2018年初中数学教师基本功大赛试题

合集下载

2018年教师统一功底测初中数学试卷(含答案)

2018年教师统一功底测初中数学试卷(含答案)

教师统一功底测初中数学试卷(考试时间:60分钟满分:100分)一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>02.如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2C.3D.43.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m4.(4.00分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°5.(4.00分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.6.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:==13,==15:s 甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁7.(3.00分)一次函数y=ax+b和反比例函数y=在同一直角坐标系中的大致图象是()A.B.C.D.8.(3.00分)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是()A.504m2B.m2C.m2D.1009m29.(3.00分)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.610.(3.00分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分,请把答案填在答題卷相应题号的横线上)11.若二元一次方程组的解为,则a﹣b=.12.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】13.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为.14.如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.15.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC 的面积是.16.将从1开始的连续自然数按以下规律排列:…则2018在第行.三、解答题:本大题共9小题,满分72分.解答时,要写出必要的文字说明、证明过程或演算步骤17.(7分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线P A,以点A为圆心,AP长为半径画弧,交P A的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.18.(7.00分)计算(m+2﹣)÷.19.(8.00分)如图,在数轴上,点A、B分别表示数1、﹣2x+3.(1)求x的取值范围;(2)数轴上表示数﹣x+2的点应落在B.A.点A的左边B.线段AB上C.点B的右边20.(8.00分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x 轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.21.(8.00分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.22.(8分)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)连接BF,如果=.求证:EF=EP.23.(8.00分)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.75.)24.(9分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.25.(9分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k 的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.初中数学功底测答题纸姓名成绩1-10:BABAA DAACB11-16:746.2 1 9 12 45三、解答题:本大题共9小题,满分72分.解答时,要写出必要的文字说明、证明过程或演算步骤17.(1)解:直线PQ 如图所示;(2)证明:∵AB =AP ,CB =CQ ,∴PQ ∥l (三角形中位线定理).故答案为:AP ,CQ ,三角形中位线定理;18.解:原式=(﹣)÷ =•=2(m +3)=2m +6.19.解:(1)由数轴上的点表示的数右边的总比左边的大,得﹣2x +3>1,解得x <1;(2)由x <1,得﹣x >﹣1.﹣x+2>﹣1+2,解得﹣x+2>1.数轴上表示数﹣x+2的点在A点的右边;作差,得﹣2x+3﹣(﹣x+2)=﹣x+1,由x<1,得﹣x>﹣1,﹣x+1>0,﹣2x+3﹣(﹣x+2)>0,∴﹣2x+3>﹣x+2,数轴上表示数﹣x+2的点在B点的左边.故选:B.20.解:(1)由已知,OA=6,OB=12,OD=4 ∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE=S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<021.解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.22.证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中,∴△ABE≌△DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;(2)如图,∵=,而AF=BE,∴=,∴=,∴Rt△BEF∽Rt△DF A,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.23.解:在Rt△CED中,∠CED=58°,∵tan58°=,∴DE=,在Rt△CFD中,∠CFD=22°,∵tan22°=,∴DF=,∴EF=DF﹣DE=,同理:EF=BE﹣BF=,∴,解得:AB≈5.9(米),答:建筑物AB的高度约为5.9米.24.证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴GF=GC;(2)BH=AE,理由是:证法一:如图2,在线段AD上截取AM,使AM=AE,∵AD=AB,∴DM=BE,由(1)知:∠1=∠2,∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH,∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴EM=AE,∴BH=AE;证法二:如图3,过点H作HN⊥AB于N,∴∠ENH=90°,由方法一可知:DE=EH,∠1=∠NEH,在△DAE和△ENH中,∵,∴△DAE≌△ENH,∴AE=HN,AD=EN,∵AD=AB,∴AB=EN=AE+BE=BE+BN,∴AE=BN=HN,∴△BNH是等腰直角三角形,∴BH=HN=AE.25.解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2;(2)y=kx(k≠0)经过原点,在﹣1≤x≤1范围内,函数图象为线段,当y=kx(﹣1≤x≤1,k≠0)经过(1,﹣1)时,k=﹣1,此时d(G,△ABC)=1;当y=kx(﹣1≤x≤1,k≠0)经过(﹣1,﹣1)时,k=1,此时d(G,△ABC)=1;∴﹣1≤k≤1,∵k≠0,∴﹣1≤k≤1且k≠0;(3)⊙T与△ABC的位置关系分三种情况:①当⊙T在△ABC的左侧时,由d(⊙T,△ABC)=1知此时t=﹣4;②当⊙T在△ABC内部时,当点T与原点重合时,d(⊙T,△ABC)=1,知此时t=0;当点T位于T3位置时,由d(⊙T,△ABC)=1知T3M=2,∵AB=BC=8、∠ABC=90°,∴∠C=∠T3DM=45°,则T3D===2,∴t=4﹣2,故此时0≤t≤4﹣2;③当⊙T在△ABC右边时,由d(⊙T,△ABC)=1知T4N=2,∵∠T4DC=∠C=45°,∴T4D===2,∴t=4+2;综上,t=﹣4或0≤t≤4﹣2或t=4+2.。

2018年广东省中山市初中数学教师解题比赛试卷(PDF版,含解析)

2018年广东省中山市初中数学教师解题比赛试卷(PDF版,含解析)

2018年广东省中山市初中数学解题竞赛试卷一、选择题(本大题共8小题,每小题3分,满分24分.请将唯一正确的答案代号填在题后括号内)1.(3分)下列各数中,最大的有理数是()A.0B.﹣1C.﹣3D.2.(3分)把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3B.y=﹣(x+1)2﹣3C.y=﹣(x﹣1)2+3D.y=﹣(x+1)2+33.(3分)下列命题正确的是()A.对角线相等且互相平分的四边形是菱形B.对角线相等且互相垂直的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.对角线相等的四边形是等腰梯形4.(3分)一个袋子里装有2000个红球,1000个黑球,10个黄球,这些球仅颜色不同,要保证摸出的球中有1000个颜色相同,至少应摸出多少个球()A.1010个B.2000个C.2008个D.2009个5.(3分)如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是()A.B.4.75C.5D.4.86.(3分)满足方程|x﹣1|﹣2|x﹣2|+3|x﹣3|=4的有理数x有多少个()A.1B.2C.3D.无数7.(3分)在反比例函数y=的图象中,阴影部分的面积不等于4的是()A.B.C.D.8.(3分)二次函数y=ax2+bx+c的图象如图所示.下列结论正确的是()A.3|a|+|c|>2|b|B.3|a|+|c|=2|b|C.3|a|+|c|<2|b|D.3|a|+|c|≤2|b|二、填空题(本大题共8小题,每小题4分,满分32分.请将最简结果直接填在题后横线上).9.(4分)函数中,自变量x的取值范围是.10.(4分)已知,则代数式的值为.11.(4分)甲、乙、丙三人同时玩“石头、剪刀、布”的游戏,游戏规则是:石头胜剪刀,剪刀胜布,布胜石头.则甲获胜(并列不计)的概率是.12.(4分)若实数a,b满足a+b2=1,则2a2+7b2的最小值是.13.(4分)如图,△ABC内接于⊙O,点P是弧AC上任意一点(不与A、C重合),∠ABC=55°,则∠POC的取值范围是.14.(4分)若2x2﹣6y2+xy+kx+6能分解为两个一次因式的积,则整数k的值是.15.(4分)关于x的方程(a≠0)的解为.16.(4分)如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.三、解答题(本大题共6小题,满分64分,解答应写出必要文字说明、演算步骤和证明过程)17.(10分)已知正实数x、y、z、w满足2007x2=2008y2=2009z2=2010w2,且,求之值.18.(10分)设正方形ABCD的中心为O,在以五个点A、B、C、D、O为顶点所构成的所有三角形中任意取出两个,求它们的面积恰好相等的概率.19.(10分)已知a、b、c、d为不同的实数,且a、c是方程x2+ax﹣b=0的根,b、d是方程x2+cx+d=0根.求a、b、c、d的值.20.(10分)已知函数y=k2x2+k(2x﹣3x2)+2x2﹣2x+1的图象不经过第四象限,求常数k的取值范围.21.(12分)如图,在矩形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,点P在矩形ABCD内,若AB=4,BC=6,AE=CG=3,BF=DH=4,四边形AEPH的面积为5,求四边形PFCG的面积.22.(12分)如图,△ABC的外心O关于三边的对称点分别为A′、B′、C′.求证:(1)AA′、BB′、CC′交于一点P;(2)设△ABC三边中点分别为A1、B1、C1,则P为△A1B1C1的外心.参考答案一、选择题(本大题共8小题,每小题3分,满分24分.请将唯一正确的答案代号填在题后括号内)1.解:∵负数都小于0,正数大于一切负数,∴排除B和C;∵是无理数,故四个数0,﹣1,﹣3,有理数最大的是0.故选:A.2.解:当y=﹣x2向左平移1个单位时,顶点由原来的(0,0)变为(﹣1,0),当向上平移3个单位时,顶点变为(﹣1,3),则平移后抛物线的解析式为y=﹣(x+1)2+3.故选:D.3.解:A、错误,例如等腰梯形;B、错误,例如对角线互相垂的梯形;C、正确;D、错误,例如矩形.故选:C.4.解:最坏情况考虑就行了,摸出10个黄球,摸出另二色中一色的999个球,最后再摸出最后一色的1000个球,这时可以保证至少有1000个颜色相同,即最少要摸:10+999+1000=2009个球,故选:D.5.解:如图,∵∠ACB=90°,∴EF是直径,设EF的中点为O,圆O与AB的切点为D,连接OD,CO,CD,则OD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴EF为直径,OC+OD=EF,∴CO+OD>CD=4.8,∵当点O在直角三角形ABC的斜边AB的高上CD时,EF=CD有最小值∴由三角形面积公式得:CD=BC•AC÷AB=4.8.故选:D.6.解:当x﹣1≥0,x﹣2≥0,x﹣3<0时,x﹣1﹣2(x﹣2)+3(3﹣x)=4,x=2,当x﹣1≥0,x﹣2≥0,x﹣3>0时,x﹣1﹣2(x﹣2)+3(x﹣3)=4,x=5,当x﹣1≥0,x﹣2<0,x﹣3<0时,x﹣1﹣2(2﹣x)+3(3﹣x)=4原方程有无数解,当x﹣1≤0,x﹣2<0,x﹣3<0时,1﹣x﹣2(2﹣x)+3(3﹣x)=4,x=1,∴满足方程|x﹣1|﹣2|x﹣2|+3|x﹣3|=4的有理数x有无数个.故选:D.7.解:A、图形面积为|k|=4;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(|k|)=4.故选:B.8.解:由函数图象可知a<0,c<0,由对称轴x=﹣>0,可知b>0,∴3|a|+|c|﹣2|b|=﹣(3a+2b+c),∵当x=1时,y=a+b+c>0,①又对称轴x=﹣>1,解得2a+b>0,②①+②得3a+2b+c>0,∴﹣(3a+2b+c)<0,∴3|a|+|c|<2|b|.故选:C.二、填空题(本大题共8小题,每小题4分,满分32分.请将最简结果直接填在题后横线上).9.解:根据题意得,3﹣x≥0且x﹣1≠0,解得x≤3且x≠1.故答案为:x≤3且x≠1.10.解:解法一:∵﹣=﹣=3,即x﹣y=﹣3xy,则原式===4.解法二:将原式的分子和分母同时除以xy,===4故答案为:4.11.解:甲要获胜,另外两人的出法就确定了,比如甲出石头,乙丙必须都出剪刀.而乙丙的出法共有3×3=9种,对于任意的甲的出法,只有其中一种满足条件.所以甲获胜的概率就是:.故答案为:.12.解:∵a+b2=1,∴a=1﹣b2∴2a2+7b2=2(1﹣b2)2+7b2=2b4+3b2+2=2(b2+)2+2﹣=2(b2+)2+,∵b2≥0,∴2(b2+)2+>0,∴当b2=0,即b=0时,2a2+7b2的值最小.∴最小值是2.方法二:∵a+b2=1,∴b2=1﹣a,∴2a2+7b2=2a2+7(1﹣a)=2a2﹣7a+7=2(a﹣)2+,∵b2≥0,∴1﹣a≥0,∴a≤1,∴当a=1,即b=0时,2a2+7b2的值最小.∴最小值是2.13.解:连接AO,则∠AOC=2∠B=110°,∴∠POC的取值范围是:0°<∠POC<110°.14.解:设2x2﹣6y2+xy+kx+6能分解成:(x+ay+c)(2x+by+d),即2x2+aby2+(2a+b)xy+(2c+d)x+(ad+bc)y+cd,∴cd=6,∵6=1×6=2×3=(﹣2)(﹣3)=(﹣1)(﹣6),∴①c=1,d=6时,ad+bc=6a+b=0,与2a+b=1联立求解得,,或c=6,d=1时,ad+bc=a+6b=0与2a+b=1联立求解得,,②c=2,d=3时,ad+bc=3a+2b=0,与2a+b=1联立求解得,,或c=3,d=2时,ad+bc=2a+3b=0,与2a+b=1联立求解得,,③c=﹣2,d=﹣3时,ad+bc=﹣3a﹣2b=0,与2a+b=1联立求解得,,或c=﹣3,d=﹣2,ad+bc=﹣2a﹣3b=0,与2a+b=1联立求解得,,④c=﹣1,d=﹣6时,ad+bc=﹣6a﹣b=0,与2a+b=1联立求解得,,或c=﹣6,d=﹣1时,ad+bc=﹣a﹣6b=0,与2a+b=1联立求解得,,∴c=2,d=3时,c=﹣2,d=﹣3时,符合,∴k=2c+d=2×2+3=7,k=2c+d=2×(﹣2)+(﹣3)=﹣7,∴整数k的值是7,﹣7.故答案为:7,﹣7.15.解:方程的两边同乘(x﹣1),得ax2﹣2a(x﹣1)=(a2+1)(x﹣1),解得x1=a+1,x 2=∴原方程的解为:x1=a+1,x 2=.故答案为:x1=a+1,x 2=.16.解:由题意,可知点P1、P2、P3、P4坐标分别为:(1,2),(2,1),(3,),(4,).解法一:∵S1=1×(2﹣1)=1,S2=1×(1﹣)=,S3=1×(﹣)=,∴S1+S2+S3=1++=.解法二:∵图中所构成的阴影部分的总面积正好是从点P1向x轴、y轴引垂线构成的长方形面积减去最下方的长方形的面积,∴1×2﹣×1=.故答案为:.三、解答题(本大题共6小题,满分64分,解答应写出必要文字说明、演算步骤和证明过程)17.解:设2007x2=2008y2=2009z2=2010z2=A,∴2007x=,2008y=,2009z=,2010w=,=,=,=,=,+++=+++=1,=+++∴2007x+2008y+2009z+2010w=+++,=A(+++),∵,∴2007x+2008y+2009z+2010w=A.∴==+++.18.解:如图所示:在正方形ABCD中,O为AC和BD的交点,则所有的三角形分别为:△AOB、△AOD、△BOC、△COD、△ABC、△ACD、△BCD、△ABD,根据正方形的性质,我们知道:△AOB、△AOD、△BOC、△COD的面积相等,△ABC、△ACD、△BCD、△ABD的面积相等,所以从所有三角形中任意取出两个,它们的面积相等的概率为==.19.解:∵a、c是方程x2+ax﹣b=0的根,b、d是方程x2+cx+d=0根,∴a+c=﹣a①,ac=﹣b②,b+d=﹣c③,bd=d④,由④得b=1,(若d=0,由③得b=﹣c,代入②得ac=c可得c=0,a=0这与a、b、c、d为不同的实数不符或a=1代入①得c=﹣2,a、c代入②得b=2,b、c代入③得d=0,即a=1,b=2,c=﹣2,d=0)则ac=﹣1,由①得c=﹣2a,∴﹣2a2=﹣1,解得a=±,∴当a=时,c=﹣,d=﹣c﹣b=﹣1;当a=﹣时,c=,d=﹣c﹣b=﹣﹣1;所以a=,b=1,c=﹣,d=﹣1或a=﹣,b=1,c=,d=﹣﹣1.20.解:y=k2x2+k(2x﹣3x2)+2x2﹣2x+1,=k2x2+2kx﹣3kx2+2x2﹣2x+1,=(k2﹣3k+2)x2+(2k﹣2)x+1,当k2﹣3k+2=0,∴(k﹣1)(k﹣2)=0,∴k=1或k=2,当k=1时,y=1,是平行于x轴的直线,不经过第四象限,当k=2时,y=2x+1,图象经过第一、二、三象限,不经过第四象限,当k2﹣3k+2≠0,∴函数是二次函数,图象经过一、二象限,或一、二、三象限,∴图象对称轴在x轴负半轴,开口向上,a,b同号,∴k2﹣3k+2>0,(k﹣1)(k﹣2)>0,∴k﹣1>0,k﹣2>0或k﹣1<0,k﹣2<0,解得k>2或k<1,∴常数k的取值范围是:函数是二次函数时:k>2或k<1,函数是一次函数时:k=1或k=2.21.解:解法一、连接AP,CP,设△AHP在AH边上的高为x,△AEP在AE边上的高为y.则△CFP在CF边上的高为4﹣x,△CGP在CG边上的高为6﹣y.∵AH=CF=2,AE=CG=3,∴S四边形AEPH=S△AHP+S△AEP,=AH×x+AE×y,=×2x+×3y=5,即2x+3y=10,S四边形PFC G=S△CGP+S△C FP=CF×(4﹣x)×+CG×(6﹣y)×,=2(4﹣x)×+3(6﹣y)×,=(26﹣2x﹣3y)×,=(26﹣10)×,=8.解法二、连接HE、EF、FG、GH,证△DHG≌△BFE,推出HG=EF,同理:HE=GF,则四边形EFGH由条件知是平行四边形,面积为4×6﹣×3×2﹣×3×2﹣×4×1﹣×4×1=14,由平行四边形性质知:S△HEP+S△FGP=S平行四边形EFGH=7,∵△AEH的面积为×3×2=3,△CGF的面积为×3×2=3,四边形AEPH的面积为5,∴△HEP的面积是5﹣3=2,△PGF的面积是7﹣2=5,∴四边形PFCG的面积S=S△PGF+S△CGF=5+3=8.答:四边形PFCG的面积是8.22.证明:(1)设圆O半径为R.由△ABC的外心O关于三边的对称点分别为A′、B′、C′,知:BC′=B′C=R,∠C′BA=∠C′AB=∠OAB,∠B′CA=∠B′AC=∠OAC,∴∠C′BA+∠B′CA=∠OAB+∠OAC=∠BAC,∴∠C′BC+∠B′CB=∠BAC+∠ABC+∠BCA=180°,∴BC′∥B′C,∴BB′,CC′互相平分,交于中点,同理CC′,AA′互相平分,交于中点,∴AA′、BB′、CC′交于一点P;(2)∵P为CC′中点,A1为BC中点,∴PA1=B′C=R,同理PB1=R,PC1=R,∴PA1=PB1=PC1,∴P是△A1B1C1的外心.。

教师资格认定考试初级中学数学真题2018年下半年

教师资格认定考试初级中学数学真题2018年下半年

教师资格认定考试初级中学数学真题2018年下半年一、单项选择题1. 与向量a=(2,3,1)垂直的平面是______。

A.x-2y+z=3B.2x+y+3z=3C.2x+3y+z=3D.x-y+z(江南博哥)=3正确答案:C[解析] 在空间直角坐标系中,平面Ax+By+Cz+D=0(A,B,C不同时为零)的一个法向量为n=(A,B,C)。

本题中,向量a=(2,3,1)是平面2x+3y+z=3的一个法向量,故a垂直于平面2x+3y+z=3。

故本题选C。

2. 的值是______。

A.0B.1C.3D.∞正确答案:C[解析] 因为当x→0时,tan3x~3x,所以。

故本题选C。

3. 函数f(x)在[a,b]上黎曼可积的必要条件是f(x)在[a,b]上______。

A.可微B.连续C.不连续点个数有限D.有界正确答案:D[解析] 若函数f(x)在[a,b]上可积,则f(x)在[a,b]上必有界(可积的必要条件)。

故本题选D。

4. 定积分(a>0,b>0)的值是______。

A.πabB.C.D.正确答案:B[解析] (方法一)定积分表示被积函数与x轴所围成的图形的面积,即椭圆在x轴上方部分的面积。

因为椭圆的面积为πab,所以(方法二)令x=asint,则dx=acostdt,由于-a≤x≤a,所以,于是。

故本题选B。

5. 与向量α=(1,0,1),β=(1,1,0)线性相关的向量是______。

A.(3,2,1)B.(1,2,1)C.(1,2,0)D.(3,2,2)正确答案:A[解析] (方法一)一个向量组中,若一个向量可由其余向量线性表出,则这几个向量必线性相关;若任意一个向量都不能被其余向量线性表出,则这几个向量必线性无关。

结合选项可知,只有A项可以由向量α和向量β线性表出,即(3,2,1)=α+2β。

故本题选A。

(方法二)向量组α,β,γ线性相关矩阵A=(αT,βT,γT)的秩小于向量的个数|A|=0。

初中数学教师基本功大赛试题

初中数学教师基本功大赛试题

第二届初中数学教师基本功大赛试题一、选择题(2×10=20分)1.某次考试,班长算出了全班40人数学成绩的平均分M ,如果把M 当成一个同学的成绩与原来的40个分数加在一起,算出这41个分数的平均值为N ,那么M :N 为( ).A .40:41B .41:40C .2D .12.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为( ).A. 2,B.,2 C. 4,2 D. 2,43.某企业产品的成本前两年每年递增20%,引进先进的技术设备之后,后两年产品的成本每年递减20%,那么该企业产品的成本现在的与原来的比较( )A.不增不减 B.约增加8% C.约减少8% D.约减少5% 4.函数y=x|x|的图象大致是( )5.已知m >2,点(m -1,y 1),(m ,y 2),(m +1,y 3)都在二次函数y =x 2-2x 的图像上,则( ).A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 1<y 3<y 2D. y 2<y 1<y 36.数学课程的总目标中有:培养学生具有适应未来社会生活和继续学习所必需的数学基本知识和技能以及基本的( )A .应用能力B .生活能力C .学习方法D .数学思想方法7.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( ). A .0.5小时 B .1小时 C .1.5小时 D .2小时8.一个盒子中装有标号为1,2,3,4,5的5张标签,随机地选取两张标签,标签的选取是无放回的,两张标签上的数字为相邻整数的概率( ).主视图俯视图左视图A.25 B. 35 C. 825 9259.如图,垂直于x 轴的直线EF 经坐标原点O 向右移动. 若E 是EF 与x 轴的交点,设OE =x (0x a ≤≤),EF 在移动过程中扫过平行四边形OABC 的面积为y (图中阴影部分),则函数()y f x =的图象大致是( ).10.水平地面上有一个球,现用如下方法测量球的大小,用锐角45°的等腰直角三角板的斜边紧靠球面,P 为切点,一条直角边AC 紧靠地面,并使三角板与地面垂直,如果测得P A =5cm ,则球的半径等于( ) A .5cm B. C.1)cm D .6cm 二、填空题(2×10=20分)11.一幅美丽的图象,在某顶点处有四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形、正四边形、正六边形,那么另外一个为____________.12.若函数y =x 2+bx +c 的图象的顶点在第四象限,则函数y=2x+b 的图象不经过第_______象限.13.A 、B 是x 轴上两点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程为 x -y +1=0,则直线PB 的方程为 .14.如图,水平地面上有一面积为30π ㎝2的灰色扇形OAB ,其中OA 的长度为6㎝,且与地面垂直.若在没有滑动的情况下,将图(1)的扇形向右滚动至示,则O 点移动了 ㎝.15.若不等式组112x x a -≤≤⎧⎨<⎩有解,那么a 必须满足 .16.把直线l :y=3x+2平移后得直线l 1:y=3x-5.有下列说法:①是把l 向下平移7个单位;②是把l 向右平移37个单位;③是把l 向上平移5个单位;④是把l 向左平移5个单位.其中正确序号有____________.(把你认为正确的全写上)第9题图BC17.规定记号“⊗”表示一种运算,即2(,)a b ab a b a b ⊗=++为正实数,若13k ⊗=,则k 的值为 .18.用一根长为12m 的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的长与宽之比应为 .19.将一张坐标纸折叠一次,使得点M (0,4)与点N (1,3)重合,则与点P (2004,2010)重合的点的坐标是 .20.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数2转换成十进制形式是___________. 三、解答题(60分)21.已知方程0632=--x x 的根分别为a,b(a>b),方程0232=--x x 的根分别为c,d(c>d ),求(a-c)(b-d)(b-c)(a-d)的值.22.△ABC 中,BC=a ,AC=b .(1)以AB 为边向△ABC 外作等边△ABD ,当∠ACB 为多少度时,C 、D 两点之间的距离最大,最大值是多少?(2)以AB 为边向△ABC 外作正方形ABDE ,当∠ACB 为多少度时,点C 到正方形ABDE 的中心O 的距离最大,最大值是多少?BB23.小华与小红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张,规则如下:当两张硬纸片上的图形可拼成电灯或小人时,小华得1分,当两张硬纸片上的图形可拼出房子或小山时,小红得1分(如图2),问题:(1)游戏规则对双方公平吗?请说明理由;(2)若你认为不公平,如何修改游戏规则才能使游戏对双方公平?24.如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;(2)在⊙O上是否存在一点Q,使得以Q、O、A、P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.25.案例分析Array案例1:教师讲完一元一次方程解题方法后,讲解方程x+1/3=(1/3)x+1时,学生甲:老师我已看出x=1,教师加以表扬,问能否解出来,学生甲上台演算完.学生乙:老师,我可以只移项不合并,x-1+1/3-(1/3)x=0,(x-1)+1/3(1-x)=0,老师又加以表扬.案例2:课堂上当老师一宣布小组讨论、交流,前排的学生唰地回头,满教室都是嗡嗡的声音,四人小组里,每个人都在张嘴,谁也听不清谁在说什么,一分钟后,老师一喊“停”,学生立即安静下来.26.问题现象(1).来自中考信息的反馈2007年中考,我们从试卷中随机抽取了100份进行分析:最低分3分,最高分119分,平均分79.01分,合格率为74%,优秀率为26.3%.学生的得分率与人数分布表如下:由上表可知,学生的高分者居多,低分者不少,中间层面的学生数少,平均成绩不高,可见学生两极分化严重.(2).来自教师的信息反馈在实施新课程中,教师们普遍反映,学生在新的学习方式的学习中,两极分化越来越大,好学生越来越好,后进的学生越来越后进.一份练习,优秀生5分钟可以完成,而后进生15分钟都难以完成.两极分化越来越严重.请你结合自己的教学实际和上面的问题现象,谈一谈造成两极分化的原因是什么?拟采取什么措施缩小两极分化?(注:文档可能无法思考全面,请浏览后下载,供参考。

初中数学青年教师教学基本功比赛试题

初中数学青年教师教学基本功比赛试题

初中数学青年教师教学基本功比赛试题基础知识测试题(南京下关)一、填空题(共6小题,每空0.5分,计10分)1.数学是研究________________________的科学,这一观点是由____________首先提出的.2.通过义务教育阶段的学习,学生能获得适应社会生活和进一步发展所必须的数学的____________、____________、____________、____________.3.维果斯基的“最近发展区理论”认为学生的发展有两种水平:一种是学生的___________发展水平;另一种是学生_________________发展水平,两者之间的差异就是最近发展区.4.从数学史上看,有理数的概念传入我国存在着翻译上的错误,其原意是_________数,包括______________小数和______________小数,______________的发现,引发了第一次数学危机.5._________是概率论发展史上首先被人们研究的概率模型,它具有两个特征:一是_________、二是_______________.6.波利亚在其名著《怎样解题》中提出的解数学题的四个步骤是:_________________、_________________、_________________、_________________;他认为“怎样解题表”有两个特点,即普遍性和_____________性.二、简答题(共3小题,每小题5分,计15分)7.大约在公元前6世纪至4世纪之间,古希腊人遇到了令他们百思不得其解的三大尺规作图问题,这就是著名的古代几何学作图三大难题.请你简述这三大难题分别是什么?8.《义务教育数学课程标准》(2011年版)从知识与技能等四个方面对总目标进行了阐述.(1)请写出其他三个方面目标的名称;(2)请简述总目标的这四个方面之间的关系.9.“角平分线上的一点到角的两边距离相等”这一结论在苏教版义务教育数学教材八上的《1.4线段、角的轴对称性》以及九上的《1.2直角三角形全等的判定》中都有所出现.请你结合教学实际,简述课本上八上和九上分别是如何引导学生得到这一结论的,说说它们之间的区别、联系和这样安排的意义.参考答案:1.数量关系和空间形式.2.基础知识、基本技能、基本思想、基本活动经验.3.现有,可能的.4.成比例的数,有限,无限循环,无理数.5.古典概型,(试验结果的)有限性,(每个结果的)等可能性.6.弄清问题、拟定计划、实施计划、回顾反思;常识.7.三等分角问题:将任一个给定的角三等分.立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍.化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等.8.(1)数学思考、问题解决、情感态度;(2)四个方面是一个有机的整体;教学要兼顾这四个目标,这些目标的实现,是学生受到良好数学教育的标志;后三个目标的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现.9.八上《1.4线段、角的轴对称性》中是通过学生动手操作,采取折纸的方法折出角的平分线,再过角平分线上一点折出角的两边垂线段,然后度量这两条线段的长度得出结论的;九上《1.2直角三角形全等的判定》是通过严格的推理论证,采用自己画图、写已知、求证并证明得出结论的.它们的区别是,一个是通过动手操作,一个是通过严格证明.联系是,前面的学习为后面的学习作铺垫,在进行严格的证明之前,学生已经熟练地掌握了这一结论的运用.意义是,符合学生的认知发展规律,使学生的认知从感性上升到理性,既培养了学生的动手能力,又培养了学生的推理论证能力.符带说明:1.专业技能比赛包括基础知识测试和解题能力测试两部分.基础知识测试内容包括数学文化(数学史)常识和数学教育基础知识(教材、课程标准、教育学、心理学、教学论、教学法等).解题能力测试内容包括基础题(教材中的基本定理、公式的证明,教材例题、习题、复习题)与综合题(与中考中档题难度相当).2.第1、2、8题考查对《课标》学习和理解情况(称为课标板块);第4、5、7题结合苏教版初中数学教科书的教学内容对数学史进行简单的考查(称为数学史板块);第3、6、9题是对心理学、数学教育学、教材和教学法等相关知识的考查(称为综合板块).2012年雨花台区小学数学青年教师教学基本功比赛教育教学知识常识比赛试卷(满分100分,时间60分钟)姓名成绩一、填空题:本大题共8个小题,共22个空,每空1分,共22分。

2018年广东省中山市初中数学教师解题比赛试卷(PDF版,含解析)_20200216_160257

2018年广东省中山市初中数学教师解题比赛试卷(PDF版,含解析)_20200216_160257

2018 年广东省中山市初中数学解题竞赛试卷一、选择题(本大题共8 小题,每小题 3 分,满分24 分.请将唯一正确的答案代号填在题后括号内)1.(3 分)下列各数中,最大的有理数是()A.0 B.﹣1 C.﹣3 D.2.(3 分)把抛物线y=﹣x2 向左平移1 个单位,然后向上平移3 个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3 B.y=﹣(x+1)2﹣3C.y=﹣(x﹣1)2+3 D.y=﹣(x+1)2+33.(3 分)下列命题正确的是()A.对角线相等且互相平分的四边形是菱形B.对角线相等且互相垂直的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.对角线相等的四边形是等腰梯形4.(3 分)一个袋子里装有2000 个红球,1000 个黑球,10 个黄球,这些球仅颜色不同,要保证摸出的球中有1000 个颜色相同,至少应摸出多少个球()A.1010 个B.2000 个C.2008 个D.2009 个5.(3 分)如图,在△ABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CB,CA 分别相交于点E,F,则线段EF 长度的最小值是()A.B.4.75 C.5 D.4.86.(3 分)满足方程|x﹣1|﹣2|x﹣2|+3|x﹣3|=4 的有理数x 有多少个()B.2 C.3 D.无数7.(3 分)在反比例函数y=的图象中,阴影部分的面积不等于4 的是()A. B.C.D.8.(3 分)二次函数y=ax2+bx+c 的图象如图所示.下列结论正确的是()A.3|a|+|c|>2|b| B.3|a|+|c|=2|b| C.3|a|+|c|<2|b| D.3|a|+|c|≤2|b|二、填空题(本大题共8 小题,每小题4 分,满分32 分.请将最简结果直接填在题后横线上).9.(4 分)函数中,自变量x 的取值范围是.10.(4 分)已知,则代数式的值为.11.(4 分)甲、乙、丙三人同时玩“石头、剪刀、布”的游戏,游戏规则是:石头胜剪刀,剪刀胜布,布胜石头.则甲获胜(并列不计)的概率是.12.(4 分)若实数a,b 满足a+b2=1,则2a2+7b2 的最小值是.13.(4 分)如图,△ABC 内接于⊙O,点P 是弧AC 上任意一点(不与A、C 重合),∠ABC=55°,则∠P O C 的取值范围是.14.(4 分)若2x2﹣6y2+xy+kx+6 能分解为两个一次因式的积,则整数k 的值是.15.(4 分)关于x 的方程(a≠0)的解为.16.(4 分)如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.三、解答题(本大题共 6 小题,满分64 分,解答应写出必要文字说明、演算步骤和证明过程)17 .(10 分)已知正实数x 、y 、z 、w 满足2007x2 =2008y2 =2009z2 =2010w2 ,且,求之值.18.(10 分)设正方形ABC D的中心为O,在以五个点A、B、C、D、O为顶点所构成的所有三角形中任意取出两个,求它们的面积恰好相等的概率.19.(10 分)已知a、b、c、d 为不同的实数,且a、c 是方程x2+ax﹣b=0 的根,b、d 是方程x2+cx+d=0 根.求a、b、c、d 的值.20.(10 分)已知函数y=k2x2+k(2x﹣3x2)+2x2﹣2x+1 的图象不经过第四象限,求常数k 的取值范围.21.(12 分)如图,在矩形ABC D中,点E、F、G、H分别在边AB、BC、CD、DA上,点P 在矩形ABC D内,若AB=4,BC=6,AE=CG=3,BF=DH=4,四边形AEPH 的面积为5,求四边形PFCG 的面积.22.(12 分)如图,△ABC 的外心O关于三边的对称点分别为A′、B′、C′.求证:(1)AA′、BB′、CC′交于一点P;(2)设△ABC 三边中点分别为A1、B1、C1,则P 为△A1B1C1 的外心.参考答案一、选择题(本大题共8 小题,每小题 3 分,满分24 分.请将唯一正确的答案代号填在题后括号内)1.解:∵负数都小于0,正数大于一切负数,∴排除B 和C;∵是无理数,故四个数0,﹣1,﹣3,有理数最大的是0.故选:A.2.解:当y=﹣x2 向左平移1 个单位时,顶点由原来的(0,0)变为(﹣1,0),当向上平移3 个单位时,顶点变为(﹣1,3),则平移后抛物线的解析式为y=﹣(x+1)2+3.故选:D.3.解:A、错误,例如等腰梯形;B、错误,例如对角线互相垂的梯形;C、正确;D、错误,例如矩形.故选:C.4.解:最坏情况考虑就行了,摸出10 个黄球,摸出另二色中一色的999 个球,最后再摸出最后一色的1000 个球,这时可以保证至少有1000 个颜色相同,即最少要摸:10+999+1000=2009 个球,故选:D.5.解:如图,∵∠ACB=90°,∴EF 是直径,设EF 的中点为O,圆O 与AB 的切点为D,连接OD,CO,CD,则OD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴EF 为直径,OC+OD=EF,∴CO+OD>CD=4.8,∵当点O 在直角三角形ABC 的斜边AB 的高上CD 时,EF=CD 有最小值∴由三角形面积公式得:CD=BC•AC÷AB=4.8.故选:D.6.解:当x﹣1≥0,x﹣2≥0,x﹣3<0 时,x﹣1﹣2(x﹣2)+3(3﹣x)=4,x=2,当x﹣1≥0,x﹣2≥0,x﹣3>0 时,x﹣1﹣2(x﹣2)+3(x﹣3)=4,x=5,当x﹣1≥0,x﹣2<0,x﹣3<0 时,x﹣1﹣2(2﹣x)+3(3﹣x)=4原方程有无数解,当x﹣1≤0,x﹣2<0,x﹣3<0 时,1﹣x﹣2(2﹣x)+3(3﹣x)=4,x=1,∴满足方程|x﹣1|﹣2|x﹣2|+3|x﹣3|=4 的有理数x 有无数个.故选:D.7.解:A、图形面积为|k|=4;B、阴影是梯形,面积为6;C、D 面积均为两个三角形面积之和,为2×(|k|)=4.故选:B.8.解:由函数图象可知a<0,c<0,由对称轴x=﹣>0,可知b>0,∴3|a|+|c|﹣2|b|=﹣(3a+2b+c),∵当x=1 时,y=a+b+c>0,①又对称轴x=﹣>1,解得2a+b>0,②①+②得3a+2b+c>0,∴﹣(3a+2b+c)<0,∴3|a|+|c|<2|b|.故选:C.二、填空题(本大题共8 小题,每小题4 分,满分32 分.请将最简结果直接填在题后横线上).9.解:根据题意得,3﹣x≥0 且x﹣1≠0,解得x≤3 且x≠1.故答案为:x≤3 且x≠1.10.解:解法一:∵﹣=﹣=3,即x﹣y=﹣3xy,则原式===4.解法二:将原式的分子和分母同时除以xy,===4故答案为:4.11.解:甲要获胜,另外两人的出法就确定了,比如甲出石头,乙丙必须都出剪刀.而乙丙的出法共有3×3=9 种,对于任意的甲的出法,只有其中一种满足条件.所以甲获胜的概率就是:.故答案为:.12.解:∵a+b2=1,∴a=1﹣b2∴2a2+7b2=2(1﹣b2)2+7b2=2b4+3b2+2=2(b2+ )2+2﹣=2(b2+ )2+ ,∵b2≥0,∴2(b2+ )2+ >0,∴当b2=0,即b=0 时,2a2+7b2 的值最小.∴最小值是2.方法二:∵a+b2=1,∴b2=1﹣a,∴2a2+7b2=2a2+7(1﹣a)=2a2﹣7a+7=2(a﹣)2+ ,∵b2≥0,∴1﹣a≥0,∴a≤1,∴当a=1,即b=0 时,2a2+7b2 的值最小.∴最小值是2.13.解:连接AO,则∠AOC=2∠B=110°,∴∠POC 的取值范围是:0°<∠POC<110°.14.解:设2x2﹣6y2+xy+kx+6 能分解成:(x+ay+c)(2x+by+d),即2x2+aby2+(2a+b)xy+(2c+d)x+(ad+bc)y+cd,∴cd=6,∵6=1×6=2×3=(﹣2)(﹣3)=(﹣1)(﹣6),∴①c=1,d=6 时,ad+bc=6a+b=0,与2a+b=1 联立求解得,,或c=6,d=1 时,ad+bc=a+6b=0与2a+b=1 联立求解得,,②c=2,d=3 时,ad+bc=3a+2b=0,与2a+b=1 联立求解得,,或c=3,d=2 时,ad+bc=2a+3b=0,与2a+b=1 联立求解得,,③c=﹣2,d=﹣3 时,ad+bc=﹣3a﹣2b=0,与2a+b=1 联立求解得,,或c=﹣3,d=﹣2,ad+bc=﹣2a﹣3b=0,与2a+b=1 联立求解得,,④c=﹣1,d=﹣6 时,ad+bc=﹣6a﹣b=0,与2a+b=1 联立求解得,,或c=﹣6,d=﹣1 时,ad+bc=﹣a﹣6b=0,= , = , +++与 2a +b =1 联立求解得,,∴c =2,d =3 时,c =﹣2,d =﹣3 时,符合, ∴k =2c +d =2×2+3=7,k =2c +d =2×(﹣2)+(﹣3)=﹣7, ∴整数 k 的值是 7,﹣7. 故答案为:7,﹣7.15.解:方程的两边同乘(x ﹣1),得 ax 2﹣2a (x ﹣1)=(a 2+1)(x ﹣1),解得 x 1=a +1,x 2=∴原方程的解为:x 1=a +1,x 2=. 故答案为:x 1=a +1,x 2=.16.解:由题意,可知点 P 1、P 2、P 3、P 4 坐标分别为:(1,2),(2,1),(3,),(4,). 解法一:∵S 1=1×(2﹣1)=1, S 2=1×(1﹣ )=, S 3=1×( ﹣)=, ∴S 1+S 2+S 3=1+ +=.解法二:∵图中所构成的阴影部分的总面积正好是从点 P 1 向 x 轴、y 轴引垂线构成的长方形面积减去最下方的长方形的面积, ∴1×2﹣ ×1=. 故答案为:.三、解答题(本大题共 6 小题,满分 64 分,解答应写出必要文字说明、演算步骤和证明过程) 17.解:设 2007x 2=2008y 2=2009z 2=2010z 2=A , ∴2007x = ,2008y = ,2009z = ,2010w = ,=,=,= + + + =1,=+++∴2007x+2008y+2009z+2010w=+++ ,=A(+++),∵,∴2007x+2008y+2009z+2010w=A.∴==+++.18.解:如图所示:在正方形ABCD 中,O 为AC 和BD 的交点,则所有的三角形分别为:△AOB、△AOD、△BOC、△COD、△ABC、△ACD、△BCD、△ABD,根据正方形的性质,我们知道:△AOB、△AOD、△BOC、△COD 的面积相等,△ABC、△ACD、△BCD、△ABD 的面积相等,所以从所有三角形中任意取出两个,它们的面积相等的概率为==.19.解:∵a、c 是方程x2+ax﹣b=0 的根,b、d 是方程x2+cx+d=0 根,∴a+c=﹣a①,ac=﹣b②,b+d=﹣c③,bd=d④,由④得b=1,(若d=0,由③得b=﹣c,代入②得ac=c 可得c=0,a=0 这与a、b、c、d 为不同的实数不符或a=1 代入①得c=﹣2,a、c 代入②得b=2,b、c 代入③得d=0,即a=1,b=2,c=﹣2,d=0)则ac=﹣1,由①得c=﹣2a,∴﹣2a2=﹣1,解得a=±,∴当a=时,c=﹣,d=﹣c﹣b=﹣1;当a=﹣时,c=,d=﹣c﹣b=﹣﹣1;所以a=,b=1,c=﹣,d=﹣1 或a=﹣,b=1,c=,d=﹣﹣1.20.解:y=k2x2+k(2x﹣3x2)+2x2﹣2x+1,=k2x2+2kx﹣3kx2+2x2﹣2x+1,=(k2﹣3k+2)x2+(2k﹣2)x+1,当k2﹣3k+2=0,∴(k﹣1)(k﹣2)=0,∴k=1 或k=2,当k=1 时,y=1,是平行于x 轴的直线,不经过第四象限,当k=2 时,y=2x+1,图象经过第一、二、三象限,不经过第四象限,当k2﹣3k+2≠0,∴函数是二次函数,图象经过一、二象限,或一、二、三象限,∴图象对称轴在x 轴负半轴,开口向上,a,b 同号,∴k2﹣3k+2>0,(k﹣1)(k﹣2)>0,∴k﹣1>0,k﹣2>0 或k﹣1<0,k﹣2<0,解得k>2 或k<1,∴常数k 的取值范围是:函数是二次函数时:k>2 或k<1,函数是一次函数时:k=1 或k=2.21.解:解法一、连接AP,CP,设△AHP 在AH 边上的高为x,△AEP 在AE 边上的高为y.则△CFP 在CF 边上的高为4﹣x,△CGP 在CG 边上的高为6﹣y.∵AH=CF=2,AE=CG=3,∴S 四边形AEPH=S△AHP+S△AEP,=AH×x+ AE×y,=×2x+×3y=5,即2x+3y=10,S 四边形PFCG=S△CGP+S△CFP=CF×(4﹣x)×+CG×(6﹣y)×,=2(4﹣x)×+3(6﹣y)×,=(26﹣2x﹣3y)×,=(26﹣10)×,=8.解法二、连接HE、EF、FG、GH,证△DHG≌△BFE,推出HG=EF,同理:HE=GF,则四边形EFGH 由条件知是平行四边形,面积为4×6﹣×3×2﹣×3×2﹣×4×1﹣×4×1=14,由平行四边形性质知:S△HEP+S△FGP=S 平行四边形EFGH=7,∵△AEH 的面积为×3×2=3,△CGF 的面积为×3×2=3,四边形AEPH 的面积为5,∴△HEP 的面积是5﹣3=2,△PGF 的面积是7﹣2=5,∴四边形PFCG 的面积S=S△PGF+S△CGF=5+3=8.答:四边形PFCG 的面积是8.22.证明:(1)设圆O半径为R.由△ABC 的外心O 关于三边的对称点分别为A′、B′、C′,知:BC′=B′C=R,∠C′BA=∠C′AB=∠OAB,∠B′CA=∠B′AC=∠OAC,∴∠C′BA+∠B′CA=∠OAB+∠OAC=∠BAC,∴∠C′BC+∠B′CB=∠BAC+∠ABC+∠BCA=180°,∴BC′∥B′C,∴BB′,CC′互相平分,交于中点,同理CC′,AA′互相平分,交于中点,∴AA′、BB′、CC′交于一点P;(2)∵P 为CC′中点,A1 为BC 中点,∴PA1=B′C=R,同理PB1=R,PC1=R,∴PA1=PB1=PC1,∴P 是△A1B1C1 的外心.。

2018全国初中数学竞赛试题及参考答案

2018全国初中数学竞赛试题及参考答案

中国教育学会中学数学教学专业委员会 “《数学周报》杯”2018年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题<共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设1a ,则代数式32312612a a a +--的值为( >.<A )24 <B )25 <C )10 <D )12+2.对于任意实数a b c d ,,,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:<a b ,)△<c d ,)=<ac bd ad bc ++,).如果对于任意实数u v ,, 都有<u v ,)△<x y ,)=<u v ,),那么<x y ,)为( >.<A )<0,1) <B )<1,0) <C )<﹣1,0) <D )<0,-1)3.若1x >,0y >,且满足3y y xxy x x y==,,则x y +的值为( >.<A )1 <B )2 <C )92 <D )1124.点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( >.<A )1324S S S S < <B )1324S S S S = <C )1324S S S S > <D )不能确定5.设3333111112399S =++++,则4S 的整数部分等于( >. <A )4 <B )5 <C )6 <D )7 二、填空题<共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m --+=有三个根,且这三个根恰好可 以作为一个三角形的三条边的长,则m 的取值范围是 .7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是 .8.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=<x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .9.若y a ,最为b ,则22a b +的值为 .小值10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .三、解答题<共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.12.如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.<第12题)13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x =于P ,Q 两点. <1)求证:∠ABP =∠ABQ ;<2)若点A 的坐标为<0,1),且∠PBQ =60o ,试求所有满足条件的直线PQ 的函数解读式.14.如图,△ABC 中,60BAC ∠=︒,2AB AC =.点P 在△ABC内,且52PA PB PC ===,,求△ABC 的面积.中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题参考答案一、选择题 1.A解:由于1a =-,1a +=, 262a a =-, 所以 2.B解:依定义的运算法则,有ux vy u vx uy v +=⎧⎨+=⎩,,即(1)0(1)0u x vy v x uy -+=⎧⎨-+=⎩,对任何实数u v ,都成立. 由于实数u v ,的任意性,得<x y ,)=<1,0).3.C解:由题设可知1y y x -=,于是341y y x yx x -==,<第13题)<第14题)所以 411y -=, 故12y =,从而4x =.于是92x y +=.4.C解:如图,连接DE ,设1DEF S S ∆'=,则1423S S EF S BF S '==,从而有1324S S S S '=.由于11S S '>,所以1324S S S S >.5.A解:当2 3 99k =,,,时,由于()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以 3331111115111239922991004S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.二、填空题 6.3<m ≤4解:易知2x =是方程的一个根,设方程的另外两个根为12 x x ,,则124x x +=,12x x m =.显然1242x x +=>,所以122x x -<, 164m ∆=-≥0,即2<,164m ∆=-≥0,所以2<, 164m ∆=-≥0,解之得 3<m ≤4.7.19解:在36对可能出现的结果中,有4对:<1,4),<2,3),<2,3),<4,1)的和为5,所以朝上的面两数字之和为5的概率是41369=. 8.6解:如图,设点C 的坐标为a b (,),点D 的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 由于点C D ,在双曲线1y x=上,所以11ab cd ==,.由于AC a b =-,BD c d =-, 又由于2BD AC =,于是 所以 22224826a b c d ab cd +-+=-=()(), 即224OC OD -=6.9.32解:由1x -≥0,且12x -≥0,得12≤x ≤1.21122y =+=+ 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =. 当12x =或1时,2y 取到最小值12,故2b =.所以,2232a b +=. 10.84解:如图,设BC =a ,AC =b ,则22235a b +==1225. ①又Rt △AFE ∽Rt △ACB ,所以FE AFCB AC=,即1212b a b-=,故 12()a b ab +=. ② 由①②得2222122524a b a b ab a b +=++=++()(),解得a +b =49<另一个解-25舍去),所以493584a b c ++=+=.三、解答题11.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,,两式相加得 2210αβαβ+++=, 即 (2)(2)3αβ++=,所以 2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又由于[11]a b c αβαβαβ=-+==-+++(),,()(),所以 012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29.12.证明:如图,延长AP 交⊙2O 于点Q ,连接 AH BD QB QC QH ,,,,. 由于AB 为⊙1O 的直径, 所以∠ADB =∠BDQ =90°, 故BQ 为⊙2O 的直径.于是CQ BC BH HQ ⊥⊥,. 又由于点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. 所以点P 为CH 的中点.13.解:<1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , .设点A 的坐标为<0,t ),则点B 的坐标为<0,-t ).设直线PQ 的函数解读式为y kx t =+,并设P Q ,的坐标分别为 P P x y (,),Q Q x y (,).由得 2203x kx t --=, 于是 32P Q x x t =-,即 23P Q t x x =-.于是222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P Q Q P Q Q Q P x x x x x x x x x x x x x x --===--- 又由于P Q x PC QD x =-,所以BC PCBD QD=. 由于∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ , 故∠ABP =∠ABQ .<2)解法一 设PC a =,DQ b =,不妨设a ≥b >0,由<1)可知∠ABP =∠30ABQ =︒,BC,BD,所以 AC2-,AD=2.由于PC ∥DQ ,所以△ACP ∽△ADQ . 于是PC ACDQ AD=,即a b =,所以a b +=.由<1)中32P Q x x t =-,即32ab -=-,所以32ab a b =+=,于是可求得2a b ==将b =代入223y x =,得到点Q 的坐标,12).再将点Q 的坐标代入1y kx =+,求得k = 所以直线PQ的函数解读式为1y =+. 根据对称性知,所求直线PQ的函数解读式为13y x =-+,或13y x =+. 解法二 设直线PQ 的函数解读式为y kx t =+,其中1t =. 由<1)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故2Q x =将223Q Q y x =代入上式,平方并整理得 4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以Q x =又由 (1>得3322P Q x x t =-=-,32P Q x x k +=.若Q x =代入上式得P x = 从而2()3P Q k x x =+=.同理,若Q x =可得P x = 从而2()3P Q k x x =+=.所以,直线PQ的函数解读式为1y =+,或1y +. 14.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ∠=∠∠=∠,,则△ABQ ∽△ACP .由于2AB AC =,所以相似比为2. 于是224AQ AP BQ CP ====.60QAP QAB BAP PAC BAP BAC ∠=∠+∠=∠+∠=∠=︒.由:2:1AQ AP =知,90APQ ∠=︒,于是3PQ ==.所以 22225BP BQ PQ ==+,从而90BQP ∠=︒.于是222()28AB PQ AP BQ =++=+ .故 21sin 602ABC S AB AC AB ∆=⋅︒==. 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

2018年初中数学联赛试题及答案详解

2018年初中数学联赛试题及答案详解

2018年初中数学联赛试题及答案详解说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第 二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答 不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相 应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a y x ax =++的图象的顶点为A ,与x 轴的交点为B ,C .当ABC △为等边三角形时,其边长为()A ..D . 【答】C.由题设知2(,)2a A a --,设(,0),(,0)B x C x ,二次函数的图象的对称轴与x 轴的交点为D ,则12||BC x x =-==又AD =,则2||2a -=26a =或20a =(舍去)所以△ABC 的边长BC ==. 2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,115AB CAE =∠=︒,,则BE =()A B C 1D 1 【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得∠BAF = ∠F AD = ∠AFB = ∠HEF =45︒,BF =AB =1,∠EBH = ∠ACB =30︒.设BE =x ,则HF =HE =2x,BH =.因为BF=BH+HF ,所以12x=+,解得1BE x =. 3.设p q ,均为大于3的素数,则使2254p pq q ++为完全平方数的素数对(p ,q )的个数为()A .1B .2C .3D .4 答案:B设22254p pq q m ++=(m 为自然数),则22(2)p q pq m ++=,即(2)(2)m p q m p p pq --++= 由于p ,q 为素数,且2,2m q p p m q p q ++>++>,所以21m q p --=,2m q p pq ++=,从而2410pq p p ---=,即(4)(2)9p q --=,所以(p ,q )=(5,11)或(7,5).所以,满足条件的素数对(p ,q )的个数为2. 4.若实数a ,b 满足2a b -=,()()22114a b ba-+-=,则55a b -=()A .46B .64C .82D .128【答】C.由条件()()22114a b ba-+-=得22332240a b a b ab a b ----+-=,即22()2[()4]()[()3]0a b a b ab a b a b ab ---++--+=又2a b -=,所以22[44]2[43]0ab ab -+++=,解得1ab =,所以222()26a b a b ab +=-+=33255223322()[()3]14,()()()82a b a b a b ab a b a b a b a b a b -=--+=-=+---=. 5.对任意的整数x ,y ,定义@x y x y xy =+-,则使得()()@@@@x y z y z x ++()@@0z x y =的整数组(x ,y ,z )的个数为() A .1B .2C .3D .4 答案:D()()()(@@@)x y z x y xy z x y xy z x y xy z x y z xy yz zx xyz =+-=+-+-+-=++---+,由对称性,同样可得()()@@@@.y z x x y z xy yz zx xyz z x y x y z xy yz zx xyz =++---+=++---+,所以,由已知可得0111 1.()()()x y z xy yz zx xyz x y z ++---+=---=-,即所以,x,y,z 为整数时,只能有以下几种情况: 111111x y z -=⎧⎪-=⎨⎪-=-⎩,或111111x y z -=⎧⎪-=-⎨⎪-=⎩,或111111x y z -=-⎧⎪-=⎨⎪-=⎩或111111x y z -=-⎧⎪-=-⎨⎪-=-⎩所以,(x ,y ,z )=(2,2,0)或(2,0,2)或(0,2,2)或(0,0,0),故共有4个符合要求的整数组. 6.设11112018201920202050M =++++,则1M的整数部分是() A .60B .61C .62D .63 答案:B 因为1120185336120183333M M <⨯⇒>= 又111111()()201820192030203120322050M =+++++++11134513202030205083230>⨯+⨯=所以18323011856113451345M <=,故的整数部分为61.二、填空题:(本题满分28分,每小题7分)7.如图,在平行四边形ABCD 中,2BC AB CE AB =⊥,于E ,F 为AD 的中点,若AEF ∠48=︒,则B ∠=. 【答】84°.设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形由AB ∥FG ∥DC 及F 为AD 的中点,知H 为CE 的中点. 又CE ⊥AB ,所以CE ⊥FG ,所以FH 垂直平分CE ,故∠DF =∠GFC =∠EFG =∠AEF =48°.所以∠B =∠FGC =180248=84-⋅8.若实数x y ,满足()3311542x y x y +++=,则x y +的最大值为.【答】3.由3115()42x y x y 3+++=可得22115()()()42x y x xy y x y +-+++=,即22115()()42x y x xy y +-++=令x y k +=,注意到2222131()04244y x xy y x y -++=-++>,故0x y k +=>又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以3115423k k xy k+==于是,x ,y 可看作关于t 的一元二次方程321154203k k t kt k+=-+=的两根,所以 化简得3211542()403k k k k+=∆=--⋅≥,化简得3300k k +-≤,即2(3)(310)003k k k k -++≤⇒<≤ 故x + y 的最大值为3.思路:从目标出发,判别式法,因式分解 9.没有重复数字且不为5的倍数的五位数的个数为.【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为87876⨯⨯⨯⨯=18816个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选,十位有6个数可选.所以,此时满足条件的五位数的个数为8876⨯⨯⨯=2688个.所以,满足条件的五位数的个数为18816+2688=21504(个).10. 已知实数a b c ,,满足0a b c ++=,2221a b c ++=,则555a b c abc++=.答案:52由已知条件可得222233311[()()],322ab bc ac a b c a b c a b c abc ++=++-++=-++=,所以555222333233233233()()[()()()]a b c a b c a b c a b c b a c c a b ++=++++-+++++ 2222222222223[()()()]3()abc a b a b a c a c b c b c abc a b c a c b b c a =-+++++=+++3()abc abc ab bc ca =+++.所以55552a b c abc ++=第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足()2211x x x ++-=的整数x 的个数为()A .1B .2C .3D .4 答案:C当20x +=且210x x +-≠时,2x =- 当211x x +-=时,2x =-或1x = 当211x x +-=-且2x +为偶数时0x = 所以,满足条件的整数x 有3个 2.已知123x x x ,,(123x x x <<)为关于x 的方程()32320x x a x a -++-=的三个实数根,则22211234x x x x -++=()A .5B .6C .7D .8解析:方程即2(1)(2)0x x x a --+=,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2131,2x x x =+=,故222112331311314()()412()15x x x x x x x x x x x -++=+-++=++=3. 已知点E F ,分别在正方形ABCD 的边CD ,AD 上,4CD CE EFB FBC =∠=∠,,则t an ABF ∠=()A .12B .35C D 解析:不妨设4CD =,则1,3CE DE ==设DF x =,则4,AF x EF =-作BH EF ⊥与点H ,因为,90,EFB FBC AFB BAF BHF BF ∠=∠=∠∠==∠公共,所以BAF BHF ∆≅∆,所以4BH BA ==由ABF BEF DEF BCE ABCD S S S S S ∆∆∆∆=+++四边形得2111144(4)43412222x x =⋅⋅-+⋅⋅⋅+⋅⋅,解得85x =所以1245AF x =-=,3tan 5AF ABF AB ∠==.4.=()A .0B .1C .2D .3解析:令y =0y ≥,且29x y =- 解得1,6y or y ==,从而8x =-或27x =检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设a ,b ,c 为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组(a ,b ,c )的个数为() A .4B .5C .6D .7解析:由已知得,201720182017201820172018a bc b ac c ab +=+=+=,,,两两作差,可得12017012()()()(0170120170)(.)()a b c b c a c a b --=--=--=,,由120()()170a b c --=,可得1,2017a b or c ==(1)当a b c ==时,有2201720180a a +-=,解得a =1,或20182017a =-(2)当a b c =≠时,解得12017a b ==,120182017c =- (3)当a b ≠时,12017c =,此时有:12017a =,120182017b =-,或120182017a =-,12017b = 故这样的三元数组(a ,b ,c )共有5个. 6.已知实数a ,b 满足3232351355a a a b b b -+=-+=,,则a b +=()A .2B .3C .4D .5【答】A.有已知条件可得331212()()()(1212)a a b b -+-=--+-=,,两式相加得33121121()()()()0a a b b -+-+-+-=,因式分解得22211()[()()()2()11]0a b a a b b +-----+-+=因为2222()()()()[13111121(1)(1)4(202)a a b b a b b ----+-+=---+-+>所以20a b +-=,因此2a b +=.二、填空题:(本题满分28分,每小题7分) 7.已知p q r ,,为素数,且pqr 整除1pq qr rp ++-,则p q r ++=.【答】10. 设11111pq qr rp k pqr p q r pqr ++-==++-,由题意知k 是正整数,又,,2p q r ≥,所以32k <而1k =,即有1pq qr rp pqr ++-=,于是可知,,p q r 互不相等. 当2p q r ≤<<时,13pqr pq qr rp qr =++-<,所以3q <,故2q =. 于是2221qr qr q r =++-故2)23()(q r --=,所以21,23q r -=-=,即3,5q r ==,所以,()(),,2,3,5p q r =. 再由 ,,p q r 的对称性知,所有可能的数组( ,,p q r )共有6组,即()()()()()() 2,3,5?2,5,33,2,53,5,25,2,35,3,2.,,,,, 于是10p q r ++=. 8.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为.【答】8.设这两个数为22),(m n m n >,则221000m n m n +=-,即2()110(101)m n --= 又100110011143791117713=⨯=⨯=⨯=⨯,所以()21,1()1001,1m n --=或(143,7)或 (91,11)(77,13),验证可知只有()21,(1143,)7m n --=满足条件,此时2144,8m n ==. .9.已知D 是ABC △内一点,E 是AC 的中点,610AB BC BAD BCD ==∠=∠,,,EDC ∠=ABD ∠,则DE =.【答】4.1//2CD F DF DC DE AF DE AF ==延长至,使,则且 ,,,AFD EDC ABD A F B D ∠=∠=∠所以,故四点共圆,于是10BFD BAD BCD BF BC BD FC ∠=∠=∠==,所以,且⊥, 90.FAB FDB ∠=∠=︒故6AB AF =又,故,所以14.2DE AF ==已知二次函数()()222221450y x m n x m n =++++++的图象在x 轴的上方,则满足条件的正整数对(m ,n)的个数为. 解析:16.因为二次函数的图象在x 轴的上方,所以222[()](22)144500m n m n ∆=++-++<,整理得 42449mn m n ++<,即()(5122)11m n ++<.因为,m n 为正整数,所以()(122.)15m n <++ 又12m +≥,所以25212n +<,故5n ≤. 当n=1时,1m +253≤,故223m ≤,符合条件的正整数对(m,n)有8个;当n=2时,1m +5≤,故m ≤4,符合条件的正整数对(m,n)有4个; 当n=3时,1m +257≤,故187m ≤,符合条件的正整数对(m,n)有1个;当n=4时,1m +259≤,故179m ≤,符合条件的正整数对(m,n)有1个;当n=5时,1m +2511≤,故1411m ≤,符合条件的正整数对(m,n)有1个综合可知:符合条件的正整数对(m,n)有8421116++++=个第二试(A)一、(本题满分20分)设a ,b ,c ,d 为四个不同的实数,若a ,b 为方程210110x cx d --=的根, c ,d 为方程2100x ax b --=的根,求a b c d +++的值.解由韦达定理得1010a b c c d a +=+=,,两式相加得1)0(a b c d a c +++=+.因为a 是方程210110x cx d --=的根,所以210110a ac d --=,又10d a c =-,所以 211011100.a a c ac -+-=①类似可得211011100.c c a ac -+-=② ①-②得)((1210)a c a c -+-=因为a c ≠,所以121a c +=,所以(11210)0a b c d a c +++=+=.二、(本题满分25分)如图,在扇形OAB 中,9012AOB OA ∠=︒=,,点C 在OA 上,4AC =, 点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F . (1)当四边形ODEC 的面积S 最大时,求EF ; (2)求2CE DE +的最小值.解 (1)分别过O ,E 作CD 的垂线,垂足为M ,N . 由6,8OD OC ==,得10CD =.所以(111101260222)DOCD DECD S S S CD OM EN CD OE =+=⨯+≤⨯=⋅⋅=当OE DC ⊥时,S 取得最大值60.683612=105EF OE OF ⋅=-=-此时,212,.OB G BG OB GC GE ==()延长至点,使,连结因为1,2OD OE DOE EOG OE OG ==∠=∠,所以ODE OEG ∽,所以12DE EG =故2EG DE =,所以2CE DE CE EG CG +=+≥==C ,E ,G 三点共线时等号成立2CE DE +故的最小值为三、(本题满分25分)求所有的正整数m ,n ,使得()33222m n m n m n +-+是非负整数.解:记()33222m n m n S m n +-=+,则()2222332222()[()3]3()()m n m n mn m n m n m n mn mn S m n m n m n m n m n ++--+-⎛⎫===+-- ⎪+++⎝⎭+,,(,?,,1).mnm n p q p q p q m n==+因为为正整数,故可令为正整数,且 于是222233()()q q pq q S m n m n p p p +=+--=+-因为S 是非负整数,所以2|p q ,11()() .|p q p m n mn ==+,又,故,即①所以2n mn n m n m n=-++是整数,所以2()|m n n +,故2n m n ≥+,即2n m n -≥ 332200.S m n m n +-≥≥又由,知②3223222³(.)n m n m m n m m n n m --≥≥=≥所以,所以³m n m n =由对称性,同理可得,故34|2 2.20 2.m n m m m n m m m =≥=≥-≤把代入①,得,则把代入②,得,即 2.m =故,2 2.m n m n ==所以,满足条件的正整数为,第二试(B)一、(本题满分20分)若实数a ,b ,c 满足()11195555a b c a b c b c a c a b ⎛⎫++++= ⎪+-+-+-⎝⎭,求()111a b c a b c ⎛⎫++++⎪⎝⎭的值. 解:a b c x ab bc ca y abc z ++=++==记,,,则()111111555666a b c x a b c b c a c a b x a x b x c ⎛⎫⎛⎫++++=++⎪ ⎪+-+-+----⎝⎭⎝⎭22323[312()36()](936)6()36()216536216x x a b x ab bc ca x x y x a b c x ab bc ca x abc x xy z -+++++-+==++++++--+- 结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得272xy z = 所以()111272xy a b c a b c z⎛⎫++++== ⎪⎝⎭.二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,ABC △和CDE △都是等腰直角三 角形,AB AC DE DC ==,. (1)证明:AD BC ∥;(2)设AC 与DE 交于点P ,如果30ACE ∠=︒,求DPPE.145,,ACB DCE BC EC ∠=∠=︒解()由题意知,所以,AC DCDCA ECB BC EC∠=∠=,所以ADC BEC ∆∆∽,故45DAC EBC ∠=∠=,所以DAC ACB ∠=∠,所以AD BC ∥(2)设AE x =,因为30ACE ∠=,可得,2,AC CE x DE DC ====因为90,EAP CDP EPA CPD ∠=∠=∠=∠,所以APE DPC ∆∆∽,故可得12APE DPC S S ∆∆=又22,=EPC APE AEC EPC DPC CDE S S S x S S S x ∆∆∆∆∆∆+==+=,于是可得2(2DPC S x ∆=,21)EPC S x ∆=所以DPC EPC S DP PE S ∆∆===三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为1m x +,的各位数字之和为n ,并 且m 与n 的最大公约数是一个大于2的素数.求x . ( ,.) 2x m n m n =解设与的最大公约数为大于的素数91,19(.)d n m m n d ≠=+==若,则,所以,矛盾,故()(9198,,829.)c n m m m n m c ≠=+-=-==若,则,故,它不可能是大于的素数,矛盾,故991()(99926,, 2613)b a n m m m n m =≠=+---=-==若,显然,所以,故,但此时可得13263936.n m n ≥=+≥>,,矛盾若9199()()17,,171717,34b n m m m n m n m ≠=+--=-====,则,故,只可能 88999799.x =于是可得或。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年初中数学教师基本功大赛试题
一、填空题(10×2=20分) 1、在初中阶段,《数学课程标准》安排的四个方面课程内容分别是_______________,___________________,__________________,_______________
2、 .“数与代数”“空间与图形”“统计与概率”“实践与综合应用”
3、 3、早在公元前3世纪,我国数学家_______________就用四个全等的直角三角形拼图,证明了勾股定理,这个图形被称为“弦图”,2002年的世界数学家大会的会标就是用此图为中央图案,寓意我国古代数学的成就。

赵爽
]
4、被后人誉为几何之父的杰出数学家是欧几里得,他得最有影响的著作是-_________________________________。

《几何原本》
5、学生是学习的主人,教师是数学学习的________________、引导者与合作者。

6、有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与______________是学生学习数学的重要方式。

7、简述《数学课程标准》所提出的初中阶段的数学教学,一般应采取什么样的教学模式
8、请你叙述并证明直角三角形全等的判定定理(HL )。

"
9、方程012=-+x x 所有实数根的和等于_________________________.
10、若梯形上底的长为1,两腰中点连接的线段长为3,那么,连接两条对角线中点的线段长是_________________________
5
)
12、已知关于x 的方程019)13(22=-+--m x m mx 有两个实根,那么m 的取值范围是_________________________
05
1≠≤m m 且 13、把实数表示在数轴上体现了 数学思想;
14、已知
t b
a c a c
b
c b a =+=+=+,那么直线t tx x f +=)(一定通过第 2 象限. 10.秦汉时期我国著名的两部著作是_________________________

《周髀算经》、《九章算术》。

11.义务教育阶段的数学课程标准应体现基础性、__________、__________, 使数学教育面
向全体学生,实现:①人人学有价值的数学;②_________________________;③______________________________。

11.普及性、发展性②人人都获得必需的数学;③不同的人在数学上得到不同的发展
12.新课程理念下教师的角色发生了变化,已有原来的主导者转变成了学生学习活动的
________,学生探究发现的________,与学生共同学习的________。

12.组织者,引导者,合作者

16.如图,⊙C 经过原点且与两坐标轴分别交于点A 与点B ,点A 的坐
标为(0,4),M 是圆上一点,∠BMO=120º。

⊙C 的半径和圆心C
的坐标分别是___________,___________.
16.4, C (32-,2) 18.用“⇒”与“⇐”表示一种运算法则:(a ⇒b )= -b ,(a ⇐b )= -a ,如(2⇒3)= -3,则
()()2010201120092008⇒⇐⇒= .
18.2011
三、解答题(5×8+2×10=60分)
21.(5分)先化简,再求值:a
a a a a a a -+-+--22
222139,其中2a =. 16。

若规定两数a ,b 运算得到通过”“⊗,22ab b a ab =⊗即例如1642242=⨯⨯=⊗(1)求57⊗
的值; (2)若不论x 取何值时,总有的值求a x ,x a =⊗.
16、(1)7075275=⨯⨯=⊗…………………………3分
(2)可化为x x a =⊗

0)12(,2=-=x a x ax 即 (*)……………5分
∵不论x 取何值,(*)式成立
∴2
1,012==-a a 即…………………………7分 21、(本题满分8分)已知a 、b ,为有理数且b a +、b a -、ab 、b
a 中恰有三个
数相等,求b a )2(的值.
21、解:∵0≠b

∴b a b a -≠+……………………2分 于是10,±===b a b
a a
b 或解得…………3分 若00==b ,a 则必须矛盾………………4分
若则,b 1=
b a b a b
a a
b -+,,,中不可能有三个数相等…………5分 ) 当有时,b 1-=
b a b
a a
b b a b a ab -==+==或………………6分 对应的a 值分别为2
121-或………………7分 ∴1)1()2(1±=±=-b a ………………8分
25.(5分)将背面完全相同,正面上分别写有数字1、2、3、4的四张卡片混合后,小明从中随机地抽取一张,把卡片上的数字做为被减数,将形状、大小完全相同,分别标有数字1、2、3的三个小球混合后,小华从中随机地抽取一个,把小球上的数字做为减数,然后计算出这两个数的差.。

(1)请你用画树状图或列表的方法,求这两数差为0的概率;
(2)小明与小华做游戏,规则是:若这两数的差为非负数,则小明赢;否则,小华赢.你认为该游戏公平吗请说明理由.如果不公平,请你修改游戏规则,使游戏公平.
25.(1)P (两数差为0)=14
(2)因为P (两数差为负数)=
14,所以小明赢的概率为14
, 而小华赢的概率为13144-=,14<34, 所以游戏不公平,可改为:
若这两数的差为负数,小明得3分,否则小华得1分,得分高者赢.(修改方法不唯一)。

相关文档
最新文档