常用光学薄膜的基本设备_原理和方法

合集下载

《光学薄膜设计理论》课件

《光学薄膜设计理论》课件

总结词
随着光电器件的发展,光学薄膜的应用领域也在不断 扩展。新型光电器件对光学薄膜的要求更高,需要不 断探索新的应用领域和场景。
详细描述
光学薄膜在新型光电器件中具有广泛的应用前景。例 如,在激光器、太阳能电池、光电传感器等领域中, 光学薄膜可以起到增益介质、反射镜、滤光片、保护 膜等作用。此外,随着光电器件的微型化和集成化发 展,光学薄膜的应用场景也在不断扩展,如光子晶体 、微纳光学器件等。这些新型光电器件的发展将进一 步推动光学薄膜技术的进步和应用领域的拓展。
薄膜的均质膜系法
总结词
将多层薄膜视为一个整体,并使用均质膜系法来计算反射、透射和吸收系数的方 法。
详细描述
均质膜系法是一种更精确的光学薄膜设计方法。它将多层薄膜视为一个整体,并 使用均质膜系法来计算反射、透射和吸收系数。这种方法适用于薄膜层数较多、 折射率变化较大的情况,能够更准确地模拟薄膜的光学性能。
光的波动理论概述
光的波动理论认为光是一种波动现象,具有振动 、传播和干涉等特性。
波动方程的推导
通过麦克斯韦方程组推导出波动方程,描述光波 在介质中的传播规律。
波前的概念
光的波动理论中引入了波前的概念,用于描述光 波的相位和振幅。
光的干涉理论
光的干涉现象
光的干涉是指两束或多束相干光波在空间某一点叠加时,产生明 暗相间的干涉条纹的现象。
按制备方法分类
03
物理气相沉积、化学气相沉积、溶胶-凝胶法等。
光学薄膜的应用
光学仪器
照相机、望远镜、显微镜等。
光电子
激光器、光探测器、光放大器等。
通信
光纤、光波导、光放大器等。
摄影
滤镜、镜头镀膜等。
02
光学薄膜设计基础

光学薄膜材料的光学性能研究

光学薄膜材料的光学性能研究

光学薄膜材料的光学性能研究光学薄膜材料是一种具有特殊结构的材料,其研究对象主要是光的传播、反射和吸收等光学性质。

正因为其独特的性能,光学薄膜材料在光电子技术、光学传输等领域有着广泛的应用。

本文将探讨光学薄膜材料的光学性能研究,包括其原理、方法和应用。

首先,光学薄膜材料的研究需要了解其光学性质的基本原理。

光学薄膜材料的光学性质主要包括折射率、透过率、反射率和吸收率等。

折射率是光射入材料中时的折射行为,是衡量材料对光的传播速度影响的指标。

透过率指的是光传递时,材料对其中的透过光的量。

反射率则是测量光射入材料表面后反射的光的比例。

吸收率则是指材料对光的吸收程度。

通过对这些光学性质的研究,我们可以深入了解材料的光学特性。

其次,研究光学薄膜材料的光学性能需要借助一些实验方法。

常用的实验方法包括透射光谱、反射光谱、椭偏仪测量等。

透射光谱是测量材料在光通过时透过光的光谱分布,可以帮助分析材料的透明度和吸收率。

反射光谱则是测量材料的反射光的光谱分布,用以分析材料的反射率。

椭偏仪测量则是通过测量材料对椭偏光的旋转角度,来分析材料的旋光性质,从而研究材料的结构和性能。

光学薄膜材料的研究不仅仅停留在理论层面,还有着广泛的应用价值。

其中最为重要的应用之一是在光电子设备中的应用。

光电子器件可以利用光学薄膜材料的折射率和反射率等性质来改变光的传输和转换行为。

比如,通过使用光学薄膜材料制作光学滤波器,可以实现在特定波长范围内的光的选择性透过或反射,从而实现光信号的调控。

此外,光学薄膜材料还可以用于制作光学镜片、薄膜光学器件等,广泛应用于光学传输、光学显示和光纤通信等领域。

在光学薄膜材料的研究中,还存在着一些挑战和问题。

首先,光学薄膜材料的制备和加工技术要求十分高,需要掌握严格的工艺和材料处理方法。

其次,光学薄膜材料的光学性能与材料的结构密切相关,因此需要对材料的微观结构进行研究。

此外,光学薄膜材料的光学性能也受到环境因素的影响,如温度、湿度等。

光学薄膜技术及其应用

光学薄膜技术及其应用

光学薄膜技术及其应用张三1409074201摘要:介绍了传统光学薄膜的原理,根据薄膜干涉的基本原理及其特点,介绍了光学薄膜的性能、制备技术,研究了光学薄膜在的应用和今后的发展趋势。

关键词:光学薄膜、薄膜干涉、应用、薄膜制备引言:光学薄膜是指在光学玻璃、光学塑料、光纤、晶体等各种材料的表面上镀制一层或多层薄膜,基于薄膜内光的干涉效应来改变透射光或反射光的强度、偏振状态和相位变化的光学元件,是现代光学仪器和光学器件的重要组成部分。

光学薄膜技术的发展对促进和推动科学技术现代化和仪器微型化起着十分重要的作用,光学薄膜在各个新兴科学技术中都得到了广泛的应用。

本文在简单叙述薄膜干涉的一些相关原理的基础上,介绍了光学薄膜常见的几种制备方法,研究了光学薄膜技术的相关应用,并且展望了光学薄膜研究的广阔前景。

正文:1.光学薄膜的原理光学薄膜的直接理论基础是薄膜光学, 它是建立在光的干涉效应基础上的、论述光在分层介质中传播行为。

一列光波照射到透明薄膜上,从膜的前、后表面或上、下表面分别反射出两列光波,这两列相干光波相遇后叠加产生干涉。

该理论可以比较准确地描述光在数十微米层、纳米层甚至原子层厚的薄膜中的传播行为,由此设计出不同波长、不同性能、适应不同要求的光学薄膜元件。

2.光学薄膜的性质及功能光学薄膜最基本的功能是反射、减反射和光谱调控。

依靠反射功能, 它可以把光束按不同的要求折转到空间各个方位;依靠减反射功能,它可以将光束在元件表面或界面的损耗减少到极致, 完美地实现现代光学仪器和光学系统的设计功能;依靠它的光谱调控功能, 实现光学系统中的色度变换, 获得五彩缤纷的颜色世界。

不仅如此, 光学薄膜又是光学系统中的偏振调控、相位调控以及光电、光热和光声等功能调控元件, 光学薄膜的这些功能, 在激光技术、光电子技术、光通信技术、光显示技术和光存储技术等现代光学技术中得到充分的应用, 促进了相关技术和学科的发展。

3.传统光学薄膜和新型光学薄膜3.1传统光学薄膜传统的光学薄膜是以光的干涉为基础。

薄膜的干涉的原理及应用

薄膜的干涉的原理及应用

薄膜的干涉的原理及应用一、薄膜干涉的基本概念薄膜干涉是指光波在经过透明薄膜时发生的干涉现象。

薄膜是一种在物体表面上有一定厚度的透明材料层。

当光波通过薄膜时,部分光波会被反射,而部分光波会被折射。

这两部分光波在空间中叠加形成干涉。

薄膜干涉现象是由于光的波动性和光在不同介质中传播速度不同的性质所引起的。

主要的原理是反射干涉和折射干涉。

二、薄膜干涉的原理2.1 反射干涉当一束光波垂直入射到薄膜上时,部分光波被反射,部分光波被折射。

反射光波和折射光波之间会发生干涉现象,形成反射干涉。

反射干涉的原理可以用光程差来解释。

光程差是指光波从光源到达观察者的路径长度差。

当反射的两束光波的光程差是波长的整数倍时,它们会相干叠加,形成明暗相间的干涉条纹。

2.2 折射干涉当光波从一个折射率较高的介质进入到一个折射率较低的介质中时,光波会发生折射。

在这个过程中,反射和透射的光波之间也会发生干涉。

折射干涉的原理与反射干涉类似,都是由光程差引起的。

当折射的两束光波的光程差是波长的整数倍时,它们会相干叠加,形成干涉条纹。

三、薄膜干涉的应用薄膜干涉在许多领域中有着广泛的应用,下面列举了几个主要的应用:3.1 光学镀膜薄膜干涉在光学镀膜中有着重要的应用。

通过在光学元件的表面上镀上特定的薄膜,可以改变光学元件的反射和透射特性。

利用薄膜的干涉效应,可以实现对特定波长的光的反射和透射的选择性增强或减弱,从而改善光学元件的性能。

3.2 惠斯托克森干涉仪惠斯托克森干涉仪是一种基于薄膜干涉原理的光学仪器。

它由两个平行的透明薄膜组成,在光路中产生干涉现象。

通过观察干涉条纹的变化,可以测量物体的形状、厚度和折射率等参数。

3.3 光学薄膜滤波器光学薄膜滤波器利用薄膜干涉的原理,可以选择性地透过或反射特定波长的光。

这种滤波器在光学传感器、摄像机、光学仪器等领域中广泛应用,用于分离和选择特定的光谱成分。

3.4 光膜干涉显示技术光膜干涉显示技术利用薄膜的干涉效应,在显示屏上产生出明亮、清晰的图像。

光学增透膜原理

光学增透膜原理

光学增透膜原理一、引言光学增透膜是一种广泛应用于光电子领域的技术,它可以增强透射光的亮度和清晰度,提高成像质量和显示效果。

本文将详细介绍光学增透膜的原理,包括其基本结构、工作原理、制备方法和应用领域。

二、基本结构光学增透膜是一种多层薄膜结构,由若干层不同折射率的材料交替堆叠而成。

其中,每一层材料的厚度都是波长的几分之一,通常在几十到几百个纳米之间。

这些材料可以是金属、氧化物、氮化物等无机物或有机聚合物等有机物。

三、工作原理当入射光线穿过多层薄膜结构时,会发生干涉现象。

具体来说,在相邻两层材料界面上,部分入射光会被反射回来,部分则会穿过界面进入下一层。

这些反射和透射产生了两条不同路径上的光线,并在下一个界面处再次发生反射和透射。

这样的过程会不断重复,直到光线穿过所有层后被完全透射出去。

在这个过程中,由于不同折射率的材料会对光线产生不同的相位差,因此会导致干涉现象。

如果两条路径上的光线相位相同,则它们在某些位置处会互相增强,形成明显的亮度峰;如果两条路径上的光线相位相反,则它们在某些位置处会互相抵消,形成暗淡区域。

通过调节每一层材料厚度和折射率,可以使得多层薄膜结构对特定波长的光线呈现出明显的透过峰值。

四、制备方法目前常用的制备方法包括物理气相沉积法、磁控溅射法、电子束蒸发法等。

其中,物理气相沉积法是最常用的一种方法。

该方法将材料加热至高温状态,使其蒸发并沉积到基底表面上形成多层薄膜结构。

通过控制沉积速率、温度和气体压力等参数,可以得到具有特定波长透过率的光学增透膜。

五、应用领域光学增透膜广泛应用于各种光电子器件中,如太阳能电池、液晶显示器、LED照明设备等。

其中,液晶显示器是最常见的应用之一。

在液晶显示器中,光学增透膜可以提高背光模块的亮度和均匀性,同时减少反射和散射现象,从而提高图像的清晰度和对比度。

此外,光学增透膜还可以用于太阳能电池板的表面处理,使其吸收更多的太阳能并提高转换效率。

六、总结本文详细介绍了光学增透膜的原理、基本结构、工作原理、制备方法和应用领域。

薄膜材料制备原理、技术及应用

薄膜材料制备原理、技术及应用

薄膜材料制备原理、技术及应用1. 引言1.1 概述薄膜材料是一类具有微米级、甚至纳米级厚度的材料,其独特的性质和广泛的应用领域使其成为现代科学和工程中不可或缺的一部分。

薄膜材料制备原理、技术及应用是一个重要且广泛研究的领域,对于探索新材料、开发新技术以及满足社会需求具有重要意义。

本文将着重介绍薄膜材料制备的原理、常见的制备技术以及不同领域中的应用。

首先,将详细讨论涂布法、旋涂法和离子束溅射法等不同的制备原理,分析各自适用的场景和优缺点。

然后,将介绍物理气相沉积技术、化学气相沉积技术以及溶液法制备技术等常见的薄膜制备技术,并比较它们在不同实际应用中的优劣之处。

最后,将探讨光电子器件、传感器和生物医药领域等各个领域中对于薄膜材料的需求和应用,阐述薄膜材料在这些领域中的重要作用。

1.2 文章结构本文将按照以下顺序进行介绍:首先,在第二部分将详细介绍薄膜材料制备的原理,包括涂布法、旋涂法以及离子束溅射法等。

接着,在第三部分将探讨物理气相沉积技术、化学气相沉积技术以及溶液法制备技术等常见的制备技术。

然后,在第四部分将介绍薄膜材料在光电子器件、传感器和生物医药领域中的应用,包括各个领域需求和现有应用案例。

最后,在结论部分对整篇文章进行总结,并提出未来研究方向和展望。

1.3 目的本文旨在全面系统地介绍薄膜材料制备原理、技术及应用,为读者了解该领域提供一个基本知识框架。

通过本文的阐述,读者可以充分了解不同的制备原理和方法,并了解到不同领域中对于特定功能或性质的薄膜材料的需求与应用。

同时,本文还将重点突出薄膜材料在光电子器件、传感器和生物医药领域中的重要作用,以期为相关研究提供参考和启发。

以上为“1. 引言”部分内容的详细清晰撰写,请根据需要进行修改补充完善。

2. 薄膜材料制备原理:2.1 涂布法制备薄膜:涂布法是一种常见的制备薄膜的方法,它适用于各种材料的制备。

首先,将所需材料以溶解或悬浮态形式制成液体,然后利用刷子、喷雾或浸渍等方式将液体均匀地涂敷在基板上。

光学薄膜原理范文

光学薄膜原理范文

光学薄膜原理范文光学薄膜是一种能够控制光的传播和相互作用的材料。

它由多个独立的薄膜层堆叠而成,每一层都具有特定的光学性质,通过组合这些层可以实现对光波的反射、透射和吸收等控制。

光学薄膜在光学乃至电子学领域具有重要的应用,例如光学透镜、滤波器、反射镜等。

光学薄膜的原理可以用来解释其光学性质。

当光线照射到薄膜表面上时,一部分光会被反射,一部分光会被透射,而另一部分光会被薄膜层吸收。

反射的光线会通过干涉效应产生干涉现象,干涉的结果决定了反射光的特性。

透射的光线也会发生干涉,但由于透射光是由介质到另一个介质的传播,因此透射光的干涉效应相对较弱。

光学薄膜的核心原理是通过不同材料的折射率差异以及层厚的选择,实现特定的光学效果。

当光线从一个介质射入另一个折射率较高的介质时,会发生折射现象。

在折射过程中,入射光的波长发生变化,产生所谓的相位差。

通过适当选择薄膜的厚度和材料的折射率,可以控制入射光的相位差,进而控制反射和透射的光。

最常见的光学薄膜设计是通过光学膜层的堆叠来实现的,每一层都具有特定的折射率。

在多层膜中,光波在不同的膜层之间反复反射,产生干涉效应。

通过适当选择膜层的折射率和厚度,可以实现对光的任意反射和透射的控制。

例如,通过选择一系列厚度小于波长的膜层并调整其折射率,可以实现宽带反射或选择性反射。

相比之下,通过选择一系列厚度大于波长的膜层,可以实现光的透射和吸收。

除了膜层的堆叠,还可以利用分级膜结构的设计来实现更加复杂的光学效果。

分级膜结构可以通过将单一膜层分成多个子层,并根据每个子层的厚度和折射率进行设计。

分级膜允许更好地控制干涉和透射效果,从而实现更高级别的光学性质。

光学薄膜的研究和应用是一个相对复杂的领域,需要考虑材料的选择、制备方法、薄膜结构设计以及实际制造过程中的工艺要求等多个方面。

然而,光学薄膜的原理和设计原则为我们提供了实现对光传播和相互作用的控制的新思路和方法。

通过对光学薄膜原理的深入研究,我们可以更好地理解光的本质,并将其应用于新材料和新技术的开发中。

光学薄膜的原理

光学薄膜的原理

光学薄膜的原理光学薄膜是指透明或半透明薄膜,它们通常是几个纳米到几微米厚度的介质薄层,用于控制光波的传输和干涉。

这些薄膜广泛应用于许多领域,包括光电技术、太阳能电池、显示器、光通信和医疗设备等。

光学薄膜的原理通过控制反射、透射和干涉来改变光的性质,使光学器件更加复杂多变。

光学薄膜的原理起源于平面薄膜的反射和透射定律,这些定律指出薄膜表面的光线会以特定的角度反射和透射。

当光线入射到薄膜表面上时,一部分光线被反射,一部分光线被透射。

反射率和透射率是薄膜的基本物理特性,这两个参数取决于入射角和薄膜材料的折射率。

薄膜的折射率是一个非常重要的参数,它指代材料对光的折射能力。

在某些材料中,折射率可以被改变,例如使用一些材料可以制造出具有负折射率的薄膜。

这样的薄膜具有很强的折射和透射能力,可用于制造透镜和干涉器。

另一个重要的参数是薄膜的厚度。

当光在薄膜上反射时,光波会被反射。

在某些情况下,这些反射波将与入射波相干,导致一系列光波的干涉和衍射。

这些干涉效应通常和薄膜的厚度密切相关。

光学薄膜可以通过接连叠加来形成多层薄膜。

每个薄膜具有不同的厚度和材料,可以用于控制光波的干涉。

这样的多层薄膜通常称为反射镜,可以控制光学波在两个介质之间来回反射。

多层薄膜可用于制造Fabry-Pérot干涉仪、滤光器、全息图等等。

在光学薄膜设计中,折射率、厚度和反射率是最重要的三个参数。

通过调整这些参数,可以控制光波的传输、衍射和干涉。

光学薄膜设计通常会考虑多个因素,包括可制造性、光学性能、材料选择等,以平衡这些参数以获得最优解。

除了基本的理论原理,光学薄膜也有着广泛的应用。

其中之一是太阳能电池板。

太阳能电池利用光的能量来产生电能,而光学薄膜可以用于优化光的传输和捕获。

具体来说,光学薄膜可以用于太阳能电池板的防反射和提高电池效率。

在这个应用中,反射被最小化以使得更多的太阳光能够通过电池板从而产生更多的电能。

另一种应用是在激光系统中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于25°C的空气, l·P 0.667(cm·Pa),于是
P 0.667 l 0.667 /134.44 4.96103 Pa
若 P=6.710-3Pa,则:
l 0.667 P 0.667 / 0.0067 100cm
于是
f 1 ed l 1 e30/100 26%
蒸发分子和残余气体间的反应
化学液相沉积(CLD):工艺简单,成本低,但膜层厚度不 能控制,膜层强度差,较难获得多层膜且存在水污染问题。
光学真空镀膜机的组成:真空系统、热蒸发系统和膜层厚 度控制系统。
什么是真空? 压强低于一个大气压的任何气态空间。
真空度:表征真空的物理量。实际上是用气体压强来表示 的。压强越小,真空度越高。
一气体之间的碰撞为主,压力在103Pa左右气体开始出现导 电现象。 10-1 Pa是一般机械泵能达到的极限真空。 10-6 Pa为扩散泵能达到的极限真空。在10-1~ 10-6 Pa区真空特 性以气体分子与容器壁碰撞为主。在超高真空区,气体分 子在固体上以吸附停留为主,此时测量和获得的工具与高 真空区也不一样。
3.2 真空的获得与检测
真空泵主要性能参数
➢ 抽气速率(体积流率):L/s, m3/s; ➢ 极限真空: 可以抽到的最低压强; ➢ 启动压强: 泵无损启动,并有抽气作用的压强; ➢ 前级压强: 排气口压强; ➢ 最大前级压强(反压强):超过了就会使泵损坏或不能 正常工作的前级压强。
真空泵分类
1)气体传输泵:通过不断吸入和排出气体达到抽气的目的。 变容式泵腔容积周期性变化完成吸气和排气。如油封旋片
例题: 设蒸发源到基板的距离为30cm, 在25C时,如要求80%以 上的蒸汽分子在行进的过程中不碰撞, 则要求真空度至 少为多少? 若真空度为6.710-3Pa, 则碰撞的气体分子大 约占百分之几?
解:由 f 1 Nd N0 1 ed l 0.2 1 e30 l l 134.44 cm
教学内容
光学镀膜系统的组成及其作用; 真空的获得和检测方法; 用热蒸发方法制造光学薄膜; 用溅射方法制造光学薄膜; 离子镀原理和方法。
教学目的和要求
了解常用光学薄膜的基本设备、原理和方法。
3.1 常用光学真空镀膜系统
获得光学薄膜两种工艺:物理气相沉积和化学液相沉积 (CLD) ➢ 物理气相沉积(PVD):在真空条件下,采用物理方法, 将材料源——固体或液体表面气化成气态原子、分子或部 分电离成离子,并通过低压气体(或等离子体)过程,在基 体表面沉积具有某种特殊功能的薄膜的技术。 主要方法:真空蒸镀、溅射镀膜、电弧等离子体镀、离子 镀膜及分子束外延等。 特点:须在真空下进行,成本高,但膜厚可以精确控制, 膜层强度好。
式机械泵、罗茨泵等。 能量传动式用高速旋转的叶片或高速射流把能量传递给气
体分子,使气体分子连续地从入口向出口运动。如分子泵、油 扩散泵等。 2)气体捕集泵:利用泵体、工作物质对气体分子的吸附和凝 结作用抽出容器内的气体。如吸附泵、吸气剂泵和低温泵等。
真空泵工作范围
机械泵: 1~105Pa;罗茨泵: 10~104Pa;油扩散泵: 1~10-6Pa; 窝轮分子泵: 1~10-8Pa;溅射离子泵: 1~10-8Pa;低温泵: 10-1~10-8Pa。
罗茨泵可辅助提高机械泵和油扩散泵串联机组的抽气速度,从 而压缩抽真空时间,提高工作效率。
热蒸发系统
一般光学真空镀膜机中有电阻热蒸发电极(用于蒸发低熔点材 料)两对,电子束蒸发源(用于蒸发高熔点材料)一至两个。
膜层厚度控制系统
精密的膜层厚度控制系统是光学镀膜系统的特点。按控制方法 可分两类: 1)石英晶体膜厚仪。它是基于石英振荡频率随膜厚的增加而 衰减的原理进行膜厚测量的,所测量的是几何膜厚。测量灵敏 度可达0.1nm。 2)光电膜厚仪。它以被镀光学零件的透过或反射信号随膜厚 的变化值作为测量膜厚的依据,所测的是膜层的光学厚度。测 量灵敏度较低。属于新技术,有望完善取代前者。
量度单位:帕斯卡(Pa) 1mmHg=133.3Pa; 1Torr(托)=133.3Pa; 1mbar(毫巴)=0.75 Torr=100 Pa
真空的划分 粗真空:>103Pa;低真空:103~ 10-1 Pa; 高真空:10-1~ 10-6 Pa;超高真空:<10-6Pa
真空划分的依据 大于103Pa以上的气体性质与常压差不多;其气流特性
l= kT , k、T、 和P为波耳茨曼常数、温度、分子直径 2 2P
和压强。
温度和气体种类一定时有:l·P=常数
对于25°C的空气, l·P0.667(cm·Pa)
被碰撞的百分比
f 1 Nd N0 1 ed l
d l, f 63%; d l 10, f 9%;
为提高平均自由程,需提高真空度。
真空系统:真空室、抽真空设备、真空检测设备
真空在薄膜制备中的作用: 1) 减少蒸发分子和残余气体的碰撞;
碰撞引起蒸发气体运动散乱。 2) 抑制它们之间的反应。
蒸发分子和残余气体间的反应影响光学膜的纯度。
蒸发分子和残余气体的碰撞
N0个蒸发分子行进距离d后未受残余气体分子碰撞的数目为
Nd N0ed l ,l为平均自由程(气体分子间相邻两次碰撞的距离)
光学真空镀膜机的真空系统: 1)小型机:高真空油扩散泵+低真空机械泵+低温冷阱; 2)大型机:高真空油扩散泵+低真空机械泵+罗茨泵+低温冷阱
或高真空低温冷凝泵(无油,近来)。
抽真空设备
高真空油扩散泵+低真空机械泵+低温冷凝泵
抽真空步骤: 1)用低真空机械泵先将真空室抽到低于5Pa的低真空状态,为 油扩散泵后续抽真空作准备; 2)由机械泵和油扩散泵串联机组将真空室抽到高真空状态 (10-3Pa)。此时机械泵的作用是帮助油扩散泵将气体排到大 气中。 低温冷凝泵的最大优点为无油,避免油污染,镀膜牢固性好。
需考虑残余气体分子到达基板的速率和蒸发分子到达基板的 速率。为保证膜层质量,被碰撞的几率f10%,则有
P 、厚度和膜层
材料的分子量,P为气压,t、R和T为蒸发时间、气体普适常数 和温度。
为保证膜层质量,f 需10% 光学镀膜系统的真空度指标。
相关文档
最新文档