与圆有关的轨迹方程的求法培训资料

合集下载

《轨迹方程的求法》课件

《轨迹方程的求法》课件
结合现代科技手段,如人工智能、大数据等,对 轨迹方程进行数据分析和挖掘,揭示隐藏的运动 规律和模式。
THANKS
感谢观看
05
总结与展望
轨迹方程的重要性和意义
轨迹方程是描述物体运动规律的 重要工具,对于物理学、工程学 、航天科学等领域具有重要意义

通过轨迹方程,我们可以精确地 预测物体未来的位置和运动状态 ,为实际应用提供重要的参考依
据。
掌握轨迹方程的求法,有助于提 高我们对物体运动规律的认识和 理解,为相关领域的研究和发展
04
1. 根据已知条件,确定动点坐标之间的关 系。
2. 运用代数方法,将坐标关系转化为轨迹 方程。
05
06
3. 化简轨迹方程,得到最终结果。
参数法
定义:参数法是指引入参数来
适用范:适用于已知条件较
步骤
表示动点的坐标,从而得到轨
迹方程的方法。
01
为复杂,需要引入参数来表示
动点坐标的情况。
02
03
1. 引入参数,表示动点的坐标 。
3. 根据轨迹上点的坐标,推导出轨迹 方程。
03
常见轨迹方程的求解示例
圆轨迹方程的求解
总结词
通过已知条件,利用圆上三点确定一个圆的定理,求解圆心 和半径。
详细描述
首先确定圆上的三个点,然后利用圆上三点确定一个圆的定 理,即圆心在三个点的中垂线交点上,半径等于三个点到圆 心距离的和的一半,求解出圆心和半径,即可得到圆的轨迹 方程。
轨迹方程可以用来描述行星、卫星等 天体的运动轨迹,帮助我们理解宇宙 中的运动规律。
在物理中,有时需要研究两物体碰撞 后的运动轨迹,通过建立轨迹方程并 求解,可以了解碰撞后的运动状态。

圆的方程专题讲义

圆的方程专题讲义

圆的方程专题讲义一、知识梳理圆的定义与方程注意:1确定圆的方程主要方法是待定系数法,大致步骤:(1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a,b,r或D,E,F的方程组.(3)解出a,b,r或D,E,F代入标准方程或一般方程.2.点与圆的位置关系点和圆的位置关系有三种.已知圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.()(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.()(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( )(4)方程x2+2ax+y2=0一定表示圆.()(5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.()(6)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的圆.()题组二:教材改编2.以点(3,-1)为圆心,并且与直线3x+4y=0相切的圆的方程是()A .(x -3)2+(y +1)2=1B .(x -3)2+(y -1)2=1C .(x +3)2+(y -1)2=1D .(x +3)2+(y +1)2=13.圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为_______.题组三:易错自纠4.若方程x 2+y 2+mx -2y +3=0表示圆,则m 的取值范围是( )A .(-∞,-2)∪(2,+∞)B .(-∞,-22)∪(22,+∞)C .(-∞,-3)∪(3,+∞)D .(-∞,-23)∪(23,+∞)5.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( )A .-1<a <1B .0<a <1C .a >1或a <-1D .a =±46.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1三、典型例题题型一:圆的方典例 (1)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为__________.(2)已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为______________. 思维升华:(1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值;②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.跟踪训练 一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,则该圆的方程为______________________.题型二:与圆有关的最值问题典例 已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值.引申探究1.在本例的条件下,求y x的最大值和最小值. 2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值.思维升华:与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -b x -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离的平方的最值问题.跟踪训练:已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上.(1)求y x的最大值和最小值; (2)求x +y 的最大值与最小值.题型三:与圆有关的轨迹问题典例已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.思维升华:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)几何法:利用圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.跟踪训练 已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求:(1)直角顶点C 的轨迹方程;(2)直角边BC 的中点M 的轨迹方程.注意:利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.四、反馈练习1.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程为( )A .(x +1)2+(y -3)2=29B .(x -1)2+(y +3)2=29C .(x +1)2+(y -3)2=116D .(x -1)2+(y +3)2=1162.圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( )A .x 2+y 2+10y =0B .x 2+y 2-10y =0C .x 2+y 2+10x =0D .x 2+y 2-10x =0 3.圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4B .(x -2)2+(y -2)2=4C .x 2+(y -2)2=4D .(x -1)2+(y -3)2=44.若a ∈}431,0,2{ ,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3 5.圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是( )A .1+ 2B .2C.1+22D.2+226.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是()A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=17.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.8.若圆C经过坐标原点与点(4,0),且与直线y=1相切,则圆C的方程是__________________.9.已知圆C:x2+y2+kx+2y=-k2,当圆C的面积取最大值时,圆心C的坐标为__________.10.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是__________.11.在平面直角坐标系xOy中,已知圆P在x轴上截得的线段长为22,在y轴上截得的线段长为2 3. (1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为22,求圆P的方程.12.已知M为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).(1)求|MQ|的最大值和最小值;(2)若M(m,n),求n-3m+2的最大值和最小值.13.已知圆C:(x-3)2+(y-4)2=1,设点P是圆C上的动点.记d=|PB|2+|P A|2,其中A(0,1),B(0,-1),则d的最大值为________.14.已知圆C截y轴所得的弦长为2,圆心C到直线l:x-2y=0的距离为55,且圆C被x轴分成的两段弧长之比为3∶1,则圆C的方程为_________________.。

高考数学轨迹方程的求解知识点归纳整理-圆的轨迹方程例题

高考数学轨迹方程的求解知识点归纳整理-圆的轨迹方程例题

高考数学轨迹方程的求解知识点归纳整理|圆的轨迹方程例题符合一定条的动点所形成的图形,或者说,符合一定条的点的全体所组成的集合,叫做满足该条的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条,也就是符合给定条的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条的动点轨迹方程。

与圆有关的轨迹问题 -高二数学(人教A版2019选择性必修第一册)(解析版)

与圆有关的轨迹问题 -高二数学(人教A版2019选择性必修第一册)(解析版)

与圆有关的轨迹问题知识点1 5种定义形式的圆1、“定义圆”:在平面内,到定点的距离等于定长的点的集合.数学语言描述为:在平面内,{|}M MA r =,其中M 为动点,A 为定点,0r >为定值.2、“斜率圆”:在平面内,与两定点斜率之积为-1的点的集合(除去定点所在垂直于x 轴的直线与曲线的交点).数学语言描述为∶在平面内,{|1}MA MB M k k ⋅=-,其中M 为动点,A ,B 为定点.且点M 的横坐标不等于A ,B 的横坐标.3、“平方圆”:在平面内,到两定点距离的平方和为定值的点的集合.数学语言描述为:在平面内,22{|}M MA MB λ+=,其中M 为动点,A ,B 为定点,λ为定值.注:若(,).(,)A a b B c d ,则点M 的轨迹方程为22221()()[()()]2224a cb d x y ac bd λ++-+-=--+-,此时221[()()]2a cb d λ>-+-.4、“向量圆”:在平面内,与两定点形成向量的数量积为定值的点的集合.数学语言描述为∶在平面内,{|}M MA MB λ⋅=,其中M 为动点,A ,B 为定点,λ为定值 注:若(,).(,)A a b B c d ,则点M 的轨迹方程为22221()()[()()]224a cb d x y ac bd λ++-+-=+-+-,此时221[()()]4a cb d λ>--+-.特别地,若A ,B 为定点,且0MA MB ⋅=,则点M 的轨迹是以AB 为直径的圆拓展:“角度圆”:在平面内,与两定点所成角为定值的点的集合.(角度可用向量的夹角公式表示) 5、“比值圆”(阿波罗尼斯圆):在平面内,到两定点距离之比为定值的点的集合. 数学语言描述为:{|}MAM MBλ=,其中M 为动点,A ,B 为定点,λ为定值,λ>0且λ≠1. 注:当1λ=时,M 的轨迹是线段AB 的垂直平分线. 6、这些圆彼此之间的联系:(1)斜率圆可以看成向量圆的特例,即两向量互相垂直时可以转化为两直线斜率之积等于-1,需要注意斜率不存在的情形.也就是说数量积为零比斜率之积为-1更一般. (2)比值圆与平方圆是一样的,都是用两点间距离公式求解.知识点2 注意“轨迹”与“轨迹方程”的区别1、“轨迹”是图形,“轨迹方程”是方程.2、求轨迹方程后要检验求轨迹方程后一定要注意检验轨迹的纯粹性和完备性,在所得的方程中删去或补上相应的特殊点,以保证方程的解与曲线上的点具有一一对应关系.考点一 直接法求轨迹解题方略:直接法是指将动点满足的几何条件或者等量关系,直接坐标化,列出等式,然后化简而求出动点轨迹方程的一种方法.此法的一般步骤∶建系、设点、列式、化简、限制说明.注:(1)根据已知条件及一些基本公式(两点间距离公式、点到直线的距离公式、直线斜率公式等) (2)根据公式直接列出动点满足的等量关系式,从而得到轨迹方程。

圆的一般方程2(求轨迹方程)

圆的一般方程2(求轨迹方程)

推导圆的标准方程 问题:圆心是C(a,b),半径是r的圆的方程是什么?
设点M (x,y)为圆C上任一点,则|MC|= r。
圆上所有点的集合 y M(x,y) O
P = { M | |MC| = r }
( x a ) ( y b) r
2 2
C(a,b)
x
(x-a)2+(y-b)2=r2
解:由题意,以AB中点为原点,边AB所 在的直线为x轴建立直角坐标系, 如图,则A(-a,0),B(a,0),
xa y , ) 则BC中点为E ( 2 2
设C(x,y),
因为|AE|=m,所以
xa y 2 2 ( a) ( ) m 2 2
化简得(x+3a)2+y2=4m2. 由于点C在直线AB上时, 不能构成三角形,故去掉曲 线与x轴的两个交点, 从而所求的轨迹方程是 (x+3a)2+y2=4m2. (y≠0)
x y = 1. 即点P的轨迹方程为 25 16
2
2
例1 :将圆x2+y2 = 4上的点的横坐标保持不变, 纵坐标变为原来的一半,求所的曲线的方程, y 并说明它是什么曲线? 解: 设所的曲线上任一点的坐标为 2 2 (x,y),圆 x y =4上的
对应点的坐标为(x’,y’),由 题意可得:
0
( x 1) ( y 1) ( x 3) ( y 7)
2 2 2
2
x
曲线的方程
A
将上式两边平方,整理得: x+2y-7=0

2
例2 已知圆A:(x+3)2+y2=100,圆A内一 定点B(3,0),圆P过B点且与圆A内切,求圆心 P的轨迹方程. 解:设|PB|=r.

圆的一般方程(轨迹问题)

圆的一般方程(轨迹问题)

(P124,B3) 已知一曲线是与定点O(0,0),A(3,0)距离的
比是 1 的点的轨迹,求此曲线的轨迹方程,并画出曲线.
2
解:在给定的坐标系里,设点M(x,y)是曲线上的任意一点,
也就是点M属于集合
{M
|
|
OM|
1 }
| AM| 2 由两点间的距离公式,得
y
M
x2 y2 1 (x 3)2 y2 2
CO
Ax
化简得
x2+y2+2x3=0

这就是所求的曲线方程.
直译法
把方程①的左边配方,得(x+1)2+y2=4.
所以方程②的曲线是以C(1,0)为圆心,2为半径的圆.
(P124,B2)长为2a的线段AB的两个端点分别在相互 垂直的两条直线上滑动,则线段AB的中点轨迹为?
x2 y2 a2
轨迹的常用求法:
1.直译法; 2.定义法;
y
B
M

A
x
【课堂练习】
1.已知Rt△ABC中,A(-1,0),B(3,0),
复习引入
【思考1】平面内到一定点A的距离等于定长的
点M的轨迹是什么?
M r
|MA|=r
A
【答】以定点A为圆心,定长r为半径的圆。
【思考2】平面内与两定点A、 B距离相等的点
M的轨迹是什么?
M
|MA|= |MB|
【答】线段AB的垂直平分线。 A
B
典型例题
【例1】已知线段AB的端点B的坐标是(4,3),端点A在圆 (x+1)2+y2=4上运动,求线段AB的中点M的轨迹方程.
3.求轨迹方程的步骤:①建系设点(x,y); ②列式代入; ③化简检验.

与圆有关的轨迹问题

与圆有关的轨迹问题

课下探索: 课下探索: 与两个定圆都相切的动圆的圆心的轨迹
(1)与两圆均外切 )
y A B x
(2)与两圆均内切 ) y
A B x
内切、 外切、 (3)与圆 内切、与圆 外切 4)与圆 外切、与圆 内切 )与圆A内切 与圆B外切 )与圆A外切 与圆B内切 (
y y A B x A B x
方法小结 :与定圆相切的动圆圆心的轨迹情 况复杂, 况复杂, 1.抓牢两个圆心,一个切点,三点一定共线。 1.抓牢两个圆心,一个切点,三点一定共线。 抓牢两个圆心 一定共线 2.抓牢定圆的半径,设出动圆半径作辅助。 2.抓牢 圆的半径 设出动圆半径作辅助。 抓牢定 半径, 动圆半径作辅助 3.抓牢动点到两定点的距离的和与差不放。 3.抓牢动点到两定点的距离的和 不放。 抓牢动点到两定点的距离的
C

探索与定圆相切的动圆圆心轨迹要抓牢动 探索与定圆相切的动圆圆心轨迹要抓牢动 圆圆心到两定点的距离的和与差不放 不放。 圆圆心到两定点的距离的和与差不放。
S A B
C A S S B A B
定点A,同时与定圆 定圆⊙ 结论 :过定点 ,同时与定圆⊙ B 相 的动圆圆心 的轨迹可能是椭圆 圆心S的轨迹可能是椭圆或 切 的动圆圆心 的轨迹可能是椭圆或双 曲线或直线的一部分。 曲线或直线的一部分。
x
x y 变题 2 :已知双曲线的方程为 2 − 2 = 1( a > 0, a b b > 0 ), F1 , F2 分别为左右焦点 , Q 是双曲线上任意 一点 , 从左焦点 F1 作 ∠ F1QF 2 平分线的垂线 , 垂足 为 P , 求点 P 的轨迹方程
F1
O
F2
x
P
M
经过点 A(5,0)且 与 且 例3: C ( x + 5) 2 + y 2 = 49 :圆 的轨迹方 外 切的圆的圆心 P 的轨迹方程

求轨迹方程方法之相关点法(代入法)

求轨迹方程方法之相关点法(代入法)

设点M(x,y),则B(2x-4,2y) 将点B的坐标代入圆的方程,得
(2x-4)2+(2y)2=4整理得 (x-2)2+y2=1
例2 在平面直角坐标系中,点A在圆 x2+y2=4上运动,过点A向x轴作垂线,垂 足为B,M为线段AB上靠近点A的三A在椭圆 x2/4+y2/3=1上运动,过点A向x轴作垂 线,垂足为B,A为线段BM的中点,求点 M的轨迹方程.
求轨迹方程方法之 相关点法(代入法)
教学目的: 要求学生熟练掌握相关点法求轨
迹方程的方法,能灵活运用它解决相关问题
例1 在平面直角坐标系中,A(4,0),点B 在圆x2+y2=4上运动,M为线段AB的中 点,求点M的轨迹方程.
例1 在平面直角坐标系中,A(4,0),点B 在圆x2+y2=4上运动,M为线段AB的中 点,求点M的轨迹方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与圆有关的轨迹方程
的求法
与圆有关的轨迹方程的求法
若已知动点P 1(α ,β)在曲线C 1:f 1(x,y )=0上移动,动点P (x,y )依动点P 1而动,它满足关系:

⎨⎧βα=βα=),(),(y y x x ① 则关于α 、β反解方程组①,得⎩⎨⎧=β=α)
,(),(y x h y x g ② 代入曲线方程f 1(x,y )=0,即可求得动点P 的轨迹方程C :f (x,y )=0.
例1、(求轨迹):已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程.
【例2】已知点A (3,0),点P 在圆x 2+y 2=1的上半圆周上,∠AOP 的平分线交PA 于Q ,求点Q 的轨迹方程.
【法一】如图所示,设P (x 0,y 0)(y 0>0),Q (x ,y ).
∵OQ 为∠AOP 的平分线,∴
3
1||||==OQ OP QA PQ , ∴Q 分PA 的比为31
.
∴⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=y y x x y y y x x x 3413443311031)1(43311313000000即 又因2020y x +=1,且y 0>0,∴19164391622
=+⎪⎭⎫ ⎝⎛-y x . ∴Q 的轨迹方程为)0(16
9)43
(22>=+-y y x . 例3、已知圆,422=+y x 过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程为( )
A .4)1(22=+-y x
B .)10(4)1(22<≤=+-x y x
C .4)2(22=+-y x
D .)10(4)2(22<≤=+-x y x
变式练习
1:已知定点)0,3(B ,点A 在圆122=+y x 上运动,M 是线段AB 上的一点,且
MB AM 3
1=,则点M 的轨迹方程是 解:设),(),,(11y x A y x M .∵MB AM 31=,∴),3(3
1),(11y x y y x x --=--, ∴⎪⎪⎩⎪⎪⎨⎧-=--=-y y y x x x 31)3(3111,∴⎪⎪⎩
⎪⎪⎨⎧=-=y y x x 3413411.∵点A 在圆122=+y x 上运动,∴
12121=+y x ,∴1)34()134(22=+-y x ,即16
9)43(22=+-y x ,∴点M 的轨迹方程是16
9)43(22=+-y x . 2:已知定点)0,3(B ,点A 在圆122=+y x 上运动,AOB ∠的平分线交AB 于点M ,则点M 的轨迹方程是 .
解:设),(),,(11y x A y x M .∵OM 是AOB ∠的平分线,∴3
1==OB OA MB AM , ∴MB AM 3
1=.由变式1可得点M 的轨迹方程是169)43(22=+-y x . 3:已知直线1+=kx y 与圆422=+y x 相交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB ,求点P 的轨迹方程.
解:设),(y x P ,AB 的中点为M .∵OAPB 是平行四边形,∴M 是OP 的中点,
∴点M 的坐标为)2
,2(y x ,且AB OM ⊥.∵直线1+=kx y 经过定点)1,0(C ,∴CM OM ⊥,∴0)12
(2)2()12,2()2,2(2=-+=-⋅=⋅y y x y x y x CM OM ,化简得1)1(22=-+y x .∴点P 的轨迹方程是1)1(22=-+y x .
4、圆9)1()2(22=++-y x 的弦长为2,则弦的中点的轨迹方程是
5、已知半径为1的动圆与圆16)7()5(22=++-y x 相切,则动圆圆心的轨迹方程是( )
A.25)7()5(22=++-y x B. 17)7()5(22=++-y x 或15)7()5(22=++-y x
C. 9)7()5(22=++-y x D. 25)7()5(22=++-y x 或9)7()5(2
2=++-y x 6.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )
A B 4 C 8 D 9
7:已知点M 与两个定点)0,0(O ,)0,3(A 的距离的比为2
1,求点M 的轨迹方程.
8 如图所示,已知圆422=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B 做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.
分析:按常规求轨迹的方法,设),(y x H ,找y x ,的关系非常难.由于H 点随B ,C 点运动而运动,可考虑H ,B ,C 三点坐标之间的关系.
解:设),(y x H ,),(''y x C ,连结AH ,CH ,
则BC AH ⊥,AB CH ⊥,BC 是切线BC OC ⊥,
所以AH OC //,OA CH //,OC OA =, 所以四边形AOCH 是菱形.
所以2==OA CH ,得⎪⎩⎪⎨⎧=-=.
,2''x x y y 又),(''y x C 满足42'2'=+y x ,
所以)0(4)2(22≠=-+x y x 即是所求轨迹方程.
说明:题目巧妙运用了三角形垂心的性质及菱形的相关知识.采取代入法求轨迹方程.做题时应注意分析图形的几何性质,求轨迹时应注意分析与动点相关联的点,如相关联点轨迹方程已知,可考虑代入法.
9. 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.
分析:利用几何法求解,或利用转移法求解,或利用参数法求解.
解法一:如图,在矩形APBQ 中,连结AB ,PQ 交于M ,显然AB OM ⊥,PQ AB =,
在直角三角形AOM 中,若设),(y x Q ,则)2
,2(
b y a x M ++. 由222OA AM OM =+,即 22222])()[(4
1)2()2(r b y a x b y a x =-+-++++, 也即)(222222b a r y x +-=+,这便是Q 的轨迹方程.
解法二:设),(y x Q 、),(11y x A 、),(22y x B ,则22
121r y x =+,
22222r y x =+. 又2
2AB PQ =,即
)(22)()()()(2121222122122y y x x r y y x x b y a x +-=-+-=-+-.① 又AB 与PQ 的中点重合,故21x x a x +=+,21y y b y +=+,即
)(22)()(2121222y y x x r b y a x ++=+++ ②
①+②,有)(222222b a r y x +-=+.
这就是所求的轨迹方程.
解法三:设)sin ,cos (ααr r A 、)sin ,cos (ββr r B 、),(y x Q ,
由于APBQ 为矩形,故AB 与PQ 的中点重合,即有
βαcos cos r r a x +=+, ①
βαsin sin r r b y +=+, ② 又由PB PA ⊥有1cos sin cos sin -=--⋅--a
r b r a r b r ββαα ③
联立①、②、③消去α、β,即可得Q 点的轨迹方程为
)(222222b a r y x +-=+.
说明:本题的条件较多且较隐含,解题时,思路应清晰,且应充分利用图形的几何性质,否则,将使解题陷入困境之中.
10、由动点P 向圆122=+y x 引两条切线PA 、PB ,切点分别为A 、B ,APB ∠=600,则动点P 的轨迹方程是 .
解:设),(y x P .∵APB ∠=600,∴OPA ∠=300.∵AP OA ⊥,∴22==OA OP ,∴
222=+y x ,化简得422=+y x ,∴动点P 的轨迹方程是422=+y x .
练习巩固:设)0)(0,(),0,(>-c c B c A 为两定点,动点P 到A 点的距离与到B 点的距离的比为定值)0(>a a ,求P 点的轨迹.
解:设动点P 的坐标为),(y x P .由)0(>=a a PB PA ,得a y c x y c x =+-++222
2)()(,
化简得0)1()1(2)1()1(2222222=-+++-+-a c x a c y a x a .
当1≠a 时,化简得01)1(22222
2=+-+++c x a a c y x ,整理得222222
)1
2()11(-=+-+-a ac y c a a x ; 当1=a 时,化简得0=x .
所以当1≠a 时,P 点的轨迹是以)0,1
1(22
c a a -+为圆心,122-a ac 为半径的圆; 当1=a 时,P 点的轨迹是y 轴.
11、已知两定点)0,2(-A ,)0,1(B ,如果动点P 满足PB PA 2=,则点P 的轨迹所包围的面积等于
解:设点P 的坐标是),(y x .由PB PA 2=,得2222)1(2)2(y x y x +-=++,化简得4)2(22=+-y x ,∴点P 的轨迹是以(2,0)为圆心,2为半径的圆,∴所求面积为π4.。

相关文档
最新文档