因式分解学案02-提取公因式法同步练习08
(完整版)提公因式法分解因式典型例题

(完整版)提公因式法分解因式典型例题因式分解(1)⼀知识点讲解知识点⼀:因式分解概念:把⼀个多项式化为⼏个整式的积的形式,叫做因式分解,也叫做把这个多项式分解因式。
1.因式分解特征:因式分解的结果是⼏个整式的乘积。
2.因式分解与整式乘法关系:因式分解与整式的乘法是相反⽅向的变形知识点⼆:寻找公因式1、⼩学阶段我们学过求⼀组数字的最⼤公因(约)数⽅法:(短除法)例如:求20,36,80的最⼤公(约)数?最⼤公倍数?2、寻找公因式的⽅法:(⼀)因式分解的第⼀种⽅法(提公因式法)(重点):1.提取公因式法:如果多项式的各项含有公因式,那么就可以把这个公因式提到括号外⾯,把多项式转化成公因式与另⼀个多项式的积的形,这种因式分解的⽅法叫做提公因式法。
2.符号语⾔:)(c b a m mc mb ma ++=++ 3.提公因式的步骤:(1)确定公因式(2)提出公因式并确定另⼀个因式(依据多项式除以单项式)公因式原多项式另⼀个因式=4.注意事项:因式分解⼀定要彻底⼆、例题讲解模块1:考察因式分解的概念1. (2017春峄城区期末)下列各式从左到右的变形,是因式分解的是() A 、x x x x x 6)3)(3(692+-+=+- B 、103)2)(5(2-+=-+x x x x C 、22)4(168-=+-x x x D 、b a ab 326?=2. (2017秋抚宁县期末)下列各式从左到右的变形,是因式分解的是() A 、2)1(3222++=++x x x B 、22))((y x y x y x -=-+ C 、222)(y x y xy x -=+- D 、)(222y x y x -=- 3. (2017秋姑苏区期末)下列从左到右的运算是因式分解的是() A 、1)1(21222+-=+-a a a a B 、22))((y x y x y x -=+- C 、22)13(169-=+-x x x D 、xy y x y x 2)(222+-=+4.(2017秋华德县校级期末)下列各式从左到右的变形,是因式分解的是() A 、15123-=-+x y x B 、2 249)23)(23(b a b a b a -=-+C 、)11(22xx x x +=+ D 、)2)(2(28222y x y x y x -+=-5. (2017春新城区校级期中)下列各式从左到右的变形是因式分解的是() A 、ab a b a a -=-2)( B 、1)2(122+-=+-a a a a C 、)1(2-=-x x x x D 、)(222xy y x y x xy -=-6. (2016秋濮阳期末)下列式⼦中,从左到右的变形是因式分解的是() A 、23)2)(1(2+-=--x x x x B 、)2)(1(232--=+-x x x x C 、4)4(442+-=++x x x x D 、))((22y x y x y x -+=+模块2:考察公因式1. (2017春抚宁县期末)多项式3222320515n m n m n m -+的公因式是() A 、mn 5 B 、225n m C 、n m 25 D 、25mn 2.(2017春东平县期中)把多项式332223224168bc a c b a c b a -+-分解因式,应提的公因式是()A 、bc a 28-B 、3222c b aC 、abc 4-D 、33324c b a 3.(2017秋凉州区末)多项式92-a 与a a 32-的公因式是() A 、3+a C 、3-a B 、1+a D 、1-a 4.(2017春邵阳县期中)多项式n m n my x y x 31128--的公因式是()A 、nmy x B 、1-n myx C 、nmy x 4 D 、14-n myx5.(2016春深圳校级期中)多项式mx mx mx 1025523-+-各项的公因式是()A 、25mxB 、35mx - C 、mx D 、mx 5- 6.下列各组代数式中没有公因式的是() A 、)(5b a m -与a b - B 、2 )(b a +与b a -- C 、y mx +与y x + D 、ab a +-2与22ab b a -7.观察下列各组式⼦:①b a +2和b a +;②)(5b a m -和b a +-;③)(3b a +和b a --;④22y x -和22y x +。
沪科初中数学七下 《因式分解《提公因式法》教案 (公开课获奖)2022沪科版2

《提公因式法》教学目标:1、了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形.2、会确定多项式中各项的公因式,会用提取公因式法分解多项式的因式.教学重难点教学重点:因式分解的概念及提取公因式法.教学难点:多项式中公因式确实定和当公因式是多项式时的因式分解.教学设计:〔一〕新课引入:回忆:运用所学知识填空〔1〕x 〔x +1〕= 〔2〕〔x +1〕〔x -1〕=〔3〕2ab 〔a 2+b +1〕=反之:〔1〕x 2+x = 〔2〕x 2-1=〔3〕2a ³b +2ab ²+2ab =观察以下式子的特点:〔1〕15=3×5〔2〕18=2×32 〔3〕x 2+x=x 〔x+1〕〔4〕x ²-1=〔x+1〕〔x-1〕〔5〕2a ³b +2ab ²+2ab =2ab 〔a ²+b +1〕由分解质因数类比到分解因式.〔二〕新知学习:1、分解因式的概念,与整式乘法的关系.稳固概念:判断以下各式从左到右哪些是因式分解?〔1〕m 〔a +b 〕=ma +mb〔2〕2a +4=2〔a +2〕〔3〕4a ²-6ab ²+2a =2a 〔2a -3b ²+1〕〔4〕a ²-2a +1=a 〔a -2〕+1〔5〕)10)(10(100)(2-+=-xy x y x y 2、确定公因式.问题:ma +mb +mc 这个多项式有什么特征? 引入公因式概念.例1:找出6x ³y 5-3x ²y 4的公因式,归纳找公因式的方法.课堂练习一:找出以下各多项式中的公因式填在后面括号内.〔1〕3mx-6nx2〔〕〔2〕x4y3+x3y4 〔〕〔3〕12x2yz-9x2y2 〔〕〔4〕5a2-15a3+25a〔〕3、用提公因式法分解因式.m〔a+b+c〕=ma+mb+mc可得ma+mb+mc=m〔a+b+c〕,观察构成乘积的两个因式分别是怎样形成的?m是这个多项式的公因式,而另一个因式是原多项式除以公因式所得的商式.像这种分解因式的方法叫做提公因式法.想一想:提公因式法的理论依据是什么?4、知识运用:例2:把8a²b²+12ab²c分解因式例3:把-24x³-12x²+28x分解因式.判断以下各式分解因式是否正确?如果不对,请加以改正.〔1〕2a2+4a+2=2〔a2+2a〕〔2〕3x2y3-6xy2z=3xy〔xy2-2yz〕把以下各式分解因式.〔1〕x2+x6〔2〕12xyz-9x2y2〔3〕-6x2-18xy+3x〔4〕2a n+2-4a n+1-6a n-1例4:把3a〔b+c〕-3〔b+c〕分解因式将以下各式分解因式.〔1〕p〔a2+b2〕-q〔a2+b2〕〔2〕 2a² 〔y-z〕2-4a〔z-y〕2例5:先分解因式,再求值.4a2〔x+7〕-3〔x+7〕,其中a=-5,x=3.5、拓展与提高:〔1〕20212+2021能被2021整除吗?〔2〕利用因式分解进行计算:23.1×24-46.2×7〔3〕将2a〔a+b-c〕-3b〔a+b-c〕+5c〔c-a-b〕分解因式.〔三〕课堂小结:〔1〕什么叫因式分解?〔2〕确定公因式的方法.〔3〕提公因式法分解因式的步骤.〔4〕提公因式法分解因式的步骤.有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法那么,会进行有理数的除法运算,会求有理数的倒数。
4.2《提取公因式法》参考教案2

4.2 提取公因式法教案【教学内容分析】“提取公因式法”是因式分解的最基本、最常用的方法.它的理论依据是逆用分配律,因此,学生接受起来并不难,但因题目各有其特点,形式变化多,所以需要学生具有观察、分析能力和应变能力,这就需要在教学中加以指导、训练.例题讲授及练习题的匹配都要由浅入深,形式多样化.利用这个方法,首先对要分解的多项式进行考察,发现特点及多项式各项之间的内在联系,适当变形.(可利用计算机辅助教学手段,增大教学的容量和教学质量,改变传统的言传身教的方式.)【教学目标】认知目标:⑴在具体情境中认识公因式⑵通过对具体问题的分析及逆用分配律,使学生理解提取公因式法并能熟练地运用提取公因式法分解因式能力目标:⑴树立学生“化零为整”、“化归”的数学思想,培养学生完整地、辨证地看问题的思想.⑵树立学生全面分析问题,认识问题的思想,提高学生的观察能力,分析问题及逆向思想能力.情感目标:在观察、对比、交流和讨论的数学活动中发掘知识,并使学生体验到学习的乐趣和数学的探索性.【教学重点、难点】1.教学重点∶掌握公因式的概念,会使用提取公因式法进行因式分解,理解添括号法则.2.教学难点∶正确地找出公因式【教学方法】理论与实例相结合(采用设问式、启发式)【教学工具】应用投影仪(计算机)【教学过程】㈠创设情境,提出问题如图,一块菜园由两个长方形组成,这些长方形的长分别是3.8m,6.2m,宽都是3.7 m,如何计算这块菜园的面积呢?3.8列式:3.7×3.8+3.7×6.2(学生思考后列式)3.7 有简便算法吗?=3.7×(3.8+6.2)=3.7×10=37(m2)在这一过程中,把3.7换成m,3.8换成a,6.2换成b,于是有:ma+mb =m(a+b)利用整式乘法验证: m(a+b)=ma+mb可能有学生会提出把两个小的长方形补成一个大的长方形,那就更好,或其他的方法,教师都应该及时肯定学生思维中的闪光点.(使学生初步意识到因式分解可以使运算简便,同时起到使知识进行迁移化归.)【以问题引入能引起学生的学习兴趣,符合学生的认知规律.本课时用“复习引入”亦是一种好办法,即先复习分配律,同时可让学生说出整式乘法与因式分解的联系与区别,以便复习上一节的内容,然后让学生观察引出新内容.】㈡观察分析,探究新知让学生观察多项式:ma+mb(让学生说出其特点:都有m,含有两种运算乘法、加法;然后教师规范其特点,从而引出新知.)各项都含有一个公共的因式m,我们把因式m叫做这个多项式各项的公因式.【把主动权交给学生,尽量让他们自己说,也可尝试让他们取名,使他们体验到成功的喜悦.】注意:公因式是一个多项式中每一项都含有的相同的因式.又如:b是多项式ab-b2各项的公因式2xy是多项式4x2y-6xy2z各项的公因式让学生说出公因式,学生可能会说是2或者是x 、y、2x、2y、2xy等,最后一起确定公因式2xy,让学生初步体会到确定公因式的方法.㈢独立练习,巩固新知。
浙教版七年级数学下册2提取公因式法同步练习

浙教版七年级下 4.2提取公因式法同步练习一.选择题1.(2021秋•孟村县期末)将多项式a2b﹣2b利用提公因式法分解因式,则提取的公因式为()A.a2b B.ab C.a D.b2.多项式mn2﹣2m2n﹣4mn分解因式,应提取的公因式是()A.mn B.2mm C.mn D.3.(2021秋•巴彦县期末)多项式8a3b2+12ab3c的公因式是()A.abc B.4ab2C.ab2D.4ab2c4.(2021春•昌图县期末)多项式2xy﹣4x2y+4xy2﹣8x2y2中,各项的公因式是()A.2xy B.2x2y C.2xy2D.2x2y25.(2021春•滕州市期末)已知xy=3,x﹣y=﹣2,则代数式x2y﹣xy2的值是()A.6 B.﹣1 C.﹣5 D.﹣66.(2021秋•鱼台县期末)下列因式分解正确的是()A.2a+4=2(a+2)B.(a﹣b)m=am﹣bmC.x(x﹣y)+y(x﹣y)=(x﹣y)2D.a2﹣b2+1=(a+b)(a﹣b)+17.(2021春•富川县期末)把式子2x(a﹣2)﹣y(2﹣a)分解因式,结果是()A.(a﹣2)(2x+y)B.(2﹣a)(2x+y)C.(a﹣2)(2x﹣y)D.(2﹣a)(2x﹣y)8.(2021春•南岸区期末)用提公因式法分解因式,下列因式分解正确的是()A.2n2﹣mn+n=2n(n﹣m)B.2n2﹣mn+n=n(2﹣m+1)C.2n2﹣mn+n=n(2n﹣m)D.2n2﹣mn+n=n(2n﹣m+1)9.(2021春•埇桥区期末)(﹣2)2021+(﹣2)2022计算后的结果是()A.22021B.﹣2 C.﹣22021D.﹣110.(2021春•怀柔区期末)将3a2m﹣6amn+3a分解因式,下面是四位同学分解的结果:①3am(a﹣2n+1)②3a(am+2mn﹣1)③3a(am﹣2mn)④3a(am﹣2mn+1)其中,正确的是()A.①B.②C.③D.④二.填空题11.(2021秋•南安市期中)分解因式:3ab﹣6a2=.12.(2018春•石阡县期中)多项式36x+24x3y﹣12xy中各项的公因式是.13.(2021秋•天津期末)分解因式x2y﹣4xy=.14.(2021•太原三模)分解因式4x(x+1)﹣(x+1)2的结果是.15.(2021秋•黄浦区期中)分解因式:3a(x﹣y)+2b(y﹣x)=.16.(2021春•盐湖区校级期末)已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b的值为.三.解答题17.(2021春•广陵区校级期中)因式分解:(1)9abc﹣6a2b2+12abc2.(2)3x2(x﹣y)+6x(y﹣x).18.(2021春•历下区期中)对下列多项式进行因式分解.(1)﹣4a3b3+6a2b﹣2ab;(2)(x+1)(x﹣1)﹣(1﹣x)2.19.(2020秋•浦东新区校级期中)因式分解:(x﹣y)(3y﹣5x)﹣(y﹣x)(y﹣3x).20.分解因式(1)(x+2y)2﹣x2﹣2xy(2)(a﹣b)2(m+n)﹣(﹣m﹣n)(b﹣a)21.在讲提取公因式一课时,张老师出了这样一道题目:把多项式3(x﹣y)3﹣(y﹣x)2分解因式•并请甲、乙两名同学在黑板上演算.甲演算的过程:3(x﹣y)3﹣(y﹣x)2=3(x﹣y)3+(x﹣y)2=(x﹣y)2[3(x﹣y)+1]=(x﹣y)2(3x﹣3y+1).乙演算的过程:3(x﹣y)3﹣(y﹣x)2=3(x﹣y)3﹣(x﹣y)2=(x﹣y)2(3x﹣3y).他们的计算正确吗?若错误,请你写出正确答案.答案与解析一.选择题1.(2021秋•孟村县期末)将多项式a2b﹣2b利用提公因式法分解因式,则提取的公因式为()A.a2b B.ab C.a D.b【解析】解:a2b﹣2b=b(a2﹣2),将多项式a2b﹣2b利用提公因式法分解因式,则提取的公因式为:b,故选:D.2.多项式mn2﹣2m2n﹣4mn分解因式,应提取的公因式是()A.mn B.2mm C.mn D.【解析】解:mn2﹣2m2n﹣4mn=mn(n﹣4m﹣8).故应提取的公因式是mn.故选:C.3.(2021秋•巴彦县期末)多项式8a3b2+12ab3c的公因式是()A.abc B.4ab2C.ab2D.4ab2c【解析】解:多项式8a3b2+12ab3c的公因式是:4ab2.故选:B.4.(2021春•昌图县期末)多项式2xy﹣4x2y+4xy2﹣8x2y2中,各项的公因式是()A.2xy B.2x2y C.2xy2D.2x2y2【解析】解:∵多项式2xy﹣4x2y+4xy2﹣8x2y2系数的最大公约数是2,相同字母的最低指数次幂是x 和y,∴该多项式的公因式为2xy,故选:A.5.(2021春•滕州市期末)已知xy=3,x﹣y=﹣2,则代数式x2y﹣xy2的值是()A.6 B.﹣1 C.﹣5 D.﹣6【解析】解:x2y﹣xy2=xy(x﹣y)=3×(﹣2)=﹣6,故选:D.6.(2021秋•鱼台县期末)下列因式分解正确的是()A.2a+4=2(a+2)B.(a﹣b)m=am﹣bmC.x(x﹣y)+y(x﹣y)=(x﹣y)2D.a2﹣b2+1=(a+b)(a﹣b)+1【解析】解:A、2a+4=2(a+2),正确;B、(a﹣b)m=am﹣bm,是整式乘法,不是因式分解,故此选项错误;C、x(x﹣y)+y(x﹣y)=(x+y)(x﹣y),故此选项错误;D、a2﹣b2+1=(a+b)(a﹣b)+1,不符合因式分解的定义,故此选项错误.故选:A.7.(2021春•富川县期末)把式子2x(a﹣2)﹣y(2﹣a)分解因式,结果是()A.(a﹣2)(2x+y)B.(2﹣a)(2x+y)C.(a﹣2)(2x﹣y)D.(2﹣a)(2x﹣y)【解析】解:2x(a﹣2)﹣y(2﹣a)=(a﹣2)(2x+y).故选:A.8.(2021春•南岸区期末)用提公因式法分解因式,下列因式分解正确的是()A.2n2﹣mn+n=2n(n﹣m)B.2n2﹣mn+n=n(2﹣m+1)C.2n2﹣mn+n=n(2n﹣m)D.2n2﹣mn+n=n(2n﹣m+1)【解析】解:2n2﹣mn+n=n(2n﹣m+1),故选:D.9.(2021春•埇桥区期末)(﹣2)2021+(﹣2)2022计算后的结果是()A.22021B.﹣2 C.﹣22021D.﹣1【解析】解:(﹣2)2021+(﹣2)2022=(﹣2)2021×(1﹣2)=22021.故选:A.10.(2021春•怀柔区期末)将3a2m﹣6amn+3a分解因式,下面是四位同学分解的结果:①3am(a﹣2n+1)②3a(am+2mn﹣1)③3a(am﹣2mn)④3a(am﹣2mn+1)其中,正确的是()A.①B.②C.③D.④【解析】解:原式=3a(am﹣2mn+1),故选:D.二.填空题11.(2021秋•南安市期中)分解因式:3ab﹣6a2=3a(b﹣2a).【解析】解:原式=3a(b﹣2a),故答案为:3a(b﹣2a).12.(2018春•石阡县期中)多项式36x+24x3y﹣12xy中各项的公因式是12x.【解析】解:多项式36x+24x3y﹣12xy中各项的公因式是12x,故答案为:12x.13.(2021秋•天津期末)分解因式x2y﹣4xy=xy(x﹣4).【解析】解:x2y﹣4xy=xy(x﹣4).故答案为:xy(x﹣4).14.(2021•太原三模)分解因式4x(x+1)﹣(x+1)2的结果是(x+1)(3x﹣1).【解析】解:4x(x+1)﹣(x+1)2=(x+1)[4x﹣(x+1)]=(x+1)(4x﹣x﹣1)=(x+1)(3x﹣1).故答案为:(x+1)(3x﹣1).15.(2021秋•黄浦区期中)分解因式:3a(x﹣y)+2b(y﹣x)=(x﹣y)(3a﹣2b).【解析】解:原式=3a(x﹣y)﹣2b(x﹣y)=(x﹣y)(3a﹣2b),故答案为:(x﹣y)(3a﹣2b).16.(2021春•盐湖区校级期末)已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b的值为﹣31.【解析】解:(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)=(3x﹣7)(2x﹣21﹣x+13)=(3x﹣7)(x﹣8),∵(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),∴(3x﹣7)(x﹣8)=(3x+a)(x+b),则a=﹣7,b=﹣8,故a+3b=﹣7+3×(﹣8)=﹣31.故答案为:﹣31.三.解答题17.(2021春•广陵区校级期中)因式分解:(1)9abc﹣6a2b2+12abc2.(2)3x2(x﹣y)+6x(y﹣x).【解析】解:(1)9abc﹣6a2b2+12abc2=3ab(3c﹣2ab+4c2);(2)3x2(x﹣y)+6x(y﹣x)=3x2(x﹣y)﹣6x(x﹣y)=3x(x﹣y)(x﹣2).18.(2021春•历下区期中)对下列多项式进行因式分解.(1)﹣4a3b3+6a2b﹣2ab;(2)(x+1)(x﹣1)﹣(1﹣x)2.【解析】解:(1)﹣4a3b3+6a2b﹣2ab=﹣(4a3b3﹣6a2b+2ab)=﹣2ab(2a2b2﹣3a+1);(2)(x+1)(x﹣1)﹣(1﹣x)2=(x+1)(x﹣1)﹣(x﹣1)2=(x﹣1)[(x+1)﹣(x﹣1)]=2(x﹣1).19.(2020秋•浦东新区校级期中)因式分解:(x﹣y)(3y﹣5x)﹣(y﹣x)(y﹣3x).【解析】解:原式=(x﹣y)(3y﹣5x)+(x﹣y)(y﹣3x)=(x﹣y)(3y﹣5x+y﹣3x)=(x﹣y)(4y﹣8x)=4(x﹣y)(y﹣2x).20.分解因式(1)(x+2y)2﹣x2﹣2xy(2)(a﹣b)2(m+n)﹣(﹣m﹣n)(b﹣a)【解析】解:(1)(x+2y)2﹣x2﹣2xy=(x+2y)2﹣x(x+2y)=2y(x+2y);(2)(a﹣b)2(m+n)﹣(﹣m﹣n)(b﹣a)=(a﹣b)2(m+n)﹣(m+n)(a﹣b)=(a﹣b)(m+n)(a﹣b﹣1)21.在讲提取公因式一课时,张老师出了这样一道题目:把多项式3(x﹣y)3﹣(y﹣x)2分解因式•并请甲、乙两名同学在黑板上演算.甲演算的过程:3(x﹣y)3﹣(y﹣x)2=3(x﹣y)3+(x﹣y)2=(x﹣y)2[3(x﹣y)+1]=(x﹣y)2(3x﹣3y+1).乙演算的过程:3(x﹣y)3﹣(y﹣x)2=3(x﹣y)3﹣(x﹣y)2=(x﹣y)2(3x﹣3y).他们的计算正确吗?若错误,请你写出正确答案.【解析】解:不正确;3(x﹣y)3﹣(y﹣x)2=3(x﹣y)3﹣(x﹣y)2=(x﹣y)2[3(x﹣y)﹣1]=(x﹣y)2(3x﹣3y﹣1).。
因式分解-提公因式和公式法专项练习(原卷版)

因式分解-提公因式和公式法专项练习(一)知识点1:因式分解1.定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.2.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.3.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.【典例1】下列各式由左边到右边的变形中,是因式分解的是()A.a(x﹣y)=ax﹣ay B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4x+3=x(x﹣4)+3D.a2+1=(a+1)(a﹣1)【变式1-1】下列各式从左到右不属于因式分解的是()A.x2﹣x=x(x﹣1)B.x2+2x+1=x(x+2)+1C.x2﹣6x+9=(x﹣3)2D.x2﹣1=(x+1)(x﹣1)【变式1-2】下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)知识点2:公因式的公因式是.【典例2-2】4x(m﹣n)+8y(n﹣m)2的公因式是.【变式2-1】多项式.4ab2+8a2b的公因式是.【变式2-2】多项式3x+3y与x2﹣y2的公因式是.【变式2-3】多项式4x(m﹣n)+2y(m﹣n)2的公因式是.知识点3:提公因式提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.注意:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.【典例3】分解因式:(1)2y+3xy;(2)2(a+2)+3b(a+2).【变式3-1】因式分解(1)x2﹣4x;(2)8y3﹣2x2y.【变式2-2】因式分解:(1)8abc﹣2bc2;(2)2x(x+y)﹣6(x+y).【变式3-3】分解因式:x(m+n)﹣y(n+m)+(m+n).知识点4:公式法=.【变式4-1】因式分解:a2﹣169=.【变式4-2】因式分解:4a2﹣b2=.【变式4-3】把多项式a2﹣9b2分解因式结果是.【典例5】分解因式:a2+8a+16=.【变式5-1】因式分解x2﹣6ax+9a2=.【变式5-2】分解因式:a2﹣6a+9=.知识点5:提公因式与公式法综合1.提公因式:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.2.公式法:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)【典例6】分解因式(1)x2y﹣y;(2)ax2﹣6ax+9a.【变式6-1】因式分解:(1)x3y﹣xy3;(2)8a2﹣16ab+8b2.【变式6-2】因式分解:(1)2x3y﹣2xy3(2)﹣a3+2a2﹣a.【变式6-3】分解因式:(1)5x2﹣5y2;(2)2mx2+4mxy+2my2.【变式6-4】因式分解:9a2(x﹣y)+4b2(y﹣x)【达标测评】一.选择题(共8小题)1.(2023秋•泉港区期末)多项式12a3b﹣8ab2c的公因式是()A.4a2B.4abc C.2a2D.4ab 2.(2023秋•莱西市期末)多项式3m2+6mn的公因式是()A.3B.m C.3m D.3n 3.(2023秋•纳溪区期末)因式分解(x﹣1)2﹣9的结果是()A.(x﹣10)(x+8)B.(x+8)(x+1)C.(x﹣2)(x+4)D.(x+2)(x﹣4)4.(2023秋•泰山区期末)分解因式:64﹣x2正确的是()A.(8﹣x)2B.(8﹣x)(8+x)C.(x﹣8)(x+8)D.(32+x)(32﹣x)5.(2023秋•沙坪坝区校级期末)因式分解:mx2﹣4m=()A.m(x2﹣4)B.m(x+2)(x﹣2)C.mx(x﹣4)D.m(x+4)(x﹣4)6.(2023秋•哈密市期末)下面各式从左到右的变形,属于因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣1=(x﹣1)2C.x2﹣x﹣1=x(x﹣1)﹣1D.x2﹣x=x(x﹣1)7.(2024•裕华区校级开学)若a+b=3,a﹣b=,则a2﹣b2的值为()A.1B.C.D.98.(2023秋•南沙区期末)已知多项式x2+ax+16可以用完全平方公式进行因式分解,则a的值为()A.4B.8C.﹣8D.±8二.填空题(共5小题)9.(2023秋•临潼区期末)式子x(y﹣1)与﹣18(y﹣1)的公因式是.10.(2024•榆阳区校级一模)因式分解:2x2y+10xy=.11.(2024•西山区校级模拟)分解因式:m3+6m2+9m=.12.(2023秋•哈密市期末)已知x+y=10,xy=1,则代数式x2y+xy2的值为.13.(2024•临潼区一模)因式分解:3a2﹣12=.三.解答题(共3小题)14.(2023秋•海口期末)把下列多项式分解因式:(1)4a3﹣16ab2;(2)3(x﹣1)2+12x.15.(2023秋•洪山区期末)因式分解.(1)x3﹣2x2y+xy2(2)m2(a﹣b)+n2(b﹣a)16.(2023秋•寻乌县期末)因式分解:(1)﹣x3﹣2x2﹣x;(2)x2(a﹣1)+y2(1﹣a).。
因式分解教案模板(10篇)

因式分解教案模板(10篇)因式分解教案 1教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2-b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1)._2-4y2=(_+2y)(_-2y)因式分解(2).2_(_-3y)=2_2-6_y整式乘法(3).(5a-1)2=25a2-10a+1整式乘法(4)._2+4_+4=(_+2)2因式分解(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解(7).2πR+2πr=2π(R+r)因式分解2、规律总结(教师讲解):分解因式与整式乘法是互逆过程.分解因式要注意以下几点:(1).分解的对象必须是多项式.(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.3、因式分解的方法提取公因式法:-6_2+6_y+3_=-3_(2_-2y-1)公因式的概念;公因式的求法公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)24、强化训练教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。
现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。
下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。
《提公因式法》优秀教案

第四章因式分解2.提公因式法(一)总体说明本节是因式分解的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法的分配律的逆运算到提取公因式的过程,让学生体会数学的主要思想——类比思想,运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提取公因式法时,由整式的乘法的逆运算到提取公因式的概念,由提取的公因式是单项式到提取的公因式是多项式时的分解方法,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,让学生进一步了解分解因式与整式的乘法运算之间的互逆关系.一、学生知识状况分析学生的技能基础:在上一节课的基础上,学生基本上了解了分解因式与整式的乘法运算之间的互逆关系,能通过观察、类比等手段,寻求因式分解与因数分解之间的关系,这为今天的深入学习提供了必要的基础.学生活动经验基础:学生有了上一节课的活动基础,由于本节课采用的活动方法与上节课很相似,依然是观察、对比等,学生对于这些活动方法较熟悉,有较好的活动经验.二、教学任务分析根据学生在上一节课的经验,学生只是对因式分解有了一个初步的印象和判断,而对于怎样把一个多项式进行因式分解还很茫然,相应的数学能力还有待于进一步加强和巩固.因此,本课时的教学目标是:1使学生了解因式分解的意义,了解因式分解和整式的乘法是整式的两种相反方向的变形。
2让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解。
3通过与质因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想;通过对公因式是多项式时的因式分解的教学,培养“换元”的意识。
教学重点:因式分解的概念及提公因式法的应用。
教学难点:正确找出多项式中各项的公因式和当公因式是多项式时的因式分解。
三、教学过程分析本节课设计了七个教学环节:温故知新——想一想——议一议——试一试——做一做——想一想——反馈练习.第一环节温故知新活动内容:计算:2859851585⨯+⨯⨯-采用什么方法?依据是什么? 活动目的:旨在让学生通过乘法分配律的逆运算这一特殊算法,使学生通过类比的思想自然地过渡到理解提公因式法的概念上,从而为提公因式法的掌握埋下伏笔。
提取公因式法因式分解练习题

提取公因式法因式分解练习题题组训练一:确定下列各多项式的公因式。
1.ay+ax^2,公因式为a。
2.3mx-6my^3,公因式为3m。
3.4a^2+10ab^4,公因式为2a。
4.15a^2+5a^5,公因式为5a^2.5.x^2y-xy2/6,公因式为xy。
6.-9x^2y^2,公因式为3xy。
7.m(x-y)+n(x-y),公因式为(x-y)。
8.x(m+n)+y(m+n),公因式为(m+n)。
9.abc(m-n)^3-ab(m-n),公因式为ab(m-n)。
10.12x(a-b)^2-9m(b-a)^3,公因式为3(a-b)^2.题组训练二:利用乘法分配律的逆运算填空。
1.2πR+2πr=2π(R+r)。
2.2πR+2πr=2π(R+r)/2.3.gt^1/2+gt^2/2=(gt^1/2+gt^2/2)^2.4.15a^2+25ab^2=5a(3a+5b^2)。
题组训练三:在下列各式左边的括号前填上“+”或“-”,使等式成立。
1.x+y=(x+y)。
2.b-a=-(a-b)。
3.-z+y=-(y-z)。
4.(y-x)=-(x-y)。
5.(y-x)^3=-(x-y)^3.6.-(x-y)^4=(y-x)^4.7.(a-b)^(2n)=(-1)^(2n)(b-a)^(2n)。
8.(a-b)^(2n+1)=(-1)^(2n+1)(b-a)^(2n+1)。
9.(1-x)(2-y)=-(1-x)(y-2)。
10.(1-x)(2-y)=(x-1)(y-2)。
11.(a-b)^2(b-a)=-(a-b)^3.题组训练四:把下列各式分解因式。
1.n(x-y)。
2.a(a+b)^2.3.2x(2x-3)。
4.2mn(4m+n)。
5.5x^2y^2(5y-3)。
6.3xy(4z-3x)。
7.3y(a-1)^2-3(a-1)y。
8.(a-b)(a-3b)。
9.-(x-3)(x+3)。
10.-4y(3x+2y)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解学案02-提取公因式法同步练习08
板块二:提公因式法
提取公因式:如果多项式的各项有公因式,一般要将公因式提到括号外面. 确定公因式的方法:
系数——取多项式各项系数的最大公约数;
字母(或多项式因式)——取各项都含有的字母(或多项式因式)的最低次幂.
【例 1】 分解因式:
⑴ad bd d -+; ⑵4325286x y z x y - ⑶322618m m m -+- ⑷23229
632x y x y xy ++
【巩固】 分解因式:22(1)1a b b b b -+-+-
【巩固】 ⑴23361412abc a b a b --+;⑵32461512a a a -+-
【例 2】 分解因式
⑴23423232545224()20()8()x y z a b x y z a b x y z a b ---+- ⑵346()12()m n n m -+-
【巩固】 分解因式:
⑴55()()m m n n n m -+- ⑵()()()2a a b a b a a b +--+
【巩固】 分解因式:
⑴2316()56()m m n n m -+- ⑵(23)(2)(32)(2)a b a b a b b a +--+-
【巩固】 化简下列多项式:()()()()
23200611111x x x x x x x x x ++++++++++
【例 3】 分解因式:
⑴()()2121510n n a a b ab b a +---(n 为正整数)
⑵212146n m n m a b a b ++--(m 、n 为大于1的自然数)
【巩固】 分解因式: 2122()()()2()()n n n x y x z x y y x y z +----+--,n 为正整数.
【例 4】 (2005年长沙市中考题)
先化简再求值,()()()2y x y x y x y x +++--,其中2x =-,12y =.
【巩固】 求代数式的值:22(32)(21)(32)(21)(21)(23)x x x x x x x -+--+++-,其中23x =-.
【例 5】 已知:2b c a +-=-,求2222
1
()()(222)33333a a b c b c a b c b c a --+-+++-的值.
【巩固】 分解因式:322()()()()()x x y z y z a x z z x y x y z x y x z a +-+-+--+----.。