高一数学上学期期中试题及答案(新人教A版 第102套)
2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。
(word完整版)人教版高一上学期必修1数学期中测试题含答案,推荐文档

高一数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
全卷150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分。
给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4,5},集合A={1,2},B={2,3},则A ∩B C u =( ) A .{}45, B .{}23, C .{}1 D .{}2 2.下列表示错误的是( )A.0∉ΦB.{}12Φ⊆,C.()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧=-=+53102,y x y x y x ={}4,3 D.若,A B ⊆则A B A ⋂=3.2log 13a <,则a 的取值范围是 ( ) A .()20,1,3⎛⎫+∞ ⎪⎝⎭U B .2,3⎛⎫+∞ ⎪⎝⎭ C .2,13⎛⎫ ⎪⎝⎭ D .220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U 4.已知x x f 26log )(=,则=)8(f ( ) A .34 B. 8 C. 18 D .21 5.当0<a <1时,在同一坐标系中,函数xy a -=与log a y x =的图象是( )6、若函数xa a a y ⋅+-=)33(2是指数函数,则有 ( ) A 、21==a a 或 B 、1=a C 、2=a D 、10≠>a a 且7. 下列哪组中的函数)(x f 与)(x g 相等( )A .2)(x x f =,4)()(x x g = B . 1)(+=x x f ,1)(2+=xx x g C .x x f =)(,33)(x x g = D.)2)(1()(++=x x x f ,21)(++=x x x g8.若2log 31x =,则39xx+的值为( )A .6B .3C .52 D .129.若函数y = f (x )的定义域为[]1,2,则(1)y f x =+的定义域为( )A .[]2,3B .[]0,1C .[]1,0-D .[]3,2--10. 设3log 21=a ,2.0)31(=b ,312=c ,则a 、b 、c 的大小顺序为( )A .c b a <<B .a b c <<C .b a c <<D .c a b <<11.定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则( ) A .)2()2()3(f f f << B .)2()3()2(f f f << C .)2()2()3(f f f << D .)3()2()2(f f f <<12. 已知[]⎩⎨⎧<+≥-=)10()5()10(3)(x x f f x x x f ,其中N x ∈,则)8(f 等于( )A .2 B .10 C .6 D .7第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分。
高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷(基础模块第一章、第二章)一、选择题(每小题5分,共60分)1.下列表示正确的是().A.{ 0 }=∅B.{全体实数}=RC.{ a }∈{a,b,c } D.{ x∈R∣x2+1=0 }=∅2.已知全集U={ 0,1,2,3,4,5},集合A={1,2,5},B={2,3,4},则(U C A)B=().A.{2}B.{0,2,3,4}C.{3,4}D.{1,2,3,4,5}3.已知A={ (x,y) | 2x-y=0 },B={ (x,y) | 3x+2y=7 },则A B=().A.{(2,1)}B.{1,2}C.{(1,2)}D.{x=1,y=2}4.设A={ x | 0< x < 1 },B={ x | x < a } ,若A⊆B,则a的取值范围是().A.[1,+∞) B.(-∞,0]C.[0,+∞)D.(-∞,1]5.已知集合A={ x | x2+14= 0 },若A∩R =∅,则实数m的取值范围是().A.m<1B.m≥1C.0<m<1D.0≤m<16.“A⊆B”是“A B=A”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.不等式21-+xx≤0的解集为().A.{ x | x≥2}B.{ x | x≥2或x<-1 }C.{ x|-1<x≤2 }D.{x| x≥2或x≤-1 }8.已知a<b<0,c>0,那么().A.a2<b2B.a b<1C.ca<cb D.ca>cb9.绝对值不等式| 2x-3 |<5的解集是().A.{ x | x<-1或x>4 }B.{ x |-1<x<4 }C.{ x | x<-1 }D.{ x | x>4 }10.与不等式-x2-2x+3>0同解的不等式(组)是().A. x2+2x-3>0B. (x+3)(x-1)<0C.x+3>0x-1D.x+3<0x-1>0⎧⎨⎩a 、b 、c 的大小顺序是( ). A.a>b>c B.c>b>a C.b>a>c D.a>c>b12.若实数0<a <1,则)0>1(a-x)(x-a的解集为( ). A.{ x |1<x<a a } B.{ x | 1<<a x a} C.{ x | 1< >x a 或x a } D.{ x | 1<a >x 或x a}二、填空题(每小题4分,共16分)13.设全集U={ 1,2,3,4,5 },A={ 2,5 },则U C A 的所有子集的个数为 _________. 14.符合条件{a}⊆M {a,c,d}的集合M的个数是 _________.15.设a,b为实数,则“a2=b2”是“a=b”的 _________条件.(填充分或必要)16.不等式2+2m x x+n>0的解集是(11,32-),则不等式2-nx +2x-m >0的解集是 _________.三、解答题(共74分,解答应写出文字说明及演算步骤) 17.已知U={ x |-2<x<7 ,x ∈N },A={ 1,2,4 },B={ 2,3,5}.求: ⑴ A U B ;⑵ A B ;⑶ B C C U U A;⑷ B C C U U A .(12分)18.若集合A={ x | mx 2+2x -1 = 0 , m ∈R , x ∈R }中有且仅有一个元素,那么m 的值是多少?(12分)19.设集合A={ x | x 2-3x +2 = 0 },B = { x | x 2+2(a +1)x +(a 2-5) = 0 },若A B = { 2 },求实数a的值.(12分) 20.解不等式x+23-x≤1.(12分) 21.设全集为R ,A={ x | |x-1|<3 },B={ x | x 2-x -2≥0 },求A B ,A U B ,A CB .(12分)22.已知集合A={ x | x 2-x -12 ≤0 },集合B={ x | m -1≤x ≤2m +3 },若A U B=A ,求实数m 的取值范围.(14分)高一年级第一学期期中考试数学试卷参考答案二、填空题(每小题4分,共16分)13、 8 14、 3 15、 必要 16、 (-2,3)三、解答题:(22题14分,17~21题每题12分,共计74分)17.解:U={ 0,1,2,3,4,5,6 }. ⑴A U B={1,2,3,4,5}.⑵A B={2}.⑶B C C U U A ={ 0,3,5,6 }U { 0,1,4,6 }={ 0,1,3,4,5,6, }. ⑷ B C C U U A={ 0,3,5,6 } { 0,1,4,6 }={ 0,6 }.18. 解:当m=0时, A=12⎧⎫⎨⎬⎩⎭,符合题意.当m ≠0时,要使集合A 中有且仅有一个元素,必须 方程mx 2+2x -1 = 0有两个相等实数根, ∴ 2∆=2+4m =0, 即m=-1,综上所述,m=0或m=-1. 19. 解:A={ 1,2 }∵ A B={ 2 }, ∴ 2 B, ∴ 2是方程x 2+2(a +1)x +(a 2-5) = 0的根,把x=2代入此方程得2a +4a+3=0, ∴ a=-1或a=-3, 当a=-1时,B={ -2,2 }, A B={ 2 },符合题意. 当a=-3时,B={ 2 }, A B={ 2 },符合题意. 综上所述,a 的值为-1或3. 20. 解:原不等式⇔x+2-13-x ≤0⇔x+2-(3-x)3-x ≤0⇔2x-13-x≤0 ⇔2x-1x-3≥00≠⎧⇔⎨⎩x-3(2x-1)(x-3)≥012⇔x ≤或x>3, ∴ 解集为12{x |x ≤或x>3}. 21. 解:解|x-1|<3得-2<x<4, 故A=(-2,4).解x 2-x -2≥0得x ≤-1或x ≥2, 故B=(-∞,-1]∪[2,+∞).∴ A B=(-2,-1]∪[2,4),A U B=R,A C B=(-2,4) (-1,2)=(-1,2).22.解: 解x2-x-12 ≤0得-3≤x≤4, 故A=[-3,4],由A U B=A,知B A,∴⎧⎪⎨⎪⎩m-1≤2m+3,m-1≥-3,2m+3≤4,即12⎧⎪⎪⎨⎪⎪⎩m≥-4,m≥-2,m≤,∴ -2≤m≤12.。
新高一数学上期中试题带答案

新高一数学上期中试题带答案一、选择题1.若集合{}|1,A x x x R =≤∈,{}2|,B y y x x R ==∈,则A B =IA .{}|11x x -≤≤B .{}|0x x ≥C .{}|01x x ≤≤D .∅ 2.f (x)=-x 2+4x +a ,x∈[0,1],若f (x)有最小值-2,则f (x)的最大值( ) A .-1B .0C .1D .23.若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭4.已知函数()1ln 1xf x x -=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭5.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 6.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2436450x x -+<成立的x 的取值范围是( ) A .315,22⎛⎫⎪⎝⎭ B .[]28, C .[)2,8 D .[]2,77.已知全集U =R ,集合A ={x |x 2-x -6≤0},B ={x |14x x +->0},那么集合A ∩(∁U B )=( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}8.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭9.函数f(x)=23x x +的零点所在的一个区间是 A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)10.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( ) A .9,34⎛⎫⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,311.设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =I ( ) A .3(3,)2-- B .3(3,)2-C .3(1,)2D .3(,3)212.已知函数在上单调递减,则实数a 的取值范围是( ) A .B .C .D .二、填空题13.给出下列四个命题:(1)函数()f x x x bx c =++为奇函数的充要条件是0c =; (2)函数()20xy x -=>的反函数是()2log 01y x x =-<<;(3)若函数()()2lg f x x ax a =+-的值域是R ,则4a ≤-或0a ≥;(4)若函数()1y f x =-是偶函数,则函数()y f x =的图像关于直线0x =对称. 其中所有正确命题的序号是______.14.已知函数241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,则函数(())3f f x =的零点的个数是________.15.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________. 16.设,则________17.已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________. 18.函数的定义域为______________.19.关于下列命题:①若函数2xy =的定义域是{|0}x x ≤,则它的值域是{|1}y y ≤;② 若函数1y x =的定义域是{|2}x x >,则它的值域是1|2y y ⎧⎫≤⎨⎬⎩⎭; ③若函数2y x =的值域是{|04}y y ≤≤,则它的定义域一定是{|22}x x -≤≤;④若函数2log y x =的值域是{|3}y y ≤,则它的定义域是{|08}x x <≤.其中不正确的命题的序号是_____________( 注:把你认为不正确的命题的序号都填上).20.若函数|1|12x y m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是__________.三、解答题21.已知函数()xf x b a =⋅,(其中,a b 为常数且0,1a a >≠)的图象经过点(1,6),(3,24)A B(1)求()f x 的解析式(2)若不等式11120xxm a b ⎛⎫⎛⎫++-≥ ⎪ ⎪⎝⎭⎝⎭在(],1x ∈-∞上恒成立,求实数m 的取值范围. 22.某单位建造一间背面靠墙的小房,地面面积为212m ,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元.如果墙高为3m ,且不计房尾背面和地面的费用,问怎样设计房屋能使总造价最低?最低造价是多少?23.已知二次函数()2f x ax bx c =++.(1)若方程()0f x =两个根之和为4,两根之积为3,且过点(2,-1).求()0f x ≤的解集;(2)若关于x 的不等式()0f x >的解集为(2,1)-. (ⅰ)求解关于x 的不等式20cx bx a ++>(ⅱ)设函数2(1)(),(1)(1)b x cg x x a x +-=<-,求函数()g x 的最大值 24.已知幂函数2242()(22)m m f x m m x -+=--在(0,)+∞上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()(21)1()ag x a x f x =--+在[1,2]-上的值域为 [4,11]-?若存在,求出a 的值;若不存在,请说明理由.25.近年来,雾霾日趋严重,雾霾的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律,每生产该型号空气净化器x (百台),其总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本),销售收入()Q x (万元)满足20.522,016(){224,16x x x Q x x -+≤≤=>,假定该产品销售平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入-总成本); (2)工厂生产多少百台产品时,可使利润最多?26.如果f (x )是定义在R 上的函数,且对任意的x ∈R ,均有f (-x )≠-f (x ),则称该函数是“X —函数”.(1)分别判断下列函数:①y =211x +;②y =x +1;③y =x 2+2x -3是否为“X —函数”?(直接写出结论)(2)若函数f (x )=x -x 2+a 是“X —函数”,求实数a 的取值范围;(3)设“X —函数”f (x )=21,,x x Ax x B ⎧+∈⎨∈⎩在R 上单调递增,求所有可能的集合A 与B .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】求出集合B 后可得A B I . 【详解】因为集合{}|1,{|11}A x x x R x x =≤∈=-≤≤,{}2|,{|0}B y y x x R y y ==∈=≥则A B =I {}|01x x ≤≤,选C【点睛】本题考查集合的交,注意集合意义的理解,如(){}|,x y f x x D =∈表示函数的定义域,而(){}|,y y f x x D =∈表示函数的值域,()(){},|,x y y f x x D =∈表示函数的图像.2.C解析:C 【解析】因为对称轴2[0,1]x =∉,所以min max ()(0)2()(1)31f x f a f x f a ===-∴==+= 选C.3.D解析:D 【解析】 【分析】函数()f x 为偶函数,则()()f x f x =-则()()22f f =-,再结合()f x 在(]1-∞-,上是增函数,即可进行判断. 【详解】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D. 【点睛】本题考查函数奇偶性和单调性的应用,考查化归与转化的思想,属于基础题.4.D解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.5.B解析:B 【解析】试题分析:依题意{}{}2,1,0,1,1,0,1,2,3,M N =--=-∴{}1,0,1M N ⋂=-. 考点:集合的运算6.C解析:C 【解析】 【分析】 【详解】分析:先解一元二次不等式得315[]22x <<,再根据[]x 定义求结果. 详解:因为[][]2436450x x -+<,所以315[]22x << 因为[][]2436450x x -+<,所以28x ≤<, 选C.点睛:本题考查一元二次不等式解法以及取整定义的理解,考查基本求解能力.7.D解析:D 【解析】依题意A ={x |-2≤x ≤3},B ={x |x <-1或x >4},故∁U B ={x |-1≤x ≤4},故A ∩(∁U B )={x |-1≤x ≤3},故选D.8.C解析:C 【解析】 【分析】根据f (x )是奇函数,以及f (x+2)=f (-x )即可得出f (x+4)=f (x ),即得出f (x )的周期为4,从而可得出f (2018)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭然后可根据f (x )在[0,1]上的解析式可判断f (x )在[0,1]上单调递增,从而可得出结果. 【详解】∵f(x )是奇函数;∴f(x+2)=f (-x )=-f (x );∴f(x+4)=-f (x+2)=f (x ); ∴f(x )的周期为4;∴f(2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∵x∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫ ⎪⎝⎭ <712f ⎛⎫ ⎪⎝⎭ ∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C. 【点睛】本题考查奇函数,周期函数的定义,指数函数和余弦函数的单调性,以及增函数的定义,属于中档题.9.B解析:B 【解析】试题分析:因为函数f(x)=2x +3x 在其定义域内是递增的,那么根据f(-1)=153022-=-<,f (0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B . 考点:本试题主要考查了函数零点的问题的运用.点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间.10.B解析:B 【解析】 【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可 【详解】解:Q 函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩…单调递增, ()301373a a a a⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤<所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B . 【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题.11.D解析:D 【解析】试题分析:集合()(){}{}|130|13A x x x x x =--<=<<,集合,所以3|32A B x x ⎧⎫⋂=<<⎨⎬⎩⎭,故选D.考点:1、一元二次不等式;2、集合的运算.12.C解析:C 【解析】 【分析】由函数单调性的定义,若函数在上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当时,,求解即可.【详解】 若函数在上单调递减,则,解得. 故选C. 【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证随的增大而减小,故解答本题的关键是的最小值大于等于的最大值. 二、填空题13.(1)(2)(3)【解析】【分析】根据奇函数的定义得到(1)正确根据反函数的求法以及定义域值域得到(2)正确由函数的值域是得出其真数可以取到所有的正数由二次函数判别式大于等于0求解可判断出(3)正确解析:(1)(2)(3) 【解析】 【分析】根据奇函数的定义得到(1)正确,根据反函数的求法以及定义域值域得到(2)正确, 由函数()()2lg f x x ax a =+-的值域是R ,得出其真数可以取到所有的正数,由二次函数判别式大于等于0求解,可判断出(3)正确,根据函数图像平移可判断(4)不正确. 【详解】解:(1)当0c =时,()=+f x x x bx ,()()()-=---=-+=-f x x x bx x x bx f x ,当函数为奇函数时()()f x f x -=-,即()++=----+=+-x x bx c x x bx c x x bx c ,解得0c =,所以0c =是函数()f x x x bx c =++为奇函数的充要条件,所以(1)正确;(2)由反函数的定义可知函数()20xy x -=>的反函数是()2log 01y x x =-<<,所以(2)正确;(3)因为函数()()2lg f x x ax a =+-的值域是R ,所以2y x ax a =+-能取遍(0,)+∞的所有实数,所以240a a =+≥△,解得0a ≥或4a ≤-,所以(3)正确; (4)函数()1y f x =-是偶函数,所以()1y f x =-图像关于y 轴对称,函数()y f x =的图像是由()1y f x =-向左平移一个单位得到的,所以函数()y f x =的图像关于直线1x =-对称,故(4)不正确. 故答案为:(1)(2)(3) 【点睛】本题主要考查对函数的理解,涉及到函数的奇偶性、值域、反函数等问题.14.4【解析】【分析】根据分段函数的解析式当时令则解得当时做出函数的图像即可求解【详解】当时令则解得当时令得作出函数的图像由图像可知与有两个交点与有一个交点则的零点的个数为4故答案为:4【点睛】本题考查解析:4 【解析】 【分析】根据分段函数的解析式当0x ≤时,令()3f x =,则2413x x --+=,解得2x =-±0x >时,()31xf x =>,1x =,做出函数()f x ,1,22y y y ==-=--.【详解】Q 241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,∴当0x ≤时,()()2241255f x x x x =--+=-++≤,令()3f x =,则2413x x --+=,解得2x =-±120,423,-<-+<-<--当0x >时,()31xf x =>,令()3f x =得1x =,作出函数()f x ,1,22,22y y y ==-=--由图像可知,()f x 与1y =有两个交点,与22y =-+ 则(())3f f x =的零点的个数为4. 故答案为:4 【点睛】本题考查了分段函数的零点个数,考查了数形结合的思想,属于基础题.15.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.16.-1【解析】【分析】由分段函数的解析式先求出f(-2)的值并判定符号从而可得f(f(-2))的值【详解】∵fx=1-xx≥0x2x<0-2<0∴f-2=-22=4>0所以f(f(-2))=f4=1- 解析:-1 【解析】 【分析】由分段函数的解析式先求出的值并判定符号,从而可得的值.【详解】, ,所以,故答案为-1. 【点睛】本题主要考查分段函数的解析式,属于简单题. 求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.17.6【解析】【分析】先求函数周期再根据周期以及偶函数性质化简再代入求值【详解】由f(x+4)=f(x-2)可知是周期函数且所以【点睛】本题考查函数周期及其应用考查基本求解能力解析:6 【解析】 【分析】先求函数周期,再根据周期以及偶函数性质化简()()9191f f =-,再代入求值. 【详解】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以()()()919615311f f f =⨯+=()16f =-=.【点睛】本题考查函数周期及其应用,考查基本求解能力.18.-11【解析】【分析】根据定义域基本要求可得不等式组解不等式组取交集得到结果【详解】由题意得:1-x2≥02cosx -1>0⇒-1≤x≤1cosx>12cosx>12⇒x ∈-π3+2kππ3+2kπ 解析:【解析】 【分析】根据定义域基本要求可得不等式组,解不等式组取交集得到结果. 【详解】 由题意得:,函数定义域为:【点睛】本题考查具体函数定义域的求解问题,关键是根据定义域的基本要求得到不等式组.19.①②③【解析】【分析】通过定义域和值域的相关定义及函数的增减性即可判断①②③④的正误【详解】对于①当时故①不正确;对于②当时则故②不正确;对于③当时也可能故③不正确;对于④即则故④正确【点睛】本题主解析:①②③ 【解析】 【分析】通过定义域和值域的相关定义,及函数的增减性即可判断①②③④的正误. 【详解】对于①,当0x ≤时,01y <≤,故①不正确;对于②,当2x >时,则1102x <<,故②不正确;对于③,当04y ≤≤时,也可能02x ≤≤,故③不正确;对于④,即2log 3x ≤,则08x <≤,故④正确.【点睛】本题主要考查定义域和值域的相关计算,利用函数的性质解不等式是解决本题的关键,意在考查学生的计算能力.20.【解析】【分析】由可得出设函数将问题转化为函数与函数的图象有交点利用数形结合思想可求出实数的取值范围【详解】由可得出设函数则直线与函数的图象有交点作出函数与函数的图象如下图所示由图象可知则解得因此实 解析:[)1,0-【解析】 【分析】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,将问题转化为函数y m =-与函数()y g x =的图象有交点,利用数形结合思想可求出实数m 的取值范围.【详解】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,则直线y m =-与函数()y g x =的图象有交点,作出函数()111,122,1x x x g x x --⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩与函数y m =-的图象如下图所示,由图象可知()01g x <≤,则01m <-≤,解得10m -≤<. 因此,实数m 的取值范围是[)1,0-. 故答案为:[)1,0-. 【点睛】本题考查利用函数有零点求参数的取值范围,在含单参数的函数零点问题的求解中,一般转化为参数直线与函数图象有交点来处理,考查数形结合思想的应用,属于中等题.三、解答题21.(1)()=32xf x ⋅;(2)1112m ≤. 【解析】试题分析:(1)由题意得2,3a b ==,即可求解()f x 的解析式;(2)设11()()()x xg x a b =+,根据()y g x =在R 上为减函数,得到min 5()(1)6g x g ==,再由11()()120xxm a b++-≥在(],1x ∈-∞上恒成立,得5216m -≤,即可求解实数m 的取值范围. 试题解析:(1)由题意得()x 36a 2,b 3,f x 32a 24a b b ⋅=⎧⇒==∴=⋅⎨⋅=⎩ (2)设()xxxx1111g x a b 23⎛⎫⎛⎫⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则()y g x =在R 上为减函数 ∴当x 1≤时()()min 5g x g 16==xx1112m 0a b ⎛⎫⎛⎫∴++-≥ ⎪ ⎪⎝⎭⎝⎭在(]x ,1∞∈-上恒成立,即5112m 1m 612-≤⇒≤ ∴ m 的取值范围为:11m 12≤点睛:本题主要考查了函数解析式的求解和不等式的恒成立问题的应用,解答中涉及到函数满足条件的实数的取值范围的求法,以及函数的单调性的应用,解题时要认真审题,仔细解答,同时注意合理进行等价转化是解答本题的关键,试题有一定的难度,属于中档试题.22.当底面的长宽分别为3m ,4m 时,可使房屋总造价最低,总造价是34600元 【解析】设房屋地面的长为米,房屋总造价为元.23.(1){}13x x ≤≤;(2)(ⅰ)1(,)(1,)2-∞-⋃+∞;(ⅱ)2-. 【解析】 【分析】(1)由韦达定理及函数过点(2,-1),列方程组()432421b a caf a b c ⎧-=⎪⎪⎪=⎨⎪=++=-⎪⎪⎩求解即可;(2)(ⅰ)由不等式的解集与方程的根可得012a ba ca ⎧⎪<⎪⎪-=-⎨⎪⎪=-⎪⎩,则20cx bx a ++>可化为2210x x -->,再解此不等式即可;(ⅱ)由(ⅰ)得()g x =4(1)()21x x ⎡⎤--++⎢⎥-⎣⎦,再利用均值不等式求函数的最大值,一定要注意取等的条件,得解. 【详解】(1)由题意可得()432421b ac af a b c ⎧-=⎪⎪⎪=⎨⎪=++=-⎪⎪⎩,解得143a b c =⎧⎪=-⎨⎪=⎩,()243f x x x ∴=-+,解不等式()0f x ≤,即2430x x -+≤,即()()130x x --≤,解得13x ≤≤, 因此,不等式()0f x ≤的解集为{}13x x ≤≤;(2)(ⅰ)由题意可知012a b aca⎧⎪<⎪⎪-=-⎨⎪⎪=-⎪⎩,所以20cx bx a ++>可化为210c bx x a a ++<,即2210x x -++<,得2210x x -->,解得21x <-或1x > 所求不等式的解集为1(,)(1,)2-∞-⋃+∞.(ⅱ)由(ⅰ)可知22(1)(1)2()(1)(1)b x c a x a g x a x a x +-++==--=231x x +=-2(1)2(1)41x x x -+-+=-=4(1)()21x x ⎡⎤--++⎢⎥-⎣⎦ , 因为1,x <所以10x ->,所以4(1)()41x x-+≥-,当且仅当411x x -=-时即1x =-时取等号 , 所以4(1)()41x x ⎡⎤-+≤-⎢⎥-⎣⎦,4(1)()221x x ⎡⎤-≤-++≤-⎢⎥-⎣⎦ 所以当1x =-时,()max 2g x =- . 【点睛】本题考查了二次函数解析式的求法及不等式的解集与方程的根的关系,重点考查了利用均值不等式求函数的最大值及取等的条件,属中档题. 24.(1)1()f x x -=;(2)存在,6a =. 【解析】 【分析】(1)由幂函数的定义和单调性,可得关于m 的方程与不等式;(2)由(1)得1()f x x -=,从而得到()(1)1g x a x =-+,再对1a -的取值进行分类讨论.【详解】(1)因为幂函数2242()(22)mm f x m m x -+=--在(0,)+∞上单调递减,所以22221,420,m m m m ⎧--=⎨-+<⎩解得:3m =或1m =-(舍去),所以1()f x x -=.(2)由(1)得1()f x x -=,所以()(1)1g x a x =-+,假设存在0a >使得命题成立,则当10a ->时,即1a >,()g x 在[1,2]-单调递增,所以(1)4,114,6(2)11,22111,g a a g a -=--+=-⎧⎧⇒⇒=⎨⎨=-+=⎩⎩; 当10a -=,即1a =,()1g x =显然不成立;当10a -<,即1a <,()g x 在[1,2]-单调递减,所以(1)11,1111,(2)4,2214,g a g a -=-+=⎧⎧⇒⎨⎨=--+=-⎩⎩a 无解; 综上所述:存在6a =使命题成立. 【点睛】本题考查幂函数的概念及解析式、已知一次函数的定义域、值域求参数的取值范围,考查逻辑推理能力和运算求解能力,同时注意分类讨论思想的运用,讨论时要以一次函数的单调性为分类标准.25.(Ⅰ)20.51212,016(){21210,16x x x f x x x -+-≤≤=-> ;(Ⅱ)12 .【解析】试题分析:(1)先求得()P x ,再由()()()f x Q x P x =-,由分段函数式可得所求;(2)分别求出各段的最大值,注意运用一次函数和二次函数的单调性求最值法,然后比较两个最值即可得到结果.试题解析:(1)由题意得()1210P x x =+∴()()()20.51212,016{21210,16x x x f x Q x P x x x -+-≤≤=-=-> .(2)当16x >时, 函数()f x 递减,∴()()1652f x f <=万元 当016x ≤≤时,函数()()20.51260f x x =--+当12x =时,()f x 有最大值60万元 所以当工厂生产12百台时,可使利润最大为60万元 .【方法点睛】本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小者).26.(1)①②是“X —函数”,③不是“X —函数”.(2)(0,+∞)(3)A =[0,+∞),B =(-∞,0) 【解析】 【分析】(1)直接利用信息判断结果;(2)利用信息的应用求出参数的取值范围; (3)利用函数的单调性的应用和应用的例证求出结果.【详解】(1)①②是“X—函数”,③不是“X—函数”;(2)∵f(-x)=-x-x2+a,-f(x)=-x+x2-a,f(x)=x-x2+a是“X—函数”,∴f(-x)=-f(x)无实数解,即x2+a=0无实数解,∴a>0,∴a的取值范围为(0,+∞);(3)对任意的x≠0,若x∈A且-x∈A,则-x≠x,f(-x)=f(x),与f(x)在R上单调增矛盾,舍去;若x∈B且-x∈B,f(-x)=-f(x),与f(x)是“X—函数”矛盾,舍去;∴对任意的x≠0,x与-x恰有一个属于A,另一个属于B,∴(0,+∞)⊆A,(-∞,0)⊆B,假设0∈B,则f(-0)=-f(0),与f(x)是“X—函数”矛盾,舍去;∴0∈A,经检验,A=[0,+∞),B=(-∞,0)符合题意.【点睛】本题考查的知识要点:信息题型的应用,反证法的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.。
人教A版数学必修一~第一学期期中考试高一数学试题参考答案.docx

高中数学学习材料鼎尚图文*整理制作高一数学参考答案一.填空题(1){2} (2) 3 (3) -1 (4)(1,+∞) (5)3(6)(-5,-1) (7)(3,4) (8)0 (9)352x -- (10)3(11)【2,5】 (12)c,a,b (13)0 (14)a ≥2二.解答题:15. A=【-2,1】………………………………………………3分B=(-∞,a )………………………………………………3分(1)【-2,0)………………………………………………3分(2)a >1………………………………………………5分16.(1)251±=a ………………………………………4分 31)(2221=+∴=---aa a a ………………………………………4分 (2) 0)2)(1(2322>--=+-∴>m m m m m ,即232->m m ,x x f 2log )(= 是增函数。
)23(l o g l o g 222->∴m m , 即m m 22log 2)23(log <-…………………………………………6分……………………………………………3分17. (Ⅰ)即1(040)80y t t =<≤ ……………………………………………… 3分2800(40)y t t =>……………………………………3分 y 关于t 的函数是y =21,04080800,40t t t t⎧≤≤⎪⎪⎨⎪>⎪⎩ …………………………………… 2分 (Ⅱ)由题意知,28000.08x ≤, 解得100x ≥或100x ≤-(舍)……………5分 又1004060-=(天) 答:按这个标准,这个家庭在装潢后60天方可入住. …………… 2分18.(1)奇函数,证明略. ………………………………………………5分(2)单调减,证明略. ………………………………………………5分(3)由题意知方程211x x x x +=+等价于310x x ++= 设3()1g x x x =++则(1)0,(0)0g g -<>,所以方程在(1,0)-上必有根 又因为1(1)()02g g -⋅-<,所以方程在1(1,)2--上必有一根。
最新版高一数学上学期期中质量检测试题及答案(新人教A版 第202套)

金台区高一期中质量检测试题(卷)数学(必修1)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至6页. 考试结束后,只将第Ⅱ卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.一、选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{1},{1,}A B m ==,若AB A =,则m =A .0.0或3 C .1.1或3 2.下列几个图形中,可以表示函数关系()y f x =图像的是. 3.在同一坐标系中,函数3log y x =与13log y x =的图像之间的关系是A .关于y 轴对称B .关于原点对称C .关于x 轴对称D .关于直线y x =对称 4.函数3()ln f x x x=-的零点所在的大致区间是 A .(1,2) B .(2,3) C .(3,4) D .(3,)+∞5.已知0.32a -=,0.22b -=,121log 3c =,那么a ,b ,c 的大小关系是 A .c b a >> B .c a b >> C. a b c >> D .b a c >>6.已知幂函数22(1)()(33)m m f x m m x --=-+的图像不经过原点,则m = A .3 B .1或2 C .2D .17.已知1)1(+=+x x f ,则函数的解析式为A.2)(x x f =B.)1(1)(2≥+=x x x fC. )1(22)(2≥+-=x x x x fD.)1(2)(2≥-=x x x x f8.一种放射性元素,每年的衰减率是8%,那么a 千克的这种物质的半衰期(剩余 量为原来的一半所需的时间)t 等于 A .0.5lg0.92B .0.92lg0.5C .lg 0.5lg 0.92D .lg 0.92lg 0.5OOOOh v h v hv hv9.如果一个函数)(x f 满足:(1)定义域为,x x R ∈;(2)任意12,x x R ∈,若120x x +=,则12()()0f x f x +=;(3)任意x R ∈,若0t >,总有)()(x f t x f >+.则)(x f 可以是 A .y x =- B .3y x =C .x y 3=D .3log y x =10.一个高为H ,水量为V 的鱼缸的轴截面如图,其底部有一个洞,满缸水从洞中流出,如果水深为h 时水的体积为v ,则函数()v f h =的大致图像是A. B. C. D.二、填空题:本大题共5小题,每小题6分,共30分.把答案填在第Ⅱ卷对应横线上.11. 计算:233128log 27log 4++= .12.已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则 .13.设:f A B →是从集合A 到B 的映射,{}R y R x y x B A ∈∈==,),(,:(,)(,)f x y kx y b →+,若B 中元素(6,2)在映射f 下的原像是(3,1),则A 中元素(5,8)在f 下的像为 .14.已知3(10)()(5)(10)x x f x f x x -≥⎧=⎨+<⎩,则(6)f = .15.已知关于x 的方程3log (1)0x k --=在区间[2,10]上有实数根,那么k 的取值范围是 .高一数学必修1质量检测试题(卷)第Ⅱ卷(非选择题)二、填空题:本大题共5小题,每小题6分,共30分. 把答案填在题中横线上.11. . 12. . 13. . 14. . 15. .三、解答题:本大题共4小题,每小题15分,共60分.解答应写出文字说明、证明过程或演算步骤. 16.已知全集U R =,集合{|22}A x x =-<≤,{|1}B x x =>,{|}C x x c =≤.(1)求A B ,()UAB ð,()U A B ð;(2)若A C ≠∅,求c 的取值范围.17.函数()22()xxf x x R -=-∈.(1)证明函数()f x 在R 上为单调增函数; (2)判断并证明函数()f x 的奇偶性.18.某市一家庭今年八月份、九月份和十月份天然气用量和支付费用如下表所示:该市天然气收费的方法是:天然气费=基本费+超额费+保险费.若每月用气量不超过最低额度(8)A A >立方米时,只付基本费16元和每户每月定额保险费)50(≤<C C 元;若用气量超过A 立方米时,超过部分每立方米付B 元. (1)根据上面的表格求C B A ,,的值;(2)记用户十一月份用气量为x 立方米,求他应交的天然气费y (元).19.已知函数2()41f x ax x =--.(1)若2a =,当[0,3]x ∈时,求函数()f x 的值域;(2)若2a =,当(0,1)x ∈时,(1)(21)0f m f m ---<恒成立,求m 的取值范围; (3)若a 为非负数,且函数()f x 是区间[0,3]上的单调函数,求a 的取值范围.高一数学必修1质量检测试题(卷)答案2013.11命题:石油中学 审题:区教研室一、选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B2.A3.C4.B5.A6.D7.C8.C9.B 10.D 二、填空题:本大题共5小题,每小题6分,共30分.11. 5 12.(1,2] 13.(10,9) 14. 8 15. [0,2]三、解答题:本大题共4小题,每小题15分,共60分.解答应写出文字说明、证明过程或演算步骤.16.解:(1)因为集合{|22}A x x =-<≤ ,{}1B x x =>,所以{}2.AB x x =>-…………………… 2分又知{|2U A x x =≤-ð或2}x >,{|1}U B x x =≤ð,………………6分 所以(){|21}U AB x x =-<≤ð,(){|2}U A B x x =>ð………………10分 (2)因为集合AC ≠∅,所以2c >-.所以c 的取值范围是2c >-. ………… 15分 17.(1)证明:在定义域中任取两个实数12,x x ,且12x x <,…………1分112212211211()()22222222x x x x x x x x f x f x ---=--+=-+-.121212121222122(22)(1)22x x x x x x x x x x ++-=-+=-+…………5分 1212,022x x x x <∴<<,121102x x ++>,从而12()()f x f x -0<.…………8分 ∴函数()f x 在R 上为单调增函数.……9分 (2)函数()f x 在R 上为奇函数.……11分()22()x x f x f x --=-=-……14分∴函数()f x 为奇函数.……15分18.解:(1)八月的用气量没有超过最低额度A ,所以1617C +=1=⇒C ……2分九、十月的用气量超过了最低额度A ,所以17(25)6217(35)92A B A B +-=⎧⎨+-=⎩,解得3,10B A ==…………7分(2)当10x ≤时,需付费用为16117+=元…………9分 当10x >时,需付费用为173(10)313x x +-=-元…………13分 所以应交的天然气费17(010)313(10)x y x x <≤⎧=⎨->⎩…………15分19.解:(1)当2a =时,()()2224121 3.f x x x x =--=--所以()f x 在[]0,1上单调递减;在(]1,3上单调递增. ............... 2分 所以()f x 的最小值是()1 3.f =- (3)分又因为()01f =-,()35f =,所以()f x 的值域是[]3,5.- …………………… 5分(2)因为2a =,所以由(Ⅰ)可知:()f x 在[]0,1上单调递减. 因为当()0,1x ∈时,()()1210f m f m ---<恒成立,可得121,011,0211,m m m m ->-⎧⎪<-<⎨⎪<-<⎩…………………… 8分 解得12.23m << 所以m 的取值范围是12.23m <<…………………… 9分 (3)因为()241f x ax x =--, ①当0a =时,()4 1.f x x =--所以()f x 在[]0,3上单调递减.…………………… 11分②当0a >时,()224 1.f x a x a a ⎛⎫=--- ⎪⎝⎭因为()f x 在[]0,3上的单调函数,可得220,3,0,a a a ⎧≤≥⎪⎨⎪>⎩或 解得20.3a <≤…………………… 14分 由①、②可知,a 的取值范围是20,.3⎡⎤⎢⎥⎣⎦……………………15分。
人教版高一数学上学期期中考试试题及详细答案解析全文
人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。
1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。
2020-2021学年高一数学上学期期中试题_102
2020-2021学年高一数学上学期期中试题本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共4页.满分150分,考试时间120分钟.注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.第I卷(选择题)选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上.3. 第II卷(非选择题)请用0.5毫米黑色签字笔在相应位置处答题,如需改动,用“\”划掉重新答题.第Ⅰ卷(选择题共60分)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,设集合,,则( )A. B. C.D.2.命题“”的否定是()A. B.C. D.3.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.下列各组函数中,表示同一函数的是()A. B.C. D.5.已知函数是一次函数,且,则函数的解析式为()A. B.C.D.6.函数的图象大致为()A. B.C. D.7.已知两个正实数满足,并且恒成立,则实数的取值范()A.B.C. D.8.设奇函数在上为增函数,且,则不等式的解集为()A. B.C. D.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出选项中,有多项符合题目要求.全部选对的得5分,有选错的的0分,部分选对的的3分.9.对于任意实数a,b,c,d,有以下四个命题,其中正确的是()A.若,,则 B.若,则C.若,则D.若,,则10.设函数,的定义域都为,且是奇函数,是偶函数,则下列结论正确的是()A.是奇函数 B.是奇函数C.是奇函数 D.是奇函数11.小王从甲地到乙地往返的速度分別为和,其全程的平均速度为,则()A.B.C.D.12.符号表示不超过的最大整数,如,,,定义函数,以下结论正确的是()A.函数的定义域是R,值域为 B.方程=有无数个解C.函数是奇函数 D.函数是增函数.2,4,6第Ⅱ卷(非选择题共90分)三、填空题:本题共4小题,每小题5分,共20分.13.函数的定义域是______;14.设幂函数是在上单调递增,则的值为_____;15.已知函数的单调递增区间是,则的值为______;16.若关于不等式的解集为,则实数的取值范围是______.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)已知集合,.第18题图(I)当时,求;(II)当时,求的取值范围.(本小题满分12分)已知函数是定义在上的偶函数,当时,.(I)求函数的解析式,并画出函数的图象;(II)根据图象写出的单调区间和值域.19.(本小题满分12分)解关于的不等式.20.(本小题满分12分)围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为(单位:m).设修建此矩形场地围墙的总费用为(单位:元).(I)将表示为的函数;(II)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用.21.(本小题满分12分)已知二次函数.(I)当时,求的最值;(II)若不等式对定义域的任意实数恒成立,求实数的取值范围.22.(本小题满分12分)已知函数=是定义在(-1,1)上的奇函数,且.(I)确定函数的解析式;(II)用定义证明在(-1,1)上是增函数;(III)不等式:.2020-2021学年高一数学上学期期中试题本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共4页.满分150分,考试时间120分钟.注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.第I卷(选择题)选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上.3. 第II卷(非选择题)请用0.5毫米黑色签字笔在相应位置处答题,如需改动,用“\”划掉重新答题.第Ⅰ卷(选择题共60分)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,设集合,,则( )A. B. C.D.2.命题“”的否定是()A. B.C. D.3.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.下列各组函数中,表示同一函数的是()A. B.C. D.5.已知函数是一次函数,且,则函数的解析式为()A. B.C.D.6.函数的图象大致为()A. B.C. D.7.已知两个正实数满足,并且恒成立,则实数的取值范()A.B.C. D.8.设奇函数在上为增函数,且,则不等式的解集为()A. B.C. D.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出选项中,有多项符合题目要求.全部选对的得5分,有选错的的0分,部分选对的的3分.9.对于任意实数a,b,c,d,有以下四个命题,其中正确的是()A.若,,则 B.若,则C.若,则D.若,,则10.设函数,的定义域都为,且是奇函数,是偶函数,则下列结论正确的是()A.是奇函数 B.是奇函数C.是奇函数 D.是奇函数11.小王从甲地到乙地往返的速度分別为和,其全程的平均速度为,则()A.B.C.D.12.符号表示不超过的最大整数,如,,,定义函数,以下结论正确的是()A.函数的定义域是R,值域为 B.方程=有无数个解C.函数是奇函数 D.函数是增函数.2,4,6第Ⅱ卷(非选择题共90分)三、填空题:本题共4小题,每小题5分,共20分.13.函数的定义域是______;14.设幂函数是在上单调递增,则的值为_____;15.已知函数的单调递增区间是,则的值为______;16.若关于不等式的解集为,则实数的取值范围是______.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)已知集合,.第18题图(I)当时,求;(II)当时,求的取值范围.(本小题满分12分)已知函数是定义在上的偶函数,当时,.(I)求函数的解析式,并画出函数的图象;(II)根据图象写出的单调区间和值域.19.(本小题满分12分)解关于的不等式.20.(本小题满分12分)围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为(单位:m).设修建此矩形场地围墙的总费用为(单位:元).(I)将表示为的函数;(II)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用.21.(本小题满分12分)已知二次函数.(I)当时,求的最值;(II)若不等式对定义域的任意实数恒成立,求实数的取值范围.22.(本小题满分12分)已知函数=是定义在(-1,1)上的奇函数,且.(I)确定函数的解析式;(II)用定义证明在(-1,1)上是增函数;(III)不等式:.。
人教版新教材高中数学高一上学期期中考试数学试卷(共三套)
人教版新教材高中数学高一上学期期中考试数学试卷(一)一、选择题(共12小题)1.命题“0x R ∃∈,2450x x ++>”的否定是( )A .0x R ∃∈,2450x x ++>B .0x R ∃∈,2450x x ++≤C .x R ∀∈,2450x x ++>D .x R ∀∈,2450x x ++≤2x 的取值范围是( ) A .1≥x B .2x ≠ C .1x > D .1≥x 且2x ≠3.若a >b >0,c <d <0,则一定有( )A .a c >b dB .a c <b dC .a d >b cD .a d <b c4.若实数x ,y ,z 满足1212y x y y z y-<<-⎧⎨-<<-⎩,记2P xy yz xz y =+++,2Q x y z =++,则P 与Q 的大小关系是( )A .P Q <B .P Q >C .P Q =D .不确定5.若1m n >>,a =,()1lg lg 2b m n =+,lg 2m n c +⎛⎫= ⎪⎝⎭,则( ) A .a b c << B .c a b << C .b a c << D .a c b <<6.当1x >时,不等式11x a x +≥-恒成立,则实数a 的取值范围是( ) A .(],2-∞ B .[)2,+∞ C .[)3,+∞ D .(],3-∞7.一元二次方程220x bx +-=中,若0b <,则这个方程根的情况是( )A .有两个正根B .有一正根一负根且正根的绝对值大C .有两个负根D .有一正根一负根且负根的绝对值大8.不等式22412ax x a x ++>-对一切x ∈R 恒成立,则实数a 的取值范围是( )A .2a >B .2a <-C .22a -<<D .2a < 9.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩, 则[(2)]f f -的值为( ) A .1 B .2C .4D .5 10.若函数()f x 满足(32)98f x x +=+,则()f x 的解析式是( )A .()98f x x =+B .()=32f x x +C .()=34f x x --D .()=32f x x +或()=34f x x --11.已知函数22,(1)()(21)36,(1)x ax x f x a x a x ⎧-+≤=⎨--+>⎩,若()f x 在(),-∞+∞上是增函数,则实数a 的取值范围是( )A .1,12⎛⎤ ⎥⎝⎦B .1,2⎛⎫+∞ ⎪⎝⎭C .[1,)+∞D .[]1,212.已知函数2()23f x x ax =-+,且其对称轴为1x =,则以下关系正确的是( )A .(3)(2)(7)f f f -<<B .(3)(2)(7)f f f -=<C .(2)(3)(7)f f f <-<D .(2)(7)(3)f f f <<-一.填空题(共6小题) 13.已知集合A ={x |x <a },B ={x |1<x <2},A ∪(∁R B )=R ,则实数a 的取值范围是________.14.(已知14x y -<+<,23x y <-<,则32x y +的取值范围是________.15.已知0x >,0y >,且28x y xy +=,则x y +的最小值是________.16.已知函数()f x =的定义域为R ,则a 的取值范围为_______ .17.已知函数()151x m f x =-+是奇函数,则实数m 的值为________. 18.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()1f x x x =+,则0x <时,()f x = ________.三.解析题(共6小题)19.已知函数()218f x ax bx =++,()0f x >的解集为()3,2-.(1)求()f x 的解析式;(2)当1x >-时,求()211f x y x -=+的最大值. 20.已知关于x 的不等式2260kx x k -+<;(1)若不等式的解集为()2,3,求实数k 的值;(2)若0k >,且不等式对一切23x <<都成立,求实数k 的取值范围.21.已知函数2()23=++f x x ax ,[]4,6x ∈-.(1)当2a =-时,求()f x 的最值;(2)求实数a 的取值范围,使()y f x =在区间[]4,6-上是单调函数;22.已知函数()[)22,1,x x a f x x x++=∈+∞. (1)当12a =时,求函数()f x 的最小值; (2)若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围.23.已知函数()21x b f x x +=-是定义域()1,1-上的奇函数. (1)确定()f x 的解析式;(2)用定义证明:()f x 在区间()1,1-上是减函数;(3)解不等式()()10f t f t -+<.24.已知()()2227m f x m m x -=--是幂函数,且在()0,∞+上单调递增.(1)求m 的值;(2)求函数()()()211g x f x a x =--+在区间[]2,4上的最小值()h a .【答案解析】二.选择题(共12小题)1.命题“0x R ∃∈,2450x x ++>”的否定是( )A .0x R ∃∈,2450x x ++>B .0x R ∃∈,2450x x ++≤C .x R ∀∈,2450x x ++>D .x R ∀∈,2450x x ++≤ 【答案】D【解析】命题“0x R ∃∈,2450x x ++>”的否定是:x R ∀∈,2450x x ++≤故选D2x 的取值范围是( ) A .1≥xB .2x ≠C .1x >D .1≥x 且2x ≠【答案】D【解析】 解:根据题意,得1020x x -≥⎧⎨-≠⎩,解得1≥x 且2x ≠. 故选:D.3.若a >b >0,c <d <0,则一定有( )A .a c >b dB .a c <b d C .a d >bc D .ad <b c【答案】D【解析】方法1:∵c <d <0,∴-c >-d >0,∴110d c>>--, 又a >b >0,∴a b d c >--,∴a b d c <.故选:D.方法2:令a =3,b =2,c =-3,d =-2.则a c =-1,b d=-1,排除选项A ,B. 又a d =-32,b c =-23,∴a b d c <,排除选项C. 故选:D.4.若实数x ,y ,z 满足1212y x y y z y-<<-⎧⎨-<<-⎩,记2P xy yz xz y =+++,2Q x y z =++,则P 与Q 的大小关系是( )A .P Q <B .P Q >C .P Q =D .不确定【答案】A【解析】 ()22P Q xy yz xz y x y z =--+++++()()()2111xz y x z y =+-++-- ()()111x y z y =+-+--因为1212y x y y z y -<<-⎧⎨-<<-⎩,所以()10,1x y +-∈,()10,1z y +-∈, 所以()()()110,1x y z y +-+-∈,所以110P Q -<-=,即P Q <故选:A5.若1m n >>,a ,()1lg lg 2b m n =+,lg 2m n c +⎛⎫= ⎪⎝⎭,则( ) A . a b c <<B .c a b <<C .b a c <<D .a c b <<【答案】A【解析】解:因为1m n >>,所以lg lg 0m n >>,则()1lg lg 2b m n =+≥,因为lg lg m n >,所以等号不成立,即()1lg lg 2b m n a =+>=,因为2m n +>()1lg lg lg 22m n c m n b +⎛⎫=>=+= ⎪⎝⎭, 所以a b c <<,故选:A.6.当1x >时,不等式11x a x +≥-恒成立,则实数a 的取值范围是( ) A .(],2-∞B .[)2,+∞C .[)3,+∞D .(],3-∞ 【答案】D【解析】因为当1x >时,不等式11x a x +≥-恒成立, 又111121311x x x x +=-++≥+=--, 当且仅当2x =时取等号, 所以11`x x +-的最小值等于3, 3a ∴≤则实数a 的取值范围为](3-∞,故选:D7.一元二次方程220x bx +-=中,若0b <,则这个方程根的情况是( )A .有两个正根B .有一正根一负根且正根的绝对值大C .有两个负根D .有一正根一负根且负根的绝对值大【答案】B【解析】由220x bx +-=,可知()2241280b b ∆=-⨯⨯-=+>,所以方程有两个不相等的实数根.设方程220x bx +-=的两个根为c ,d ,则c d b +=-,2cd =-,由2cd =-得方程的两个根为一正一负,排除A,C由c d b +=-和0b <可知方程的两个根中,正数根的绝对值大于负数根的绝对值,B正确故选:B.8.不等式22412ax x a x ++>-对一切x ∈R 恒成立,则实数a 的取值范围是( )A .2a >B .2a <-C .22a -<<D .2a <【答案】A【解析】不等式22412ax x a x ++>-对一切x ∈R 恒成立,即()22410a x x a +++->对一切x ∈R 恒成立, 若20a +=,显然不恒成立.若20a +≠,则200a +>⎧⎨∆<⎩, 即()()20164210a a a +>⎧⎨-+-<⎩,解得2a >. 故选:A9.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩, 则[(2)]f f -的值为( ) A .1B .2C .4D .5 【答案】D【解析】 因为函数21,0(),0x x f x x x +≥⎧=⎨<⎩, 则(2)=4f -, 又(4)=5f ,所以[(2)]=5f f -故选:D.10.若函数()f x 满足(32)98f x x +=+,则()f x 的解析式是( )A .()98f x x =+B .()=32f x x +C .()=34f x x --D .()=32f x x +或()=34f x x --【答案】B【解析】 设232,3t t x x -=+∴=, 所以2()983(2+8=323t f t t t -=⨯+=-+) 所以()=32f x x +.故选:B.11.已知函数22,(1)()(21)36,(1)x ax x f x a x a x ⎧-+≤=⎨--+>⎩,若()f x 在(),-∞+∞上是增函数,则实数a 的取值范围是( )A .1,12⎛⎤ ⎥⎝⎦B .1,2⎛⎫+∞ ⎪⎝⎭C .[1,)+∞D .[]1,2【答案】D【解析】因为函数22,(1)()(21)36,(1)x ax x f x a x a x ⎧-+≤=⎨--+>⎩,在(),-∞+∞上是增函数, 所以1210122136a a a a a ≥⎧⎪->⎨⎪-+≤--+⎩,解得12a ≤≤,故选:D12.已知函数2()23f x x ax =-+,且其对称轴为1x =,则以下关系正确的是( )A .(3)(2)(7)f f f -<<B .(3)(2)(7)f f f -=<C .(2)(3)(7)f f f <-<D .(2)(7)(3)f f f <<-【答案】C【解析】解:根据题意,函数2()25f x x ax =-+,其对称轴为1x =,其开口向上, ()f x 在[1,)+∞上单调递增,()()35f f -=,则有()()()2(3)57f f f f <-=<;故选:C .三.填空题(共6小题)13.已知集合A ={x |x <a },B ={x |1<x <2},A ∪(∁R B )=R ,则实数a 的取值范围是________.【答案】{a |a ≥2}【解析】∵B ={x |1<x <2},∴∁R B ={x |x ≤1或x ≥2}.又∵A ∪(∁R B )=R ,A ={x |x <a }.观察∁R B 与A 在数轴上表示的区间,如图所示:可得当a ≥2时,A ∪(∁R B )=R.故答案为{a |a ≥2}14.已知14x y -<+<,23x y <-<,则32x y +的取值范围是________. 【答案】323,22⎛⎫- ⎪⎝⎭【解析】设()()32+=++-x y m x y n x y ,则32m n m n +=⎧⎨-=⎩,∴5212m n ⎧=⎪⎪⎨⎪=⎪⎩即()()513222+=++-x y x y x y , 又∵14x y -<+<,23x y <-<, ∴()551022x y -<+<,()13122x y <-<, ∴()()351232222x y x y -<++-<, 即3233222x y -<+< ,∴32x y +的取值范围为323,22⎛⎫- ⎪⎝⎭. 故答案为:323,22⎛⎫- ⎪⎝⎭15.已知0x >,0y >,且28x y xy +=,则x y +的最小值是________.【答案】18【解析】解:因为0x >,0y >,且28x y xy +=, 所以281y x +=, 所以28()x y x y y x ⎛⎫+=++ ⎪⎝⎭ 2882x y y x=+++1018≥+= 当且仅当28x y y x =,即12,6x y ==取等号, 所以x y +的最小值为18,故答案为:1816.已知函数()f x =的定义域为R ,则a 的取值范围为_____ .【答案】[]0,1【解析】由于函数()f x =的定义域为R ,∴不等式2210ax ax ++≥对任意的x ∈R 恒成立,当0a =时,10≥恒成立,即0a =符合题意;当0a ≠时,则20440a a a >⎧⎨∆=-≤⎩,得001a a >⎧⎨≤≤⎩,解得01a <≤.综上,a 的取值范围是[]0,1. 故答案为:[]0,1. 17.已知函数()151xmf x =-+是奇函数,则实数m 的值为________. 【答案】2 【解析】因为()f x 是奇函数,所以(0)102mf =-=,解得2m =, 2m =时,51()15151x x xm f x -=-=++,满足()()f x f x -=-,是奇函数, 故答案为:2.18.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()1f x x x =+,则0x <时,()f x = ________. 【答案】()1x x - 【解析】当0x <时,0x -> ()()1f x x x ∴-=--()f x 为奇函数 ()()()1f x f x x x ∴=--=- 本题正确结果:()1x x - 三.解析题(共6小题)19.已知函数()218f x ax bx =++,()0f x >的解集为()3,2-.(1)求()f x 的解析式; (2)当1x >-时,求()211f x y x -=+的最大值. 【答案】(1)()23318f x x x =--+;(2)max 3y =-.【解析】(1)因为函数()218f x ax bx =++,()0f x >的解集为()3,2-,那么方程2180ax bx ++=的两个根是3-,2,且0a <,由韦达定理有3213183326b a ab a ⎧-+=-=-⎪=-⎧⎪⇒⎨⎨=-⎩⎪-⋅=-=⎪⎩, 所以()23318f x x x =--+.(2)()()221113331331111f x x x x x y x x x x x -++---⎛⎫===-⋅=-+ ⎪++++⎝⎭()13111x x ⎡⎤=-++-⎢⎥+⎣⎦,由1x >-,则:根据均值不等式有:1121x x ++≥+,当且仅当 111x x +=+,即0x =时取等号, ∴当0x =时,max 3y =-.20.已知关于x 的不等式2260kx x k -+<; (1)若不等式的解集为()2,3,求实数k 的值;(2)若0k >,且不等式对一切23x <<都成立,求实数k 的取值范围. 【答案】(1)25k =(2)20,5⎛⎤⎥⎝⎦【解析】(1)不等式2260kx x k -+<的解集为()2,32∴和3是方程2260kx x k -+=的两根且0k >由根与系数的关系得:223k+=, 解得:25k =(2)令()226f x kx x k =-+,则原问题等价于()()2030f f ⎧≤⎪⎨≤⎪⎩即44609660k k k k -+≤⎧⎨-+≤⎩,解得:25k ≤又0k >∴实数k 的取值范围是20,5⎛⎤⎥⎝⎦21.已知函数2()23=++f x x ax ,[]4,6x ∈-. (1)当2a =-时,求()f x 的最值;(2)求实数a 的取值范围,使()y f x =在区间[]4,6-上是单调函数; 【答案】(1)最小值是1-,最大值是35.;(2)6a -或4a . 【解析】解:(1)当2a =-时,22()43(2)1f x x x x =-+=--,由于[]4,6x ∈-,()f x ∴在[]4,2-上单调递减,在[]2,6上单调递增,()f x ∴的最小值是()21f =-,又(4)35,(6)15f f -==,故()f x 的最大值是35.(2)由于函数()f x 的图像开口向上,对称轴是x a =-,所以要使()f x 在[]4,6-上是单调函数,应有4a --或6a -,即6a -或4a .22.已知函数()[)22,1,x x a f x x x++=∈+∞.(1)当12a =时,求函数()f x 的最小值; (2)若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围. 【答案】(1)72(2)3a >- 【解析】 (1)当12a =时,()122f x x x =++,∵()f x 在区间[)1,+∞上为增函数,∴由对勾函数的性质知函数()f x 在区间[)1,+∞上的最小值为()712f =.(2)在区间[)1,+∞上,()220x x af x x++=>恒成立220x x a ⇔++>恒成立. 设22y x x a =++,[)1,x ∈+∞,因为()222+a=11y x x x a =+++-在[)1,+∞上递增,∴当1x =时,min 3y a =+,于是,当且仅当min 30y a =+>时,函数()0f x >恒成立, 故3a >-.23.已知函数()21x bf x x +=-是定义域()1,1-上的奇函数. (1)确定()f x 的解析式;(2)用定义证明:()f x 在区间()1,1-上是减函数; (3)解不等式()()10f t f t -+<. 【答案】(1)()21x f x x =-;(2)证明见解析;(3)1,12⎛⎫⎪⎝⎭. 【解析】(1)由于函数()21x bf x x +=-是定义域()1,1-上的奇函数,则()()f x f x -=-, 即()2211x bx b x x -++=-+-+,化简得0b =,因此,()21xf x x =-; (2)任取1x 、()21,1x ∈-,且12x x <,即1211x x -<<<, 则()()()()()()()()()()()()2212212112121222221211221211111111111x x x x x x x x x x f x f x x x x x x x x x ----+-=-==---+-+--,1211x x -<<<,210x x ∴->,1210x x +>,110x -<,110x +>,210x -<,210x +>.()()120f x f x ∴->,()()12f x f x ∴>,因此,函数()y f x =在区间()1,1-上是减函数;(3)由(2)可知,函数()y f x =是定义域为()1,1-的减函数,且为奇函数,由()()10f t f t -+<得()()()1f t f t f t -<-=-,所以111111t t t t ->-⎧⎪-<-<⎨⎪-<<⎩,解得112t <<. 因此,不等式()()10f t f t -+<的解集为1,12⎛⎫⎪⎝⎭.24.已知()()2227m f x m m x -=--是幂函数,且在()0,∞+上单调递增.(1)求m 的值;(2)求函数()()()211g x f x a x =--+在区间[]2,4上的最小值()h a . 【答案】(1)4 (2)当52a <时, ()()274h a g a ==-;当5922a ≤≤时,()()22121124a a g h a --⎛⎫==-+ ⎪⎝⎭,当92a >时, ()()4218h a g a ==-. 【解析】(1)()()2227m f x m m x -=--是幂函数,∴2271m m --=,解得4m =或2m =-; 又()f x 在()0,∞+上单调递增, ∴20m ->, ∴m 的值为4;(2)函数()()()()2211211g x f x a x x a x =--+=--+,当52a <时,()g x 在区间[]2,4上单调递增,最小值为()()274h a g a ==-; 当5922a ≤≤时,()g x 在区间[]2,4上先减后增,最小值为()()22121124a a g h a --⎛⎫==-+ ⎪⎝⎭, 当92a >时,()g x 在区间[]2,4上单调递减,最小值为()()4218h a g a ==-.人教版新教材高中数学高一上学期期中考试数学试卷(二)一、选择题(共12小题)1.有下列四个命题,其中真命题是( ). A .n ∀∈R ,2n n ≥B .n ∃∈R ,m ∀∈R ,m n m ⋅=C .n ∀∈R ,m ∃∈R ,2m n <D .n ∀∈R ,2n n <2. 22530x x --<的一个必要不充分条件是( )A .132x -<<B .16x -<<C .102x -<<D .132x -<<3.下列命题中正确的是( ) A .若ac bc >22,则a b >B .若a b >,则11a b< C .若a b >,c d >,则a c b d ->- D .若a b >,c d <,则a b c d> 4.下列不等式中,正确的是( ) A .a +4a≥4 B .a 2+b 2≥4abC ≥2a b+ D .x 2+23x 5.已知2x >-,8y >-,8082x y x -=++,则x y +的最小值为( ) A .2B .4C .8D .146.已知m ,0n >,4121m n +=+,则m n +的最小值为( ) A .72B .7C .8D .47.不等式10xx-≥的解集为( ) A .[0,1]B .(0,1]C .(﹣∞,0]∪[1,+∞)D .(﹣∞,0)∪[1,+∞)8.已知11232f x x ⎛⎫-=+ ⎪⎝⎭,()8f m =,则m 等于( )A .14- B .14C .32D .32-9.已知定义在R 上的奇函数()f x 满足:当0x ≥时,()3f x x =,若不等式()()242f t f m mt ->+对任意实数t 恒成立,则实数m 的取值范围是( ) A.(,-∞ B.()C .()(),02,-∞+∞D.(),-∞⋃+∞10.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =x 2+2xB .y =x 3C .y =lnxD .y =x 211.已知函数321()(1)m f x m m x -=--是幂函数,对任意的12,(0,)x x ∈+∞且12x x ≠,满足1212()()0f x f x x x ->-,若,,0a b R a b ∈+<,则()()f a f b +的值( ) A .恒大于0 B .恒小于0 C .等于0 D .无法判断12.已知()f x 是定义在[]1,1-上的奇函数,对任意的[]12,1,1x x ∈-,均有()()()()21210x x f x f x --≥.当[]0,1x ∈时,()25x f f x ⎛⎫= ⎪⎝⎭,()()11f x f x =--,则 2902913143152016201620162016f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-+-++-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .112-B .6-C .132-D .254-四.填空题(共6小题)13.已知条件2:340p x x --;条件22:690q x x m -+-≤,若q ¬是p ¬的充分不必要条件,则实数m 的取值范围是__________. 14.已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 15.已知正实数a ,b 满足36a b +=,则1412a b+++的最小值为______.16.若222x x a x x a +++--≥对x ∈R 恒成立,则实数a 的取值范围为______.17.已知函数()2(1)mf x m m x =--是幂函数,且()f x 在(0,)+∞上单调递增,则实数m =________.18.已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+,若()12f =,则()()()()1232020f f f f ++++=________.三.解析题(共6小题)19.已知函数()|31||1|f x x x =-++. (1)解不等式()2f x ;(2)记函数()()2|1|g x f x x =++的值域为M ,若t M ∈,求44t t+的最小值. 20.设:p 实数x 满足22430x ax a -+<,:q 实数x 满足31x -<. (1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 21.已知函数()f x 对任意x 满足:3()(2)4f x f x x --=,二次函数()g x 满足:(2)()4g x g x x +-=且()14g =-.(1)求()f x ,()g x 的解析式;(2)若[,]x m n ∈时,恒有()()f x g x ≥成立,求n m -的最大值.22.已知函数23f x x x =-(). (1)对任意0x R f x m ∈-≥,()恒成立,求实数m 的取值范围: (2)函数()g x kx k =-,设函数()()()F x f x g x =-,若函数()y F x =有且只有两个零点,求实数k 的取值范围.23.已知函数()f x 是定义在[]1,1-上,若对于任意[],1,1x y ∈-,都有()()()f x y f x f y +=+且0x >时,有()0f x >.(1)证明:()f x 在[]1,1-上为奇函数,且为单调递增函数;(2)解不等式1(1)()02f x f x ++>;24.已知函数()4mf x x x=-,且()43f =.(1)求m 的值;(2)证明()f x 的奇偶性;(3)判断()f x 在()0,∞+上的单调性,并给予证明.【答案解析】一、选择题(共12小题)1.有下列四个命题,其中真命题是( ). A .n ∀∈R ,2n n ≥B .n ∃∈R ,m ∀∈R ,m n m ⋅=C .n ∀∈R ,m ∃∈R ,2m n <D .n ∀∈R ,2n n <【答案】B 【解析】对于选项A ,令12n =,则2111242⎛⎫=< ⎪⎝⎭,故A 错;对于选项B ,令1n =,则m ∀∈R ,1⋅=m m 显然成立,故B 正确; 对于选项C ,令1n =-,则21<-m 显然无解,故C 错; 对于选项D ,令1n =-,则2(1)1-<-显然不成立,故D 错. 故选B2. 22530x x --<的一个必要不充分条件是( )A .132x -<<B .16x -<<C .102x -<<D .132x -<<【答案】B 【解析】求解不等式22530x x --<可得132x -<<,结合所给的选项可知22530x x --<的一个必要不充分条件是16x -<<. 本题选择B 选项.3.下列命题中正确的是( ) A .若ac bc >22,则a b >B .若a b >,则11a b< C .若a b >,c d >,则a c b d ->- D .若a b >,c d <,则a b c d> 【答案】A 【解析】对于选项A ,若ac bc >22,所以20c >,则a b >,所以该选项正确;对于选项B ,11b aa b ab--=符号不能确定,所以该选项错误;对于选项C ,设1,0,1,3,2,3a b c d a c b d ===-=--=-=,所以a c b d -<-,所以该选项错误;对于选项D ,设0,1,2,1,0,1,a b a b a b c d c d c d==-=-=-==∴<,所以该选项错误; 故选:A4.下列不等式中,正确的是( ) A .a +4a≥4 B .a 2+b 2≥4abC ≥2a b+ D .x 2+23x 【答案】D 【解析】a <0,则a +4a≥4不成立,故A 错; a =1,b =1,a 2+b 2<4ab ,故B 错,a =4,b =16<2a b+,故C 错;由基本不等式得x 2+23x ≥=D 项正确. 故选:D.5.已知2x >-,8y >-,8082x y x -=++,则x y +的最小值为( ) A .2 B .4C .8D .14【答案】C 【解析】解:因为8082x y x -=++,所以822082x y x +--=++,即82182y x +=++, 因为2x >-,8y >-,所以20x +>,80y +>,所以()8282x y x y y x ⎛⎫+=++ ⎪++⎝⎭ ()()82281082x y y x ⎛⎫⎡⎤=+++-+ ⎪⎣⎦++⎝⎭()()822882x y y x ++=+++8==当且仅当()()822882x y y x ++=++即4x =,4y =时取等号, 故选:C6.已知m ,0n >,4121m n +=+,则m n +的最小值为( ) A .72B .7C .8D .4【答案】A 【解析】 ∵m ,0n >,4121m n+=+, ∴()()4111411911554122122n m m n m n m n m n +⎛⎫⎛⎫++=+++⨯=++≥+= ⎪ ⎪++⎝⎭⎝⎭, 当且仅当411n m m n +=+且4121m n +=+,即2m =,32n =时取等号, 故m n +的最小值72. 故选:A.7.不等式10xx-≥的解集为( ) A .[0,1]B .(0,1]C .(﹣∞,0]∪[1,+∞)D .(﹣∞,0)∪[1,+∞)【答案】B 【解析】 根据题意,1100(1)0x x x x x x--≥⇒≤⇒-≤且0x ≠, 解得01x <≤,即不等式的解集为(0,1], 故选:B8.已知11232f x x ⎛⎫-=+ ⎪⎝⎭,()8f m =,则m 等于( ) A .14-B .14C .32 D .32-【答案】B 【解析】解:设112x t -=,则22x t =+,()47f t t ∴=+,()478f m m ∴=+=,解得14m =. 故选:B .9.已知定义在R 上的奇函数()f x 满足:当0x ≥时,()3f x x =,若不等式()()242f t f m mt ->+对任意实数t 恒成立,则实数m 的取值范围是( )A .(,-∞ B .()C .()(),02,-∞+∞D .(),-∞⋃+∞【答案】A 【解析】由于函数()y f x =为R 上的奇函数,则()()f x f x =--. 当0x <时,0x ->,则()()()33f x f x x x =--=--=.所以,对任意的x ∈R ,()3f x x =,则函数()y f x =为R 上的增函数.由()()242f t f m mt ->+可得224mt m t +<-,即2420mt t m ++<,由题意可知,不等式2420mt t m ++<对任意的实数t 恒成立. ①当0m =时,则有40t <,在t R ∈不恒成立;②当0m ≠时,则(2,1680m m m <⎧⇒∈-∞⎨∆=-<⎩. 综上所述,实数m的取值范围是(,-∞. 故选:A .10.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =x 2+2x B .y =x 3 C .y =lnx D .y =x 2【答案】D 【解析】A 选项:y =x 2+2x 是非奇非偶函数所以,所以不是偶函数,不合题意;B 选项:y =x 3是奇函数,不合题意;C 选项:y =lnx 是非奇非偶函数,所以不是偶函数,不合题意;D 选项:y =x 2既是偶函数又在区间(0,+∞)上单调递增. 故选:D11.已知函数321()(1)m f x m m x -=--是幂函数,对任意的12,(0,)x x ∈+∞且12x x ≠,满足1212()()0f x f x x x ->-,若,,0a b R a b ∈+<,则()()f a f b +的值( )A .恒大于0B .恒小于0C .等于0D .无法判断【答案】B 【解析】由题可知:函数321()(1)m f x m m x -=--是幂函数 则21=12--⇒=m m m 或1m =- 又对任意的12,(0,)x x ∈+∞且12x x ≠,满足1212()()0f x f x x x ->-所以函数()f x 为(0,)+∞的增函数,故2m =所以()7=f x x ,又()()f x f x -=-,所以()f x 为R 单调递增的奇函数由0a b +<,则a b <-,所以()()()<-=-f a f b f b 则()()0f a f b +< 故选:B12.已知()f x 是定义在[]1,1-上的奇函数,对任意的[]12,1,1x x ∈-,均有()()()()21210x x f x f x --≥.当[]0,1x ∈时,()25x f f x ⎛⎫=⎪⎝⎭,()()11f x f x =--,则 2902913143152016201620162016f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-+-++-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .112-B .6-C .132-D .254-【答案】C 【解析】由f (x )=1-f (1-x ),得 f (1)=1,令12x =,则1122f =() , ∵当x ∈[0,1]时,25x f f x =()(), ∴152x f f x =()(), 即1111111111115222525410224f f f f f f ⎛⎫====== ⎪⎝⎭()(),(),()(), 1290125201610<< , ∵对任意的x 1,x 2∈[-1,1],均有(x 2-x 1)(f (x 2)-f (x 1))≥0290120164f ∴=() , 同理29131431512016201620164f f f =⋯=-==()()() . ∵f (x )是奇函数,∴2902913143152016201620162016f f f f -+-+⋯+-+-()()()() 29029131431513[]20162016201620162f f f f =--++⋯++=-()()()(),故选:C .五.填空题(共6小题)13.已知条件2:340p x x --;条件22:690q x x m -+-≤,若q ¬是p ¬的充分不必要条件,则实数m 的取值范围是__________. 【答案】4m ≥或4m ≤- 【解析】∵条件2:340p x x --;∴:14p x -≤,∴:4p x ⌝>或1x <-, ∵条件22:690q x x m -+-,,∴:3q x m ⌝>+或x 3m <-,若q ¬是p ¬的充分不必要条件,则31434m m m ⎧--⎪⇒≥⎨+⎪⎩,解得:4m ≥或4m ≤-故答案为4m ≥或4m ≤-14.已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 【答案】4 【解析】0,0,0a b a b >>∴+>,1ab =,11882222ab ab a b a b a b a b∴++=++++842a b a b +=+≥=+,当且仅当a b +=4时取等号,结合1ab =,解得22a b =-=+,或22a b =+=. 故答案为:415.已知正实数a ,b 满足36a b +=,则1412a b+++的最小值为______.【答案】1313+ 【解析】正实数a ,b ,即0a >,0b >;36a b +=,13(2)13a b ∴+++=则13(2)11313a b +++=, 那么:14(12a b+++13(2)4(1)3(2))()1()131313(2)13(1)a b a b b a +++++=++++121213+⨯=当且仅当2(1)2)a b +=+时,即取等号.∴1412a b +++的最小值为:1313+, 故答案为:1313+. 16.若222x x a x x a +++--≥对x ∈R 恒成立,则实数a 的取值范围为______.【答案】2a ≥ 【解析】因为222x x a x x a +++--≥对x ∈R 恒成立,当20x x a --≥时,222221x x a x x a x x +++--=≥∴≥或1x ≤-恒成立,因此22(1)(1)02110a a a ⎧----≤∴≥⎨--≤⎩; 当20x x a --<时,222221x x a x x a x a x a +++--=+≥∴≥-恒成立,因此2(1)(1)02112a a a a a ⎧----≥⎪∴≥⎨-<⎪⎩; 综上:2a ≥ 故答案为:2a ≥17.已知函数()2(1)mf x m m x =--是幂函数,且()f x 在(0,)+∞上单调递增,则实数m =________.【答案】2 【解析】由题意,函数()2(1)mf x m m x =--是幂函数,可得211m m --=,即220m m --=,解得2m =或1m =-,当2m =时,函数()2f x x =,此时()f x 在(0,)+∞上单调递增,符合题意; 当1m =-时,函数()1f x x -=,此时()f x 在(0,)+∞上单调递减,不符合题意,故答案为:2.18.已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+,若()12f =,则()()()()1232020f f f f ++++=________.【答案】0. 【解析】因为()f x 是定义域为(,)-∞+∞的奇函数, 所以()()f x f x -=-且()00f = 又(1)(1)f x =f +x -所以()()()()()21111f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=-=-⎣⎦⎣⎦ 所以()()()()()4222f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=--=⎣⎦⎣⎦ 所以函数()f x 的周期为4,又因为()12f =、()00f =, 在(1)(1)f x =f +x -中,令1x =,可得:()()200f f ==在(1)(1)f x =f +x -中,令2x =,可得:()()()3112f f f =-=-=- 在(1)(1)f x =f +x -中,令3x =,可得:()()()4220f f f =-=-= 所以()()()()2020(3)(2020)1234505004(1)(2)f f f f +f f f f +++=⨯+++=⨯=⎡⎤⎣⎦ 故答案为:0.三.解析题(共6小题)19.已知函数()|31||1|f x x x =-++. (1)解不等式()2f x ;(2)记函数()()2|1|g x f x x =++的值域为M ,若t M ∈,求44t t +的最小值.【答案】(1)1|02x x ⎧⎫≤≤⎨⎬⎩⎭;(2)17. 【解析】解:(1)依题意,得4,1,1()22,1,314,.3x x f x x x x x ⎧⎪-≤-⎪⎪=-+-<<⎨⎪⎪≥⎪⎩于是1()242x f x x ≤-⎧≤⇔⎨-≤⎩或113222x x ⎧-<<⎪⎨⎪-+≤⎩或1342x x ⎧≥⎪⎨⎪≤⎩,解得102x ≤≤.即不等式()2f x ≤的解集为1|02x x ⎧⎫≤≤⎨⎬⎩⎭. (2)证明:()|31|3|1||31(33)|4g x x x x x =-++≥--+=, 当且仅当(31)(33)0x x -+≤时,取等号,所以[4,)M =+∞. 则44y t t=+在[4,)+∞单调递增, 所以4114444174t t t t ⎛⎫⎛⎫+=+≥⨯+= ⎪ ⎪⎝⎭⎝⎭.所以44t t +的最小值为17. 20.设:p 实数x 满足22430x ax a -+<,:q 实数x 满足31x -<. (1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 【答案】(1){}|23x x <<(2)423a ≤≤【解析】对于q :由31x -<得131x -<-<,解24x <<(1)当1a =时,对于p :()()243310x x x x -+=--<,解得13x <<,由于p q∧为真,所以,p q 都为真命题,所以2413x x <<⎧⎨<<⎩解得23x <<,所以实数x 的取值范围是{}|23x x <<.(2)当0a >时,对于p :()()224303x ax a x a x a =---+<,解得3a x a <<.由于p ⌝是q ⌝的充分不必要条件,所以p 是q 的必要不充分条件,所以234a a ≤⎧⎨≥⎩,解得423a ≤≤.所以实数a 的取值范围是423a ≤≤.21.已知函数()f x 对任意x 满足:3()(2)4f x f x x --=,二次函数()g x 满足:(2)()4g x g x x +-=且()14g =-.(1)求()f x ,()g x 的解析式;(2)若[,]x m n ∈时,恒有()()f x g x ≥成立,求n m -的最大值. 【答案】(1)求()1f x x =+,2()23g x x x =--;(2)n m -的最大值5. 【解析】(1)()()324f x f x x --=①, 用2x -代替上式中的x , 得()()3284f x f x x --=-②, 联立①②,可得()1f x x =+;设()2g x ax bx c =++,所以()()()()222224g x g x a x b x c ax bx c x +-=++++---=, 即4424ax a b x ++=所以44420a ab =⎧⎨+=⎩,解得1a =,2b =-,又()14g =-,得3c =-,所以2()23g x x x =--. (2)令()()f x g x ≥, 即2123x x x +--≥2340x x --≤解得14x -≤≤所以当[]1,4x ∈-时,()()f x g x ≥若要求[,]x m n ∈时,恒有()()f x g x ≥成立, 可得()415n m -≤--=,即n m -的最大值是5.22.已知函数23f x x x =-(). (1)对任意0x R f x m ∈-≥,()恒成立,求实数m 的取值范围: (2)函数()g x kx k =-,设函数()()()F x f x g x =-,若函数()y F x =有且只有两个零点,求实数k 的取值范围.【答案】(1)94⎛⎫-∞- ⎪⎝⎭,;(2)()()01-∞⋃+∞,,. 【解析】解:(1)23f x x x =-()的定义域为R , 22()3()3()(-)f x x x x x f x =---=-=, 故函数()y f x =关于y 轴对称,当0x >时,23()f x x x =-, 当32x =时,min 39()()24f x f ==-, 对任意,()0x R f x m ∈-≥恒成立,即有min ()m f x ≤,故实数m 的取值范围为94-∞-(,).(2)显然1x =不是函数()()()F x f x g x =-的零点.故函数()()()F x f x g x =-有且只有两个零点.y k ⇔=与23||()1x x h x x -=-的图象有两个交点.当0x ≥时,223||3()11x x x xh x x x --==--, 222223(23)(1)(3)23()()01(1)(1)x x x x x x x x h x x x x ------+''===>---恒成立, 故函数()y h x =在(0,1)单调递增,在(1,)+∞单调递增, 且当(0,1)x ∈时,1x →时,函数()h x →+∞, 当(1,)x ∈+∞时,1x →时,函数()h x →-∞,x →+∞时,函数()h x →+∞,当0x <时,223||3()11x x x xh x x x -+==--, 2222223(23)(1)(3)23(3)(1)()()1(1)(1)(1)x x x x x x x x x x h x x x x x ++--+---+''====---- 令()0h x '=,因为0x <,故解得1x =-,当(,1)x ∈-∞-时, ()0h x '>,故在(,1)-∞-单调递增, 当(1,0)x ∈-时, ()0h x '<,故在(1,0)-单调递减, 函数()y h x =的图像如图所示,根据图象可得,实数k 的取值范围为01-∞+∞(,)(,).23.已知函数()f x 是定义在[]1,1-上,若对于任意[],1,1x y ∈-,都有()()()f x y f x f y +=+且0x >时,有()0f x >.(1)证明:()f x 在[]1,1-上为奇函数,且为单调递增函数;(2)解不等式1(1)()02f x f x ++>;【答案】(1)证明见解析;(2)2,03x ⎛⎤∈- ⎥⎝⎦. 【解析】(1)证明:令0x y ==有(0)0f =,令y x =-,()()()f x x f x f x -=+-,即0(0)()()f f x f x ==+-, 所以()f x 是奇函数. 又令1211x x ,则()()21f x f x -=()()()2121f x f x f x x +-=-,又当0x >时,有()0f x >,210x x ->, ∴()210f x x ->,即()()210f x f x ->, ∴()f x 在定义域[]1,1-上为单调递增函数;(2)∵()f x 在[]1,1-上为单调递增的奇函数,有1(1)()02f x f x ++>,则1(1)()2f x f x +>-,∴1111112112x x x x ⎧⎪-≤+≤⎪⎪-≤-≤⎨⎪⎪+>-⎪⎩,即202223x x x ⎧⎪-≤≤⎪-≤≤⎨⎪⎪>-⎩,2,03x ⎛⎤∈- ⎥⎝⎦,解得不等式的解集为2,03x ⎛⎤∈- ⎥⎝⎦.24.已知函数()4mf x x x=-,且()43f =. (1)求m 的值;(2)证明()f x 的奇偶性;(3)判断()f x 在()0,∞+上的单调性,并给予证明.【答案】(1)1m =;(2)奇函数,证明见解析;(3)单调增函数,证明见解析. 【解析】(1)()4444134m m f =-=-=,解得1m =; (2)因为()4f x x x=-,定义域为{}0x x ≠,关于原点对称,又()()44f x x x f x x x ⎛⎫-=--=--=- ⎪-⎝⎭,因此,函数()y f x =为奇函数; (3)设120x x >>,则()()()12121212214444f x f x x x x x x x x x ⎛⎫⎛⎫-=---=-+- ⎪ ⎪⎝⎭⎝⎭()()()1212121212441x x x x x x x x x x -⎛⎫=-+=-+ ⎪⎝⎭,因为120x x >>,所以120x x ->,所以()()12f x f x >, 因此,函数()y f x =在()0,∞+上为单调增函数.人教版新教材高中数学高一上学期期中考试数学试卷(三)一、选择题(共12小题) 1.已知R a ∈,则“1a >”是“11a<”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件2.若a >b ,则下列各式中正确的是( ) A .ac >bcB .ac 2>bc 2C .a +c 2>b +c 2D .11a b<3.设m =,n =p =,则m ,n ,p 的大小顺序为( ) A .m p n >>B .p n m >>C .n m p >>D .m n p >>4.已知0,0x y >>,且142x y +=,242mx y m +>+恒成立,则实数m 的取值围是( )A .(8,0)-B .C .(9,1)-D .(8,1)-5.若函数()()22422x x f x x x -+=>-在x a =处取最小值,则a =( )A .1B .2C .4D .66.已知关于x 的不等式()()110ax x -+<的解集是1(,1),2⎛⎫-∞-⋃-+∞ ⎪⎝⎭,则a 等于( )A .2B .2-C .12- D .127.已知命题“∃x 0∈R ,20014(2)04x a x +-+≤”是假命题,则实数a 的取值范围为( ) A .(-∞,0) B .[0,4] C .[4,+∞) D .(0,4)8.将函数()212x f x x x -=-的图象向左平移1个单位长度,得到函数()g x 的图象,则函数()g x 的图象大致是( )A .B .C .D .9.如果2()(2)1f x ax a x =--+在区间1,2⎛⎤-∞ ⎥⎝⎦上为减函数,则a 的取值( )A .(0,1]B .[0,1)C .[0,1]D .(0,1)10.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( )A .)1,4⎡+∞⎢⎣ B .)1,2⎡+∞⎢⎣ C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦11.已知321()(1)1x f x x x +=+--,若(2018)f a =,则(2016)f -=( ) A .a -B .2a -C .4a -D .1a -12.已知,a b ∈R ,不等式22122x ax bx x ++<++在x ∈R 上恒成立,则( ) A .0a <B .0b <C .02ab <<D .04ab <<二、填空题(共6小题)13.不等式220mx mx --<对任意x ∈R 恒成立的充要条件是m ∈__________. 14.已知11x y -≤+≤,12x y ≤-≤,则3x y -的取值范围是______ 15.已知0a >,0b >且1a b +=,则311a b++的最小值为____________. 16.已知二次不等式220ax x b ++>的解集为1x x a ⎧⎫≠-⎨⎬⎩⎭,且a b >,则22a b a b +-的最小值为__________. 17.当2x ≠时,则42y x x =+-的值域是____________ 18.若不等式组22202(52)50x x x k x k ⎧-->⎨+++<⎩的整数解只有-2,则k 的取值范围是________.三.解析题(共6小题)19.已知集合{}2|2A x x -=≤≤,集合{}|1B x x =>. (1)求()R C B A ⋂;(2)设集合{}|6M x a x a =<<+,且A M M ⋃=,求实数a 的取值范围. 20.已知0a >,0b >. (1)若1a b +=,求14a b+的最小值;(2≥21.已知函数2()2f x ax bx a =+-+.(1)若关于x 的不等式()0f x >的解集是(1,3)-,求实数,a b 的值; (2)若2,0b a =>,解关于x 的不等式()0f x >. 22.已知函数2()1(0)f x x ax a =++>.(1)若()f x 的值域为[0,)+∞,求关于x 的方程()4f x =的解;(2)当2a =时,函数22()[()]2()1g x f x mf x m =-+-在[2,1]-上有三个零点,求m 的取值范围. 23.求函数解析式(1)已知()f x 是一次函数,且满足3(1)2(1)217.f x f x x +--=+求()f x .(2)已知()f x 满足12()()3f x f x x+=,求()f x .24.定义在非零实数集上的函数()f x 对任意非零实数,x y 满足:()()()f xy f x f y =+,且当01x <<时()0f x <.(1)求(1)f -及(1)f 的值; (2)求证:()f x 是偶函数;(3)解不等式:21(2)02f f x ⎛⎫+-≤ ⎪⎝⎭.【答案解析】一、选择题(共12小题) 1.已知R a ∈,则“1a >”是“11a<”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件。
高一上学期期中考试数学试卷含答案(共3套,新课标版)
高一级第一学期期中调研考试数学考生注意:1.本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
2.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题....区域书写的答案无效.........,在试题卷....、草稿纸上作答无效........。
3.本卷命题范围:新人教版必修第一册第一章~第四章。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{123}A =,,,{}223B x x x =->,则A B =A .{12},B .∅C .{23},D .{1}2.命题“R x ∃∈,||0x ”的否定是A .R x ∀∈,||0x ≥B .R x ∃∈,||0x <C .R x ∀∈,||0x <D .R x ∃∉,||0x <3.若a b >,则下列不等式中成立的是 A .11<a bB .33a b >C .22a b >D .a b >4.函数y =的定义域为 A .(12)-,B .(02),C .[12)-,D .(12]-,5.某企业一个月生产某种商品x 万件时的生产成本为2()410C x x x =++(万元)。
一万件售价是30万元,若商品能全部卖出,则该企业一个月生产该商品的最大利润为 A .139万元B .149万元C .159万元D .169万元6.已知集合2{Z |Z}1A x x =∈∈-,则集合A 的真子集的个数为 A .13B .14C .15D .167.若0.33a =,3log 0.3b =,13log 3c =,则a ,b ,c 的大小关系为 A .b c a <<B .c a b <<C .a b c <<D .b a c <<8.若函数()f x 是奇函数,且在定义域R 上是减函数,(2)3f -=,则满足3(3)3f x -<-<的实数x 的取值范围是 A .(15),B .(24),C .(36),D .(25),二、选择题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省赣榆县城南高级中学2018-2019学年高一数学上学期期中试
题新人教A 版
一、解答题(每小题5分,共14小题,总计70分)
1.用,,,,,∈∉⊆⊇刭
填空,0 {(0,1)} 2.设{}4,5,6,8A ={}3,5,7,8B =,求A B= ;A B= 。
3. 函数22y x =-+,(]1,2
x ⎡∈-⎣)的单调区间为__________
4.若2()f x x x =-,(1)()f n f n +-=
5.函数f(x)在[a,b]上是偶函数,则a+b=
6.如果2
x a =,则x 称为a 的 ;如果3
x a =,则x 称为a 的 .
7.若n = ;若n = 8.函数y=2
32
1()3
x
x -+的增区间是________
9.函数y =log 2|x |的奇偶性为
10.下列函数(1)3
x y =,(2)2
x y =,(3)x
y 1
=,(4)23
x y =,在()0,∞-上是增函数的是
___.
11.已知幂函数)(x f 的图象经过点(9,3
1 ),则=)25(f . 12.已知函数()f x 是区间(0,)+∞上的增函数,则2
(2)f a a -+___7()4
f (填“>”或“<”
或“≥”或“≤”) 13.1log -=x y a
(1,1≠a a >)的定义域为_______________
14.A={x|2
230x x --=}的所有子集为______________.
二、解答题(共90分)
15.求满足下列条件的实数x 的范围:
(1)28x
>; (2)1327x
<; (3)12x
⎛⎫
> ⎪⎝⎭
16.画出下列函数的图像(14分) (1) f(x)=+1,
;
17(1)已知二次函数f(x)的图象与x 轴的两交点为)(
2,0,)(
5,0,且()010f =,求f(x)的解析式。
(8分)
(2)已知二次函数f(x)的图象的顶点是)(
1,2-,且经过原点,求f(x)的解析式。
(8分)
18.求证:函数()1
1f x x
=-
-在区间)(,0-∞上是单调增函数。
(14分)
19.计算下列各式的值(式中字母都是正数)(16分) (1)(xy 2
·21
x ·2
1-y
)31·2
1)(xy (2)236
9)(
a ·26
3
9)(a
20(1)已知函数)(x f y =在[)+∞,0上是减函数,试比较)4
3
(f 与)1(2
+-a a f 的大小;(8
分)
(2)已知函)(x f y =是定义在在),0(+∞上的减函数,若)41()1(a f a f -<+成立,求a 的取值范围. (8分)
高一数学期中试题参考答案(试题二)
填空题:
1. ∉
2. {}{}3,4,5,6,7,8;5,8
3.单调增区间是[)1,0- ,单调减区间是(]0,2
4. -2n
5. 0
6.平方根;立方根 7.a, ⎩⎨⎧-≥=0
,0, a a a a a 8.(-23
,∞] 9.偶函数 10.
(1)11.
1
(25)5
f =
12. >
13.
)(
1,+∞ 14.
{}{}}
{,1,3,1,3φ--
解答题 15.(1)
28x >=32,且函数2x y =在R 上是单调增函数,
∴3x >.
故x 的取值范围为(3,)+∞.
(2) 1327
x <=33-,且函数3x
y =在R 上是单调增函数,
∴3x <-.
故x 的取值范围为(,3)-∞-.
(3) 12x
⎛⎫
> ⎪⎝⎭
122=1
21()2-,且函数1()2x y =在R 上是单调减函数,
∴1
2
x <-.
故x 的取值范围为1
(,)2
-∞-.
16.
17(1)设二次函数2
()(0)f x ax bx c a =++≠
二次函数()f x 的图像与x 轴的两交点为(2,0),(5,0)且(0)10f =
∴420255010a b c a b c c ++=⎧⎪++=⎨⎪=⎩, ∴1710a b c =⎧⎪
=-⎨⎪=⎩
, ∴2()710f x x x =-+ (2)二次函数()f x 的图像的顶点是(1,2)-
∴可设2
()(1)2(0)f x a x a =++≠
又
过原点,∴2
(01)20a ++=,∴2a =-
∴2
2
()2(1)224f x x x x =-++=--
18.证明:在(,0)-∞上任取12x x <0<, 1212211111()()1(1)f x f x x x x x -=-
----=-=1212
x x x x -, 因为 12x x <0<, 所以 12120,0x x x x >-<,
故 12
12
x x x x -0<, 即12()()0f x f x -<, 所以 12()()f x f x <.
所以函数1
()1f x x
=--在区间(,0)-∞上是单调递增函数.
19.解:(1)原式11
111123
2
222()x
y
x y +-
=133111111322222222
()x y x y x y x y ==xy =.
(2
)原式332
2
2
266()a a a ====.
20.(1)解:因为2
2
213131()4424a a a a a -+=-+
+=-+3
4
≥0>, 又函数()y f x =在[0,)+∞上是单调递减函数,
所以 2
3(1)()4
f a a f -+≤ .
(2)解:因为(1)(14)f a f a +<-且函数()y f x =在(0,)+∞上为单调递减函数,
所以11410140
a a
a a +>-⎧⎪
+>⎨⎪->⎩
,解之得104a <<.
所以a 的取值范围为104
a <<.。