多面体的结构特征.
2020新课标高考艺术生数学复习:空间几何体的结构特征、直观图含解析

已知A′B′=A′C′=a,在△OA′C′中,
由正弦定理得 = ,
所以OC′= a= a,
A.圆柱
B.圆锥
C.球体
D.圆柱、圆锥、球体的组合体
解析:C[当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面.]
3.如图所示,观察四个几何体,其中判断正确的是( )
A.①是棱台B.②是圆台
C.③是棱锥D.④不是棱柱
解析:C[图①不是由棱锥截来的,所以①不是棱台;图②上、下两个面不平行,所以②不是圆台;图③是棱锥;图④前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以④是棱柱.故选C.]
(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.
斜二测画法中的“三变”与“三不变”
“三变”
“三不变”
[思考辨析]
判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.
(1)球的任何截面都是圆.( )
A. a2B. a2C. a2D. a2
[解析]D[如图所示为原图形和其直观图.
由图可知,A′B′=AB=a,O′C′= OC= a,
在图中作C′D′⊥A′B′于D′,则C′D′= O′C′
= a.∴S△A′B′C′= A′B′·C′D′= ×a× a= a2.故选D.]
[互动探究]
必修二立体几何初步知识点整理.doc

①棱柱斜棱柱棱垂直于底面> 直棱柱底而是正务形〉正棱柱 其他棱柱…必修二立体几何初步知识点整理一、基础知识(理■去记) (一)空间儿何体的结构特征(1) 多面体一一由若干个平面多边形围成的儿何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共 点叫做顶点。
旋转体一一把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直 线称为旋转体的轴。
(2) 柱,锥,台,球的结构特征1 .棱柱1.1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关 系:%1四棱柱底而为平行四边冲平行六面体侧棱垂直于底而直平行六面体底而为矩形--------------------------- ► --------------1.3%1 侧棱都相等,侧面是平行四边形;%1 两个底面与平行于底面的截面是全等的多边形; %1 过不相邻的两条侧棱的截面是平行四边形; %1 直棱柱的侧棱长与高相等,侧面与对角而是矩形。
补充知识点长方体的性质:%1 长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】AC : = AB 2 + AD 2 + "%1 (了解)R 方体的一条对角线AG 与过顶点A 的三条棱所成的角 分别是66 0,那么 cos 2 6Z+cos 2 ^ + cos 2 y= \, sin 2 a+sin ,0 + sir? /= 2 ;%1(了解)长方体的一条对角线AG 与过顶点A 的相邻三个面所成的角分别是。
,(3, y,则cos 2 6Z4-cos 2 y^ + cos 2 y = 2, sin 2 6Z+sin 2 /? + sin 2 /= 1.1.4侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底而周长和侧棱长为邻边的矩形.长方体底面为正方形 正四棱柱侧棱与J 氐面边R 相等 ---------------- ►正方体1.5面积、体积公式:(其中c 为底面周长,h 为棱柱的高)S 直棱柱侧="S 直棱柱全="+2$底,V 棱柱=5底.力2. 圆柱2.1圆柱一一以矩形的一边所在的直线为旋转轴,其余各边旋转而形 成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截 面(轴截面)是全等的矩形.2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的 矩形. 2.4面积、体积公式:S 圆柱侧=2〃所;S 圆柱全=2勿尸/? + 2勿尸2, v 圆柱=S 底h 二勿尸人(其中r 为底面半径,h 为圆柱高)3 .棱锥3.1棱锥一一有一个面是多边形,其余各面是有一个公共顶点 的三角形,由这些面所围成的几何体叫做棱锥。
高一数学知识点总结_空间几何体的结构知识点

⾼⼀数学知识点总结_空间⼏何体的结构知识点⾼⼀数学怎么学? 学⽣学习期间,在课堂的时间占了⼀⼤部分。
因此听课的效率如何,决定着学习的基本状况,今天⼩编在这给⼤家整理了⾼⼀数学知识点总结,接下来随着⼩编⼀起来看看吧!⾼⼀数学知识点总结(⼀)空间⼏何体的结构知识点1、静态的观点有两个平⾏的平⾯,其他的⾯是曲⾯;动态的观点:矩形绕其⼀边旋转形成的⾯围成的旋转体,象这样的旋转体称为圆柱。
2、定义:以矩形的⼀边所在直线为旋转轴,其余各边旋转⽽形成的的曲⾯所围成的旋转体叫做圆柱,旋转轴叫圆柱的轴;垂直于旋转轴的边旋转⽽成的圆⾯叫做圆柱的底⾯;平⾏于圆柱轴的边旋转⽽成的⾯叫圆柱的侧⾯,圆柱的侧⾯⼜称圆柱的⾯。
⽆论转到什么位置,不垂直于轴的边都叫圆柱侧⾯的母线。
表⽰:圆柱⽤表⽰轴的字母表⽰。
规定:圆柱和棱柱统称为柱体。
3、静态观点:有⼀平⾯,其他的⾯是曲⾯;动态的观点:直⾓三⾓形绕其⼀直⾓旋转形成的⾯围成的旋转体,像这样的旋转体称为圆锥。
4、定义:以直⾓三⾓形的⼀条直⾓边所在的直线为旋转轴,其余两边旋转⽽形成的⾯所围成的旋转体叫做圆锥。
旋转轴叫圆锥的轴;垂直于旋转轴的边旋转⽽成的圆⾯成为圆锥的底⾯;不垂直于旋转轴的边旋转⽽成的曲⾯叫圆锥的侧⾯,圆锥的侧⾯⼜称圆锥的⾯,⽆论旋转到什么位置,这条边都叫做圆锥侧⾯的母线。
表⽰:圆锥⽤表⽰轴的字母表⽰。
规定:圆锥和棱锥统称为锥体。
5、定义:以半直⾓梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转⽽形成的曲⾯所围成的⼏何体叫圆台。
还可以看成⽤平⾏于圆锥底⾯的平⾯截这个圆锥,截⾯于底⾯之间的部分。
旋转轴叫圆台的轴。
垂直于旋转轴的边旋转⽽形成的圆⾯称为圆台的底⾯;不垂直于旋转轴的边旋转⽽成的曲⾯叫做圆台的侧⾯,⽆论转到什么位置,这条边都叫圆台侧⾯的母线。
表⽰:圆台⽤表⽰轴的字母表⽰。
规定:圆台和棱台统称为台体。
6、定义:以半圆的直径所在的直线为旋转轴,将半圆旋转⼀周所形成的曲⾯称为球⾯,球⾯所围成的旋转体称为球体,简称为球。
空间几何体的结构特征例题和知识点总结

空间几何体的结构特征例题和知识点总结在我们的日常生活中,各种各样的物体形状各异,而在数学的世界里,我们把这些物体抽象成空间几何体来进行研究。
接下来,让我们一起深入探讨空间几何体的结构特征,并通过一些例题来加深理解。
一、空间几何体的分类空间几何体主要分为多面体和旋转体两大类。
多面体是由若干个平面多边形围成的几何体。
常见的多面体有棱柱、棱锥、棱台等。
棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形。
棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
旋转体是由一个平面图形绕着一条直线旋转所形成的几何体。
常见的旋转体有圆柱、圆锥、圆台、球等。
圆柱:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
球:以半圆的直径所在直线为轴,半圆面旋转一周形成的几何体。
二、空间几何体的结构特征1、棱柱的结构特征侧棱都平行且相等。
两个底面与平行于底面的截面是全等的多边形。
2、棱锥的结构特征侧面都是三角形。
只有一个顶点。
3、棱台的结构特征上下底面是相似多边形。
各侧棱延长后交于一点。
4、圆柱的结构特征母线平行且相等,都垂直于底面。
两个底面是全等的圆。
5、圆锥的结构特征母线交于顶点。
轴截面是等腰三角形。
6、圆台的结构特征母线延长后交于一点。
上下底面是两个半径不同的圆。
7、球的结构特征球面上任意一点到球心的距离都相等。
三、例题解析例 1:判断下列几何体是否为棱柱。
(1)一个长方体;(2)一个有两个面互相平行,其余各面都是平行四边形的几何体。
解:(1)长方体符合棱柱的定义,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,所以是棱柱。
(2)不一定是棱柱。
探索多面体的特征

探索多面体的特征多面体是一个有限的三维几何体,它由若干个多边形所围成,每个多边形都共用一个边。
多面体的研究已经有很长的历史,并且在数学、物理学、工程学等领域都有重要的应用。
本文将探讨多面体的特征,包括面、边、顶点的数量以及欧拉公式和分类等。
一、多面体的面、边和顶点多面体由若干个面所组成,每个面都是一个多边形。
我们以正多边形为例来讨论多面体的特征。
如果一个多面体的面都是正多边形,并且每个顶点处的多个面都可见,则称之为凸多面体。
凸多面体的特点是每个面都向外凸出,并且所有顶点都在多面体的内部。
多面体的边是面和面之间的边界线段,它们连接了相邻的面。
每两个相邻的面共享一个边。
边的数量等于所有面内部的边的数量之和。
顶点是多面体中的角点,它们是相邻的边的交点。
顶点的数量等于所有面内部的角点数量之和。
二、欧拉公式欧拉公式是研究多面体特征的重要定理,它由瑞士数学家欧拉在18世纪提出。
欧拉公式表明,对于任何一个凸多面体,它的面数、边数和顶点数之间满足以下关系:面数 + 顶点数 = 边数 + 2这个公式被认为是将面、边和顶点联系在一起的重要定理,它描述了多面体的拓扑性质。
欧拉公式也被应用在其他领域,比如图论和计算几何等。
三、多面体的分类根据多面体的特征,我们可以将其进行分类。
首先,根据面的形状,多面体可以分为正多面体和非正多面体两种类型。
正多面体是指所有的面都是正多边形的多面体。
最著名的正多面体是四面体、六面体、八面体、十二面体和二十面体。
正多面体具有对称性和规则性的特点,它们的所有边长和内角都相等。
非正多面体则是指除了正多边形以外的多边形组成的多面体。
非正多面体的面可以是任意形状的多边形,它们的边长和内角可以不相等。
其次,根据多面体的拓扑结构,多面体可以分为闭合多面体和开放多面体。
闭合多面体是指所有的面都是由完全封闭的多边形所构成的多面体,它们没有任何的挖空部分。
闭合多面体包括正多面体和非正多面体,它们由有限数量的面所组成。
多面体的面数、顶点数、棱数之间的关系-概述说明以及解释

多面体的面数、顶点数、棱数之间的关系-概述说明以及解释1.引言1.1 概述多面体是空间中的一种几何体,是由若干个平面多边形构成的立体。
在数学中,多面体是一种具有多个面、顶点和棱的几何体,它具有丰富的性质和特征。
多面体的面数、顶点数、棱数之间存在着一定的关系,这种关系是多面体结构的基础,也是我们理解和研究多面体的重要角度之一。
本文将探讨多面体的面数、顶点数、棱数之间的关系,通过对多面体的定义、性质以及具体例子的分析,希望能够深入理解多面体的结构特征,揭示其隐藏的规律和规则。
同时,我们还将探讨多面体的意义和应用,展望多面体在数学、科学和工程领域的发展前景。
通过本文的阐述,读者将更加全面地认识和了解多面体这一重要的数学概念。
1.2 文章结构本文将分为三个部分,即引言、正文和结论。
在引言部分,我们将概述本文的主题,介绍文章的结构和目的。
引言部分将为读者提供对本文内容的整体了解和预期。
在正文部分,我们将首先介绍多面体的定义,以确保读者对该概念有清晰的认识。
接着,我们将详细讨论面数、顶点数、棱数之间的关系,探讨它们之间的规律和联系。
最后,我们将通过几个具体的例子来说明这种关系,加深读者对该主题的理解。
在结论部分,我们将对本文的内容进行总结,强调面数、顶点数、棱数之间的关系对于多面体的重要性。
我们还将讨论这种关系的意义和应用,展望该领域未来的研究方向和发展前景。
通过结论部分,我们希望读者能够对本文的主题有更深入的理解和思考。
1.3 目的目的部分:在本文中,我们的目的是探究多面体的面数、顶点数、棱数之间的关系。
我们希望通过观察不同类型的多面体,分析它们之间的相互关系,进一步深化对多面体几何特征的理解。
通过研究多面体的几何性质,我们可以更好地理解它们在数学和实际生活中的应用,并为进一步研究和探索多面体提供基础。
同时,我们也希望通过本文的讨论,能够激发读者的兴趣,增强对几何学的认识和理解。
2.正文2.1 多面体的定义多面体是一种由平面多边形组成的立体图形,它具有以下几个特点:1. 多面体的每一个面都是一个平面多边形,这些面可以是三角形、四边形、五边形等各种多边形。
《空间几何体》基础的知识点

《空间几何体》知识点总结一、 空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体旋转体一一把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其 中,这条定直线称为旋转体的轴。
(2 )柱,锥,台,球的结构特征1.1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱一一以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何 体叫圆柱.2.1棱锥一一有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的 几何体叫做棱锥。
2.2圆锥一一以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所 围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台 3.2圆台一一用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台4.1球一一以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球二、 空间几何体的三视图与直观图1. 投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2. 三视图一一正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而 画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3. 直观图:直观图通常是在平行投影下画出的空间图形。
4. 斜二测法:在坐标系 x'o'y'中画直观图时,已知图形中平行于坐标轴的线段保持平行性 不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线 段长度减半。
三、空间几何体的表面积与体积1、空间几何体的表面积① 棱柱、棱锥的表面积: 各个面面积之和2② 圆柱的表面积S = 2二「I • 2二r 2 ③圆锥的表面积 S =理「I •二r 2、空间几何体的体积 ④圆台的表面积S 二rl + Tt r 2 2 2 R ⑤球的表面积S = 4二R ⑥扇形的面积公式s 扇形 360^1|r (其中I 表示弧长,r 表示半径) ①柱体的体积 v = s 底②锥体的体积 1 VjS 底 h③台体的体积 v =丄(S 上S 上 S 下 • S 下)h ④球体的体积v3 知识赠送以下资料英语万能作文(模板型)Along with the adva nee of the society more and more problems arebrought to our atte nti on, one of which is that....随着社会的不断发展,出现了越来越多的问题,其中之一便是As to whether it is a blessing or a curse, however, people take differe nt attitudes.然而,对于此类问题,人们持不同的看法。
多面体的定义和实际应用

多面体的定义和实际应用多面体是一种具有多个平面的立体图形,它是由多个面、边和顶点组成的多面体。
在数学中,多面体是一个常见的概念,它在几何学、计算机图形学和物理学等领域都有广泛的应用。
本文将介绍多面体的定义、性质和实际应用。
一、多面体的定义多面体可以定义为一个有限几何物体,其表面由平面多边形围成,每个边和面交于一个或多个顶点。
根据不同的面数,多面体可以分为三类,分别是三面体、四面体和多面体。
1. 三面体:三面体是一种由四个面,六条边和四个顶点组成的多面体。
它的特点是四个面都是三角形,并且每个边和面交于一个顶点。
2. 四面体:四面体是一种由四个面,六条边和四个顶点组成的多面体。
它的特点是四个面都是三角形,并且每个边和面交于一个顶点。
3. 多面体:多面体指的是五个或更多个面的立体图形。
多面体具有复杂的结构,其面、边和顶点的数量根据具体的多面体类型而有所不同。
二、多面体的性质多面体有一些独特的性质,这些性质使得它们在几何学和其他领域中得到广泛的应用。
1. 面、边和顶点:多面体由面、边和顶点组成,它们之间有着特定的关系。
每个边和面都交于一个或多个顶点,每个顶点周围都有一定数量的面和边。
2. 边的长度:多面体的边长可以根据其几何形状和尺寸进行计算。
边的长度是描述多面体特征的重要指标之一。
3. 表面积和体积:多面体的表面积是其所有面积之和,体积是其空间占据的大小。
计算多面体的表面积和体积有助于了解其特征和性质。
4. 对称性:多面体可能具有对称性,即具有保持形状和结构不变的操作。
通过研究多面体的对称性,可以发现其隐藏的规律和特征。
三、多面体的实际应用多面体不仅仅是几何学中的一个概念,它在实际生活和工程应用中也有广泛的使用。
1. 建筑设计:多面体的独特形状和结构使其成为建筑设计中的重要元素。
许多建筑物的外形和内部结构都采用了多面体的概念,使建筑物更加美观和稳定。
2. 计算机图形学:多面体在计算机图形学中有着重要的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)棱台的分类:由三棱锥、四棱锥、 五棱锥等截得的棱台分别叫做三棱台、 四棱台、五棱台等。 (4)棱台用表示底面各顶点的字母表示, 如图中的棱台表示为棱台ABCD-A’B’C’D’。
C' D'
D'
C'
上底面
A'
B'
A'
B'
C
C
D
D
下底面
A
B
A
B
C' D'
D'
C'
上底面
A'
B'
A'
B'
C
C
D
D
下底面
A
B
A
B
(5)棱台的性质: ①两底面所在平面互相平行,两底面是对应 边互相平行的相似多边形; ②侧面是梯形; ③侧棱的延长线相交于一点。
棱柱,棱锥,棱台的联系
相同点是:它们都是由平面多边形 围成的几何体,它们都有底面且底面都是多边形;
不同点是:棱柱和棱台都有两个底面,而棱锥只有一 个底面,棱柱的两个底面是全等的,棱台的两个底面 是相似的;
3.棱台的结构特征: (1)定义:用一个平行于棱锥底面的平面去 截棱锥,截面和底面之间的部分叫做棱台。
C' D'
D'
C'
上底面
A'
B'
A'
B'
C
C
D
D
下底面
A
B
A
B
C' D'
D'
C'
上底面
A'
B'
A'
B'
C
C
D
D
下底面
A
B
A
B
(2)棱台的有关概念:原棱锥的底面和截面分 别做棱台的下底面和上底面。原棱锥的底面 和截面分别叫做棱台的下底面和上底面,其 余各面叫做棱台的侧面,相邻侧面的公共边 叫做棱台的侧棱,侧面与底面的公共顶点叫 做棱台的顶点.
多面体的结构特征
一.多面体和旋转体 1.多面体:由若干个平面多边形围成的几何 体叫做多面体。围成多面体的各个多边形叫 做多面体的面。相邻两个面的公共边叫做多 面体的棱,棱与棱的公共点叫做多面体的顶 点。
2.旋转体:由一个平面图形绕它所在的平面 内的一条定直线旋转所形成的封闭几何体, 叫做旋转体,这条定直线叫做旋转体的轴。
S S
A B
C
D
C
A
B
(3)棱锥的分类:按底面的多边形的边数分, 有三棱锥、四棱锥、五棱锥等。
(4)棱锥的表示:用底面各顶点的字母表示, 如图的四棱锥可表示为“棱锥S-ABCD”, 三棱锥可表示为“棱锥S-ABC”。
S
S
S
S
A B
C
D
C
A
B
A
B
C
D
C
A
B
(5)棱锥的几何性质: ①侧面、对角面都是三角形; ②平行于底面的截面与底面相似,其相似比 等于顶点到截面距离与高的比的平方。
平行四边形。
S S
A B
C
D
C
A
B
2.棱锥的结构特征: (1)定义:有一个面是多边形,其余各面都是 有一公共点的三角形,由这些面所围成的几
何体叫做棱锥。
S S
A
C
D
C
A B
B
(2)棱锥的有关概念:棱锥中,这个多边形面 叫做棱锥的底面或底,有公共顶点的各个三 角形面叫做棱锥的侧面,各侧面的公共顶点 叫做棱锥的顶点,相邻侧面的公共边叫做棱 锥的侧棱。
E' F'
D' C'
A'
C'
A' B'
B'
E F
D A
C
C
A
B
B
E' F'
D' C'
A'
C'
A' B'
B'
E F
D A
C
C
A
B
B
(3)棱柱的分类:按底面的多边形的边数分, 有三棱柱、四棱柱、五棱柱等。
(4)棱柱的表示:用底面各顶点的字母表示, 如: 六棱柱表示为“棱柱ABCDEF-A’B’C’D’E’F’” 三棱柱表示为“棱柱ABC-A’B’C’”。
转化:棱台是由棱锥截取得到的, 棱台的上底面扩大,使上下底面全等,就是棱柱, 棱台的上底面缩为一个点就是棱锥.
二.多面体的结构特征 1.棱柱的结构特征: (1)定义:有两个面互相平行,其余各面都 是四边形,并且每相邻两个四边形的公共 边都互相平行,由这些面所围成的几何体 叫做棱柱。
E' F'
D' C'
A'
C'
A' B'
B'
E F
D A
C
C
A
B
B
(2)棱柱的有关概念:棱柱中,两个互相平 行的面叫做棱柱的底面(简称底),其余 各面叫做棱柱的侧面,相邻侧面的公共边 叫做棱柱的侧棱,侧面与底面的公共顶点 叫做棱柱的顶点。
E' F'
D' C'
E F
D C
A
B
A B
C' C
E' D'
F'
底面 C'
A' B'
侧棱
侧面
E
D
F
底面
C
A
B 顶点
A'
A 侧面 B
C'
底面
B'
侧棱
C
顶点
(5)棱柱的几何性质: ①两个底面与平行于底面的截面是全等的
多边形; ②侧棱都是平行且相等的,侧面均为平行
四边形; ③过不相邻的两条侧棱的截面(对角面)是