例子暗示,矩估计并不一定会获得一个无偏的估计量,但将获得一个一致的估计量。

关于估计量无偏性与一致性的基本含义见附录1二、 高斯-马尔科夫假定对于模型:01yx ββε=++,则1β、0β相应的OLS 估计量就是:1012()ˆˆˆ()i i ix x y y x x x βββ-==--∑∑ 在一些重要的假定下,OLS 估计量表现出良好的性质。

2024年计量经济学学习心得范文(2篇)

2024年计量经济学学习心得范文(2篇)

2024年计量经济学学习心得范文计量经济学是经济学领域中的一个重要分支,它通过运用数理统计方法和经济理论,对经济现象进行量化分析和研究。

在学习计量经济学的过程中,我不仅获得了专业知识,还培养了许多实际应用问题的解决能力。

以下是我在学习计量经济学过程中的一些心得体会。

首先,在学习计量经济学之前,我需要具备一定的数学和统计基础。

因为计量经济学中经常用到高等数学和统计学中的一些概念和方法,如概率、矩阵运算、假设检验等。

如果没有这些基础,将很难理解计量经济学中的理论和方法。

其次,在学习计量经济学中,理论和实践的结合是非常重要的。

理论部分是学习计量经济学的基础,它主要包括回归分析、时间序列分析、模型诊断等。

这些理论可以帮助我们了解计量经济学的基本原理和方法。

但仅仅掌握理论是不够的,还需要通过实践应用来加深对理论的理解和掌握。

我通过课堂实践和实际项目的研究,深入学习和应用计量经济学中的方法和技巧,不断提升自己的实践能力。

此外,数据质量对计量经济学研究的结果影响很大。

在进行计量经济学研究时,我们首先需要收集相关数据。

数据的收集要非常注意数据的可靠性和完整性,尽可能排除数据中的误差和缺失,以提高研究结果的可信度。

同时,在进行数据分析时,也要注意数据的处理方法和技巧,以保证研究的准确性和可靠性。

同时,在进行计量经济学研究时,模型的选择和假设的合理性也是非常重要的。

计量经济学中有许多不同的模型和方法,我们要根据实际问题的特点和数据的性质选择合适的模型和方法。

同时,我们还要对模型中的假设进行验证和检验,确保模型的假设在实际应用中是成立的。

只有模型选择得当,假设合理,才能得到准确和可靠的研究结果。

此外,在学习计量经济学中,多注意实际问题的解决方法和技巧也是非常重要的。

计量经济学的主要目的是对实际经济问题进行量化分析和研究,因此我们需要学会如何应用计量经济学的理论和方法解决实际问题。

在解决实际问题时,我们需要遵循一定的研究思路和步骤,如问题的界定、数据的收集、模型的建立、参数的估计和检验等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学读书笔记
第一部分基础内容
一、计量经济学与相关学科的关系
二、古典假设下计量经济学的建模过程
1.依据经济理论建立模型
2.抽样数据收集
3.参数估计
4.模型检验
(1)经济意义检验(包括参数符号、参数大小等)
(2)统计意义检验(拟合优度检验、模型显著性检验、参数显
著性检验)
(3)计量经济学检验(异方差检验、自相关检验、多重共线性
检验)
(4)模型预测性检验(超样本特性检验)
5.模型的应用(结构分析、经济预测、政策评价、检验和发展经济理论)
三、 几个重要的“变量”
1. 解释变量与被解释变量
2. 内生变量与外生变量
3. 滞后变量与前定变量
4. 控制变量
四、 回归中的四个重要概念
1. 总体回归模型(Population Regression Model ,PRM)
t t t u x b b y ++=10--代表了总体变量间的真实关系。

2. 总体回归函数(Population Regression Function ,PRF )
t t x b b y E 10)(+=--代表了总体变量间的依存规律。

3. 样本回归函数(Sample Regression Function ,SRF )
t
t t e x b b y ++=10ˆˆ--代表了样本显示的变量关系。

4. 样本回归模型(Sample Regression Model ,SRM )
t
t x b b y 10ˆˆˆ+=---代表了样本显示的变量依存规律。

总体回归模型与样本回归模型的主要区别是:①描述的对象不同。

总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系。

②建立模型的依据不同。

总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。

③模型性质不同。

总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变。

总体回归模型与样本回归模型的联系是:样本回归模型是总体回
归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。

五、 随机误差项的内容
1. 模型中被忽略的影响因素的影响
2. 模型关系设定不准确的影响
3. 变量的测量误差影响
4. 随机因素影响
六、 一元线性回归模型的基本假定(古典假定)
①零均值 0)(=i u E
②同方差 2)(σ=i u Var
③无自相关性 0),(=j i u u Cov
④解释变量与随机扰动项i e 不相关 0),(=i i u x Cov
⑤随机扰动项服从正态分布 ),0(~2σN u i
⑥解释变量之间不相关(多重共线性)0),(=j i x x Cov (属于多元线性回归假定)
七、 OLS 估计式特性(Best Linear Unbiased Estimators )
➢ 线性性(Linear,指参数估计量0ˆb 与1
ˆb 分别为观测值t y 和随机误差项t u 的线性函数或线性组合)
➢ 无偏性(Unbiased,指参数估计量0
ˆb 和1ˆb 的均值分别等于总体参数值0b 与1b )
➢ 最小方差性(Best,有效性,指在所有的线性、无偏估计量中,
最小二乘估计量0
ˆb 和1ˆb 的方差最小)
第二部分 计量经济检验
在古典线性回归模型中,应用最小二乘法估计的估计量具有
BLUE 的特性,但是当模型不是线性模型和不满足古典假设的时候,最小二乘法估计的估计量不再有BLUE 的特性。

本部分主要解决非、线性回归模型和违反古典假设下的参数估计与假设检验问题。

一、 非线性回归模型
1. 可线性化模型
(1) 双对数模型(不变弹性模型)
u e K AL Q βα=——u K L A Q +++=ln ln ln ln βα
(2) 半对数模型(不变增长模型)
u x b b y ++=ln 10
u x b b y ++=10ln
(3) 倒数模型(双曲线模型)
u x
b b y ++=110 u x
b b y ++=1110 (4) 多项式模型
u x b x b b y k k ++++=Λ110
(5) 成长模型
A. Logistics 成长曲线
k k t f t t a t a t a a t f e K y ++++=+=Λ2210)
()(,1其中
简化式t b t e b k y 101-+=——t b K
b K y t 10)ln()11ln(-=- B. Gompertz 成长曲线
t
b b K t e y 10+=——10ln ln )ln(ln b t b K y t ⋅+=-
2. 不可线性化模型
对于非线性化模型,一般采用高斯-牛顿迭代估计法进行估计,
即将其展成泰勒级数之后,再利用迭代估计法进行估计。

迭代估计法基本思想:通过泰勒级数展开先使非线性方程在某
一组初始参数估计值附近线性化,然后对这一线性方程应用OLS 法,得出一组新的参数估计值。

重复直至参数估计值收敛为止。

二、 违反古典假设的回归模型
1. 异方差性(针对古典假定②)
A 概念:随机误差项i u 的方差不等于一个常数,即
),,3,2,1()(2n i X u Var i i i K =≠=常数σ
B 产生原因(遗漏了重要的解释变量、模型形式有误、统计
误差、偶然随机因素)
C 后果()ˆ(1
βVar 增大、无法计算估计误差和估计区间、解释变量显著性检验失效t 检验失效、预测精度降
低)
D 检验(图示法、解析法Spearman 等级相关系数检验、戈德
菲尔德—匡特Goldfeld-Quandt 检验、帕克
Park 检验、格里瑟Glejser 检验、怀特White
检验)--重点理解,要求解释检验过程E措施(加权最小二乘法WLS)
2.自相关性(针对古典假定③)
A概念:在任何具体时期中,u值都与它自己以前的值(或
几个数值)相关。

B产生原因(经济惯性、模型设定有误、数据处理过程中产
生、蛛网现象、随机现象本身原因)
C后果(参数估计量不再有效但仍无偏、估计误差和估计区
间变大、t检验失效、预测精度降低)D检验(图示法、D-W检验)
(偏相关系数检验、BG检验)
E措施(广义差分法)
3.多重共线性(针对古典假定⑥)
A概念:解释变量之间存在精确的或近似的线性相关关系。

B产生原因(经济变量的内在联系、变量间有相同的变化趋
势、引入滞后模型、数据资料的局限性)C后果(参数是可估计的,但方差变大、估计误差与估计区
间变大、t检验失效、回归模型不稳定)D检验(相关系数、辅助回归模型、方差膨胀因子、特征值)
E措施(利用“事前信息”)
(待续)。

相关文档
最新文档