第6章弯曲变形
第6章 弯曲变形(土木)

w x 0 0, w x l 0 A, B
M Fs
x 0 x 0 x 0
0,
xபைடு நூலகம்l
0 B, D 0 B, D 0 A, B, C , D
0, M 0, Fs
x l x l
例题 画挠曲线大致形状
依据 1. 约束条件; 2. 荷载情况; 3. 凹凸情况——由w″即M的正负号决定; 4. 光滑连续特性。
~
A
~
A
~
~~
~
A
~
~
~
A
AA
wA = 0
wA 0
A 0
wA
弹簧变形 -
挠曲线必受边界约 束限制。
AA
~ ~
AA
~ ~
光滑连续条件
在挠曲线的任意点处要 保持光滑和连续。
w AL = w AR
w AL = w AR
AL AR
~
A A
A A A
边界条件 A A
A
A
A A
~
~
例1 求梁的转角方程和挠度方程,并求最大转角和最大挠度, 梁的EI已知。
解
1)由梁的整体平衡分析可得:
L
F
FAx 0, FAy F (), M A Fl (
2)写出x 截面的弯矩方程
)
y
M ( x ) F (l x ) F ( x l )
3)列挠曲线近似微分方程并积分 d 2w EI 2 M ( x) F ( x l ) dx dw 1 积分一次 EI EI F ( x l )2 C dx 2 1 再积分一次 EIw F ( x l )3 Cx D 6
材料力学(理工科课件)第六章 弯曲变形)

§6-1 基本概念及工程实例 (Basic concepts and example problems)
一、工程实例(Example problem)
(Deflection of Beams)
但在另外一些情况下,有时却要求构件具有较大的弹性变 形,以满足特定的工作需要.
例如,车辆上的板弹簧,要求有足够大的变形,以缓解车辆受
M 0 w 0
x
O
M 0 w 0
M
(Deflection of Beams)
w (1 w )
2 3 2
M ( x) EI
2 w 与 1 相比十分微小而可以忽略不计,故上式可近似为
w"
M ( x) EI
(6.5)
此式称为 梁的挠曲线近似微分方程(differential equation of the deflection curve) 近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项; (3) tan w w( x )
x Cx D
4
(Deflection of Beams)
边界条件x=0 和 x=l时, w 0
梁的转角方程和挠曲线方程 A 分别为 q 2 3 3 (6lx 4 x l ) 24 EI qx 2 3 3 w (2lx x l ) 24 EI 最大转角和最大挠度分别为 在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
A a l D B
b
(Deflection of Beams)
解: 梁的两个支反力为
FRA F FRB F b l a l
x
l x
F FRA
A 1 a D b 2
第6节(弯曲变形)

Mechanics of Materials
中南大学土木建筑学院力学系
Department of Mechanics of School of Civil Engineering and Architecture of Central South University
第六章 弯曲变形 第一节 概述
Fx Fl
转角方程
EI(x)1Fx2FlxC
2 挠度方程
E Iv(x)1F x31F lx2C xD 62
EI
d2v dx2
Fx Fl
EI(x)1Fx2FlxC
2
E Iv(x)1F x31F lx2C xD 62
⑶ 确定积分常数
EI(0)1F02Fl0C0
2 E Iv(0 )1F 0 31F l0 2 C 0D 0
EI(x)b2F l x2C1
E I(x)b 2 F l x2F 2(xa)2C 2
挠度方程
EIv(x)b6F l x3C1xD1 E Iw (x ) b 6 F lx 3F 6(x a )3 C 2xD 2
⑶ 确定积分常数
v(0)E 1 I(b 6 F l03C 10D 1)0
v (l) E 1 I[ b 6 F ll3 F 6(l a )3 C 2 l D 2 ] 0
max
(0)
Fl2 3EI
(x) 0
x (3 3)l 3
(33)l F l3
F l3
vm a xv(
) 0 .0 6 4 2
3 93E I
E I
例:简支梁AB如图所示(图中a > b),承受集中载荷F作 用,梁的弯曲刚度为EI。求此梁的挠曲轴方程和转角方程, 并确定挠度的最大值。
材料力学第六章 弯曲变形

4
2
C
B
)
=
A
( A)q C
l q
( B )q
(b)
B
( wC )q
l
θ B ( θ B )q ( θ B ) M e
+
Me
(c)
Mel ql 24 EI 6 EI
3
A
B
( B ) M e
( A ) MC ( wC ) M
e
e
l
例题3
AB梁的EI为已知,求梁中间C截面挠度.
F1l 2 F2 la 0.4 400 200 B ( ) 16 EI 3 EI 210 1880 16 3 +0.423 10-4 (rad)
F1l a F2a F2a l wC 5.19 106 m 16 EI 3 EI 3 EI wmax w (3)校核刚度: l l
x A
dx
F
x
C' dω
B
d tg dx
二、挠曲线的微分方程
1.纯弯曲时曲率与弯矩的关系
M EI
1
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1 M ( x) ( x) EI
2.由数学得到平面曲线的曲率
F
1 | w | 3 2 2 ( x) (1 w )
q
A x B
w w F wq
+
w wF wq
例1 已知:EI, F,q .求C点挠度 F q
A
C a a
B
Fa 3 ( wC )F 6 EI
材料力学习题册答案-第6章 弯曲变形

第六章弯曲变形一、是非判断题1.梁的挠曲线近似微分方程为EIy’’=M(x)。
(√)2.梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角为零。
(×)3.两根几何尺寸、支撑条件完全相同的静定梁,只要所受载荷相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。
(×)4.等截面直梁在弯曲变形时,挠曲线的曲率最大值发生在转角等于零的截面处。
(×)5.若梁上中间铰链处无集中力偶作用,则中间铰链左右两侧截面的挠度相等,转角不等。
(√)6.简支梁的抗弯刚度EI相同,在梁中间受载荷F相同,当梁的跨度增大一倍后,其最大挠度增加四倍。
(×)7.当一个梁同时受几个力作用时,某截面的挠度和转角就等于每一个单独作用下该截面的挠度和转角的代数和。
(√)8.弯矩突变的截面转角也有突变。
(×)二、选择题1. 梁的挠度是(D)A 横截面上任一点沿梁轴线方向的位移B 横截面形心沿梁轴方向的位移C横截面形心沿梁轴方向的线位移D 横截面形心的位移2. 在下列关于挠度、转角正负号的概念中,(B)是正确的。
A 转角的正负号与坐标系有关,挠度的正负号与坐标系无关B 转角的正负号与坐标系无关,挠度的正负号与坐标系有关C 转角和挠度的正负号均与坐标系有关D 转角和挠度的正负号均与坐标系无关3. 挠曲线近似微分方程在(D)条件下成立。
A 梁的变形属于小变形B 材料服从胡克定律C 挠曲线在xoy平面内D 同时满足A、B、C4. 等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D)处。
A 挠度最大B 转角最大C 剪力最大D 弯矩最大5. 两简支梁,一根为刚,一根为铜,已知它们的抗弯刚度相同。
跨中作用有相同的力F,二者的(B)不同。
A支反力 B 最大正应力 C 最大挠度D最大转角6. 某悬臂梁其刚度为EI,跨度为l,自由端作用有力F。
为减小最大挠度,则下列方案中最佳方案是(B)A 梁长改为l /2,惯性矩改为I/8B 梁长改为3 l /4,惯性矩改为I/2C 梁长改为5 l /4,惯性矩改为3I/2D 梁长改为3 l /2,惯性矩改为I/47. 已知等截面直梁在某一段上的挠曲线方程为:y(x)=Ax²(4lx - 6l²-x²),则该段梁上(B)A 无分布载荷作用B 有均布载荷作用C 分布载荷是x 的一次函数D 分布载荷是x 的二次函数 8. 图1所示结构的变形谐条件为:(D ) A f A=f BB f A+△l=fBCfA +fB =△l DfA-fB=△l三、填空题1. 用积分法求简支梁的挠曲线方程时, 若积分需分成两段,则会出现 4 个积分常数,这些积分常数需要用梁的 边界 条件和 光滑连续 条件来确定。
材料力学第6章弯曲变形

M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程
(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2
3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl
弯曲变形——精选推荐
第六章弯曲变形判断弯曲变形1、“平面弯曲梁的挠曲线必定是一条与外力作用面重合或平行的平面曲线”2、“由于挠曲线的曲率与弯矩成正比,因此横截面的挠度与转角也与横截面的弯矩成正比”3、“只要满足线弹性条件,就可以应用挠曲线的近似微分方程”4、“两梁的抗弯刚度相同、弯矩方程相同,则两梁的挠曲线形状相同”5、“梁的挠曲线方程随弯矩方程的分段而分段,只要梁不具有中间铰,梁的挠曲线仍然是一条光滑、连续的曲线。
”6、“最大挠度处的截面转角一定为0”7、“最大弯矩处的挠度也一定是最大”8、“梁的最大挠度不一定是发生在梁的最大弯矩处。
”9、“只要材料服从虎克定律,则构件弯曲时其弯矩、转角、挠度都可以用叠加方法来求”10、“两根几何尺寸、支撑条件完全相同的静定梁,只要所受的载荷相同,则两梁所对应的截面的挠度和转角相同,而与梁的材料是否相同无关”11、“一铸铁简支梁在均布载荷的作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力和变形均相同”选择弯曲变形1、圆截面的悬臂梁在自由端受集中力的作用,当梁的直径减少一半而其他条件不变时,最大正应力是原来的倍;最大挠度是原来的倍。
若梁的长度增大一倍,其他条件不变,最大弯曲正应力是原来的倍,最大挠度是原来的倍。
A:2; B:16 C:8 D:4;2、y’’=M(x)/EI在条件下成立。
A:小变形; B:材料服从虎克定律;C:挠曲线在xoy面内; D:同时满足A、B、C;3、等直梁在弯曲变形时,挠曲线最大曲率发生在处。
A:挠度最大; B:转角最大 C:剪力最大; D:弯矩最大;4、在简支梁中,对于减少弯曲变形效果最明显。
A:减小集中力P; B:减小梁的跨度;C:采用优质钢; D:提高截面的惯性矩5、板条弯成1/4圆,设梁始终处于线弹性范围内:①σ=My/I Z,②y’’=M(x)/EI Z哪一个会得到正确的计算结果?A:①正确、②正确;B:①正确、②错误; C:①错误、②正确; D:①错误、②错误;6、应用叠加原理求横截面的挠度、转角时,需要满足的条件是。
工程力学c材料力学部分第六章 弯曲变形
A l/2
C l
B
解:此梁上的荷载可视为 正对称和反对称荷载的叠加, 正对称和反对称荷载的叠加, 如图所示。 如图所示。 正对称荷载作用下:
q/2
5(q / 2)l 4 5ql 4 wC1 = − =− 384 EI 768 EI
B
(q / 2)l 3 ql 3 θ A1 = −θ B1 = =− 24 EI 48EI
w P A a D
a
A C a H a B
EI
Pl 3 wB = − 3 EI
P
B
l
Pl 2 θB = − 2 EI
P A a 2a 2a C B
P/2
P/2 B
P/2
=
A
+
P/2
力分解为关于中截面的对称和反对称力( )之和的形式。 解:将P力分解为关于中截面的对称和反对称力(P/2)之和的形式。 力分解为关于中截面的对称和反对称力 显然,在反对称力( / )作用下, 显然,在反对称力(P/2)作用下,wc=0 对称力作用的简支梁, 对称力作用的简支梁,可以等效为悬臂梁受到两个力的作用 的问题。 的问题。
wA=0 θA=0
B
②、变形连续条件 变形连续条件: 连续条件
P A C θC左 wC左= wC右, =θ C右 B
的悬臂梁, 例1:图示一弯曲刚度为 的悬臂梁,在自由端受一集中力 作 :图示一弯曲刚度为EI的悬臂梁 在自由端受一集中力F 试求梁的挠曲线方程,并求最大挠度及最大转角。 用,试求梁的挠曲线方程,并求最大挠度及最大转角。 解:① 建立坐标系并写出弯矩方程 ①
在小变形情况下, 曲线弯曲平缓, 在小变形情况下,挠曲线弯曲平缓,
∴ w′ ≪ 1
2
材料力学 第6章 梁的弯曲变形
(c)
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
在本章所取的坐标系中,
上凸的曲线w″为正值,下凸的为负值。
如图6-5所示。 按弯矩正负号的规定,正弯矩对应着负的w″, 负弯矩对应着正的w″,故(c)式
w
M (x)
(1
w2 )3 2
EI z
在小变形情况下, w dw 是一个很小的量, dx
则 w'2为高阶微量,可略去不计,故
挠曲线的近似微分方程
M x
w EI z
EIw''= −M (x)
(6-1b)
图6-5
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
6.4 积分法计算梁的变形
对于等直梁,可以直接积分,计算梁的挠度和转角。 将式(6-1b)积分一次,得到
EIw′ = EIθ = −∫ M (x) dx + C
maxFl 2 2EI来自A xyF
θmax B
x
wmax
l
图6-7 例题 6-1 图
wm a x
Fl 3 3EI
θ max为正值,表明梁变形后,截面B顺时针转动;
wmax为正值,表明点B位移向下。
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
例题6-2 一简支梁受均布荷载q作用,如图6-8所示。试求梁的转角方程和 挠度方程, 并确定最大挠度和A、B截面的转角。设梁的弯曲刚度为EI。
A x
y
F
θmax B
x
wmax
l
进行两次积分,得到
EIw EI Flx Flx2 C
(a)
2
EIw Flx2 Fx3 Cx D
材料力学简明教程(景荣春)课后答案第六章
( ) wA
= − q0l 4 30EI
↓
,θB
= q0l3 24EI
(顺)
讨论:请读者按右手坐标系求 wA ,θB 并与以上解答比较。
(c)
(c1)
解 图(c1)
( ) ∑ M B = 0 , FC
= − Me l
↓
CA 段
M
=
−
Me l
x1
⎜⎛ 0 ⎝
≤
x1
<
l 2
⎟⎞ ⎠
AB 段
M
=
−
Me l
l 2
≤
x2
≤
l ⎟⎞ ⎠
Ew1′′
=
3 8
qlx1
−
1 2
qx12
EIw1′
=
3 16
qlx12
−
1 6
qx13
+
C1
EIw1
=
1 16
qlx13
−
1 24
qx14
+
C1 x1
+
D1
EIw′2′
=
3 8
qlx2
−
ql 2
⎜⎛ ⎝
x2
−
l ⎟⎞ 4⎠
EIw′2
=
3 16
qlx22
−
ql 4
⎜⎛ ⎝
x2
24
EIw′(l) = 0 ,− q l 3 + 3Al 2 + 2Bl = 0
6
解式(a),(b)得
A = ql , B = − ql 2
12
24
即挠曲线方程为
EIw = − q x4 + ql x3 − ql 2 x2 24 12 24
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
~
~
A
A
A Adw
M EI dx C
A A
~
x C
|
x C
工学院
§6.3 用积分法求弯曲变形
刚度条件
限制最大挠度和最大转角(或特定截面的挠度和 转角)不超过某一规定数值,即满足刚度条件:
w max w max
式中 w 和 为规定的许可挠度和转角。
C 0 D 0
工学院
§6.3 用积分法求弯曲变形—实例1
转角方程和挠曲线方程分别为
F 2 EIw x Flx 2
F 3 Fl 2 EIw x x 6 2
以截面B处的坐标x=l代入以上两式,得到截面B 的转角和挠度分别为:
Fl Fl (顺时针) wB B wB 2EI 3EI
(6.2)
挠度与转角是度量弯曲变形的两个基本量,同时规定: 在图6.4中,向上的挠度和反时针的转角为正(+)。
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
(q) (r)
工学院
§6.3 用积分法求弯曲变形—实例3
5). 最大转角 在(o)式中令x1=0, 在(q)式中令x2=l, 得梁 在A, B两端的截面转角分别为:
A
Fab l b 6 EIl
B
Fab l a 6 EIl
当a>b时, B 为最大转角。
得: C
q
B
ql , D0 24
3
A
梁的转角方程和挠曲线 方程分别为:
x
y
θA
θB
x
l
q (6lx 2 4 x3 l 3 ) 24 EI
qx 2 3 3 w (2lx x l ) 24 EI
工学院
§6.3 用积分法求弯曲变形—实例2
最大转角和最大挠度分别为:
q
max
利用弯曲变形
N
叠板弹簧应有较大的变形, 才能达到缓冲减振的作用。
工学院
§6.2 挠曲线的微分方程
挠曲线:在对称弯曲情况
下,变形后梁的轴线将成为 xy平面(梁的纵向对称面)内 的一条曲线,称为挠曲线。
挠度:在挠曲线上横坐标为x
的任意点的纵坐标,用w表示, 它代表x处的横截面的形心沿y 方向的位移,称为挠度。
工学院
§6.3 用积分法求弯曲变形—实例3
1 Fbl Fbl wmax 0.0642 EI 9 3 EI 2 Fb Fbl 2 w |l 3l 0.0625 48 EI EI 2
2 2
比较上述结果可知,如用跨度中点的挠度来代 替最大挠度,其最大误差仅为2.65%。
因此,在简支梁中,不论受什么荷载作用,只 要挠曲线上无拐点,最大挠度值都可用跨度中点的 挠度来代替,其精度能够满足工程计算的要求。 --参见表6.1 No:9
D 将 C1 C2 , D1 0 代入上式得: 1 D2 0
将 D2 0 代入式(m)得:
Fb 2 2 C1 C 2 (l b ) 6l
工学院
§6.3 用积分法求弯曲变形—实例3
4). 将求得的四个常数代回(i)、(j)、(k)、(l)等四 式,得转角方程和挠曲线方程:
EIw1 M 1
Fb x1 l
2 x1
" EIw2 M 2
Fb x2 F ( x2 a ) l
2
EIw1
Fb C1 l 2
x2 a C Fb F (i) EIw2 2 l 2 2
2 x2
3
(k)
3 3 Fb x1 x2 a C x D (l) Fb x2 EIw1 C1 x1 D1 (j) EIw2 F 2 2 2 l 6 l 6 6
工学院
§6.3 用积分法求弯曲变形—实例3 3). 确定四个积分常数
上述(i)、(j)、(k)、(l)四式中包含四个积分常数,必须 有四个条件求解,分别叙述如下:
边界条件
D 当 x1 0, w1 0代入式j得: 1 0
当 x2 l , w2 0代入式l得:
Fbl 2 F ( l a )3 C 2l D2 0 6 6
挠曲线的方程式可写成:
w f x
工学院
§6.2 挠曲线的微分方程
截面转角:弯曲变形中,梁
的横截面相对原来位置转过 的角度θ,称为截面转角。
它等于y轴与挠曲线法线的夹 角(平面假设)。也等于x轴与 挠曲线切线的夹角,即挠曲 线的倾角。
dw tan dx
dw arctan dx
(m)
工学院
§6.3 用积分法求弯曲变形—实例3
连续性条件
w 当 x1 x2 a 时, 1 w2 代入(i)、(k) ,并令两式相等,得:
C1 C2
w 当 x1 x2 a 时, 1 w2 代入(j)、(l),并令两式相等,得:
C1a D1 C2a D2
其中,C,D为积分常数。
如何确定C、D?
工学院
§6.3 用积分法求弯曲变形
积分常数C、D的确定
1). 边界条件
A
~
A
~
dx
wA 0 A 0
wA 0
M w dx dx Cx D EI
2). 连续性条件
F
A
C
B
w|
x C
w|
x C
, |
l
2
b
2
3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为:
wmax Fb 9 3 EIl 1
F
l
2
b
2
3
梁跨度中点的挠度为:
Fb 2 2 w| l (3l 4b ) x 48 EI 2
现在来讨论跨度中点挠度和最大挠度之间的误差。显然,当 F作用点移至跨度中点时,最大挠度就是跨度中点的挠度,其误 差为零。F作用点越靠近支座B,两者的误差就越大。现考虑误 差最大时,即F作用点无限接近支座B,上面式中b→0。b2为高阶 小量,可忽略不计,两式为:
工学院
§6.3 用积分法求弯曲变形—实例3 8). 思考—积分法有何优缺点?
优点
可以求得转角和挠度的普遍方程!
缺点
如果梁上载荷复杂,写出弯矩方程时分段 愈多,积分常数也愈多,特别是当只需确定某 些特定截面的转角和挠度,而不需求出转角和 挠度的普遍方程时,积分法显得过于累赘!
工学院
§6.4 用叠加法求弯曲变形
工学院
§6.3 用积分法求弯曲变形—实例3
6). 最大挠度
最大挠度发生在 0 处,先看AC段的转角方程,将 x1 0,
Fbl b2 Fab x1 a分别代入式(o)可得:A (1 2 ), C ( a b) 和 6 EI 3 EIl l 由于 A 0,C 0, A截面和C截面之间转角由负变正,所以AC
第六章 弯曲变形
§6.1 工程中的弯曲变形问题
§6.2 挠曲线的微分方程
§6.3 用积分法求弯曲变形
§6.4 用叠加法求弯曲变形
§6.5 简单超静定梁
§6.6 提高弯曲刚度的一些措施
§6.1 工程中的弯曲变形问题
限制弯曲变形
工程中某些受弯杆件除需满 足强度要求外,还要满足刚 度要求,变形不能过大。
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
—见表6.1(No:2)
2
3
(向下)
工学院
§6.3 用积分法求弯曲变形—实例2
实例2:已知梁的抗弯刚度为EI。试求图示简支梁在 均布载荷q作用下的转角方程、挠曲线方程,并确定 θmax和wmax。
q
A
x
y l
B x
工学院
§6.3 用积分法求弯曲变形—实例2
解:
ql q 2 M ( x) x x 2 2
工学院
§6.3 用积分法求弯曲变形—实例1 例 6.1: 图示为B端作用集中力F的悬臂梁,
求其挠曲线方程。
y x
A
F
max
x
B w max
l
工学院
§6.3 用积分法求弯曲变形—实例1
y x
A
F
max
x
B w max
Hale Waihona Puke l解:建立如图所示的坐标系
x处的弯矩方程为: M ( x) F (l x)
段内必有一个截面的转角为零。故梁的最大挠度必在AC段内。 以 x1 x0 代入式(o)并令其为零:
Fb 2 (3 x0 l 2 b 2 ) 0,解得: x0 6 EIl
将 x0
l 2 b2 3
1 Fb l 2 b2 代入式(p)可得: wmax 3 9 3 EIl
AC段 (0 x1 a )