初中数学 多项式乘以多项式教案

合集下载

七年级数学下册《多项式乘多项式》教案、教学设计

七年级数学下册《多项式乘多项式》教案、教学设计
(一)导入新课
1.创设情境:以校园绿化为例,假设学校有一块长为(a+b)米,宽为(c+d)米的矩形空地,要求计算这块空地的面积。
2.提出问题:如何利用我们已经学过的知识来解决这个问题?
3.引导思考:通过学生的思考与讨论,引导学生发现,可以将长和宽拆分成两个单项式相加的形式,即(a+b)=a+b和(c+d)=c+d,然后分别相乘再相加。
-鼓励学生进行自我评价和同伴评价,培养学生的反思能力和批判性思维。
4.教学策略:
-针对学生的个体差异,实施分层教学,为不同水平的学生提供适合的学习任务。
-重视学生的动手操作能力,让学生在实际操作中加深对多项式乘法的理解。
-结合学生的认知发展特点,逐步提高问题难度,使学生能够循序渐进地掌握知识。
四、教学内容与过程
二、学情分析
七年级下册的学生已经具备了一定的数学基础,掌握了基本的代数运算和几何知识。在此基础上,他们对多项式乘多项式的学习有以下特点:
1.学生对乘法运算有较为扎实的掌握,能够熟练进行单项式乘以单项式的计算,这为学习多项式乘法奠定了基础。
2.学生在解决实际问题时,对于运用多项式乘法可能存在一定的困难,需要教师在教学中注重实际情境的创设,引导学生将理论知识与实际应用相结合。
3.教师将根据学生的作业完成情况进行反馈,针对性地进行辅导。
4.思考探究题:让学生思考并讨论以下问题:
-多项式乘法与单项式乘法的区别与联系是什么?
-如何将多项式乘法运用到几何问题的解决中?
5.课后总结:请学生撰写本节课的学习心得,包括学习过程中的困难、收获以及对多项式乘法的新认识。
作业要求:
1.学生需独立完成作业,保持书写工整,步骤清晰。

多项式乘多项式 优秀教案

多项式乘多项式 优秀教案

多项式乘多项式【教学目标】1.知识与能力目标:理解多项式与多项式的乘法法则,掌握多项式与多项式相乘的运算。

2.过程与方法目标:由求一个长方形的面积的不同方法,引出多项式与多项式的乘法法则,体会数形之间的统一。

3.情感、态度与价值观目标:在探究“法则”的过程中,培养学生观察,概括与抽象的能力。

【教学重难点】重点:多项式与多项式相乘的乘法法则及法则的推导。

难点:在运算中遇到各种细节处理,比如相乘时的符号处理等问题。

【教学过程】一、自主学习(约8分钟)1.问题引入:一个矩形的长为(m+n)米,宽为(a+b)米,则它的面积为米²。

2.结合图形,发现(m+n)(a+b)=3.讨论如何计算:(m+n)(a+b)=?多项式乘以多项式的法则:多项式与多项式相乘,先用一个多项式的分别乘以另一个多项式的,再把。

注意:每一项必须连同前面的符号相乘。

二、自测(1)(a+b)(c+d)= ;(2)(m+n)(x+y)= ;(3)(m+n)(a-b)= ;(4)(x-1)(y-2)= ;练习(1)(2x+1) (x+3) (2)(m+2n)(m-3n) (3)(a-1)²(4)(2x²-1)(x-4) (5)(x²+3)(2x-5) (6)(3x-1)(2x+1)三、小组合作探究并展示(约5分钟)(1)两项式乘以两项式,结果一定是两项式吗?(2)项数多于两项的多项式乘多项式,能用多项式乘以多项式的法则进行计算吗?(3)二项式乘以三项式,展开是几项式?例:计算)32(222y xy x y x -+-)(四、当堂训练(约12分钟)要求:认真、规范、独立完成习题,注意知识与方法额应用、书写认真,步骤规范,成绩计入小组量化。

(A 组为必做题,做完的同学请举手示意,B 组为选做题)(一)计算1.(3m-n)(m-2n) 2.(2x-3)(x+4) 3.(x+y) 24.(-x+3y+4)(x-y) 5.(x -1)(x²-2x +3) 6.(3a-2)(a-1)+(a+1)(a+2)7.解方程 5x(x+1)=3x ²+2(x 2-5)8.若(x ²+ax +8)(x ²-3x +b )的乘积中不含x ²和x ³项,则a =_______,b =_______。

《多项式乘以多项式》教案

《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标:1. 让学生理解多项式乘以多项式的概念和意义。

2. 让学生掌握多项式乘以多项式的计算方法和步骤。

3. 培养学生运用多项式乘以多项式解决实际问题的能力。

二、教学内容:1. 多项式乘以多项式的概念和意义。

2. 多项式乘以多项式的计算方法和步骤。

3. 多项式乘以多项式在实际问题中的应用。

三、教学重点与难点:1. 教学重点:多项式乘以多项式的计算方法和步骤。

2. 教学难点:多项式乘以多项式在实际问题中的应用。

四、教学方法:1. 采用讲解法,让学生理解多项式乘以多项式的概念和意义。

2. 采用演示法,让学生掌握多项式乘以多项式的计算方法和步骤。

3. 采用案例分析法,培养学生运用多项式乘以多项式解决实际问题的能力。

五、教学过程:1. 引入新课:通过复习多项式的基本概念,引导学生进入多项式乘以多项式的新课。

2. 讲解多项式乘以多项式的概念和意义:解释多项式乘以多项式的定义,让学生理解其意义。

3. 演示多项式乘以多项式的计算方法和步骤:通过示例,让学生掌握多项式乘以多项式的计算方法。

4. 练习与巩固:布置一些练习题,让学生运用所学知识进行计算,巩固所学内容。

5. 案例分析:给出一些实际问题,让学生运用多项式乘以多项式的方法进行解决,培养学生的应用能力。

6. 小结与总结:对本节课的内容进行总结,强调多项式乘以多项式的计算方法和实际应用。

7. 作业布置:布置一些课后作业,巩固所学知识。

六、教学评价:1. 通过课堂讲解和练习,评估学生对多项式乘以多项式的概念和意义的理解程度。

2. 通过计算练习题,评估学生对多项式乘以多项式的计算方法和步骤的掌握情况。

3. 通过案例分析,评估学生运用多项式乘以多项式解决实际问题的能力。

七、教学资源:1. 多项式乘以多项式的教材和教学指导书。

2. 多媒体教学设备,如投影仪和白板。

3. 练习题和案例分析题的资料。

八、教学进度安排:1. 第1周:讲解多项式乘以多项式的概念和意义。

多项式乘多项式教案

多项式乘多项式教案

多项式乘多项式教案一、教学目标1. 让学生理解多项式乘多项式的概念和意义。

2. 培养学生掌握多项式乘多项式的运算方法和技巧。

3. 提高学生解决实际问题的能力,培养学生的数学思维。

二、教学内容1. 多项式乘多项式的定义和法则。

2. 多项式乘多项式的运算步骤。

3. 多项式乘多项式的应用问题。

三、教学重点与难点1. 重点:多项式乘多项式的运算方法和技巧。

2. 难点:理解并应用多项式乘多项式的法则。

四、教学方法1. 采用讲解法,引导学生理解多项式乘多项式的概念和法则。

2. 采用示范法,展示多项式乘多项式的运算步骤。

3. 采用练习法,让学生通过实际操作解决相关问题。

五、教学准备1. 教学课件或黑板。

2. 练习题。

【课堂导入】教师通过引入实际问题,激发学生的兴趣,引出多项式乘多项式的概念。

【知识讲解】1. 教师讲解多项式乘多项式的定义和法则。

2. 教师展示多项式乘多项式的运算步骤,并进行示范。

【课堂练习】1. 教师给出一些简单的多项式乘多项式问题,让学生独立解决。

2. 教师选取学生的解答,进行讲解和分析。

【拓展应用】教师给出一些实际问题,让学生运用多项式乘多项式的知识进行解决。

【课堂小结】教师对本节课的内容进行总结,强调多项式乘多项式的运算方法和技巧。

【课后作业】教师布置一些多项式乘多项式的练习题,让学生巩固所学知识。

六、教学过程1. 导入:通过复习单项式乘以多项式的概念和法则,引出多项式乘多项式的概念。

2. 新课讲解:讲解多项式乘多项式的定义和法则,展示运算步骤,并进行示范。

3. 课堂练习:学生独立解决简单多项式乘多项式问题,选取解答进行讲解和分析。

4. 拓展应用:给出实际问题,让学生运用多项式乘多项式的知识进行解决。

5. 课堂小结:总结本节课的内容,强调多项式乘多项式的运算方法和技巧。

七、教学反思本节课结束后,教师应反思教学效果,包括学生的掌握情况、教学方法的适用性、学生的参与度等,以便对后续教学进行调整和改进。

《多项式乘以多项式》教案

《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标1. 让学生理解多项式乘以多项式的概念和意义。

2. 培养学生掌握多项式乘以多项式的运算方法和技巧。

3. 提高学生解决实际问题的能力,培养学生的数学思维。

二、教学内容1. 多项式乘以多项式的定义和性质。

2. 多项式乘以多项式的运算规则。

3. 多项式乘以多项式的例题解析和练习。

三、教学重点与难点1. 重点:多项式乘以多项式的运算方法和技巧。

2. 难点:理解多项式乘以多项式的概念和运算规则。

四、教学方法1. 采用讲解法,引导学生理解多项式乘以多项式的概念和意义。

2. 采用示例法,展示多项式乘以多项式的运算过程,让学生直观感受。

3. 采用练习法,让学生通过多做例题和练习题,巩固所学知识。

五、教学过程1. 导入:通过简单的数学问题,引入多项式乘以多项式的概念。

2. 新课讲解:讲解多项式乘以多项式的定义、性质和运算规则。

3. 示例解析:分析并解答几个多项式乘以多项式的例题。

4. 课堂练习:让学生独立完成一些多项式乘以多项式的练习题。

六、教学评价1. 通过课堂提问,检查学生对多项式乘以多项式的概念和运算规则的理解程度。

2. 通过课后作业和练习题,评估学生掌握多项式乘以多项式的运算方法和技巧的情况。

3. 结合学生的课堂表现和练习情况,综合评价学生的学习效果。

七、教学资源1. 教学PPT:制作多媒体教学课件,展示多项式乘以多项式的定义、性质和运算规则。

2. 练习题库:准备一批多项式乘以多项式的练习题,包括基础题和提高题。

3. 教学辅导书:提供相关的教学辅导书籍,供学生自主学习和复习。

八、教学进度安排1. 第一课时:讲解多项式乘以多项式的定义和性质。

2. 第二课时:讲解多项式乘以多项式的运算规则,示例解析。

3. 第三课时:课堂练习,学生独立完成练习题。

九、课后作业1. 完成课后练习题,巩固多项式乘以多项式的运算方法和技巧。

2. 选择一些提高题,挑战自己的极限,提高解决问题的能力。

《多项式乘以多项式》教案

《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标1. 让学生掌握多项式乘以多项式的运算法则。

2. 培养学生运用数学知识解决实际问题的能力。

3. 提高学生的数学思维能力和团队协作能力。

二、教学内容1. 多项式乘以多项式的定义和运算法则。

2. 多项式乘以多项式的计算方法。

3. 多项式乘以多项式在实际问题中的应用。

三、教学重点与难点1. 教学重点:多项式乘以多项式的运算法则和计算方法。

2. 教学难点:多项式乘以多项式在实际问题中的应用。

四、教学方法1. 采用讲解法、演示法、练习法、讨论法等教学方法。

2. 利用多媒体课件辅助教学,提高学生的学习兴趣。

3. 分组讨论,培养学生的团队协作能力。

五、教学步骤1. 导入新课:通过复习单项式乘以单项式的运算法则,引出多项式乘以多项式的概念。

2. 讲解多项式乘以多项式的运算法则,并用多媒体课件展示计算过程。

3. 举例讲解多项式乘以多项式的计算方法,让学生跟随老师一起动手操作。

4. 进行课堂练习,让学生独立完成多项式乘以多项式的计算。

5. 组织学生进行分组讨论,探讨多项式乘以多项式在实际问题中的应用。

6. 总结本节课所学内容,强调多项式乘以多项式的运算法则和计算方法。

7. 布置课后作业,巩固所学知识。

六、教学评价1. 通过课堂讲解、练习和讨论,评价学生对多项式乘以多项式的理解和掌握程度。

2. 评估学生在解决实际问题时,运用多项式乘以多项式的能力。

3. 观察学生在课堂上的参与程度、提问回答和小组合作情况,评价其数学思维能力和团队协作能力。

七、教学资源1. 多媒体课件:用于展示多项式乘以多项式的计算过程和实际应用案例。

2. 练习题库:提供丰富的练习题,帮助学生巩固所学知识。

3. 小组讨论工具:如白板、彩笔等,用于小组内讨论和展示。

八、教学进度安排1. 第1周:导入多项式乘以多项式的概念,讲解运算法则。

2. 第2周:讲解多项式乘以多项式的计算方法,进行课堂练习。

3. 第3周:探讨多项式乘以多项式在实际问题中的应用,进行小组讨论。

多项式乘多项式-优秀教案可修改全文

多项式乘多项式-优秀教案可修改全文

可编辑修改精选全文完整版多项式乘多项式【教学目标】1.知识与能力目标:理解多项式与多项式的乘法法则,掌握多项式与多项式相乘的运算。

2.过程与方法目标:由求一个长方形的面积的不同方法,引出多项式与多项式的乘法法则,体会数形之间的统一。

3.情感、态度与价值观目标:在探究“法则”的过程中,培养学生观察,概括与抽象的能力。

【教学重难点】重点:多项式与多项式相乘的乘法法则及法则的推导。

难点:在运算中遇到各种细节处理,比如相乘时的符号处理等问题。

【教学过程】一、自主学习(约8分钟)1.问题引入:一个矩形的长为(m+n)米,宽为(a+b)米,则它的面积为米²。

2.结合图形,发现(m+n)(a+b)=3.讨论如何计算:(m+n)(a+b)=?多项式乘以多项式的法则:多项式与多项式相乘,先用一个多项式的分别乘以另一个多项式的,再把。

注意:每一项必须连同前面的符号相乘。

二、自测(1)(a+b)(c+d)= ;(2)(m+n)(x+y)= ;(3)(m+n)(a-b)= ;(4)(x-1)(y-2)= ;练习(1)(2x+1) (x+3) (2)(m+2n)(m-3n) (3)(a-1)²(4)(2x²-1)(x-4) (5)(x²+3)(2x-5) (6)(3x-1)(2x+1)三、小组合作探究并展示(约5分钟)(1)两项式乘以两项式,结果一定是两项式吗?(2)项数多于两项的多项式乘多项式,能用多项式乘以多项式的法则进行计算吗?(3)二项式乘以三项式,展开是几项式?例:计算)32(222y xy x y x -+-)(四、当堂训练(约12分钟)要求:认真、规范、独立完成习题,注意知识与方法额应用、书写认真,步骤规范,成绩计入小组量化。

(A 组为必做题,做完的同学请举手示意,B 组为选做题)(一)计算1.(3m-n)(m-2n) 2.(2x-3)(x+4) 3.(x+y) 24.(-x+3y+4)(x-y) 5.(x -1)(x²-2x +3) 6.(3a-2)(a-1)+(a+1)(a+2)7.解方程 5x(x+1)=3x ²+2(x 2-5)8.若(x ²+ax +8)(x ²-3x +b )的乘积中不含x ²和x ³项,则a =_______,b =_______。

多项式乘多项式教案

多项式乘多项式教案

一、教学目标1. 让学生掌握多项式乘多项式的运算法则。

2. 培养学生运用数学知识解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队合作能力。

二、教学内容1. 多项式乘多项式的概念。

2. 多项式乘多项式的运算法则。

3. 多项式乘多项式的实例讲解。

三、教学重点与难点1. 教学重点:多项式乘多项式的运算法则。

2. 教学难点:如何将多项式乘多项式的运算法则应用到实际问题中。

四、教学方法1. 采用讲授法,讲解多项式乘多项式的概念和运算法则。

2. 利用例题,引导学生运用所学知识解决实际问题。

3. 组织小组讨论,培养学生的团队合作能力。

五、教学过程1. 引入:通过生活中的实际问题,引导学生思考如何计算多项式乘多项式。

2. 讲解:讲解多项式乘多项式的概念和运算法则,让学生理解和掌握。

3. 练习:布置练习题,让学生独立完成,巩固所学知识。

4. 讲解例题:选取具有代表性的例题,讲解如何运用多项式乘多项式的运算法则解决问题。

5. 小组讨论:组织学生进行小组讨论,分享解题心得,培养团队合作能力。

6. 总结:对本节课的内容进行总结,强调多项式乘多项式的运算法则。

7. 作业布置:布置课后作业,巩固所学知识。

六、教学评估1. 通过课堂练习和课后作业,评估学生对多项式乘多项式运算法则的掌握程度。

2. 观察学生在小组讨论中的表现,评估其团队合作能力和逻辑思维能力。

七、教学资源1. PPT课件:制作多媒体课件,展示多项式乘多项式的概念和运算法则。

2. 练习题库:准备一份含有多项式乘多项式练习题的题库,用于课堂练习和课后作业。

3. 小组讨论材料:提供一些实际问题,供学生在小组讨论中运用所学知识解决。

八、教学进度安排1. 第一课时:讲解多项式乘多项式的概念和运算法则。

2. 第二课时:讲解例题,进行小组讨论,巩固所学知识。

3. 第三课时:布置课堂练习,评估学生掌握程度。

4. 第四课时:总结本节课内容,布置课后作业。

九、教学反思1. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.2 整式乘法(多项式乘以多项式)
教学目标:经历探索多项式与多项式相乘的运算法则的过程,会进行整式相乘的运算.
教学重点:多项式与多项式相乘的运算法则的探索
教学难点:灵活运用法则进行计算和化简.
教学过程:
一.复习旧知
讲评作业二.创设情景,引
入新课
(课本)如图,为了扩大街
心花园的绿地面积,把一块原长
a 米、宽m 米的长方形绿地,增长了
b 米,加宽了n 米.你能用几种方法求出扩大后的绿地面积?
一种计算方法是先分别求出四个长方形的面积,再求它们的和,即(am+an+bm+bn )米2.
另一种计算方法是先计算大长方形的长和宽,然后利用长乘以宽得出大长方形的面积,即(a +b )(m +n )米2.
由于上述两种计算结果表示的是同一个量,因此
(a +b )(m +n )= am+an+bm+bn .
教师根据学生讨论情况适当提醒和启发,然后对讨论结果(a +b )(m +n )=am+an+bm+bn 进行分析,可以把m +n 看做一个整体,运用单项式与多项式相乘的法则,得
m n a b bn bm a m a n
(a +b)(m+n)=a(m+n)+b(m+n),再利用单项式与多项式相乘的法则,得
a(m+n)+b(m+n)= am+an+bm+bn.
学生归纳:多项式与多项式相乘,就是先用一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加.
三、应用提高、拓展创新
例:计算
(1)(3x+1)(x+2) ; (2) (x -8y)(x-y) ;
(3) (x+y)(x2-xy+y2)
进行运算时应注意:不漏不重,符号问题,合并同类项
练习:(课本)64页1
补充例题:
1.(a+b)(a-b)-(a+2b)(a-b)
2.(3x4-3x2+1)(x4+x2-2)
3.(x-1)(x+1)(x2+1)
4.当a=-1/2时,求代数式(2a-b)(2a+b)+(2a-b)(b-4a)+2b(b-3a)
的值
四.归纳总结,布置作业
课本64页2、3 P66 -10。

相关文档
最新文档