2014年高考数学理科(高考真题+模拟新题)分类汇编:H单元 解析几何

合集下载

2014年高考理科数学试题分类汇编 平面几何选讲 word版含答案

2014年高考理科数学试题分类汇编 平面几何选讲 word版含答案

FEDCBA 2014年高考数学试题汇编 平面几何选讲一.选择题1 (2014天津)如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD平分CBF Ð;②2FB FD FA = ;③AE CE BE DE ? ;④AF BDAB BF ? .则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ 【答案】D 【解析】由弦切角定理得FBDEAC BAE ?? ,又BFD AFB ? ,所以BFD D ∽AFB D ,所以BF BDAF AB=,即AF BD AB BF ? ,排除A 、C .又FBD EAC DBC ?? ,排除B .二.填空题1.(2014重庆)过圆外一点P 作圆的切线PA (A 为切点),再作割线PB ,PC 分别交圆于B ,C ,若6=PA ,AC =8,BC =9,则AB =________.【答案】4【解析】.4AB ∴4AB 3,PB ,8B6B 9PB 6∴CA B PA B PC A ΔPCA AB Δ=====+==所以相似,与A P A P P P 2(2014湖北)(选修4-1:几何证明选讲)如图,P 为⊙O 的两条切线,切点分别为B A ,,过PA 的中点Q 作割线交⊙O 于D C ,两点,若,3,1==CD QC 则_____=PB.3 (2014湖南),已知AB,BC是O的两条弦,AO BC⊥,AB=BC=则O的半径等于________.【答案】3 24 (2014陕西)(几何证明选做题)如图,ABC ∆中,6BC =,以BC 为直径的半圆分别交,AB AC 于点,E F ,若2AC AE =,则EF =B.3,2,6∴Δ=∴===ΔEF AE AC BC CBEFAC AE ACB AEF ,且相似与 5. (2014广东)(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则CDF AEF ∆∆的面积的面积=___22:9:,()()9.CDFAEF CDF CD EB AE AEF AE AE∆∆∴∆+===∆答案提示显然的面积的面积三.解答题1. (2014新课标I)(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB=CE .(Ⅰ)证明:∠D=∠E ;(Ⅱ)设AD 不是⊙O 的直径,AD 的中点为M ,且MB=MC ,证明:△ADE 为等边三角形.【解析】:.(Ⅰ) 由题设知得A 、B 、C 、D 四点共圆,所以∠D=∠CBE ,由已知得,∠CBE=∠E , 所以∠D=∠……………5分(Ⅱ)设BCN 中点为,连接MN,则由MB=知M N ⊥所以O 在MN 上,又AD 不是O 的直径,M 为AD 中点,故O M ⊥AD , 即MN ⊥AD ,所以AD//BC,故∠A=∠CBE , 又∠CBE=∠E ,故∠A=∠由(Ⅰ)(1)知∠D=∠E , 所以△ADE 为等边三角形. ……………10分2. (2014新课标II)(本小题满分10)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交O 于点E.证明: (Ⅰ)BE=EC ; (Ⅱ)AD ⋅DE=22PB【答案】 (1) 无(2)无(1)EC.BE BE ∠CE ∠BE ∠αBE,∠βαβBE ∠∠DEB ∠PDA ∠∠∠∠∠.AE ∠CE ,∠EB ∠,,,2===+=+∴+===+=+====∠Δ=∴==,所以,即即则连接为等腰三角形。

2014年全国高考理科数学试题选编10.平面解析几何试题解析

2014年全国高考理科数学试题选编10.平面解析几何试题解析

2014年全国高考理科数学试题选编十.平面解析几何试题一.选择题和填空题1.全国课标Ⅰ.4.已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ). AB .3 CD .3m2.全国课标Ⅰ.10.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若4FP FQ =,则|QF |=( ). A .72 B .3 C .52D .2 3.(4课标全国Ⅱ.10)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ).ABC .6332D .944.(大纲全国.6)已知椭圆C :2222=1x y a b+(a >b >0)的左、右焦点为F 1,F 2,离心率为3,过F 2的直线l 交C 于A ,B 两点.若△AF 1B的周长为C 的方程为( ).A .22=132x y +B .22=13x y + C .22=1128x y + D .22=1124x y + 5.(大纲全国.9)已知双曲线C 的离心率为2,焦点为F 1,F 2,点A 在C 上.若|F 1A |=2|F 2A |, 则cos ∠AF 2F 1=( ).A .14 B .13 CD6.(天津.5)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ).A .221520x y -= B .221205x y -= C .2233125100x y -= D .2233110025x y -= 7.(福建9)设P ,Q 分别为圆x 2+(y -6)2=2和 椭圆22+110xy =上的点,则P ,Q 两点间的 最大距离是( ).A.BC.D.8.(湖北9)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且12π=3F PF ∠,则椭圆和双曲线的离心率的倒数之和的最大值为( ). A.3 B.3C .3D .2 9.(广东4)若实数k 满足0<k <9,则曲线22=1259x y k --与曲线22=1259x y k --的( ). A .焦距相等 B .实半轴长相等 C .虚半轴长相等 D .离心率相等10.(江西9)在平面直角坐标系中,A ,B 分别是 x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( ). A .4π5 B .3π4 C.(6π- D .5π411. (辽宁)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ). A .12 B .23 C .34 D .4312.(山东10)已知a >b >0,椭圆C 1的方程为22221x y a b +=,双曲线C 2的方程为22221x y a b-=,C 1与C 2的离心率之积为2,则C 2的渐近线方程为( ).A.0x = B0y ±= C .x ±2y =0 D .2x ±y =013.(四川10)已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则△ABO与△AFO 面积之和的最小值是( ).A .2B .3 C.8D14. (重庆8)设F 1,F 2分别为双曲线22221x y a b-=(a >0,b >0)的左、右焦点,双曲线上存在一点 P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则 该双曲线的离心率为( ). A .43 B .53 C .94D .3 15.(大纲全国.15)直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.16.(陕西.12)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为__.解析:因为(1,0)关于y=x的对称点为(0,1),所以圆C是以(0,1)为圆心,以1为半径的圆,其方程为x2+(y-1)2=1.17.(全国课标Ⅱ.16)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是__________.18.(湖北12)直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=________.19.(重庆13)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=__________.20.(北京.11)设双曲线C经过点(2,2),且与2214yx-=具有相同渐近线,则C的方程为__________;渐近线方程为__________.21.(安徽.14)设F1,F2分别是椭圆E:222=1yxb+(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为__________.22.(江西15)过点M(1,1)作斜率为12-的直线与椭圆C:22221x ya b+=(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于__________.23.(辽宁15)已知椭圆C:22194x y+=,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=__________.24.(湖南15)如图,正方形ABCD和正方形DEFG的边长分别为a,b(a<b),原点O为AD的中点,抛物线y2=2px(p>0)经过C,F两点,则ba=__________.25.(四川14)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|P A|·|PB|的最大值是__________.26.(浙江16)设直线x-3y+m=0(m≠0)与双曲线22221x ya b-=(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|P A|=|PB|,则该双曲线的离心率是__________.二.解答题1.(课标全国Ⅰ.20满分12分)已知点A(0,-2),椭圆E:22221x ya b+=(a>b>0)F是椭圆E的右焦点,直线AF,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.2. (课标全国Ⅱ.20满分12分)设F1,F2分别是椭圆C:22221x ya b+=(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为34,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.3. (大纲全国21满分12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且54Q F P Q=.(1)求C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l′与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.4. (陕西20满分13分)如图,曲线C由上半椭圆C1:22221y xa b+=(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1.(1)求a,b的值;(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.5. (北京19满分14分)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点,若点A在椭圆C上,点B在直线y =2上,且OA ⊥OB ,试判断直线AB 与 圆x 2+y 2=2的位置关系,并证明你的结论.6. (天津18满分13分)设椭圆2222=1x y a b+(a >b >0)的左、右焦点分别为F,F 2,右顶点为A ,上 顶点为B .已知12AB F .(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过原点O 的直线l 与该圆相切,求直线l 的斜率.7. (安徽19满分13分)如图,已知两条抛物线 E 1:y 2=2p 1x (p 1>0)和E 2:y 2=2p 2x (p 2>0), 过原点O 的两条直线l 1和l 2,l 1与E 1,E 2分别交于A 1,A 2两点,l 2与E 1,E 2分别交于B 1,B 2两点.(1)证明:A 1B 1∥A 2B 2;(2)过O 作直线l (异于l 1,l 2)与E 1,E 2分别交于C 1,C 2两点.记△A 1B 1C 1与△A 2B 2C 2的面积分别为S 1与S 2,求12S S 的值. 8. (福建19满分13分)已知双曲线E :22221x y a b-= (a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.9. (湖北21满分14分)在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C . (1)求轨迹C 的方程.(2)设斜率为k 的直线l 过定点P (-2,1).求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.10. (湖南21满分13分)如图,O 为坐标原点,椭圆C 1:22221x y a b-=(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:22221x ya b-=的左、右焦点分别为F 3,F 4,离心率为e 2.已知122e e =,且241F F =.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为AB 的中点.当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ 面积的最小值. 11. (浙江21满分15分)如图,设椭圆C :2222=1x ya b+(a >b >0),动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用a ,b ,k 表示点P 的坐标;(2)若过原点O 的直线l 1与l 垂直, 证明:点P 到直线l 1的距离的最大值为a -b . 12. (广东20满分14分)已知椭圆C :2222=1x y a b+(a >b >0)的一个焦点为(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.13. (江西20满分13分)如图,已知双曲线C :2221x y a-=(a >0)的右焦点为F ,点A ,B分别在C 的两条渐近线上,AF ⊥x 轴, AB ⊥OB ,BF ∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l 1:0021x xy y a -=与直线AF 相交于点M , 与直线32x =相交于点N ,证明:当点P 在C 上移动时,||||MF NF 恒为定值,并求此定值.14. (辽宁20满分12分)圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).双曲线C 1:22221x y a b-=过点P(1)求C 1的方程;(2)椭圆C 2过点P 且与C 1有相同的焦点,直线l 过C 2的右焦点且与C 2交于A ,B 两点.若以线段AB 为直径的圆过点P ,求l 的方程.15. (山东21满分14分)已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有|F A |=|FD |.当点A 的横坐标为3时,△ADF 为正三角形. (1)求C 的方程;(2)若直线l 1∥l ,且l 1和C 有且只有一个公共点E ,①证明直线AE 过定点,并求出定点坐标; ②△ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.16. (四川20满分13分)已知椭圆C :22221x y a b+=(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (1)求椭圆C 的标准方程.(2)设F 为椭圆C 的左焦点,T 为直线x =-3 上任意一点,过F 作TF 的垂线交椭圆C 于 点P ,Q .①证明:OT 平分线段PQ (其中O 为坐标原点); ②当||||TF PQ 最小时,求点T 的坐标. 17. (重庆21满分12分)如图,设椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1,F 2,点D在椭圆上,DF 1⊥F 1F 2,121||||F F DF =△DF 1F 2.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.十.平面解析几何试题解析一.选择题和填空题1.全国课标Ⅰ.4.已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ). AB .3 CD .3m解析:由题意,可得双曲线C为22=1 33x ym-,则双曲线的半焦距c.不妨取右焦点),其渐近线方程为y x=,即0x=.所以由点到直线的距离公式得d==故选A.2.全国课标Ⅰ.10.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若4FP FQ=,则|QF|=().A.72B.3 C.52D.2解析:如图,由抛物线的定义知焦点到准线的距离p=|FM|=4.过Q作QH⊥l于H,则|QH|=|QF|.由题意,得△PHQ∽△PMF,则有||||3||||4HQ PQMF PF==,∴|HQ|=3.∴|QF|=3.3.(4课标全国Ⅱ.10)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为().ABC.6332D.94解析:由已知得3,04F⎛⎫⎪⎝⎭,故直线AB的方程为3tan 304y x⎛⎫=︒-⎪⎝⎭,即y x=.设A(x1,y1),B(x2,y2),联立23,y xy x⎧=⎪⎨⎪=⎩①②将①代入②并整理得21733216x x-+=,∴12212x x+=,∴线段|AB|=x1+x2+p=21322+=12.又原点(0,0)到直线AB的距离为38d==.∴1139||122284OABS AB d∆==⨯⨯=.4.(大纲全国.6)已知椭圆C:2222=1x ya b+(a>b>0)的左、右焦点为F1,F2,离心率为3,过F2的直线l交C于A,B两点.若△AF1B的周长为C的方程为().A.22=132x y+B.22=13xy+C.22=1128x y+D.22=1124x y+解析:∵2222=1x ya b+(a>b>0),∴ca=又∵过F2的直线l交椭圆于A,B两点,△AF1B的周长为∴4a=,∴a=∴b=22=132x y+,选A.5.(大纲全国.9)已知双曲线C的离心率为2,焦点为F1,F2,点A在C上.若|F1A|=2|F2A|,则cos∠AF2F1=().A.14B.13C.4D.3解析:∵双曲线的离心率为2,∴2ca=,∴a∶b∶c=1 2.又∵121222AF AF aF A F A⎧-=⎪⎨=⎪⎩,,∴|AF 1|=4a ,|AF 2|=2a , ∴|F 1F 2|=2c =4a ,41422161642cos 222212212212212=⨯⨯-+=-+=∠∴a a a a a F F AF AF F F AF F AF 6.(天津.5)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ).A .221520x y -= B .221205x y -= C .2233125100x y -= D .2233110025x y -= 解析:由于双曲线焦点在x 轴上,且其中一个焦点在直线y =2x +10上,所以c =5.又因为一条渐近线与l 平行,因此2ba=,可解得a 2=5,b 2=20,故双曲线方程为221520x y -=,故选A .7.(福建9)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆22+110x y =上的点,则P ,Q 两点间的 最大距离是( ).A.BC.D.解析:设Q (x ,y ),则该点到圆心的距离22210(1)691246d y y y y =-+(-)=--+226x y =+(-)=y ∈[-1,1],∴当122293y -=-=-⨯(-)时,max d =∴圆上点P 和椭圆上点Q的距离的最大值为max d r +==故选D.8.(湖北9)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且12π=3F PF ∠,则椭圆和双曲线的离心率的倒数之和的最大值为( ).ABC .3D .2 解析:设椭圆长半轴为a 1,双曲线实半轴长为a 2,|F 1F 2|=2c .由余弦定理4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|πcos3. 而|PF 1|+|PF 2|=2a 1,||PF 1|-|PF 2||=2a 2可得222123=4a a c +.令a 1=2c cos θ,2 a θ,即122cos a a c c θθ+=+=2cos θθ⎛⎫+ ⎪⎝⎭1sin 2θθ⎫+⎪⎪⎝⎭π3θ⎛⎫+ ⎪⎝⎭.,故选A. 9.(广东4)若实数k 满足0<k <9,则曲线22=1259x y k --与曲线22=1259x y k --的( ). A .焦距相等 B .实半轴长相等 C .虚半轴长相等 D .离心率相等解析:因为0<k <9,所以方程22=1259x y k--与22=1259x y k --均表示焦点在x 轴上的双曲线.双曲线22=1x y k --中,其实轴长为10,虚轴长为=22=1259x y k --中,其实轴长为,虚轴长为6,焦距为=.因此两曲线的焦距相等,故选A.10.(江西9)在平面直角坐标系中,A ,B 分别是 x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( ). A .4π5 B .3π4 C .(6π- D .5π4解析:由题意可知圆C 的圆心(设其为M )为线段AB的中点,且圆C过原点(0,0),∵圆C与直线2x+y-4=0相切,∴圆C的圆心M到原点(0,0)的距离等于M点到直线2x+y-4=0的距离.由抛物线的定义可知,圆C的圆心M的轨迹是以(0,0)为焦点,2x+y-4=0为准线的抛物线.如图所示.要使圆C面积最小,则需找出圆C半径的最小值.由抛物线和准线的关系可知抛物线的顶点到准线的距离最短,即为(0,0)到直线2x+y-4=0的距离的一半.因此,圆C半径的最小值为min125r==.故圆C面积的最小值为22min4πππ55r⎛=⨯=⎝⎭.11. (辽宁)已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为().A.12B.23C.34D.43解析:由题意可知准线方程x=2p-=-2,∴p=4,∴抛物线方程为y2=8x.由已知易得过点A与抛物线y2=8x相切的直线斜率存在,设为k,且k>0,则可得切线方程为y-3=k(x+2).联立方程23=2,=8,y k xy x-(+)⎧⎨⎩消去x得ky2-8y+24+16k=0.(*)由相切得Δ=64-4k(24+16k)=0,解得12k=或k=-2(舍去),代入(*)解得y=8,把y=8代入y2=8x,得x=8,即切点B的坐标为(8,8),又焦点F为(2,0),故直线BF的斜率为43.12.(山东10)已知a>b>0,椭圆C1的方程为22221x ya b+=,双曲线C2的方程为22221x ya b-=,C1与C2C2的渐近线方程为().A.0x=By±=C.x±2y=0 D.2x±y=0解析:由题意,知椭圆C1的离心率1e=,双曲线C2的离心率为2e=因为12e e⋅=,=即2222434a b a ba(-)(+)=,整理可得a=.又双曲线C的渐近线方程为bx±ay=0,所以0bx=,即0x=.13.(四川10)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,2OA OB⋅=(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是().A.2 B.3 C.8D解析:设AB所在直线方程为x=my+t.由2,,x my ty x=+⎧⎨=⎩消去x,得y2-my-t=0.设211(,)A y y,222(,)B y y(不妨令y1>0,y2<0),故2212y y m+=,y1y2=-t.而2212122OA OB y y y y⋅=+=.解得y1y2=-2或y1y2=1(舍去).所以-t=-2,即t=2.所以直线AB过定点M(2,0).而S△ABO=S△AMO+S△BMO=12|OM||y1-y2|=y1-y2,1111111||2248AFOS OF y y y∆=⨯=⨯=,故S△ABO+S△AFO=y1-y2+118y=198y-y2.由121299()388y y y y-=≥+-,得S△ABO+S△AFO的最小值为3,故选B.14. (重庆8)设F 1,F 2分别为双曲线22221x y a b-=(a >0,b >0)的左、右焦点,双曲线上存在一点 P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则 该双曲线的离心率为( ). A .43 B .53 C .94D .3 解析:根据双曲线的定义||PF 1|-|PF 2||=2a , 可得|PF 1|2-2|PF 1||PF 2|+|PF 2|2=4a 2.而由已知可得|PF 1|2+2|PF 1||PF 2|+|PF 2|2=9b 2, 两式作差可得-4|PF 1||PF 2|=4a 2-9b 2.又|PF 1||PF 2|=94ab ,所以有4a 2+9ab -9b 2=0, 即(4a -3b )(a +3b )=0,得4a =3b , 平方得16a 2=9b 2,即16a 2=9(c 2-a 2),即25a 2=9c 2,22259c a =,所以53e =,故选B.15.(大纲全国.15)直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.解析:如图所示,设l 1与圆O :x 2+y 2=2相切于点B ,l与圆O :x 2+y2=2相切于点C,则OB =,OA =AB =∴1tan 2OB AB α===. ∴2122tan 42tan tan 211tan 314BAC ααα⨯∠====--.16.(陕西.12)若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为__. 解析:因为(1,0)关于y =x 的对称点为(0,1),所以圆C 是以(0,1)为圆心,以1为半径的圆,其方程为x 2+(y -1)2=1.17.(全国课标Ⅱ.16)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是__________.解析:如图所示,设点A (0,1)关于直线OM 的对称点为P ,则点P 在圆O 上, 且MP 与圆O 相切,而点M 在直线y =1上运动,由圆上存在点N 使∠OMN =45°,则∠OMN ≤∠OMP =∠OMA , ∴∠OMA ≥45°,∴∠AOM ≤45°. 当∠AOM =45°时,x 0=±1.∴结合图象知,当∠AOM ≤45°时,-1≤x 0≤1, ∴x 0的范围为[-1,1].18.(湖北12)直线l 1:y =x +a 和l 2:y =x +b 将单 位圆C :x 2+y 2=1分成长度相等的四段弧, 则a 2+b 2=________.解析:由题意,得圆心(0,0)到两条直线的距离相等,且每段弧的长度都是圆周的14,=cos 452=︒=, 所以a =b =1,故a 2+b 2=2.19.(重庆13)已知直线ax +y -2=0与圆心为C 的 圆(x -1)2+(y -a )2=4相交于A ,B 两点, 且△ABC 为等边三角形,则实数a =__________. 解析:由△ABC 为等边三角形可得,C 到AB 的即(1,a )到直线ax +y -2=0的距离d ==a 2-8a +1=0,可求得4a =20.(北京.11)设双曲线C 经过点(2,2),且与2214y x -=具有相同渐近线,则C 的方程 为__________;渐近线方程为__________.解析:双曲线2214y x -=的渐近线方程为 y =±2x .设与双曲线2214y x -=有共同渐近线的方程 为224y x λ-=, 又(2,2)在双曲线上,故2222=4λ-, 解得λ=-3.故所求双曲线方程为2234y x -=-, 即22=1312x y -. 所求双曲线的渐近线方程为y =±2x .21.(安徽.14)设F 1,F 2分别是椭圆E :222=1y x b+(0<b <1)的左、右焦点,过点F 1的直线交椭圆 E 于A ,B 两点,若|AF 1|=3|F 1B |,AF 2⊥x 轴, 则椭圆E 的方程为__________.解析:设B 在x 轴上的射影为B 0,由题意得,011212||||33c B F F F ==,得B 0坐标为5,03c ⎛⎫- ⎪⎝⎭,即B 点横坐标为53c-.设直线AB 的斜率为k ,又直线过点F 1(-c,0),∴直线AB 的方程为y =k (x +c ).由222(),1y k x c y x b =+⎧⎪⎨+=⎪⎩得(k 2+b 2)x 2+2ck 2x +k 2c 2-b 2=0,其两根为53c-和c ,由韦达定理得2222222252,35,3ck c c k b k c b c c k b ⎧--+=⎪⎪+⎨-⎪-⨯=⎪+⎩解之,得213c =, ∴b 2=1-223c =.∴椭圆方程为22312x y +=.22.(江西15)过点M (1,1)作斜率为12-的直线与椭圆C :22221x y a b+=(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率 等于__________.解析:由题意可设A (x 1,y 1),B (x 2,y 2),则可得2211222222221(0),1(0).x y a b a b x y a b a b ⎧+=>>⎪⎪⎨⎪+=>>⎪⎩①②①-②,并整理得1212221212x x y ya y yb x x +-=(+)(-).(*) ∵M 是线段AB 的中点,且过点M (1,1)的直线斜率为12-, ∴x 1+x 2=2,y 1+y 2=2,121212y y k x x -==--.∴(*)式可化为22112a b=, 即a 2=2b 2=2(a 2-c 2),整理得a 2=2c 2,即2212c a =.∴2c e a ==.23.(辽宁15)已知椭圆C :22194x y +=,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上, 则|AN |+|BN |=__________.解析:如图,设MN 的中点为P ,则由F 1是AM 的中点,可知|AN |=2|PF 1|.同理可得可知|BN |=2|PF 2|. ∴|AN |+|BN |=2(|PF 1|+|PF 2|).根据椭圆定义得|PF 1|+|PF 2|=2a =6, ∴|AN |+|BN |=12.24.(湖南15)如图,正方形ABCD 和正方形 DEFG 的边长分别为a ,b (a <b ),原点O 为 AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=__________.解析:由题意,知,2a C a ⎛⎫-⎪⎝⎭,,2a F b b ⎛⎫+ ⎪⎝⎭.又C ,F 在抛物线y 2=2px (p >0)上,所以222,22(),2a a p ab p b ⎧=⨯⎪⎪⎨⎪=+⎪⎩①②由②÷①,得222b b aa a+=,即b 2-2ba -a 2=0,解得1ba =±负值舍去).故1ba=±25.(四川14)设m ∈R ,过定点A 的动直线 x +my =0和过定点B 的动直线 mx -y -m +3=0交于点P (x ,y ), 则|P A |·|PB |的最大值是__________.解析:由题意可知点A 为(0,0),点B 为(1,3).又∵直线x +my =0的斜率11k m=-,直线mx -y -m +3=0的斜率k 2=m ,∴k 1k 2=-1. ∴两条动直线互相垂直.又∵圆的性质可知,动点P (x ,y )的轨迹是圆,∴圆的直径为AB ==.∴222||||||=522PA PB AB PA PB +⋅≤=. 当且仅当|P A |=|PB |∴|P A |·|PB |的最大值是5.26.(浙江16)设直线x -3y +m =0(m ≠0)与双曲线22221x y a b-=(a >0,b >0)的两条渐近线分 别交于点A ,B .若点P (m,0)满足|P A |=|PB |, 则该双曲线的离心率是__________.解析:由双曲线方程可知,它的渐近线方程为b y x a =与by x a=-,它们分别与x -3y +m =0联立方程组,解得33am bm A a b a b --⎛⎫⎪--⎝⎭,,33am bm B a b a b -⎛⎫ ⎪++⎝⎭,. 由|P A |=|PB |知,可设AB 的中点为Q ,则333322am am bm bm a b a b a b a b Q ---⎛⎫++ ⎪-+-+ ⎪ ⎪⎝⎭,, 由PQ ⊥AB ,得k PQ ·k AB =-1, 解得2a 2=8b 2=8(c 2-a 2),即225=4c a .故c a 二.解答题1.(课标全国Ⅰ.20满分12分)已知点A (0,-2),椭圆E :22221x y a b +=(a >b >0),F 是椭圆E 的右焦点,直线AFO 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.分析:(1)由过A (0,-2),F (c,0)的直线AF 的或过两点的直线斜率公式可求c ,再由c e a ==,可求a ,由b 2=a 2-c 2可求b 2,则椭圆E 的方程可求.(2)由题意知动直线l 的斜率存在,故可设其斜 率为k ,写出直线方程,并与椭圆方程联立, 消去y ,整理成关于x 的一元二次方程, 利用弦长公式求出弦PQ 的长|PQ |,利用点到直线的公式求出点O 到直线PQ 的 距离d ,则由12OPQ S PQ d ∆=⋅, 可将S △OPQ 表示成关于k 的函数,转化为求函数f (k )的最大值问题.注意k 应使得一元二次方程的判别式大于0.解:(1)设F (c,0),由条件知,2c =得c =又2c a =,所以a =2,b 2=a 2-c 2=1. 故E 的方程为2214x y +=. (2)当l ⊥x 轴时不合题意,故设l :y =kx -2, P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入2214x y +=, 得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即234k >时,1,22841k x k ±=+. 从而12241PQ x k =-=+. 又点O 到直线PQ的距离d =,所以△OPQ 的面积S △OPQ =12d PQ ⋅=241k +t =,则t >0,24444OPQ t S t t t∆==++. 因为44t t +≥,当且仅当t =2,即k =时等号成立,且满足Δ>0.所以,当△OPQ 的面积最大时,l 的方程为2y x =-或2y x =-.2. (课标全国Ⅱ.20满分12分)设F 1,F 2分别是椭圆C :22221x y a b+=(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2, 且|MN |=5|F 1N |,求a ,b .分析:在第(1)问中,根据椭圆中a ,b ,c 的关系及题目给出的条件可知点M 的坐标,从而由斜率条件得出a ,c 的关系,再利用离心率公式可求得离心率,注意离心率的取值范围;在第(2)问中,根据题目条件,O 是F 1F 2的中点,MF 2∥y 轴,可得a ,b 之间的一个关系式,再根据条件|MN |=5|F 1N |,可得|DF 1|与|F 1N |的关系,然后可求出点N 的坐标,代入C 的方程,可得a ,b ,c 的另一关系式,最后利用a ,b ,c 的关系式可求得结论.解:(1)根据c =2,b Mc a⎛⎫ ⎪⎝⎭, 2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得12c a =,2ca=- (舍去). 故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故24b a=, 即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |, 设N (x 1,y 1),由题意知y 1<0,则112,22,c x c y (--)=⎧⎨-=⎩即113,21,x c y ⎧=-⎪⎨⎪=-⎩代入C 的方程,得2229114c a b+=.②将①及c =22941144a a a a(-)+=. 解得a =7,b 2=4a =28,故a =7,b =3. (大纲全国21满分12分)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且54Q F P Q =.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程. 分析:(1)设出Q 点坐标,利用54QF PQ =列出关于p 的方程,借助于p 的几何意义及抛物线的性质确定p .(2)通过题设分析判断直线l 与x 轴不垂直.因直线l 过F (1,0),可设l 的方程为x =my +1(m ≠0). 直线l 与抛物线方程联立,利用韦达定理得到 y 1+y 2,y 1y 2关于m 的表达式,借助弦长公式得12|||AB y y =-(其中A (x 1,y 1),B (x 2,y 2)),同理可得34|||MN y y =-(其中M (x 3,y 3), N (x 4,y 4)).由题目中的A ,M ,B ,N 四点在同一圆上得到关于m 的方程,进而求出m ,得到直线l 的方程.解:(1)设Q (x 0,4),代入y 2=2px 得08x p=. 所以8||PQ p =,08||22p p QF x p =+=+.由题设得85824p p p+=⨯,解得p =-2(舍去)或p =2. 所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0).代入y 2=4x 得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m , y 1y 2=-4.故AB 的中点为D (2m 2+1,2m ),212|||4(1)AB y y m =-=+.又l ′的斜率为-m ,所以l ′的方程为2123x y m m=-++. 将上式代入y 2=4x , 并整理得2244(23)0y y m m+-+=. 设M (x 3,y 3),N (x 4,y 4),则344y y m+=-, y 3y 4=-4(2m 2+3). 故MN 的中点为222223,E m m m ⎛⎫++-⎪⎝⎭,34|||MN y y =-=由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于12AE BE MN ==,从而22211||||||44AB DE MN +=,即2222222242241214(1)22m m m m m m m (+)(+)⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭++, 化简得m 2-1=0,解得m =1或m =-1.所求直线l 的方程为x -y -1=0或x +y -1=0. 4. (陕西20满分13分)如图,曲线C 由上半椭圆C 1:22221y x a b+=(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2 的公共点为A ,B ,其中C 1(1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),若AP ⊥AQ ,求直线l 的方程. 分析:在第(1)问中,利用公共点A ,B 是椭圆的两个顶点,可求出b 的值,再结合离心率c e a=的值,以及a 2-c 2=b 2关系式可求得a 的值. 对于第(2)问,结合第(1)问结论,可先设出直线 l 的方程,l 与C 1联立得出P 的坐标,l 与C 2 联立得出Q 的坐标,进而利用AP ⊥AQ ,借助于0AP AQ ⋅=或k AP ·k AQ =-1,可列出关于k 的方程,从而求解得出k 值,故可求得直线方程.解:(1)在C 1,C 2的方程中,令y =0,可得b =1,且A (-1,0),B (1,0)是上半椭圆C 1的左右顶点. 设C 1的半焦距为c ,由c a =及a 2-c 2=b 2=1 得a =2.∴a =2,b =1.(2)由(1)知,上半椭圆C 1的方程为22+=14y x (y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方 程为y =k (x -1)(k ≠0), 代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*) 设点P 的坐标为(x P ,y P ),∵直线l 过点B ,∴x =1是方程(*)的一个根.由求根公式,得2244P k x k -=+,从而284P ky k -=+,∴点P 的坐标为22248,44k k k k ⎛⎫-- ⎪++⎝⎭. 同理,由2(1)(0),1(0),y k x k y x y =-≠⎧⎨=-+≤⎩得点Q 的坐标为(-k -1,-k 2-2k ). ∴224kAP k =+ (k ,-4), AQ =-k (1,k +2).∵AP ⊥AQ ,∴0AP AQ ⋅=,即222[4(2)]04k k k k --+=+, ∵k ≠0,∴k -4(k +2)=0, 解得83k =-.经检验,83k =-符合题意, 故直线l 的方程为8(1)3y x =--.5. (北京19满分14分)已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线AB 与 圆x 2+y 2=2的位置关系,并证明你的结论. 分析:(1)先把方程化为标准方程,分别求出 a ,c ,即可求得离心率e ;(2)分别设出A ,B 两点的坐标,先利用OA ⊥OB 求出两点坐标之间的关系,然后根据A ,B 两点横坐标是否相等分类,分别求出原点O 到直线AB 的距离,将其与置关系.解:(1)由题意,椭圆C 的标准方程为22=142x y +. 所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c =故椭圆C的离心率2c e a ==. (2)直线AB 与圆x 2+y 2=2相切.证明如下: 设点A ,B 的坐标分别为(x 0,y 0),(t,2), 其中x 0≠0.因为OA ⊥OB ,所以0OA OB ⋅=,即tx 0+2y 0=0,解得002yt x =-.当x 0=t 时,202t y =-,代入椭圆C 的方程,得t =故直线AB的方程为x =圆心O 到直线AB的距离d ,此时直线AB与圆x 2+y 2=2相切.当x 0≠t 时,直线AB 的方程为0022=y y x t---(x -t ),即(y 0-2)x -(x 0-t )y +2x 0-ty 0=0. 圆心O 到直线AB 的距离d =.又2200+24x y =,00t x =-,故d 此时直线AB 与圆x +y 2=2相切.6. (天津18满分13分)设椭圆2222=1x y a b+(a >b >0)的左、右焦点分别为F,F 2,右顶点为A ,上 顶点为B .已知12AB F .(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过原点O 的直线l 与该圆相切,求直线l 的斜率.分析:(1)由题知A (a,0),B (0,b ),|F 1F 2|=2c ,因此可由已知条件结合b 2=a 2-c 2,求出离心率. (2)由(1)可设出只含一个参数c 的椭圆标准方程,设出P 点坐标.由以PB 为直径的圆过F 1知PF 1⊥BF 1,得P 点坐标关系.由P 点在椭圆上,得P 点坐标另一关系,由此确定P 点坐标.再根据过原点的直线l 与圆相切,列出斜率k 的方程,即可求出k 值.解:(1)设椭圆右焦点F 2的坐标为(c,0).由12||||AB F F ,可得a 2+b 2=3c 2, 又b 2=a 2-c 2,则221=2c a .所以椭圆的离心率e =.(2)由(1)知a 2=2c 2,b 2=c 2.故椭圆方程为2222=12x y c c+.设P (x 0,y 0).由F 1(-c,0),B (0,c ),有100=()F P x c y +,,1=()F B c c , 由已知,有11=0F P F B ⋅,即(x 0+c )c +y 0c =0. 又c ≠0,故有x 0+y 0+c =0. ①又因为点P 在椭圆上,故220022=12x y c c+. ② 由①和②可得200340x cx +=.而点P 不是椭圆的顶点,故043x c =-,代入①得0=3c y ,即点P 的坐标为433c c ⎛⎫- ⎪⎝⎭,.设圆的圆心为T (x 1,y 1),则1423==23c x c -+-,12323c cy c +==,进而圆的半径 r ==.设直线l 的斜率为k ,依题意,直线l 的 方程为y =kx . 由lr ,3, 整理得k 2-8k +1=0,解得4k =所以,直线l 的斜率为4或47. (安徽19满分13分)如图,已知两条抛物线 E 1:y 2=2p 1x (p 1>0)和E 2:y 2=2p 2x (p 2>0), 过原点O 的两条直线l 1和l 2,l 1与E 1,E 2分别交于A 1,A 2两点,l 2与E 1,E 2分别交于B 1,B 2两点.(1)证明:A 1B 1∥A 2B 2;(2)过O 作直线l (异于l 1,l 2)与E 1,E 2分别交于C 1,C 2两点.记△A 1B 1C 1与△A 2B 2C 2的面积分别为S 1与S 2,求12S S 的值. 分析:(1)先将直线l 1,l 2的方程设出来,再分别与抛物线y 2=2p 1x 和y 2=2p 2x 联立求出A 1与A 2的坐标,同理再求得B 1,B 2的坐标,利用向量这一工具,把11A B 与22A B 的坐标求出,由向量共线(平行)条件知A 1B 1∥A 2B 2. (2)由(1)中的结论,得出B 1C 1∥B 2C 2,C 1A 1∥C 2A 2,进而得出△A 1B 1C 1∽△A 2B 2C 2,以及△A 1B 1C 1与△A 2B 2C 2的相似比,再由相似三角形的面积比等于相似比的平方从而求解.(1)证明:设直线l 1,l 2的方程分别为 y =k 1x ,y =k 2x (k 1,k 2≠0),则由121,2,y k x y p x =⎧⎨=⎩得11121122,p p A k k ⎛⎫ ⎪⎝⎭,由122,2,y k x y p x =⎧⎨=⎩得22221122,p p A k k ⎛⎫ ⎪⎝⎭.同理可得11122222,p p B k k ⎛⎫⎪⎝⎭,22222222,p p B k k ⎛⎫ ⎪⎝⎭.所以111112122222121212122221111,2,p p p p A B p k k k k k k k k ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭.222222222222121212122221111,2,p p p p A B p k k k k k k k k ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭.故111222p A B A B p =, 所以A 1B 1∥A 2B 2. (2)解:由(1)知A 1B 1∥A 2B 2,同理可得B 1C 1∥B 2C 2,C 1A 1∥C 2A 2.所以△A 1B 1C 1∽△A 2B 2C 2. 因此2111222||||S A B S A B ⎛⎫= ⎪⎝⎭. 又由(1)中的111222p A B A B p =知111222||||A B p p A B =. 故211222S p S p =. 8. (福建19满分13分)已知双曲线E :22221x y a b-= (a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.分析:在第(1)问中,已知渐近线方程,即a 与b 的关系,再结合双曲线本身a ,b ,c 的关系及离心率ce a=,便可求得离心率. (2)首先根据渐近线方程设双曲线方程,然后根据动直线l 的斜率是否存在进行分类讨论.显然斜率不存在时,由直线l 和双曲线有且只有一个公共点可知其方程为x =a ,此时只需检验△OAB 的面积是否为8即可;当直线l 的斜率存在时,设其方程为y =kx +m ,首先由△OAB 的面积为8求出k ,m 的关系式,然后根据直线和圆锥曲线有且只有一个公共点,利用判别式的符号判断其存在性.解法一:(1)因为双曲线E 的渐近线分别为y =2x ,y =-2x , 所以2ba=, 所以2=,故c =,从而双曲线E 的离心率ce a==. (2)由(1)知,双曲线E 的方程为222214x y a a -=.设直线l 与x 轴相交于点C .当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点,则|OC |=a ,|AB |=4a ,又因为△OAB 的面积为8,所以1||||82OC AB ⋅=,因此1482a a ⋅=,解得a =2, 此时双曲线E 的方程为221416x y -=. 若存在满足条件的双曲线E ,则E 的方程只能为221416x y -=.以下证明:当直线l 不与x 轴垂直时,双曲线E :221416x y -=也满足条件. 设直线l 的方程为y =kx +m ,依题意,得k >2或k <-2,则,0m C k ⎛⎫-⎪⎝⎭.记A (x 1,y 1),B (x 2,y 2). 由,2y kx m y x =+⎧⎨=⎩得122m y k =-,同理得222my k=+,由S △OAB =12|OC |·|y 1-y 2|得,1228222m m m k k k-⋅-=-+,即m 2=4|4-k 2|=4(k 2-4).由22,1416y kx m x y =+⎧⎪⎨-=⎪⎩得,(4-k 2)x 2-2kmx -m 2-16=0.因为4-k 2<0,所以Δ=4k 2m 2+4(4-k 2)(m 2+16)=-16(4k 2-m 2-16),又因为m 2=4(k 2-4), 所以Δ=0,即l 与双曲线E 有且只有一个公共点. 因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为221416x y -=. 解法二:(1)同解法一.(2)由(1)知,双曲线E 的方程为222214x y a a -=. 设直线l 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2).依题意得1122m -<<. 由,2y my t y x=+⎧⎨=⎩得1212t y m =-,同理得2212ty m-=+.设直线l 与x 轴相交于点C ,则C (t,0).由S △OAB =12|OC |·|y 1-y 2|=8, 得122||821212t t t m m⋅+=-+, 所以t 2=4|1-4m 2|=4(1-4m 2).由2222,14x my t x y a a=+⎧⎪⎨-=⎪⎩得, (4m 2-1)y 2+8mty +4(t 2-a 2)=0.因为4m 2-1<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=64m 2t 2-16(4m 2-1)(t 2-a 2)=0, 即4m 2a 2+t 2-a 2=0,即4m 2a 2+4(1-4m 2)-a 2=0, 即(1-4m 2)(a 2-4)=0, 所以a 2=4,因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为221416x y -=. 解法三:(1)同解法一.(2)当直线l 不与x 轴垂直时,设直线l 的方程 为y =kx +m ,A (x 1,y 1),B (x 2,y 2). 依题意得k >2或k <-2.由22,40y kx m x y =+⎧⎨-=⎩得, (4-k 2)x 2-2kmx -m 2=0,因为4-k 2<0,Δ>0,所以21224m x x k -=-,又因为△OAB 的面积为8,所以12|OA |·|OB |·sin ∠AOB =8, 又易知4sin 5AOB ∠=,8=, 化简得x 1x 2=4.所以2244m k-=-,即m 2=4(k 2-4). 由(1)得双曲线E 的方程为222214x y a a -=, 由2222,14y kx m x y a a=+⎧⎪⎨-=⎪⎩得, (4-k 2)x 2-2kmx -m 2-4a 2=0,因为4-k 2<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=4k 2m 2+4(4-k 2)(m 2+4a 2)=0,。

【最新原创】2014年高考数学(理)真题分类汇编:H单元 解析几何

【最新原创】2014年高考数学(理)真题分类汇编:H单元 解析几何

数 学H 单元 解析几何H1 直线的倾斜角与斜率、直线的方程 14.、[2014·湖北卷] 设f (x )是定义在(0,+∞)上的函数,且f (x )>0,对任意a >0,b >0,若经过点(a ,f (a )),(b ,-f (b ))的直线与x 轴的交点为(c ,0),则称c 为a ,b 关于函数f (x )的平均数,记为M f (a ,b ),例如,当f (x )=1(x >0)时,可得M f (a ,b )=c =a +b2,即M f (a ,b )为a ,b 的算术平均数.(1)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的几何平均数;(2)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的调和平均数2aba +b.(以上两空各只需写出一个符合要求的函数即可)14.(1)x (2)x (或填(1)k 1x ;(2)k 2x ,其中k 1,k 2为正常数)20.[2014·江西卷] 如图1-7所示,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点).图1-7(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0xa 2-y 0y =1与直线AF 相交于点M ,与直线x=32相交于点N .证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值. 20.解:(1)设F (c ,0),因为b =1,所以c =a 2+1.由题意,直线OB 的方程为y =-1a x ,直线BF 的方程为y =1a (x -c ),所以B ⎝⎛⎭⎫c 2,-c 2a . 又直线OA 的方程为y =1a x ,则A ⎝⎛⎭⎫c ,c a ,所以k AB =c a -⎝⎛⎭⎫-c 2a c -c 2=3a. 又因为AB ⊥OB ,所以3a ·⎝⎛⎭⎫-1a =-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.(2)由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0(y 0≠0).因为直线AF 的方程为x =2,所以直线l 与AF 的交点为M ⎝⎛⎭⎫2,2x 0-33y 0,直线l 与直线x =32的交点为N 32,32x 0-33y 0, 则|MF |2|NF |2=(2x 0-3)2(3y 0)214+⎝⎛⎭⎫32x 0-32(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2= 43·(2x 0-3)23y 20+3(x 0-2)2. 又P (x 0,y 0)是C 上一点,则x 203-y 20=1, 代入上式得|MF |2|NF |2=43·(2x 0-3)2x 20-3+3(x 0-2)2=43·(2x 0-3)24x 20-12x 0+9=43,所以|MF ||NF |=23=233,为定值.20.,,[2014·四川卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程.(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .①证明:OT 平分线段PQ (其中O 为坐标原点);②当|TF ||PQ |最小时,求点T 的坐标.20.解:(1)由已知可得⎩⎨⎧a 2+b 2=2b ,2c =2a 2-b 2=4,解得a 2=6,b 2=2,所以椭圆C 的标准方程是x 26+y 22=1.(2)①证明:由(1)可得,F 的坐标是(-2,0),设T 点的坐标为(-3,m ), 则直线TF 的斜率k TF =m -0-3-(-2)=-m .当m ≠0时,直线PQ 的斜率k PQ =1m .直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y 22=1.消去x ,得(m 2+3)y 2-4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0. 所以y 1+y 2=4mm 2+3,y 1y 2=-2m 2+3,x 1+x 2=m (y 1+y 2)-4=-12m 2+3.设M 为PQ 的中点,则M 点的坐标为⎝ ⎛⎭⎪⎫-6m 2+3,2m m 2+3.所以直线OM 的斜率k OM =-m3,又直线OT 的斜率k OT =-m3,所以点M 在直线OT 上, 因此OT 平分线段PQ . ②由①可得,|TF |=m 2+1,|PQ |=(x 1-x 2)2+(y 1-y 2)2 =(m 2+1)[(y 1+y 2)2-4y 1y 2]=(m 2+1)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫4m m 2+32-4·-2m 2+3=24(m 2+1)m 2+3.所以|TF ||PQ |=124·(m 2+3)2m 2+1= 124⎝⎛⎭⎫m 2+1+4m 2+1+4≥124(4+4)=33. 当且仅当m 2+1=4m 2+1,即m =±1时,等号成立,此时|TF ||PQ |取得最小值.故当|TF ||PQ |最小时,T 点的坐标是(-3,1)或(-3,-1).H2 两直线的位置关系与点到直线的距离 21.、、[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.21.解:(1)设Q (x 0,4),代入y 2=2px ,得x 0=8p ,所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1). 又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝⎛⎭⎫2m 2+2m 2+3,-2m , |MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即4(m 2+1)2+⎝⎛⎭⎫2m +2m 2+⎝⎛⎭⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1,故所求直线l 的方程为x -y -1=0或x +y -1=0.H3 圆的方程9.、[2014·福建卷] 设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+ 2 C .7+ 2 D .6 2 9.DH4 直线与圆、圆与圆的位置关系 10.、[2014·安徽卷] 在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满足OQ →=2(a +b ).曲线C ={P |OP →=a cos θ+b sin θ,0≤θ<2π},区域Ω={P |0<r ≤|PQ |≤R ,r <R }.若C ∩Ω为两段分离的曲线,则( )A .1<r <R <3B .1<r <3≤RC .r ≤1<R <3D .1<r <3<R 10.A19.、、[2014·北京卷] 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论.19.解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)直线AB 与圆x 2+y 2=2相切.证明如下: 设点A ,B 的坐标分别为(x 0,y 0),(t ,2), 其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.当x 0=t 时,y 0=-t 22,代入椭圆C 的方程,得t =±2,故直线AB 的方程为x =±2.圆心O 到直线AB 的距离d =2, 此时直线AB 与圆x 2+y 2=2相切.当x 0≠t 时,直线AB 的方程为y -2=y 0-2x 0-t (x -t ),即(y 0-2)x -(x 0-t )y +2x 0-ty 0=0. 圆心O 到直线AB 的距离d =|2x 0-ty 0|(y 0-2)2+(x 0-t )2.又x 20+2y 20=4,t =-2y 0x 0,故 d =⎪⎪⎪⎪2x 0+2y 20x 0x 20+y 20+4y 20x 20+4=⎪⎪⎪⎪4+x 20x 0x 40+8x 20+162x 20= 2.此时直线AB 与圆x 2+y 2=2相切.6.、[2014·福建卷] 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件 6.A 12.[2014·湖北卷] 直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________.12.2 15.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.15.4315.[2014·山东卷] 已知函数y =f (x )(x ∈R ),对函数y =g (x )(x ∈I ),定义g (x )关于f (x )的“对称函数”为函数y =h (x )(x ∈I ),y =h (x )满足:对任意x ∈I ,两个点(x ,h (x )),(x ,g (x ))关于点(x ,f (x ))对称.若h (x )是g (x )=4-x 2关于f (x )=3x +b 的“对称函数”,且h (x )>g (x )恒成立,则实数b 的取值范围是________.15.(210,+∞) 12.[2014·陕西卷] 若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.12.x 2+(y -1)2=1 14.,[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.14.5 13.[2014·重庆卷] 已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.13.4±1521.,[2014·重庆卷] 如图1-4所示,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 1||DF 1|=22得|DF 1|=|F 1F 2|22=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22,由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=322,所以2a =|DF 1|+|DF 2|=22,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2,|P 1P 2|=2|x由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0.当x 1=0时,P 1,P 2重合,此时题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .由F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,知CP 1⊥CP 2.又|CP 1|=|CP 2|,故圆C 的半径|CP 1|=22|P 1P 2|=2|x 1|=423.H5 椭圆及其几何性质20.,,[2014·四川卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程.(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .①证明:OT 平分线段PQ (其中O 为坐标原点); ②当|TF ||PQ |最小时,求点T 的坐标.20.解:(1)由已知可得⎩⎨⎧a 2+b 2=2b ,2c =2a 2-b 2=4,解得a 2=6,b 2=2,所以椭圆C 的标准方程是x 26+y 22=1.(2)①证明:由(1)可得,F 的坐标是(-2,0),设T 点的坐标为(-3,m ), 则直线TF 的斜率k TF =m -0-3-(-2)=-m .当m ≠0时,直线PQ 的斜率k PQ =1m .直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y 22=1.消去x ,得(m 2+3)y 2-4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0. 所以y 1+y 2=4mm 2+3,y 1y 2=-2m 2+3,x 1+x 2=m (y 1+y 2)-4=-12m 2+3.设M 为PQ 的中点,则M 点的坐标为⎝ ⎛⎭⎪⎫-6m 2+3,2m m 2+3. 所以直线OM 的斜率k OM =-m3,又直线OT 的斜率k OT =-m3,所以点M 在直线OT 上, 因此OT 平分线段PQ . ②由①可得,|TF |=m 2+1,|PQ |=(x 1-x 2)2+(y 1-y 2)2 =(m 2+1)[(y 1+y 2)2-4y 1y 2]=(m 2+1)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫4m m 2+32-4·-2m 2+3=24(m 2+1)m 2+3.所以|TF ||PQ |=124·(m 2+3)2m 2+1= 124⎝⎛⎭⎫m 2+1+4m 2+1+4≥124(4+4)=33.当且仅当m 2+1=4m 2+1,即m =±1时,等号成立,此时|TF ||PQ |取得最小值.故当|TF ||PQ |最小时,T 点的坐标是(-3,1)或(-3,-1).14.[2014·安徽卷] 设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.14.x 2+32y 2=119.、、[2014·北京卷] 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论.19.解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)直线AB 与圆x 2+y 2=2相切.证明如下: 设点A ,B 的坐标分别为(x 0,y 0),(t ,2), 其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.当x 0=t 时,y 0=-t 22,代入椭圆C 的方程,得t =±2,故直线AB 的方程为x =±2.圆心O 到直线AB 的距离d =2, 此时直线AB 与圆x 2+y 2=2相切.当x 0≠t 时,直线AB 的方程为y -2=y 0-2x 0-t (x -t ),即(y 0-2)x -(x 0-t )y +2x 0-ty 0=0. 圆心O 到直线AB 的距离d =|2x 0-ty 0|(y 0-2)2+(x 0-t )2.又x 20+2y 20=4,t =-2y 0x 0,故 d =⎪⎪⎪⎪2x 0+2y 20x 0x 20+y 20+4y 20x 20+4=⎪⎪⎪⎪4+x 20x 0x 40+8x 20+162x 20= 2.此时直线AB 与圆x 2+y 2=2相切. 9.、[2014·福建卷] 设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+ 2C .7+ 2D .6 29.D [解析] 设圆心为点C ,则圆x 2+(y -6)2=2的圆心为C (0,6),半径r = 2.设点Q (x 0,y 0)是椭圆上任意一点,则x 2010+y 20=1,即x 20=10-10y 20, ∴|CQ |=10-10y 20+(y 0-6)2=-9y 20-12y 0+46=-9⎝⎛⎭⎫y 0+232+50, 当y 0=-23时,|CQ |有最大值52, 则P ,Q 两点间的最大距离为52+r =62.20.、[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.9.、[2014·湖北卷] 已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433B.233 C .3 D .29.A21.、、、[2014·湖南卷] 如图1-7,O 为坐标原点,椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:x 2a 2-y 2b2=1的左、右焦点分别为F 3,F 4,离心率为e 2.已知e 1e 2=32,且|F 2F 4|=3-1.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为AB 的中点.当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ 面积的最小值.21.解: (1)因为e 1e 2=32,所以a 2-b 2a ·a 2+b 2a =32,即a 4-b 4=34a 4,因此a 2=2b 2,从而F 2(b ,0),F 4(3b ,0),于是3b -b =|F 2F 4|=3-1,所以b =1,a 2=2.故C 1,C 2的方程分别为x 22+y 2=1,x 22-y 2=1.(2)因AB 不垂直于y 1x =my -1,由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0. 易知此方程的判别式大于0.设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是上述方程的两个实根,所以y 1+y 2=2mm 2+2,y 1y 2=-1m 2+2.因此x 1+x 2=m (y 1+y 2)-2=-4m 2+2,于是AB 的中点为M ⎝ ⎛⎭⎪⎫-2m 2+2,m m 2+2,故直线PQ的斜率为-m 2,PQ 的方程为y =-m2x ,即mx +2y =0.由⎩⎨⎧y =-m 2x ,x22-y 2=1得(2-m 2)x 2=4,所以2-m 2>0,且x 2=42-m 2,y 2=m 22-m 2,从而|PQ |=2x 2+y 2=2m 2+42-m 2.设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4.因为点A ,B 在直线mx +2y =0的异侧,所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4.又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2,所以2d =22·1+m 2m 2+4.故四边形APBQ 的面积S =12|PQ |·2d =22·1+m 22-m 2=22·-1+32-m 2.而0<2-m 2≤2,故当m =0时,S 取最小值2. 综上所述,四边形APBQ 面积的最小值为2.15.[2014·江西卷] 过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.15.2215.[2014·辽宁卷] 已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=______.15.12 20.、[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴,y 轴正半轴围成—个三角形,当该三角形面积最小时,切点为P (如图1-6所示).双曲线C 1:x 2a 2-y 2b2=1过点P 且离心率为 3.(1)求C 1的方程;(2)椭圆C 2过点P 且与C 1有相同的焦点,直线l 过C 2的右焦点且与C 2交于A ,B 两点.若以线段AB 为直径的圆过点P ,求l 的方程.20.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时两个坐标轴的正半轴与切线的交点分别为⎝⎛⎭⎫4x 0,0,⎝⎛⎭⎫0,4y 0.故其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知,当且仅当x 0=y 0=2时x 0y 0有最大值2,此时S 有最小值4,因此点P 的坐标为(2,2).由题意知⎩⎪⎨⎪⎧2a 2-2b 2=1,a 2+b 2=3a 2,解得a 2=1,b 2=2,故C 1的方程为x 2-y 22=1. (2)由(1)知C 2的焦点坐标为(-3,0),(3,0),由此可设C 2的方程为x 23+b 21+y 2b 21=1,其中b 1>0.由P (2,2)在C 2上,得23+b 21+2b 21=1, 解得b 21=3,因此C 2的方程为x 26+y 23=1.显然,l 不是直线y =0.设直线l 的方程为x =my +3,点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +3,x 26+y 23=1,得(m 2+2)y 2+2 3my -3=0. 又y 1,y 2是方程的根,因此⎩⎪⎨⎪⎧y 1+y 2=-2 3mm 2+2, ①y 1y 2=-3m 2+2,②由x 1=my 1+3,x 2=my 2+3,得⎩⎪⎨⎪⎧x 1+x 2=m (y 1+y 2)+2 3=4 3m 2+2, ③x 1x 2=m 2y 1y 2+3m (y 1+y 2)+3=6-6m2m 2+2. ④因为AP →=(2-x 1,2-y 1),BP →=(2-x 2,2-y 2),由题意知AP →·BP →=0, 所以x 1x 2-2(x 1+x 2)+y 1y 2-2(y 1+y 2)+4=0,⑤ 将①②③④代入⑤式整理得 2m 2-2 6m +4 6-11=0,解得m =3 62-1或m =-62+1.因此直线l 的方程为x -(3 62-1)y -3=0或x +(62-1)y -3=0.6.[2014·全国卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 6.A20.、、[2014·新课标全国卷Ⅰ] 已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 20.解:(1)设F (c ,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故可设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx +12=0,当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1,从而|PQ |=k 2+1|x 1-x 2| =4k 2+1·4k 2-34k 2+1.又点O 到直线l 的距离d =2k 2+1. 所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,满足Δ>0,所以,当△OPQ 的面积最大时,k =±72,l 的方程为y =72x -2或y =-72x -2.20.、、[2014·新课标全国卷Ⅱ] 设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |= 5|F 1N |,求a ,b .20.解:(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b 2a ,2b 2=3ac . 将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,ca=-2(舍去).故C 的离心率为12.(2)由题意知,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1,解得a =7,b 2=4a =28,故a =7,b =27.10.,[2014·山东卷] 已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A. x ±2y =0 B. 2x ±y =0 C. x ±2y =0 D. 2x ±y =010.A [解析] 椭圆C 1的离心率e 1=a 2-b 2a ,双曲线C 2的离心率e 2=a 2+b 2a .由e 1e 2=a 2-b 2a ·a 2+b 2a=1-⎝⎛⎭⎫b a 2×1+⎝⎛⎭⎫b a 2=32,解得⎝⎛⎭⎫b a 2=12,所以b a =22,所以双曲线C 2的渐近线方程是y =±22x .故选A.20.,,[2014·陕西卷] 如图1-5所示,曲线C 由上半椭圆C 1:y 2a 2+x 2b 2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32. (1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),若AP ⊥AQ ,求直线l 的方程.图1-520.解:(1)在C 1,C 2的方程中,令y =0,可得b =1,且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点.设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1得a =2,∴a =2,b =1.(2)方法一:由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0), 代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*) 设点P 的坐标为(x P ,y P ),∵直线l 过点B ,∴x =1是方程(*)的一个根. 由求根公式,得x P =k 2-4k 2+4,从而y P =-8kk 2+4,∴点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4.同理,由⎩⎪⎨⎪⎧y =k (x -1)(k ≠0),y =-x 2+1(y ≤0),得点Q 的坐标为(-k -1,-k 2-2k ). ∴AP →=2k k 2+4(k ,-4),AQ →=-k (1,k +2).∵AP ⊥AQ ,∴AP ·AQ =0,即-2k 2k 2+4[k -4(k +2)]=0,∵k ≠0,∴k -4(k +2)=0,解得k =-83.经检验,k =-83符合题意,故直线l 的方程为y =-83(x -1).方法二:若设直线l 的方程为x =my +1(m ≠0),比照方法一给分.20.,,[2014·陕西卷] 如图1-5所示,曲线C 由上半椭圆C 1:y 2a 2+x 2b 2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32. (1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),若AP ⊥AQ ,求直线l 的方程.图1-520.解:(1)在C 1,C 2的方程中,令y =0,可得b =1,且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点.设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1得a =2,∴a =2,b =1.(2)方法一:由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0), 代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*) 设点P 的坐标为(x P ,y P ),∵直线l 过点B ,∴x =1是方程(*)的一个根.由求根公式,得x P =k 2-4k 2+4,从而y P =-8kk 2+4,∴点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4. 同理,由⎩⎪⎨⎪⎧y =k (x -1)(k ≠0),y =-x 2+1(y ≤0), 得点Q 的坐标为(-k -1,-k 2-2k ).∴AP →=2k k 2+4(k ,-4),AQ →=-k (1,k +2).∵AP ⊥AQ ,∴AP ·AQ =0,即-2k 2k 2+4[k -4(k +2)]=0,∵k ≠0,∴k -4(k +2)=0,解得k =-83.经检验,k =-83符合题意,故直线l 的方程为y =-83(x -1).方法二:若设直线l 的方程为x =my +1(m ≠0),比照方法一给分.18.、[2014·天津卷] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|. (1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过原点O 的直线l 与该圆相切,求直线l 的斜率.18.解:(1)设椭圆右焦点F 2的坐标为(c ,0).由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2. 又b 2=a 2-c 2,则c 2a 2=12, 所以椭圆的离心率e =22. (2)由(1)知a 2=2c 2,b 2=c 2. 故椭圆方程为x 22c 2+y 2c2=1.设P (x 0,y 0).由F 1(-c ,0),B (0,c ), 有F 1P →=(x 0+c ,y 0),F 1B →=(c ,c ).由已知,有F 1P →·F 1B →=0,即(x 0+c )c +y 0c =0. 又c ≠0,故有x 0+y 0+c =0.①又因为点P 在椭圆上, 所以x 202c 2+y 20c2=1.②由①和②可得3x 20+4cx 0=0.而点P 不是椭圆的顶点,故x 0=-43c .代入①得y 0=c 3,即点P 的坐标为⎝⎛⎭⎫-4c 3,c3. 设圆的圆心为T (x 1,y 1),则x 1=-43c +02=-23c ,y 1=c3+c 2=23c ,进而圆的半径r =(x 1-0)2+(y 1-c )2=53c . 设直线l 的斜率为k ,依题意,直线l 的方程为y =kx .由l 与圆相切,可得|kx 1-y 1|k 2+1=r ,即⎪⎪⎪⎪k ⎝⎛⎭⎫-2c 3-2c 3k 2+1=53c ,整理得k 2-8k +1=0,解得k =4±15, 所以直线l 的斜率为4+15或4-15.21.、[2014·浙江卷] 如图1-6,设椭圆C :x 2a 2+y 2b2=1(a >b >0),动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用a ,b ,k 表示点P 的坐标;(2)若过原点O 的直线l 1与ll 1的距离的最大值为a -b .21.解:(1)设直线l 的方程为y =kx +m (k <0),由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,消去y 得(b 2+a 2k 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0.由于l 与C 只有一个公共点,故Δ=0,即b 2-m 2+a 2k 2=0,解得点P 的坐标为⎝⎛⎭⎫-a 2km b 2+a 2k 2,b 2m b 2+a 2k 2. 又点P 在第一象限,故点P 的坐标为P ⎝ ⎛⎭⎪⎫-a 2k b 2+a 2k 2,b 2m b 2+a 2k 2.(2)由于直线l 1过原点O 且与l 垂直,故直线l 1的方程为x +ky =0,所以点P 到直线l 1的距离d =⎪⎪⎪⎪⎪⎪-a 2k b 2+a 2k2+b 2k b 2+a 2k 21+k 2,整理得d =a 2-b 2b 2+a 2+a 2k 2+b2k2.因为a 2k 2+b 2k2≥2ab ,所以a 2-b 2b 2+a 2+a 2k 2+b 2k2≤a 2-b 2b 2+a 2+2ab=a -b ,当且仅当k 2=ba时等号成立.所以,点P 到直线l 1的距离的最大值为a -b .21.,[2014·重庆卷] 如图1-4所示,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 1||DF 1|=22得|DF 1|=|F 1F 2|22=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22,由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=322,所以2a =|DF 1|+|DF 2|=22,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2,|P 1P 2|=2|x由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0.当x 1=0时,P 1,P 2重合,此时题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .由F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,知CP 1⊥CP 2.又|CP 1|=|CP 2|,故圆C 的半径|CP 1|=22|P 1P 2|=2|x 1|=423.H6 双曲线及其几何性质 9.、[2014·湖北卷] 已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433B.233 C .3 D .29.A11.[2014·北京卷] 设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为________;渐近线方程为________.11.x 23-y 212=1 y =±2x 9.[2014·全国卷] 已知双曲线C 的离心率为2,焦点为F 1,F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( )A.14B.13C.24D.23 9.A19.、[2014·福建卷] 已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率. (2)如图1-6,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.图1-619.解:方法一:(1)因为双曲线E 的渐近线分别为y =2x ,y =-2x , 所以ba=2,所以c 2-a 2a =2,故c =5a ,从而双曲线E 的离心率 e =ca= 5. (2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 与x 轴相交于点C .当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点,则|OC |=a ,|AB |=4a .又因为△OAB 的面积为8,所以12|OC |·|AB |=8,因此12a ·4a =8,解得a =2,此时双曲线E 的方程为x 24-y 216=1.若存在满足条件的双曲线E ,则E 的方程只能为x 24-y 216=1.以下证明:当直线l 不与x 轴垂直时,双曲线E :x 24-y 216=1也满足条件.设直线l 的方程为y =kx +m ,依题意,得k >2或k <-2,则C ⎝⎛⎭⎫-mk ,0.记A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +m ,y =2x 得y 1=2m 2-k ,同理得y 2=2m2+k .由S △OAB =12|OC |·|y 1-y 2|,得12⎪⎪⎪⎪-m k ·⎪⎪⎪⎪2m 2-k -2m 2+k =8,即m 2=4||4-k 2=4(k 2-4).由⎩⎪⎨⎪⎧y =kx +m ,x 24-y 216=1得(4-k 2)x 2-2kmx -m 2-16=0. 因为4-k 2<0,所以Δ=4k 2m 2+4(4-k 2)(m 2+16)=-16(4k 2-m 2-16). 又因为m 2=4(k 2-4),所以Δ=0,即l 与双曲线E 有且只有一个公共点.因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法二:(1)同方法一.(2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2). 依题意得-12<m <12.由⎩⎪⎨⎪⎧x =my +t ,y =2x 得y 1=2t1-2m , 同理得y 2=-2t 1+2m .设直线l 与x 轴相交于点C ,则C (t ,0).由S △OAB =12|OC |·|y 1-y 2|=8,得12|t |·⎪⎪⎪⎪2t 1-2m +2t 1+2m =8.所以t 2=4|1-4m 2|=4(1-4m 2).由⎩⎪⎨⎪⎧x =my +t ,x 2a 2-y 24a 2=1得(4m 2-1)y 2+8mty +4(t 2-a 2)=0. 因为4m 2-1<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=64m 2t 2-16(4m 2-1)(t 2-a 2)=0,即4m 2a 2+t 2-a 2=0, 即4m 2a 2+4(1-4m 2)-a 2=0,即(1-4m 2)(a 2-4)=0,所以a 2=4,因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法三:(1)同方法一.(2)当直线l 不与x 轴垂直时,设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).依题意得k >2或k <-2.由⎩⎪⎨⎪⎧y =kx +m ,4x 2-y 2=0得(4-k 2)x 2-2kmx -m 2=0, 因为4-k 2<0,Δ>0,所以x 1x 2=-m 24-k 2,又因为△OAB 的面积为8,所以12 |OA |·|OB |· sin ∠AOB =8,又易知sin ∠AOB =45,所以25x 21+y 21·x 22+y 22=8,化简得x 1x 2=4. 所以-m 24-k 2=4,即m 2=4(k 2-4).由(1)得双曲线E 的方程为x 2a 2-y 24a2=1,由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2-y 24a 2=1得(4-k 2)x 2-2kmx -m 2-4a 2=0. 因为4-k 2<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=4k 2m 2+4(4-k 2)(m 2+4a 2)=0,即(k 2-4)(a 2-4)=0,所以a 2=4,所以双曲线E 的方程为x 24-y 216=1.当l ⊥x 轴时,由△OAB 的面积等于8可得l :x =2,又易知l :x =2与双曲线E :x 24-y 216=1有且只有一个公共点.综上所述,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.4.[2014·广东卷] 若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等4.A [解析] 本题考查双曲线的几何性质,注意利用基本量的关系进行求解. ∵0<k <9,∴9-k >0,25-k >0.对于双曲线x 225-y 29-k =1,其焦距为225+9-k =234-k ;对于双曲线x 225-k -y 29=1,其焦距为225-k +9=234-k .所以焦距相等.21.、、、[2014·湖南卷] 如图1-7,O 为坐标原点,椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:x 2a 2-y2b2=1的左、右焦点分别为F 3,F 4,离心率为e 2.已知e 1e 2=32,且|F 2F 4|=3-1.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为AB 的中点.当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ21.解: (1)因为e 1e 2=32,所以a 2-b 2a ·a 2+b 2a =32,即a 4-b 4=34a 4,因此a 2=2b 2,从而F 2(b ,0),F 4(3b ,0),于是3b -b =|F 2F 4|=3-1,所以b =1,a 2=2.故C 1,C 2的方程分别为x 22+y 2=1,x22-y 2=1.(2)因AB 不垂直于y 1x =my -1,由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0. 易知此方程的判别式大于0.设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是上述方程的两个实根,所以y 1+y 2=2mm 2+2,y 1y 2=-1m 2+2.因此x 1+x 2=m (y 1+y 2)-2=-4m 2+2,于是AB 的中点为M ⎝ ⎛⎭⎪⎫-2m 2+2,m m 2+2,故直线PQ的斜率为-m 2,PQ 的方程为y =-m2x ,即mx +2y =0.由⎩⎨⎧y =-m 2x ,x22-y 2=1得(2-m 2)x 2=4,所以2-m 2>0,且x 2=42-m 2,y 2=m 22-m 2,从而|PQ |=2x 2+y 2=2m 2+42-m 2.设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4.因为点A ,B 在直线mx +2y =0的异侧,所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4.又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2,所以2d =22·1+m 2m 2+4.故四边形APBQ 的面积S =12|PQ |·2d =22·1+m 22-m 2=22·-1+32-m 2.而0<2-m 2≤2,故当m =0时,S 取最小值2. 综上所述,四边形APBQ 面积的最小值为2.20.[2014·江西卷] 如图1-7所示,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点).图1-7(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0xa 2-y 0y =1与直线AF 相交于点M ,与直线x=32相交于点N .证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值. 20.解:(1)设F (c ,0),因为b =1,所以c =a 2+1.由题意,直线OB 的方程为y =-1a x ,直线BF 的方程为y =1a (x -c ),所以B ⎝⎛⎭⎫c 2,-c 2a . 又直线OA 的方程为y =1a x ,则A ⎝⎛⎭⎫c ,c a ,所以k AB =c a -⎝⎛⎭⎫-c 2a c -c 2=3a. 又因为AB ⊥OB ,所以3a ·⎝⎛⎭⎫-1a =-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.(2)由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0(y 0≠0).因为直线AF 的方程为x =2,所以直线l 与AF 的交点为M ⎝⎛⎭⎫2,2x 0-33y 0,直线l 与直线x =32的交点为N 32,32x 0-33y 0, 则|MF |2|NF |2=(2x 0-3)2(3y 0)214+⎝⎛⎭⎫32x 0-32(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2= 43·(2x 0-3)23y 20+3(x 0-2)2. 又P (x 0,y 0)是C 上一点,则x 203-y 20=1, 代入上式得|MF |2|NF |2=43·(2x 0-3)2x 20-3+3(x 0-2)2=43·(2x 0-3)24x 20-12x 0+9=43,所以|MF ||NF |=23=233,为定值.4.[2014·新课标全国卷Ⅰ] 已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( )A. 3 B .3 C.3m D .3m 4.A10.,[2014·山东卷] 已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A. x ±2y =0 B. 2x ±y =0 C. x ±2y =0 D. 2x ±y =0 10.A5.[2014·天津卷] 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x+10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y 225=1 5.A16.[2014·浙江卷] 设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是________.16.528.[2014·重庆卷] 设F 1,F 2分别为双曲线x a 2-y b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( )A.43B.53C.94 D .3 8.BH7 抛物线及其几何性质10.、[2014·广东卷] 曲线y =e -5x +2在点(0,3)处的切线方程为________. 10.y =-5x +3 10.[2014·辽宁卷] 已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A.12B.23C.34D.4310.D 10.[2014·新课标全国卷Ⅰ] 已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |=( )A.72 B .3 C.52D .2 10.B 19.、[2014·安徽卷] 如图1-4,已知两条抛物线E 1:y 2=2p 1x (p 1>0)和E 2:y 2=2p 2x (p 2>0),过原点O 的两条直线l 1和l 2,l 1与E 1,E 2分别交于A 1,A 2两点,l 2与E 1,E 2分别交于B 1,B 2两点.图1-4(1)证明:A 1B 1∥A 2B 2;(2)过O 作直线l (异于l 1,l 2)与E 1,E 2分别交于C 1,C 2两点,记△A 1B 1C 1与△A 2B 2C 2的面积分别为S 1与S 2,求S 1S 2的值.19.解:(1)证明:设直线l 1,l 2的方程分别为y =k 1x ,y =k 2x (k 1,k 2≠0),则由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 1x , 得A 1⎝⎛⎭⎫2p 1k 21,2p 1k 1, 由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 2x ,得A 2⎝⎛⎭⎫2p 2k 21,2p 2k 1. 同理可得B 1⎝⎛⎭⎫2p 1k 22,2p 1k 2,B 2⎝⎛⎭⎫2p 2k 22,2p 2k 2.所以A 1B 1→=⎝⎛⎭⎫2p 1k 22-2p 1k 21,2p 1k 2-2p 1k 1=2p 1⎝⎛⎭⎫1k 22-1k 21,1k 2-1k 1,A 2B 2→=⎝⎛⎭⎫2p 2k 22-2p 2k 21,2p 2k 2-2p 2k 1=2p 2⎝⎛⎭⎫1k 22-1k 21,1k 2-1k 1. 故A 1B 1→=p 1p 2A 2B 2→,所以A 1B 1∥A 2B 2(2)由(1)知A 1B 1∥A 2B 2,同理可得B 1C 1∥B 2C 2,C 1A 1∥C 2A 2,所以△A 1B 1C 1∽△A 2B 2C 2, 因此S 1S 2=⎝ ⎛⎭⎪⎫|A 1B 1→||A 2B 2→|2.。

2014高考数学真题汇编(解析几何)部分

2014高考数学真题汇编(解析几何)部分

2014高考数学真题汇编(解析几何)部分2014解析几何部分:一选择题1(2014全国大纲卷)6.已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F,离心率为2F 的直线l 交C 于A 、B 两点,若1AF B ?的周长为C 的方程为 A .22132x y += B .2213x y += C .221128x y += D .221124 x y += 2(全国大纲卷)9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠=() A .14 B .13 CD3(2014课标1)4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为AB .3 CD .3m4(2014课标1)10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 5(2014新课标2)10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为()A.B.C. 6332D. 946(2014辽宁卷)10.已知点(2,3)A -在抛物线C :22y px =的准线上,学科网过点A 的直线与C在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为() A .12 B .23 C .34 D .437(2014福建卷)10设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是() A.25 B.246+ C.27+ D.268(2014广东卷)4.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等9(2014四川卷)10、已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ?=(其中O 为坐标原点),则ABO ?与AFO ?面积之和的最小值是()A 、2B 、3 CD二填空题1(2014全国大纲卷)15.直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为()1,3,则1l 与2l 的夹角的正切值等于 .2(2014新课标2)16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.3(2014陕西卷)12若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______.4(2014辽宁卷)15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .5(2014广东卷)14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__6(2014湖南卷)15.如图4,正方形ABCD 和正方形DEFG 的边长分别为(),a b a b <,原点O 为AD 的中点,抛物线)0(22>=p px y 经过F C ,两点,则_____=ab.7(2014四川卷)14设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ?的最大值是____________8(2014上海卷)3若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.9(2014上海卷)14.已知曲线C:x =l :x=6。

2014年高考数学理科(高考真题+模拟新题)分类汇编:K单元++概率

2014年高考数学理科(高考真题+模拟新题)分类汇编:K单元++概率

2014年高考数学理科(高考真题+模拟新题)分类汇编:K单元++概率D次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列.(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.17.解:(1)X 可能的取值为10,20,100,-200.根据题意,有P (X =10)=C 13×⎝⎛⎭⎪⎪⎫121×⎝ ⎛⎭⎪⎪⎫1-122=38, P (X =20)=C 23×⎝ ⎛⎭⎪⎪⎫122×⎝ ⎛⎭⎪⎪⎫1-121=38, P (X =100)=C 33×⎝ ⎛⎭⎪⎪⎫123×⎝ ⎛⎭⎪⎪⎫1-120=18, P (X =-200)=C 03×⎝ ⎛⎭⎪⎪⎫120×⎝ ⎛⎭⎪⎪⎫1-123=18.所以X 的分布列为: X 10 20 100-200 P 3838 18 18 (2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3),则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18. 所以“三盘游戏中至少有一盘出现音乐”的概率为1-P (A 1A 2A 3)=1-⎝ ⎛⎭⎪⎪⎫183=1-1512=511512. 因此,玩三盘游戏至少有一盘出现音乐的概率是511512. (3)由(1)知,X 的数学期望为EX =10×38+20×38+100×18-200×18=-54. 这表明,获得分数X 的均值为负.因此,多次游戏之后分数减少的可能性更大.K2 古典概型11.、[2014·广东卷] 从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.11.16[解析] 本题主要考查古典概型概率的计算,注意中位数的求法.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,有C710种方法,若七个数的中位数是6,则只需从0,1,2,3,4,5中选三个,从7,8,9中选三个不同的数即可,有C36C33种方法.故这七个数的中位数是6的概率P=C36C33C710=16.18.、、[2014·福建卷] 为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:(i)顾客所获的奖励额为60元的概率;(ii)顾客所获的奖励额的分布列及数学期望.(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.18.解:(1)设顾客所获的奖励额为X.(i)依题意,得P(X=60)=C11C13C24=12.即顾客所获的奖励额为60元的概率为1 2,(ii)依题意,得X的所有可能取值为20,60.P(X=60)=1 2,P(X=20)=C23C24=12,即X的分布列为X 2060P 0.50.5所以顾客所获的奖励额的期望为E(X)=20×0.5+60×0.5=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X12060100P 162316X1的期望为E(X1)=20×16+60×23+100×16=60,X1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=16003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X2406080P 162316X2的期望为E(X2)=40×16+60×23+80×16=60,X2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.5.[2014·新课标全国卷Ⅰ] 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.785.D [解析] 每位同学有2种选法,基本事件的总数为24=16,其中周六、周日中有一天无人参加的基本事件有2个,故周六、周日都有同学参加公益活动的概率为1-216=78.6.[2014·陕西卷] 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于...该正方形边长的概率为 ( ) A.15 B.25 C.35 D.456.C[解析] 利用古典概型的特点可知从5个点中选取2个点的全部情况有C25=10(种),选取的2个点的距离不小于该正方形边长的情况有:选取的2个点的连线为正方形的4条边长和2条对角线长,共有6种.故所求概率P=610=35.16.、、[2014·天津卷] 某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.16.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A,则P(A)=C13·C27+C03·C37C310=4960,所以选出的3名同学是来自互不相同学院的概率为49 60.(2)随机变量X的所有可能值为0,1,2,3.P(X=k)=C k4·C3-k6C310(k=0,1,2,3),所以随机变量X的分布列是X 012 3P 1612310130随机变量X的数学期望E(X)=0×16+1×1 2+2×310+3×130=65.9.、[2014·浙江卷] 已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B .p 1<p 2,E (ξ1)>E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2)9.A [解析] 方法一:不妨取m =n =3,此时,p 1=36×22+36×12=34,p 2=C 23C 26×33+C 13C 13C 26×23+C 23C 26×13=23,则p 1>p 2;E (ξ1)=1×36+2×36=32,E (ξ2)=1×C 23C 26+2×C 13C 13C 26+3×C 23C 26=2,则E (ξ1)<E (ξ2).故选A.方法二:p 1=m m +n ×22+n m +n ×12=2m +n 2(m +n ),p 2=C 2m C 2m +n ×33+C 1m C 1m C 2m +n ×23+C 2nC 2m +n ×13=3m 2-3m +4mn +n 2-n3(m +n )(m +n -1),则p 1-p 2=mn +n (n -1)6(m +n )(m +n -1)>0;E (ξ1)=1×n m +n +2×mm +n =2m +n m +n,E (ξ2)=1×C 2n C 2m +n +2×C 1m C 1n C 2m +n +3×C 2mC 2m +n=3m 2-3m +4mn +n 2-n(m +n )(m +n -1),E (ξ1)-E (ξ2)=-m 2+m -mn(m +n )(m +n -1)<0,故选A.18.,[2014·重庆卷] 一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望.(注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数)18.解:(1)由古典概型中的概率计算公式知所求概率为P =C 34+C 33C 39=584. (2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742,P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112,故X 的分布列为X 1 2 3P 17424384 112从而E (X )=1×1742+2×4384+3×112=4728.K3 几何概型14.、[2014·福建卷] 如图1-4,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.图1-414.2e 2 [解析] 因为函数y =ln x 的图像与函数y =e x 的图像关于正方形的对角线所在直线y =x 对称,则图中的两块阴影部分的面积为S =2⎠⎜⎛1e ln x d x =2(x ln x -x)|e1=2[(eln e -e )-(ln 1-1)]=2,故根据几何概型的概率公式得,该粒黄豆落到阴影部分的概率P =2e2.7.[2014·湖北卷] 由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎨⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.18B.14C.34D.787.D [解析] 作出Ω1,Ω2表示的平面区域如图所示,S Ω1=S △AOB =12×2×2=2,S △BCE =12×1×12=14,则S 四边形AOEC =S Ω1-S △BCE =2-14=74.故由几何概型得,所求的概率P =S 四边形AOEC S Ω1=742=78.故选D.14.[2014·辽宁卷] 正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图1-3所示.若将—个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是________.图1-314.23[解析] 正方形ABCD 的面积S =2×2=4,阴影部分的面积S 1=2⎠⎜⎜⎛-11(1-x 2)d x =2⎝⎛⎭⎪⎪⎫x -13x 31-1=83,故质点落在阴影区域的概率P =834=23.K4 互斥事件有一个发生的概率 17.、[2014·湖南卷] 某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率. (2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.17.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315. (2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=15, P (X =120)=P (E F )=23×25=415,P (X =220)=P (EF )=23×35=25,故所求的分布列为X 0 100 120 220P 215 15 415 25数学期望为E (X )=0×215+100×15+120×415+220×25=300+480+132015=210015=140.16.、、[2014·天津卷] 某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.16.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960, 所以选出的3名同学是来自互不相同学院的概率为4960.(2)随机变量X 的所有可能值为0,1,2,3.P (X =k )=C k 4·C 3-k 6C 310(k =0,1,2,3),所以随机变量X 的分布列是 X 0 1 2 3 P 1612310130随机变量X 的数学期望E (X )=0×16+1×12+2×310+3×130=65.K5 相互对立事件同时发生的概率 17.、[2014·安徽卷] 甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立. (1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).17.解: 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (A 3)P (A 4)=⎝⎛⎭⎪⎪⎫232+13×⎝ ⎛⎭⎪⎪⎫232+ 23×13×⎝ ⎛⎭⎪⎪⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)= P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)·P (B 4)=1081,P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=881.故X的分布列为X 234 5P 59291081881EX=2×59+3×29+4×1081+5×881=22481.16.、[2014·北京卷] 李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主238客1815场4场4主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x为表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与x的大小.(只需写出结论)16.解:(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A为“在随机选择的一场主场比赛中,李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中,李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C=AB∪AB,A,B相互独立.根据投篮统计数据,P(A)=35,P(B)=25.故P(C)=P(AB)+P(AB)=35×35+25×25=13 25.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为13 25.(3)EX=x-.17.、[2014·广东卷] 随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30]30.12(30,35]50.2(35,40]80.32(40,45]n1f1(45,50]n2f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.20.、、、、[2014·湖北卷] 计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量....X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多..有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X 40<X<8080≤X≤120X>120发电机最多可运行台数12 3若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?20.解:(1)依题意,p1=P(40<X<80)=10 50=0.2,p2=P(80≤X≤120)=3550=0.7,p3=P(X>120)=550=0.1.由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为p=C04(1-p3)4+C14(1-p3)3p3=0.94+4×0.93×0.1=0.947 7.(2)记水电站年总利润为Y(单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=5000,E(Y)=5000×1=5000.②安装2台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=5000-800=4200,因此P(Y=4200)=P(40<X<80)=p1=0.2;当X≥80时,两台发电机运行,此时Y=5000×2=10 000,因此P(Y=10 000)=P(X≥80)=p2+p3=0.8.由此得Y的分布列如下:Y 42010000P 0.20.8所以,E(Y)=4200×0.2+10 000×0.8=8840.③安装3台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=5000-1600=3400,因此P(Y=3400)=P(40<X<80)=p1=0.2;当80≤X≤120时,两台发电机运行,此时Y=5000×2-800=9200,因此P(Y=9200)=P(80≤X≤120)=p2=0.7;当X>120时,三台发电机运行,此时Y=5000×3=15 000,因此P(Y=15 000)=P(X>120)=p3=0.1.由此得YY 34092015000P 0.20.70.1所以,E(Y)=3400×0.2+9200×0.7+15 000×0.1=8620.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.21.、、[2014·江西卷] 随机将1,2,…,2n(n∈N*,n≥2)这2n个连续正整数分成A,B 两组,每组n个数.A组最小数为a1,最大数为a2;B组最小数为b1,最大数为b2.记ξ=a2-a1,η=b2-b1.(1)当n=3时,求ξ的分布列和数学期望;(2)令C表示事件“ξ与η的取值恰好相等”,求事件C发生的概率P(C);(3)对(2)中的事件C,C-表示C的对立事件,判断P(C)和P(C-)的大小关系,并说明理由.21.解:(1)当n=3时,ξ的所有可能取值为2,3,4,5.将6个正整数平均分成A,B两组,不同的分组方法共有C36=20(种),所以ξ的分布列为:ξ234 5P 1531031015Eξ=2×15+3×310+4×310+5×15=72.(2)ξ和η恰好相等的所有可能取值为n-1,n,n+1,…,2n-2.又ξ和η恰好相等且等于n-1时,不同的分组方法有2种;ξ和η恰好相等且等于n时,不同的分组方法有2种;ξ和η恰好相等且等于n+k(k=1,2,…,n-2)(n≥3)时,不同的分组方法有2C k2k种.所以当n=2时,P(C)=46=2 3,当n≥3时,P(C)=2⎝⎛⎭⎪⎫2+∑n-2k=1C k2kC n2n.(3)由(2)得,当n=2时,P(C)=13,因此P (C )>P (C ).而当n ≥3时,P (C )<P (C ).理由如下: P (C )<P (C )等价于4(2+∑n -2k =1C k2k )<C n 2n ,①用数学归纳法来证明:(i)当n =3时,①式左边=4(2+C 12)=4(2+2)=16,①式右边=C 36=20,所以①式成立.(ii)假设n =m (m ≥3)时①式成立,即 4⎝⎛⎭⎪⎫2+∑m -2k =1C k 2k <C m2m 成立, 那么,当n =m +1时, 左边=4⎝⎛⎭⎪⎫2+∑m +1-2k =1C k 2k =4⎝ ⎛⎭⎪⎫2+∑m -2k =1C k 2k +4Cm -12(m -1)<C m2m+4Cm -12(m -1)=(2m )!m !m !+4·(2m -2)!(m -1)!(m -1)!=(m +1)2(2m )(2m -2)!(4m -1)(m +1)!(m +1)!<(m +1)2(2m )(2m -2)!(4m )(m +1)!(m +1)!=C m +12(m +1)·2(m +1)m (2m +1)(2m -1)<C m +12(m +1)=右边,即当n=m+1时,①式也成立.综合(i)(ii)得,对于n≥3的所有正整数,都有P(C)<P(C)成立.18.、、[2014·辽宁卷] 一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图1-4所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).18.解:(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天日销售量不低于100个且另1天销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率分别为P(X=0)=C03·(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216.X的分布列为X 012 3P 0.0640.2880.4320.216因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.20.、[2014·全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求X的数学期望.20.解:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.(1)因为P(B)=0.6,P(C)=0.4,P(A i)=C i2×0.52,i=0,1,2,所以P(D)=P(A1·B·C+A2·B+A2·B·C)=P(A1·B·C)+P(A2·B)+P(A2·B·C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A0·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A0·C+B·A0·C+B·A1·C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,所以EX=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.17.,,,[2014·四川卷] 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列.(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.17.解:(1)X 可能的取值为10,20,100,-200.根据题意,有P (X =10)=C 13×⎝ ⎛⎭⎪⎪⎫121×⎝ ⎛⎭⎪⎪⎫1-122=38,P (X =20)=C 23×⎝⎛⎭⎪⎪⎫122×⎝ ⎛⎭⎪⎪⎫1-121=38,P (X =100)=C 33×⎝⎛⎭⎪⎪⎫123×⎝ ⎛⎭⎪⎪⎫1-120=18,P (X =-200)=C 03×⎝⎛⎭⎪⎪⎫120×⎝ ⎛⎭⎪⎪⎫1-123=18.所以X 的分布列为:X 10 20 100 -200 P 38381818(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3),则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为1-P (A 1A 2A 3)=1-⎝⎛⎭⎪⎪⎫183=1-1512=511512.因此,玩三盘游戏至少有一盘出现音乐的概率是511512.(3)由(1)知,X 的数学期望为EX =10×38+20×38+100×18-200×18=-54.这表明,获得分数X 的均值为负. 因此,多次游戏之后分数减少的可能性更大.K6 离散型随机变量及其分布列17.、[2014·安徽卷] 甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立. (1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).17.解: 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (A 3)P (A 4)=⎝⎛⎭⎪⎪⎫232+13×⎝ ⎛⎭⎪⎪⎫232+23×13×⎝ ⎛⎭⎪⎪⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P(B1)P(A2)P(A3)+P(A1)P(B2)P(B3)=2 9,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=P(A1)P(B2)P(A3)P(A4)+P(B1)P(A2)P(B3)·P(B4)=1081,P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=881.故X的分布列为X 234 5P 59291081881EX=2×59+3×29+4×1081+5×881=22481.16.、[2014·北京卷] 李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):场次投篮次数命中次数场次投篮次数命中次数主2212客188场1场1主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x为表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与x的大小.(只需写出结论)16.解:(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A为“在随机选择的一场主场比赛中,李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中,李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C=AB∪AB,A,B相互独立.根据投篮统计数据,P(A)=35,P(B)=25.故P(C)=P(AB)+P(AB)=35×35+25×25=13 25.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为13 25.(3)EX=x-.18.、、[2014·福建卷] 为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:(i)顾客所获的奖励额为60元的概率;(ii)顾客所获的奖励额的分布列及数学期望.(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.18.解:(1)设顾客所获的奖励额为X.(i)依题意,得P(X=60)=C11C13C24=12.即顾客所获的奖励额为60元的概率为1 2,(ii)依题意,得X的所有可能取值为20,60.P(X=60)=1 2,P(X=20)=C23C24=12,即X的分布列为X 2060P 0.50.5所以顾客所获的奖励额的期望为E(X)=20×0.5+60×0.5=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X12060100P 162316X1的期望为E(X1)=20×16+60×23+100×16=60,X1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=16003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X2406080P 162316X2的期望为E(X2)=40×16+60×23+80×16=60,X2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.20.、、、、[2014·湖北卷] 计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量....X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多..有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X 40<X<8080≤X≤120X>120发电机最多可运行台数12 3若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?20.解:(1)依题意,p1=P(40<X<80)=10 50=0.2,p2=P(80≤X≤120)=3550=0.7,p3=P(X>120)=550=0.1.由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为p=C04(1-p3)4+C14(1-p3)3p3=0.94+4×0.93×0.1=0.947 7.(2)记水电站年总利润为Y(单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=5000,E(Y)=5000×1=5000.②安装2台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=5000-800=4200,因此P(Y=4200)=P(40<X<80)=p1=0.2;当X≥80时,两台发电机运行,此时Y=5000×2=10 000,因此P(Y=10 000)=P(X≥80)=p2+p3=0.8.由此得Y的分布列如下:Y 42010000P 0.20.8所以,E(Y)=4200×0.2+10 000×0.8=8840.③安装3台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=5000-1600=3400,因此P(Y=3400)=P(40<X<80)=p1=0.2;当80≤X≤120时,两台发电机运行,此时Y=5000×2-800=9200,因此P(Y=9200)=P(80≤X≤120)=p2=0.7;当X>120时,三台发电机运行,此时Y=5000×3=15 000,因此P(Y=15 000)=P(X>120)=p3=0.1.由此得YY 34092015000P 0.20.70.1所以,E(Y)=3400×0.2+9200×0.7+15 000×0.1=8620.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.17.、[2014·湖南卷] 某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率.(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.17.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25, 且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215, 故所求的概率为P (H )=1-P (H )=1-215=1315. (2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=15, P (X =120)=P (E F )=23×25=415,P (X =220)=P (EF )=23×35=25, 故所求的分布列为 X 0 100 120 220P 215 15 415 25 数学期望为E (X )=0×215+100×15+120×415+220×25=300+480+132015=210015=140. 12.[2014·江西卷] 10件产品中有7件正品、3件次品,从中任取4件,则恰好取到1件次品的概率是________.12.12[解析] 由超几何分布的概率公式可得P (恰好取到一件次品)=C 13C 37C 410=12. 21.、、[2014·江西卷] 随机将1,2,…,2n (n ∈N *,n ≥2)这2n 个连续正整数分成A ,B 两组,每组n 个数.A 组最小数为a 1,最大数为a 2;B 组最小数为b 1,最大数为b 2.记ξ=a 2-a 1,η=b 2-b 1.(1)当n =3时,求ξ的分布列和数学期望;。

2014年全国高考数学理科(解析几何部分)解析汇编

2014年全国高考数学理科(解析几何部分)解析汇编

= (4k 2 + 2)2 − 4 + 16k 2 + 16 = 16(k 2 + 1)2
同理可得MN2=
16(m 2 + 1) 2 (2m 2 + 1) k4
【北京市·第 19 题】已知椭圆C:x2+2y2=4。 (1)求椭圆 C 的离心率; (2)设O为原点,若点A在椭圆C上,点B在直线y=2 上,且OA⊥OB,求直线AB与圆x2+y2=2 的位置关系,并证 明你的结论
c 2 3c 2
3 4
b ) a
2
∴OA=OF1+F1A= ∴点 N( −
3c 3c ,-1)或( − ,1) 2 2
b2 a
9c 2 1 + =1 4a 2 b 2 将 c 2 = a 2 − b 2 代入上式得:
代入 C 方程得:
2 ∴ tan ∠MF1 F2 = MF2 = b = 3 F1 F2 2ac 4
2014 年全国高考数学理科——解析几何部分——解析汇编
【天津市·第 18 题】设椭圆
x2 y 2 + = 1 (a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知 a 2 b2
|AB|= 3 |F1F2|. 2
(1)求椭圆的离心率; (2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l 的斜率 解: (1)∵A(a,0) ,B(0,b) ∴|AB|= a 2 + b 2 ∵|F1F2|= 2c = 2 a 2 − b 2 ∴EF1= ( − 2 c + c ) 2 + ( 2 c) 2 = 5 c 3 3 3 设直线 l 的方程为 y = kx ,即 kx − y = 0 则点 E 到直线 l 的距离为:

2014年全国高考数学理科(立体几何部分)解析汇编

【全国卷·新课标I ·第19题】如图,三棱柱ABC-A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C . (1)证明:AC=AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB=BC ,求二面角A-A 1B 1-C 1的余弦值.解:(1)∵面BB 1C 1C 为菱形∴BC 1⊥B 1C ,O 为B 1C 和BC 1的中点 ∵AB ⊥B 1C ∴B 1C ⊥面ABC 1令BC 1与B 1C 交于点O ,连接AO ∵AO ⊂面ABC 1 ∴B 1C ⊥AO ∵B 1O=CO∴AO 是B 1C 的中垂线 ∴AC=AB 1(2)因为AO 、BC 1、B 1C 两两互相垂直,以O 为坐标原点,分别以OB 、1OB 、OA 为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系令|OB|=1,由AC ⊥AB 1,∠CBB 1=60°,AB=BC 易得:11B C BC =设向量n =(x ,y ,z )是平面AA 1B 1的一个法向量,则:1113n AB =0n A B=0y z x z ⎧⋅=⎪⎪⎨⎪⋅-=⎪⎩由此,可取n =(1,3同理可得,平面A 1B 1C 1的一个法向量为:m =(1∴n m 1cos n,m =7|n ||m |7⋅〈〉==⋅1【全国卷·新课标II ·第18题】如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D-AE-C 为60°,AP=1,E-ACD 的体积.解:(1)连接BD 交AC 于O ,连接OE∵底面ABCD 为矩形 ∴O 为BD 的中点 ∵E 为PD 的中点 ∴PB ∥OE∵OE ⊂面AEC ,PB ⊄面AEC ∴PB ∥平面AEC (2)∵PA ⊥平面ABCD∴PA ⊥AB ,PA ⊥AD又AB ⊥AD ,即PA 、AB 、AD 两两互相垂直,以z 轴的正方向,建立如图所示的空间直角坐标系∵平面ADE与平面yOz 重合∴可取平面ADE 的一个法向量为n =(1,0,0) 设CD=a,由(a ∴AC =(a ,由∴AE =(0,设向量m =(x ,y ,z )是平面ACE的一个法向量,则m AC=031m AE=02ax y z ⎧⋅=⎪⎨⋅+=⎪⎩ 由此,可取m =(3,,3)∵二面角D-AE-C为60° ∴3n m 1cos n,m =cos602|n ||m |9o ⋅〈〉===⋅ 过点E 作EF ⊥AD 于F ∵PA ⊥平面ABCD ,即PA ⊥平面ACD ∴EF ⊥平面ACD∴EF 是三棱锥E-ACD 的高∴V E-ACD【全国卷·大纲版·第19题】如图,三棱柱ABC-A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB=90°,BC=1,AC=CC 1=2. (1)证明:AC 1⊥A 1B ;解:(1)∵点A 1在平面ABC 内的射影D 在AC 上∴A 1D ⊥平面ABC ∵A 1D ⊂平面ACC 1A 1 ∴平面ACC 1A 1⊥平面ABC ∵∠ACB=90°,即BC ⊥AC ∴BC ⊥平面ACC 1A 1 ∵AC 1⊂平面ACC 1A 1 ∴AC 1⊥BC连接A 1C ,由AC=CC 1知,侧面ACC 1A 1为菱形 ∴AC 1⊥A 1C∵BC 、A 1C ⊂平面A 1BC ∴AC 1⊥平面A 1BC ∵A 1B ⊂平面A 1BC ∴AC 1⊥A 1B(2)过点D 作DF ⊥AB 于F ,连接A 1F∵A 1D ⊥平面ABC ,AB ⊂平面ABC ∴AB ⊥A 1D ∴AB ⊥平面A 1DF ∴A 1F ⊥AB∴∠A 1FD 是二面角A 1-AB-C 的平面角∵AC=CC 1=2,A 1D ⊥AC在Rt △A 1DA 中,A 1A= CC 1=2ABCD A 1C 1EF【北京市·第17题】如图,正方形AMDE 的边长为2,B 、C 分别为AM 、MD 的中点,在五棱锥P-ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD 、PC 分别交于点G 、H . (1)求证:AB ∥FG ;(2)若PA ⊥底面ABCDE ,且PA=AE ,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长PABMCDEFGH解:(1)∵AB ∥DE ,DE ⊂平面PDE且AB ⊄平面PDE ∴AB ∥平面PDE∵平面AFGB ∩平面PDE=FG AB ⊂平面AFGB ,FG ⊂平面PDE ∴AB ∥FG(2)由题知,AP 、AM 、AE 两两互相垂直,以A 为坐标原点,分别以AM 、AE 、AP 为x 轴、y 轴、z轴的正方向,建立如图所示的空间直角坐标系由AM=AE=PA=2,易得:B (1,0,0),F (0,1,1),C (2,1,0),P (0,0,2)∴BC =(1,1,0),AB =(1,0,0),AF =(0,1,1),PC =(2,1,-2)设向量m =(x ,y ,z )是平面ABF 的一个法向量则m AB=0m AF=0x y z ⎧⋅=⎪⎨⋅+=⎪⎩ 由此,可取m =(0,1,-1)设直线BC 与平面ABF 所成角为θ,则m BC 1sin cos m,BC =2|m ||BC |2θ⋅=〈〉==⋅∴直线BC 与平面ABF 所成角θ=6π设H (a ,b ,c ),点H 在棱PC 上,不妨PH =k PC ,其中0<k <1∵PC =(2,1,-2),PH =(a ,b ,c -2) ∴(a ,b ,c -2)=k (2,1,-2) ∴a =2k ,b =k ,c =2-2k ∴AH =(2k ,k ,2-2k )∵m =(0,1,-1)为平面ABF 的一个法向量且AH ⊂平面ABF∴m AH 0⋅= ∴k -2+2k =0,得k =23∴|PH|=2【天津市·第17题】如图,在四棱锥P-ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD=DC=AP=2,AB=1,点E 为棱PC 的中点. (1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F-AB-P 的余弦值.解:(1)由题意知,AP 、AB 、AD 两两互相垂直,以A 为坐标原点,分别以AB 、AD 、AP 为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系易得:B (1,0,0),D (0,2,0),C (2,2,0),P (0,0,2)∴DC =(2,0,0)∵E 是PC 的中点 ∴E (1,1,1) ∴BE =(0,1,1)∵DC ·BE =0 ∴BE ⊥CD (2)∵PB =(-1,0,2),DB =(-1,2,0)设向量m =(x ,y ,z )是平面PBD 的一个法向量则m PB=20m DB=20x z x y ⎧⋅-+=⎪⎨⋅-+=⎪⎩ 由此,可取m =(2,1,1)设直线BE 与平面PBD 所成角为θ,则m BE sin cos m,BE =|m ||BE|6θ⋅=〈〉=⋅∴直线BE 与平面PBD(3)点F 在PC 上,不妨设PF =k PC ,其中0≤k ≤1设F (a ,b ,c ),由PC =(2,2,-2)得: (a ,b ,c -2)=k (2,2,-2) ∴a =2k ,b =2k ,c =2-2k ∴F (2k ,2k ,2-2k ) ∴BF =(2k -1,2k ,2-2k ) ∵BF ⊥AC ,且AC =(2,2,0)∴BF ·AC =0 即2(2k -1)+4k =0,得14k =∴AF =(2k ,2k ,2-2k )=(12,12,32) 又AB =(1,0,0)设向量n =(x ,y ,z )是平面ABF 的一个法向量则n AB=0113n AF=0222x x y z ⎧⋅=⎪⎨⋅++=⎪⎩ 由此,可取n =(0,3,-1)因为平面ABP 与平面xOz 重合,则可取平面ABP 的一个法向量为t =(0,1,0)n t cos n,t =|n||t |101⋅〈〉=⋅⋅∴二面角F-AB-P【重庆市·第19题】如图,四棱锥P-ABCD ,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB=2,∠BAD=3π,M 为BC 上的一点,且BM=12,MP ⊥AP . (1)求PO 的长;(2)求二面角A-PM-C 的正弦值解:(1)连接BD 、AC∵底面ABCD 是菱形,中心为O 且PO ⊥底面ABCD ∴OP 、AC 、BD 两两互相垂直以O 为坐标原点,分别以OA 、OB 、OP 为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系由AB=2,∠BAD=3π,易得A ,C (,B (0,1,0) ∴BC =(- ∵BM=12,BC=2 ∴BM - ∴M (设P(0,0,a ),则AP =(-,MP =∵AP ⊥MP∴=-3∴a =(2)由(1)知:AP =(-,MP =(3 设向量n =(x ,y ,z )是平面APM 的一个法向量则n AP=3033n MP=04z x y ⎧⋅-+=⎪⎪⎨⎪⋅-=⎪⎩由此,可取n =(1,52)同理可得,平面CPM 的一个法向量为: m=(1-2)∴n m cos n,m =|n ||m |40⋅〈〉==⋅∴二面角A-PM-C【江苏省·第16题】如图,在三棱锥P-ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点,已知PA ⊥AC ,PA=6,BC=8,DF=5.求证:(1)直线PA ∥平面DEF ;(2)平面BDE ⊥平面ABC解:(1)∵D 、E 分别是PC 、AC 的中点∴PA ∥DE∵DE ⊂平面DEF ,PA ⊄平面DEF ∴直线PA ∥平面DEF(2)∵D 、E 分别是PC 、AC 的中点∴DE=12PA=3 ∵E 、F 分别是AC 、AB 的中点 ∴EF=12BC=4 ∵DF=5 ∴DE 2+EF 2=DF 2∴∠DEF=90°,即DE ⊥EF ∵DE ∥PA ,PA ⊥AC ∴DE ⊥AC∵AC∩EF=E ∴DE ⊥平面ABC ∵DE ⊂平面BDE ∴平面BDE ⊥平面ABCPACDEF【浙江省·第20题】如图,在四棱锥A-BCDE 中,平面ABC ⊥平面BCDE ,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,(1)证明:DE ⊥平面ACD; (2)求二面角B-AD-E 的大小解:(1)在直角梯形BCDE 中,易求得∵在△ABC 中,∴AB 2+BC 2=AB 2∴∠ACB=90°,即AC ⊥BC∵平面ABC ⊥平面BCDE 且AC ⊂平面ACD ∴AC ⊥平面BCDE ∵DE ⊂平面BCDE∴AC ⊥DE∵∠CDE=90° ∴DE ⊥CD ∵CD ⊂平面ACD ∴DE ⊥平面ACD(2)由题,以D 为坐标原点,建立如图所示的空间直角坐标系易得E (1,0,0),B (1,1,0),A (0,2∴DE = (1,0,0),DA =(0,2DB = (1,1,0)设向量n =(x ,y ,z )是平面ADE 的一个法向量则n DE=0n DA=20x y ⎧⋅=⎪⎨⋅=⎪⎩ 由此,可取n =(0,-1同理可得,平面ADB 的一个法向量为:m =(1,-1∴n m cos n,m=|n ||m |3⋅〈〉==⋅⋅∴二面角B-AD-E【山东省·第17题】如图,在四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB=60°,AB=2CD=2,M 是线段AB 的中点.(1)求证:C 1M ∥平面A 1ADD 1;1解:(1)连接AD 1.∵M 是线段AB 的中点,AB=2 ∴AM=1∵C 1D 1=CD=1 ∴C 1D 1=AM ∵AM ∥CD ,CD ∥C 1D 1∴C 1D 1∥AM∴四边形AM C 1D 1是平行四边形 ∴C 1M ∥AD 1∵C 1M ⊄平面A 1ADD 1,AD 1⊂平面A 1ADD 1 ∴C 1M ∥平面A 1ADD 1(2)过点C 作CE ⊥AB 于E ,则CE ⊥CD∵CD 1⊥平面ABCD∴CD 1⊥CD ,CD 1⊥CE以C 为坐标原点,分别以CD 、CE 、1CD 为x轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐 标系由由∠DAB=60°,AB=2CD=2,在等腰梯形ABCD22∴MD =(11=(1,设向量n =(x ,y ,z )是平面C 1D 1M 的一个法向量则111n C D =01n MD =02x x y ⎧⋅=⎪⎨⋅=⎪⎩ 的一个法向量为m =∴n m cos n,m =|n ||m |5⋅〈〉==⋅⋅∴平面C 1D 1M 和平面ABCD 所成的角的余弦值为【江西省·第20题】如图,四棱锥P-ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD . (1)求证:AB ⊥PD ;(2)若∠BPC=90°,PC=2,问AB 为何值时,四棱锥P-ABCD 的体积最大?并求此时平面BPC 与平面DPC 夹角的余弦值.解:(1)∵底面ABCD 是矩形 ∴AB ⊥AD∵平面PAD ⊥平面ABCD 平面PAD ∩平面ABCD=AD ∴AB⊥平面PAD∵PD ⊂平面PAD ∴AB ⊥PD(2)∵∠BPC=90°,PC=2∴过点P 作PO ⊥AD 于O∵平面PAD ⊥平面ABCD ∴PO ⊥平面ABCD ∴V P-ABCD 过点O 作OE ⊥AD 交BC 于E ,连接PE设AB=x ,则OE=x 由前述,可建立如图所示的空间直角坐标系3∴PB =(6,BC =(-PD =(-2,DC = (0,设向量n =(x ,y ,z )是平面PBC 的一个法向量则n BC=606n PB=0x y z ⎧⋅-=⎪⎨⋅=⎪⎩由此,可取n =(0,1,1)同理可得,平面PDC 的一个法向量为:∴n m cos n,m =|n ||m |2⋅〈〉=⋅∴平面BPC 与平面DPC【广东省·第18题】如图,四边形ABCD 为正方形.PD ⊥平面ABCD ,∠DPC=30°,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E .(1)证明:CF ⊥平面ADF ; (2)求二面角D-AF-E 的余弦值.解:(1)∵PD ⊥平面ABCD ,AD ⊂平面ABCD∴AD ⊥PD∵四边形ABCD 为正方形 ∴AD ⊥CD ∵PD 、CD ⊂平面PCD ∴AD ⊥平面PCD∵CF ⊂平面PCD ∴CF ⊥AD ∵AF ⊥PC ,即CF ⊥AF 且AD 、AF ⊂平面ADF ∴CF ⊥平面ADF(2)因为PD 、CD 、AD 两两互相垂直,以D 为坐标原点,建立如图所示的空间直角坐标系设正方形ABCD 的边长为1,则AD=CD=1 ∴A (0,0,1),则DA =(0,0,1)由(1)知,DF ⊥PC ,在Rt △PDC 中,由∠DPC=30°,444∴EF =(0,,AE =(3DF =(34)设向量n =(x ,y ,z )是平面AEF 的一个法向量则3n EF=043n AE=0y x z ⎧⋅=⎪⎪⎨⎪⋅-=⎪⎩ 由此,可取n =(4,0同理可得,平面ADF 的一个法向量为:m =(31,0)∴n m cos n,m =|n ||m |19⋅〈〉==⋅∴二面角D-AF-E【湖南省·第19题】如图,四棱柱ABCD-A 1B 1C 1D 1的所有棱长都相等,AC∩BD=O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形. (1)证明:O 1O ⊥底面ABCD ;(2)若∠CBA=60°,求二面角C 1-OB 1-D 的余弦值解:(1)∵四边形ACC 1A 1为矩形∴A 1A ⊥AC由题知,四边形ABCD 和A 1B 1C 1D 1是菱形 ∴点O 是AC 、BD 的中点 点O 1是A 1C 1、B 1D 1的中点 ∴OO 1∥A 1A ∴OO 1⊥AC 同理可证:OO 1⊥BD ∵AC 、BC ⊂底面ABCD ∴O 1O ⊥底面ABCD (2)∵底面ABCD 是菱形∴AC ⊥BD由(1)知,AC 、BD 、O 1O 两两互相垂直 以O 为坐标原点,建立如图所示的空间直角坐标系。

2014年全国高考试卷解析几何部分汇编(下)

2014年全国高考试卷解析几何部分汇编(下)1. (2014理10)已知0a b >>,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 的离,则2C 的渐近线方程为( ) A.0x ±= B0y ±= C .20x y ±= D .20x y ±=【解析】 A2. (2014理21)已知抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF△为正三角形. ⑴求C 的方程;⑵若直线1l l ∥,且1l 和C 有且只有一个公共点E ,①证明直线AE 过定点,并求出定点坐标;②ABE △的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.【解析】 ⑴当A 的横坐标为3时,过A 作AG x ⊥轴于G ,3pAF =+32pFD AF ∴==+AFD △为等边三角形13224pFG FD ∴==+又32pFG =-33242p p∴+=-,2p ∴=,2:4C y x ∴= ⑵(ⅰ)设11()A x y ,,11FD AF x ==+ ()120D x ∴+,,12AB y k ∴=-1//AB l l ,1112l k y ∴=-又1l 与C 相切,设切点()E E E x y ,, 214x y =,12x y '=,1122E y y -∴=,14E y y ∴=- 22111444E x y y ⎛⎫=-= ⎪⎝⎭,211211444y E A y y y ⎛⎫⎛⎫∴- ⎪ ⎪⎝⎭⎝⎭,,, 1211121214:444AEy y y l y y x y y +⎛⎫∴-=- ⎪⎝⎭-即()121414y y x y =--恒过点()10,∴直线AE 过定点()10,.(ⅱ)2111:24AB y y l y y x ⎛⎫-=-- ⎪⎝⎭,即21122244y x y y y x ⎧=-++⎪⎨⎪=⎩,得()2211880y y y y +-+= 1218y y y +=-,2118y y y ∴=--12118+AB y y y y =-= 点E 到AB的距离d =32311121111184222222162242y y S AB d y y y y ∴=⋅=+++=+⨯=≥,当且仅当12y =±时,“=”成立.3. (2014文14)圆心在直线20x y -=上的圆C 与y 轴的正半轴相切,圆C 截x轴所得弦的长为,则圆C 的标准方程为.【解析】 ()()22214x y -+-= 4. (2014文15)已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为.【解析】 y x =±由已知得2p b ==,抛物线准线与双曲线的一个交点坐标为2p c ⎛⎫- ⎪⎝⎭,,即()c b -,代入双曲线方程为22221c b a b -=得222c a=,1b a ∴=∴渐近线方程为y x =±.故答案为y x =±.5. (2014文21)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>,直线y x =被椭圆C⑴求椭圆C 的方程;⑵过原点的直线与椭圆C 交于A B ,两点(A B ,不是椭圆C 的顶点). 点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.①设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值; ②求OMN ∆面积的最大值.【解析】⑴c e a ==,设2c a n ==,,则b n =,椭圆方程为2224x y n +=设y x =与椭圆在第一象限的交点为()00x y ,则00x y =000x y ⎧=⎪⎪=∴⎨⎪=⎪⎩将代入椭圆得1n =,2214x y ∴+=⑵方法一:(ⅰ)设AB l :y kx =2244y kx A B x y =⎛⎫⎛⎫⎧⇒⎨+=⎩, AD l:2211k y x y x k k +⎛⎫=-⇒=- ⎝2222222442242482402114x y k k k k x k k k k y x k ⎧+=⎛⎫++ ⎪⎪+⎪⎝⎭⇒++-=+⎨+⎪=--⎪⎩222216164D D k x k +=⇒=+3D y =3124kk -∴==+BD l:4k y x ⎛⎫-=⎝ 令0y=0m x M ⎛⎫⇒=⇒⎪⎭22k k ∴==-121122k k λ∴=-∴=-,(ⅱ)0⎛⎫⎪⎭,对BD l:4k y x ⎛⎫=- ⎝ 令0x =得3N k y319121224OMNkSkk∴==⨯+△14kk+≥4当且仅当12k=±时取等号[]max919248OMNS∴=⨯=△方法二:(ⅰ)设()()1122B x y D x y,,,则()11A x y--,1212ADy ykx x+=+221122221414xyxy⎧+=⎪⎪⎨⎪+=⎪⎩()()()()121212124x x x xy y y y+-++-=即1212121214y y y yx x x x-+⋅=--+114ADk k∴⋅=-又AB AD⊥1AB ADk k∴⋅=-14ABk k∴=()111:BDl y y k x x-=-令0y=,111yx xk=-+令0x=,111y y k x=-()11111100yM x N y k xk⎛⎫∴-+-⎪⎝⎭,,,111211111111211222ABAByy x kk ky ykxkk x k====--⋅--⋅1212k k∴=-12λ∴=-(ⅱ)()11111112OMNyS x y k xk⎛⎫=-+-⎪⎝⎭△1114ykx=11999888 OMNS x y∴===△[]max 98OMN S ∴=△当且仅当1x ==”成立.6. (2014理12)若圆C 的半径为1,其圆心与点(1,0)关于直线y x =对称,则圆C 的标准方程为_________________.【解析】 22(1)1x y +-=根据题意得点(10),关于直线y x =对称的点(01),为圆心,又半径1r =,所以圆C 的标准方程为22(1)1x y +-=.7. (2014理20)如图,曲线C 由上半椭圆1C :()2222100y x a b y a b+=>>,≥和部分抛物线2C :()210y x y =-+≤连接而成,1C 与2C 的公共点为A B ,其中1C.⑴求a b ,的值;⑵过点B 的直线l 与12C C ,别交于点P Q ,(均异于点A B ,),若AP AQ ⊥,求直线l 的方程.【解析】 ⑴在12C C ,的方程中,令0y =,可得1b =,且(10)(10)A B -,,,是上半椭圆1C 的 左,右顶点.设1C 的半焦距为c,由c a =及2221a c b -==得2a =. 21a b ∴==,.⑵解法一:由⑴知,上半椭圆1C 的方程为221(0)4y x y +=≥.易知,直线l 与x 轴不重合也不垂直,设其方程(1)(0)y k x k =-≠,代入1C 的方程,整理得2222(4)240k x k x k +-+-=*() 设点P 的坐标为()p p x y ,, 直线l 过点B ,1x ∴=是方程*()的一个根. 由求根公式,得2244p k x k -=+,从而284p k y k -=+,∴点P 的坐标为22248()44k kk k --++,.同理,由2(1)(0)1(0)y k x k y x y =-≠⎧⎨=-+⎩≤,,得点Q 的坐标为2(12)k k k ----,. 22(4)(12)4kAP k AQ k k k ∴=-=-++,,,.0Ap AQ AP AQ ∴⊥∴⋅=,,即222[4(2)]04k k k k --+=+,04(2)0k k k ∴≠∴-+=,解得83k =-.经检验,83k =-符合题意,故直线l 的方程为8(1)3y x =--.解法二:若设直线l 的方程为1(0)x my m =+≠,比照解法一给分.8. (2014文11)抛物线24y x =的准线方程为____________.【解析】 1x =- 9. (2014文20)已知椭圆22221(0)x y a b a b+=>>经过点(0,离心率为12,左右焦点分别为12(0)(0)F c F c -,,,. ⑴求椭圆的方程;⑵若直线1:2l x m =-+与椭圆交于点A B ,,与以12F F 为直径的圆交于C D ,两点,且满足AB CD =求直线l 的方程.【解析】 ⑴由题设知2221,2,b c a b a c ⎧=⎪⎪=⎨⎪⎪=-⎩解得2a =,b =1c =,∴椭圆的方程为22143x y +=.⑵由⑴知,以12F F 为直径的圆的方程为221x y +=, ∴圆心到直线l的距离d =,由1d <得5||2m <.(*)∴||CD ==.设()()1122A x y B x y ,,由2212143y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩ 得22=0x mx m -+ 有212123x x m x x m +==-,AB =由||||AB CD =1=,解得m =,满足(*) ∴直线l的方程为12y x =-+或12y x =-.10. (2014理22)在平面直角坐标系xoy 中,对于直线:0l ax by c ++=和点111(,)P x y ,222(,)P x y记1122()()ax by c ax by c η=++++,若0η<,则称点12,P P 被直线l 分隔。

2014年全国高考理科数学试题分类汇编__立体几何资料

2014年全国高考理科数学试题分类汇编(纯word 解析版) 九、立体几何(逐题详解)第I 部分1.【2014年陕西卷(理05)】已知底面边长为1,侧棱长为2则正四棱柱的各顶点均在同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π2.【2014年重庆卷(理07)】某几何体的三视图如下图所示,则该几何体的表面积为( ) A.54 B.60 C.66 D.723.【2014年安徽卷(理07)】一个多面体的三视图如图所示,则该多面体的表面积为(A )321+(B )318+(C )21 (D )18第(7)题图4.【2014年福建卷(理02)】某空间几何体的正视图是三角形,则该几何体不可能是( ) 俯视图左视图正视图3245C'B'A'C BA 正(主)视图侧(左)视图俯视图111111111111A . 圆柱B . 圆锥C . 四面体D . 三棱柱5.【2014年湖南卷(理07)】一块石材表示的几何体的三视图如图2所示. 将该石材切割、打磨,加工成球,则能得到最大球的半径等于A. 1B. 2C. 3D. 46.【2014年辽宁卷(理04)】已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥7.【2014年全国大纲卷(08)】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .814π B .16π C .9π D .274π8.【2014年四川卷(理08)】如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。

设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A .3[,1]3B .6[,1]3C .622[,]33D .22[,1]39.【2014年辽宁卷(理07)】某几何体三视图如图所示,则该几何体的体积为( )A .82π-B .8π-C .82π-D .84π-10.【2014年全国大纲卷(11)】已知二面角l αβ--为060,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,0135ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14 B .24 C .34D .1211.【2014年全国新课标Ⅰ(理12)】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .62B .42C .6D .413.【2014年全国新课标Ⅱ(理11)】直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( )A. 110B. 25C. 3010D.2214.【2014年北京卷(理07)】在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,()1,1,2D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx坐标平面上的正投影图形的面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠ 【答案】D15.【2014年广东卷(理07)】若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定CC'D'B'A'D AB16.【2014年湖北卷(理05)】在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A.①和②B.③和①C. ④和③D.④和②17.【2014年湖北卷(理08)】.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,另相乘也。

高考数学专题复习2014年高三一模汇编——解析几何

2014年高三一模汇编——解析几何一、填空题1.(2014杨浦一模理2文2)若直线013=--x y 的倾斜角是θ,则=θ (结果用反三角函数值表示). 【答案】3arctan2.(2014杨浦一模理5文5)双曲线2221(0)y x b b-=>的一条渐近线方程为y =,则b =________.【答案】33.(2014杨浦一模理13)设a ,b 随机取自集合{1,2,3},则直线30ax by ++=与圆221x y +=有公共点的概率是 . 【答案】95 4.(2014松江一模理6文8)将直线1l :30x y +-=绕着点(1,2)P 按逆时针方向旋转45︒后得到直线2l ,则2l 的方程为 .【答案】2y =5.(2014松江一模理9文10)若圆222(0)x y R R +=>和曲线||||134x y +=恰有六个公共点,则R 的值是 . 【答案】36.(2014松江一模理12文13)设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点,P 是C 上一点,若126PF PF a +=,且12PF F ∆的最小内角为30o,则C 的渐近线方程为 .【答案】y =7.(2014嘉定一模理7文7)已知双曲线(,)满足,且双曲线的右焦点与抛物线的焦点重合,则该双曲线的方程为______________.【答案】8.(2014嘉定一模理11文12)在平面直角坐标系中,动点到两条直线与的距离之和等于,则到原点距离的最小值为_________.12222=-by a x 0>a 0>b 021=b a x y 342=1222=-y x P 03=-y x 03=+y x 4P【答案】9.(2014嘉定一模理12文13)设集合,若存在实数,使得,则实数的取值范围是___________. 【答案】 10.(2014普陀一模理文5)若圆1)1(22=-+y x 的圆心到直线:n l 0=+ny x (*N n ∈)的距离为n d ,则=∞→n n d lim .【答案】111.(2014普陀一模理文7)已知椭圆13422=+y x 的左、右两个焦点分别为1F 、2F ,若经过1F 的直线l 与椭圆相交于A 、B 两点,则△2ABF 的周长等于 . 【答案】812.(2014奉贤一模理8)已知定点()0,4A 和圆2x +2y =4上的动点B ,动点()y x P ,满足2=+,则点P 的轨迹方程为 ;【答案】()1222=+-y x(2014奉贤一模文8)已知定点()0,4A 和圆2x +2y =4上的动点B ,点()y x P ,是线段AB 的中点,则点P 的轨迹方程为 ;【答案】()1222=+-y x13.(2014闸北一模理文2)已知双曲线的右焦点与抛物线的焦点重合,则.【答案】614.(2014闸北一模理文5)已知直线的一个法向量,其中,则的倾斜角为 .【答案】 15.(2014闸北一模理10)设曲线:,则曲线所围封闭图形的面积为_______.22}1)4(),{(22=+-=y x y x A }1)2()(),{(22=+-+-=at y t x y x B t ∅≠B A I a ⎥⎦⎤⎢⎣⎡34,0204522=-y x px y 22==p l ()b a n ,=0>ab l ⎪⎭⎫⎝⎛-+b a arctan πC )(32222y x y x +=++C【答案】(2014闸北一模文10)由曲线所围成的封闭图形的面积为_______. 【答案】16.(2014虹口一模理文5)双曲线19422=-y x 的焦点到渐近线的距离等于 . 【答案】317.(2014虹口一模理文9)已知椭圆的中心在原点,一个焦点与抛物线x y 82=的焦点重合,一个顶点的坐标为)2,0(,则此椭圆方程为 .【答案】14822=+y x 18.(2014青浦一模理文1)在直角坐标系中,到点)0,1(和直线1-=x 距离相等的点的轨迹方程是 ; 【答案】x y 42=19.(2014青浦一模理文13)已知直角坐标平面上任意两点),(),(2211y x Q y x P 、,定义 121212121212||||||(,)||||||x x x x y y d P Q y y x x y y --≥-⎧=⎨--<-⎩,,为Q P 、两点的“非常距离”.当平面上动点),(y x M到定点(,)A a b 的距离满足||3MA =时,则(,)d M A 的取值范围是 ;【答案】⎥⎦⎤⎢⎣⎡3223, 20.(2014金山一模理文13)如图,已知直线063-4:=+y x l ,抛物线x y C 4:2=图像上的一个动点P 到直线l 与y 轴的距离之和的最小值是 . 【答案】121.(2014宝山一模理文9)若双曲线的渐近线方程为x y 3±=,它的一个焦点与抛物线x y 1042=的焦点重合,则双曲线的标准方程为 .38332+πy x y x +=+222+π【答案】2219y x -=22.(2014徐汇一模理5文6)直线()1:330l a x y ++-=与直线()2:5340l x a y +-+=,若1l 的方向向量是2l 的法向量,则实数a= . 【答案】2-23.(2014徐汇一模理9文10)双曲线221mx y +=的虚轴长是实轴长的2倍,则m= . 【答案】41-24.(2014徐汇一模理10文12)在平面直角坐标系中,动点P 和点M(-2,0)、N(2,0)满足0MN MP MN NP ⋅+⋅=u u u u r u u u r u u u u r u u u r,则动点P(x,y)的轨迹方程为 .【答案】x y 82-=25.(2014闵行一模理文6)已知双曲线2221(0)k x y k -=>的一条渐近线的法向量是(1,2),那么k = . 【答案】1226.(2014闵行一模理文12)设i j r r、依次表示平面直角坐标系x 轴、y 轴上的单位向量,且2a i a j -+-=r r r r 2a i +r r的取值范围是 .【答案】⎤⎥⎣⎦27.(2014崇明一模理文3)直线12+=y x 的一个法向量可以是 . 【答案】()1,2-28.(2014崇明一模理文12)已知双曲线()222210,0x y a b a b -=>>的左右焦点分别是21,F F ,设P 是双曲线右支上一点,21F F 在P F 1上的投影的大小恰好为1F P u u u r ,且它们的夹角为54arccos ,则双曲线的渐近线方程为 .【答案】y =±29.(2014静安一模理文10)设某抛物线mx y =2的准线与直线1=x 之间的距离为3,则该抛物线的方程为 .【答案】x y 82=或x y 162-=30.(2014静安一模理12)已知椭圆142:22=+y x C 的上、下焦点分别为1F 、2F ,过椭圆C 上一点)2,1(P 作倾斜角互补的两条直线PA 、PB ,分别交椭圆C 于A 、B 两点.则直线AB 的斜率为 . 【答案】231.(2014静安一模文11)椭圆C 的焦点在x 轴上,焦距为2,直线l :01=--y x 与椭圆C 交于A 、B 两点,F 1是左焦点,且B F A F 11⊥,则椭圆C 的标准方程是 .【答案】1313222=+++y x32.(2014静安一模理13)若圆6)()(:22=-+-b y a x M 与圆5)1()1(:22=+++y x N 的两个交点始终为圆5)1()1(:22=+++y x N 的直径两个端点,则动点),(b a M 的轨迹方程为 . 【答案】1)1()1(22=+++b a33.(2014静安一模文14)设与圆1)1()1(22=-+-y x 相切的直线l 经过两点),0(),0,(b B a A ,其中a>2,b>2,O 为坐标原点,则△AOB 面积的最小值为 . 【答案】322+二、选择题1.(2014奉贤一模理文17)椭圆22221(0)x y a b a b+=>>的内接三角形ABC (顶点A 、B 、C 都在椭圆上)的边,AB AC 分别过椭圆的焦点1F 和2F ,则ABC ∆周长( )(A )总大于6a (B )总等于6a (C )总小于6a (D )与6a 的大小不确定 【答案】C2.(2014奉贤一模理文18)设双曲线22*(1)1()nx n y n N -+=∈上动点P 到定点(1,0)Q 的距离的最小值为n d ,则lim n n d →+∞的值为( )第17题图(A(B )12(C ) 0 (D )1【答案】A3.(2014闸北一模理文12)在平面内,设,为两个不同的定点,动点满足:(为实常数),则动点的轨迹为【 】A .圆B .椭圆C .双曲线D .不确定 【答案】A4.(2014青浦一模理文16)直线2(1)210a x ay +-+=的倾斜角的取值范围是( ) A. ]4,0[πB. ]2,4[ππ C. ]43,4[ππD. ),43[]4,0[πππY【答案】C5.(2014金山一模理文18)已知有相同两焦点21F F 、的椭圆221(1)x y m m +=>和双曲线221(0)x y n n-=>,点P 是它们的一个交点,则21ΔPF F 面积的大小是( ). (A )21 (B )22 (C )1 (D )2 【答案】C6.(2014宝山一模理文18)记()1X xy =,00A D T A E D E F ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,1x X y ⎛⎫⎪'= ⎪ ⎪⎝⎭,则方程0='X XT 表示的曲线只可能是( )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 【答案】C7.(2014徐汇一模理15)直线()0,0bx ay ab a b +=<<的倾斜角是---------------------( ) (A) arctan a b π- (B) arctan b a π- (C) arctan a b ⎛⎫- ⎪⎝⎭ (D) arctan b a ⎛⎫- ⎪⎝⎭【答案】B(2014徐汇一模文16)直线()0,0bx ay ab a b +=<<的倾斜角是-------------------------( )A B P 2k PB PA =⋅k P(A) arctan a b π- (B) arctan a b ⎛⎫- ⎪⎝⎭ (C) arctan b a π- (D) arctan b a ⎛⎫- ⎪⎝⎭【答案】C8.(2014崇明一模理文18)已知圆O 的半径为1,PA PB ,为该圆的两条切线,A B 、为两切点,那么⋅的最小值等于.........................................................( )A .24+-B .23+-C .224+-D .223+- 【答案】D9.(2014静安一模理15)“21=m ”是“直线013)2(=+++my x m 与直线03)2()2(=-++-y m x m 互相垂直”的( )A .充要条件;B .充分不必要条件;C .必要不充分条件;D .既不充分也不必要条件. 【答案】B三、解答题1.(2014杨浦一模理21)(本题满分14分)本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分 .某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中AC 、BD 是过抛物线Γ焦点F 的两条弦,且其焦点)1,0(F ,0=⋅,点E 为y 轴上一点,记α=∠EFA ,其中α为锐角. (1)求抛物线Γ方程;(2)如果使“蝴蝶形图案”的面积最小,求α的大小?【答案】(1) 由抛物线Γ焦点)1,0(F 得,抛物线Γ方程为y x 42= ……5分 (2) 设m AF =,则点)1cos ,sin (+-ααm m A ……6分所以,)cos 1(4)sin (2ααm m +=-,既04cos 4sin 22=--ααm m ……7分解得 αα2sin )1(cos 2+=AF ……8分 同理: αα2cos )sin 1(2-=BF ……9分αα2cos )sin 1(2+=DF ……10分 αα2sin )cos 1(2-=CF ……11分“蝴蝶形图案”的面积2)cos (sin cos sin 442121αααα-=⋅+⋅=+=∆∆DF CF BF AF S S S CFD AFB 令 ⎝⎛⎥⎦⎤∈=21,0,cos sin t t αα, [)+∞∈∴,21t ……12分则121141422-⎪⎭⎫⎝⎛-=-=t t t S , 21=∴t 时,即4πα=“蝴蝶形图案”的面积为8 ……14分(2014杨浦一模文21)(本题满分14分)本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分 .某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中AC 、BD 是过抛物线Γ焦点F 的两条弦,且其焦点)1,0(F ,0=⋅BD AC ,点E 为y 轴上一点,记α=∠EFA ,其中α为锐角. (1)求抛物线Γ方程; (2)求证:αα2sin )1(cos 2+=AF . 【答案】(1) 由抛物线Γ焦点)1,0(F 得,抛物线Γ方程为y x 42= ……5分 (2) 设m AF =,则点)1cos ,sin (+-ααm m A ……8分 所以,)cos 1(4)sin (2ααm m +=-,既04cos 4sin 22=--ααm m ……11分 解得 αα2sin )1(cos 2+=AF ……14分2.(2014杨浦一模理22)(本题满分16分)本题共有3个小题,第(1)小题满分10分,第①问5分,第②问5分,第(2)小题满分6分.已知椭圆Γ:2214x y +=. (1)椭圆Γ的短轴端点分别为B A ,(如图),直线BM AM ,分别与椭圆Γ交于F E ,两点,其中点⎪⎭⎫⎝⎛21,m M 满足0m ≠,且3m ≠ ① 证明直线F E 与y 轴交点的位置与m 无关; ② 若∆BME 面积是∆AMF 面积的5倍,求m 的值;(2)若圆ψ:422=+y x .21,l l 是过点)1,0(-P 的两条互相垂直的直线,其中1l 交圆ψ于T 、 R 两点,2l交椭圆Γ于另一点Q .求TRQ ∆面积取最大值时直线1l 的方程. 【答案】(1)①因为)1,0(),1,0(-B A ,M (m,12),且0m ≠, ∴直线AM 的斜率为k 1=m 21-,直线BM 斜率为k 2=m23,∴直线AM 的方程为y=121+-x m,直线BM 的方程为y=123-x m , ……2分由⎪⎩⎪⎨⎧+-==+,121,1422x m y y x 得()22140m x mx +-=,240,,1m x x m ∴==+22241,,11m m E m m ⎛⎫-∴ ⎪++⎝⎭由⎪⎩⎪⎨⎧-==+,123,1422x m y y x 得()229120m x mx +-=,2120,,9m x x m ∴==+222129,99m m F m m ⎛⎫-∴ ⎪++⎝⎭; ……4分 据已知,20,3m m ≠≠,∴直线EF 的斜率22222222219(3)(3)194124(3)19m m m m m m k m m m m m m---+-++===---++23,4m m +- ∴直线EF 的方程为 2222134141m m m y x m m m -+⎛⎫-=-- ⎪++⎝⎭, 令x=0,得,2=y ∴ EF 与y 轴交点的位置与m 无关. ……5分 ②1||||sin 2AMF S MA MF AMF ∆=∠,1||||sin 2BME S MB ME BME ∆=∠,AMF BME ∠=∠, 5AMF BME S S ∆∆=,∴5||||||||MA MF MB ME =,∴5||||||||MA MB ME MF =, ……7分∴225,41219m m m mm m m m =--++Θ 0m ≠,∴整理方程得22115119m m =-++,即22(3)(1)0m m --=,又有m ≠∴230m -≠, 12=∴m ,1m ∴=±为所求. ……10分 (2) 因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=, 直线21:10l y x x ky k k=--⇒++=, ……12分 所以圆心(0,0)到直线1:110l y kx kx y =-⇒--=的距离为d =,所以直线1l 被圆224x y +=所截的弦222143242kk d TR ++=-=;由22222048014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,所以482+-=+k kx x P Q 所以 418)4(64)11(222222++=++=k k k k k QP ……14分 所以 13131613232341334324348212222=≤+++=++==∆k k k k TR QP S TRQ22251043243k k k k +=⇒=⇒=+时等号成立,此时直线110:1l y x =-……16分(2014杨浦一模文23)(本题满分18分)本题共有3个小题,第(1)小题满分10分,第①问5分,第②问5分,第(2)小题满分8分.已知椭圆Γ:2214x y +=. (1)椭圆Γ的短轴端点分别为B A ,(如图),直线BM AM ,分别与椭圆Γ交于F E ,两点,其中点⎪⎭⎫⎝⎛21,m M 满足0m ≠,且3m ≠ ① 用m 表示点F E ,的坐标;② 若∆BME 面积是∆AMF 面积的5倍,求m 的值;(2)若圆ψ:422=+y x .21,l l 是过点)1,0(-P 的两条互相垂直的直线,其中1l 交圆ψ于T 、 R 两点,2l 交椭圆Γ于另一点Q .求TRQ ∆面积取最大值时直线1l 的方程. 【答案】(1)①因为)1,0(),1,0(-B A ,M (m,12),且0m ≠,∴直线AM 的斜率为k 1=m21-,直线BM 斜率为k 2=m23, ∴直线AM 的方程为y=121+-x m,直线BM 的方程为y=123-x m , ……2分由⎪⎩⎪⎨⎧+-==+,121,1422x m y y x 得()22140m x mx +-=,240,,1m x x m ∴==+22241,,11m m E m m ⎛⎫-∴ ⎪++⎝⎭ ……4分由⎪⎩⎪⎨⎧-==+,123,1422x m y y x 得()229120m x mx +-=,2120,,9m x x m ∴==+222129,99m m F m m ⎛⎫-∴ ⎪++⎝⎭; ……5分 ②1||||sin 2AMF S MA MF AMF ∆=∠,1||||sin 2BME S MB ME BME ∆=∠,AMF BME ∠=∠, 5AMF BME S S ∆∆=,∴5||||||||MA MF MB ME =,∴5||||||||MA MB ME MF =, ……7分∴225,41219m m m mm m m m =--++ 0m ≠,∴整理方程得22115119m m =-++,即22(3)(1)0m m --=,又有m ≠∴230m -≠, 12=∴m ,1m ∴=±为所求. ……10分 (2) 因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=, 直线21:10l y x x ky k k=--⇒++=, ……12分 所以圆心(0,0)到直线1:110l y kx kx y =-⇒--=的距离为d =,所以直线1l 被圆224x y +=所截的弦222143242kk d TR ++=-=;由22222048014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,所以482+-=+k kx x P Q 所以 418)4(64)11(222222++=++=k k k k k QP ……15分 所以 13131613232341334324348212222=≤+++=++==∆k k k k TR QP S TRQ252k k =⇒=⇒=时等号成立,此时直线1:1l y x =- ……18分3.(2014松江一模理20文20)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分过椭圆1222=+y x 的左焦点1F 的直线l 交椭圆于A 、B 两点. (1)求1AO AF ⋅u u u r u u u r的范围;(2)若OA OB ⊥u u u r u u u r,求直线l 的方程.【答案】(1)易知1,1,2===c b a ∴)0,1(1-F , …………1分设),(11y x A ,则221111AO AF x x y ⋅=++u u u r u u u r ……………………… 3分∵122121=+y x ∴222211*********(1)222AO AF x x y x x x ⋅=++=++=++u u u r u u u r ………5分 ∵]2,2[1-∈x ∴11[,22]2AO AF ⋅∈+u u u r u u u r , ……………………… 6分(2)设A 、B 两点的坐标为11(,)A x y 、22(,)B x y①当l 平行于y 轴时,点2(1,)2A -、2(1,)2B --,此时102OA OB ⋅=≠u u u r u u u r ……8分 ②当l 不平行于y 轴时,设直线l 的斜率为k ,则直线l 方程为(1)y k x =+,由22(1)12y k x x y =+⎧⎪⎨+=⎪⎩ 得 2222(12)4220k x k x k +++-= ………………… 9分2122412k x x k +=-+,21222212k x x k-=+ ………………… 11分 22212121212(1)()OA OB x x y y k x x k x x k ⋅=+=++++u u u r u u u r=22222(1)12k k k -+⋅+22224012k k k k-⋅+=+ 得 22k =,2k =±………… 13分 故所求的直线方程为2(1)y x =±+ ………… 14分4.(2014松江一模理21文21)本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分如图,相距200海里的A 、B 两地分别有救援A 船和B 船.在接到求救信息后,A 船能立即出发, B 船因港口原因需2小时后才能出发,两船的航速都是30海里/小时.在同时收到求救信息后,A 船早于B 船到达的区域称为A 区,否则称为B 区.若在A 地北偏东45︒方向,距A 地1502海里处的M 点有一艘遇险船正以10海里/小时的速度向正北方向漂移.(1)求A 区与B 区边界线(即A 、B 两船能同时到达的点的轨迹)方程; (2)问:① 应派哪艘船前往救援?② 救援船最快需多长时间才能与遇险船相遇?(精确到0.1小时)【答案】⑴设点P 为边界线上的点,由题意知23030PA PB=+,即60PA PB -=, 即动点P 到两定点A 、B 的距离之差为常数,∴点P 的轨迹是双曲线中的一支。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数 学H 单元 解析几何H1 直线的倾斜角与斜率、直线的方程 14.、[2014·湖北卷] 设f (x )是定义在(0,+∞)上的函数,且f (x )>0,对任意a >0,b >0,若经过点(a ,f (a )),(b ,-f (b ))的直线与x 轴的交点为(c ,0),则称c 为a ,b 关于函数f (x )的平均数,记为M f (a ,b ),例如,当f (x )=1(x >0)时,可得M f (a ,b )=c =a +b2,即M f (a ,b )为a ,b 的算术平均数.(1)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的几何平均数;(2)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的调和平均数2aba +b.(以上两空各只需写出一个符合要求的函数即可)14.(1)x (2)x (或填(1)k 1x ;(2)k 2x ,其中k 1,k 2为正常数) [解析] 设A (a ,f (a )),B (b ,-f (b )),C (c ,0),则此三点共线:(1)依题意,c =ab ,则0-f (a )c -a =0+f (b )c -b,即0-f (a )ab -a =0+f (b )ab -b.因为a >0,b >0,所以化简得 f (a )a =f (b )b,故可以选择f (x )=x (x >0);(2)依题意,c =2aba +b,则0-f (a )2ab a +b -a =0+f (b )2ab a +b-b ,因为a >0,b >0,所以化简得 f (a )a =f (b )b,故可以选择f (x )=x (x >0). 20.[2014·江西卷] 如图1-7所示,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点).图1-7(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0xa 2-y 0y =1与直线AF 相交于点M ,与直线x=32相交于点N .证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值. 20.解:(1)设F (c ,0),因为b =1,所以c =a 2+1.由题意,直线OB 的方程为y =-1a x ,直线BF 的方程为y =1a (x -c ),所以B ⎝⎛⎫c 2,-c 2a . 又直线OA 的方程为y =1ax ,则A ⎝⎛⎭⎫c ,c a ,所以k AB =c a -⎝⎛⎭⎫-c 2a c -c 2=3a .又因为AB ⊥OB ,所以3a ²⎝⎛⎭⎫-1a =-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.(2)由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0(y 0≠0).因为直线AF 的方程为x =2,所以直线l 与AF 的交点为M ⎝⎛⎭⎫2,2x 0-33y 0,直线l 与直线x =32的交点为N 32,32x 0-33y 0, 则|MF |2|NF |2=(2x 0-3)2(3y 0)214+⎝⎛⎭⎫32x 0-32(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2= 43²(2x 0-3)23y 20+3(x 0-2)2. 又P (x 0,y 0)是C 上一点,则x 203-y 20=1, 代入上式得|MF |2|NF |2=43²(2x 0-3)2x 20-3+3(x 0-2)2=43²(2x 0-3)24x 20-12x 0+9=43,所以|MF ||NF |=23=233,为定值.20.,,[2014·四川卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程.(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .①证明:OT 平分线段PQ (其中O 为坐标原点);②当|TF ||PQ |最小时,求点T 的坐标.20.解:(1)由已知可得⎩⎨⎧a 2+b 2=2b ,2c =2a 2-b 2=4,解得a 2=6,b 2=2,所以椭圆C 的标准方程是x 26+y 22=1.(2)①证明:由(1)可得,F 的坐标是(-2,0),设T 点的坐标为(-3,m ), 则直线TF 的斜率k TF =m -0-3-(-2)=-m .当m ≠0时,直线PQ 的斜率k PQ =1m .直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y 22=1.消去x ,得(m 2+3)y 2-4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0. 所以y 1+y 2=4mm 2+3,y 1y 2=-2m 2+3,x 1+x 2=m (y 1+y 2)-4=-12m 2+3.设M 为PQ 的中点,则M 点的坐标为⎝ ⎛⎭⎪⎫-6m 2+3,2m m 2+3.所以直线OM 的斜率k OM =-m3,又直线OT 的斜率k OT =-m3,所以点M 在直线OT 上, 因此OT 平分线段PQ . ②由①可得,|TF |=m 2+1,|PQ |=(x 1-x 2)2+(y 1-y 2)2 =(m 2+1)[(y 1+y 2)2-4y 1y 2]=(m 2+1)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫4m m 2+32-4·-2m 2+3=24(m 2+1)m 2+3.所以|TF ||PQ |=124·(m 2+3)2m 2+1= 124⎝⎛⎭⎫m 2+1+4m 2+1+4≥124(4+4)=33. 当且仅当m 2+1=4m 2+1,即m =±1时,等号成立,此时|TF ||PQ |取得最小值.故当|TF ||PQ |最小时,T 点的坐标是(-3,1)或(-3,-1).H2 两直线的位置关系与点到直线的距离 21.[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.21.解:(1)设Q (x 0,4),代入y 2=2px ,得x 0=8p ,所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54³8p,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1). 又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝⎛⎭⎫2m 2+2m 2+3,-2m , |MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即4(m 2+1)2+⎝⎛⎭⎫2m +2m 2+⎝⎛⎭⎫2m 2+22= 4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1,故所求直线l 的方程为x -y -1=0或x +y -1=0.H3 圆的方程9.、[2014·福建卷] 设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+ 2 C .7+ 2 D .6 29.D [解析] 设圆心为点C ,则圆x 2+(y -6)2=2的圆心为C (0,6),半径r = 2.设点Q (x 0,y 0)是椭圆上任意一点,则x 2010+y 20=1,即x 20=10-10y 20, ∴|CQ |=10-10y 20+(y 0-6)2=-9y 20-12y 0+46=-9⎝⎛⎭⎫y 0+232+50, 当y 0=-23时,|CQ |有最大值52,则P ,Q 两点间的最大距离为5 2+r =6 2.H4 直线与圆、圆与圆的位置关系 10.、[2014·安徽卷] 在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满足OQ →=2(a +b ).曲线C ={P |OP →=a cos θ+b sin θ,0≤θ<2π},区域Ω={P |0<r ≤|PQ |≤R ,r <R }.若C ∩Ω为两段分离的曲线,则( )A .1<r <R <3B .1<r <3≤RC .r ≤1<R <3D .1<r <3<R10.A [解析]由已知可设OA →=a =(1,0),OB →=b =(0,1),P (x ,y ),则OQ →=(2,2),|OQ |=2.曲线C ={P |OP →=(cos θ,sin θ),0≤θ<2π}, 即C :x 2+y 2=1.区域Ω={P |0<r ≤|PQ →|≤R ,r <R }表示圆P 1:(x -2)2+(y -2)2=r 2与P 2:(x -2)2+(y -2)2=R 2所形成的圆环,如图所示.要使C ∩Ω为两段分离的曲线,则有1<r <R <3. 19.[2014·北京卷] 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论.19.解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)直线AB 与圆x 2+y 2=2相切.证明如下: 设点A ,B 的坐标分别为(x 0,y 0),(t ,2),其中x 0≠0。

相关文档
最新文档