晶体的熔化与凝固实验研究实验报告
熔化凝固的物理实验报告

一、实验目的1. 了解熔化和凝固的概念及特点。
2. 掌握晶体和非晶体的区别。
3. 通过实验探究晶体和非晶体在熔化过程中的温度变化规律。
二、实验原理物质从固态变为液态的过程称为熔化,从液态变为固态的过程称为凝固。
晶体在熔化过程中,温度保持不变,而非晶体在熔化过程中,温度逐渐升高。
晶体具有固定的熔点,而非晶体没有固定的熔点。
三、实验器材1. 铁架台2. 石棉网3. 烧杯4. 水5. 试管6. 温度计7. 酒精灯8. 海波9. 石蜡四、实验步骤1. 将海波和石蜡分别放入试管中。
2. 将试管固定在铁架台上,用石棉网隔开烧杯和试管。
3. 将烧杯中加入适量的水,用酒精灯加热。
4. 观察并记录海波和石蜡在加热过程中的温度变化。
五、实验现象1. 海波在加热过程中,温度逐渐升高,当温度达到48℃时,海波开始熔化。
在熔化过程中,温度保持不变,直到熔化完毕,温度才继续上升。
2. 石蜡在加热过程中,温度不断升高,没有固定的熔点。
六、实验结论1. 海波为晶体,具有固定的熔点,在熔化过程中,温度保持不变。
2. 石蜡为非晶体,没有固定的熔点,在熔化过程中,温度逐渐升高。
七、实验分析1. 实验结果表明,晶体和非晶体在熔化过程中的温度变化规律不同。
晶体具有固定的熔点,在熔化过程中,温度保持不变;而非晶体没有固定的熔点,在熔化过程中,温度逐渐升高。
2. 实验中,海波和石蜡的熔点与教材中给出的部分物质的熔点存在一定误差,可能是由于实验器材的精度和实验操作的影响。
八、实验拓展1. 通过本实验,我们可以了解到晶体和非晶体的区别,以及它们在熔化过程中的温度变化规律。
2. 在实际生活中,我们可以运用这些知识,如:选择合适的材料制作容器,避免材料在温度变化时发生形变。
九、实验总结本次实验通过观察海波和石蜡的熔化过程,了解了晶体和非晶体的区别,掌握了晶体和非晶体在熔化过程中的温度变化规律。
实验过程中,我们学会了如何操作实验器材,观察实验现象,并从中得出结论。
晶体的熔化与凝固实验研究述评及改进

晶体的熔化与凝固实验研究述评及改进蒋馨雅㊀桑芝芳摘㊀要: 晶体的熔化与凝固 是义务教育初中物理 物态变化 主题中的学生实验㊂关于该实验的研究主要集中在对 晶体熔化 实验的操作㊁装置及材料改进方面,很少有对其现象背后的原因进行定量分析㊂对1996年至2019年关于 晶体的熔化与凝固 实验研究方面的文献进行评述,从实验材料㊁样品用量㊁相变持续时间等几个维度对文献中的数据进行分析,提出该实验改进方案及操作建议㊂关键词:晶体熔化与凝固;过冷现象;实验改进蒋馨雅,苏州大学物理科学与技术学院,在读硕士研究生;桑芝芳,苏州大学物理科学与技术学院,教授㊂㊀㊀ 晶体的熔化与凝固 是初中物理课程中 物质的形态与变化 这一主题下的核心内容,对应实验操作难度较大㊁成功率低㊂2011年课标对该实验的要求由以前的演示实验改为学生的探究实验㊂这一改变也预示着对实验探究的重视以及对学生实验要求的提升㊂在实验过程中出现的问题及解决方法已有50余篇文献进行相关研究,本文对上述文献进行评述,并提出实验改进方案㊂㊀㊀一㊁各版本实验要求介绍晶体的熔化与凝固 实验旨在通过科学探究,观察晶体在熔化与凝固过程中的现象,通过记录温度随时间的变化绘制图像,得出晶体的熔点与凝固点以及熔化与凝固时的吸热与放热及温度变化的特点㊂1978年第一版初中物理教材选用萘研究其熔化与凝固过程,后因为萘加热分解产生有害气体而改为海波和碎冰㊂现行的北师大版㊁人教版㊁浙教版和沪科版教材选择海波进行实验探究,苏教版教材只要求学生在课堂上完成 冰的熔化 实验,凝固特点直接给出结论[1]㊂实验仪器选用铁架台㊁试管㊁烧杯,采用水浴加热㊂各版本教材实验要求如表1所示㊂表1 各版本实验要求比较教材版本实验晶体开始温度读数间隔结束时间北师大版海波40ħ1min 完全熔化后2min 人教版海波40ħ1min 完全熔化后记录4~5个浙教版海波40ħ30s 完全熔化后记录4~5个沪科版海波粒30ħ1min 完全熔化后3min 苏教版碎冰40ħ30s完全熔化后2min㊀㊀作为科学探究,具体操作步骤是留给学生自己探索的㊂沪科版教材使用晶粒进行实验,并提到了搅拌,在实验的讨论部分提出研磨可使实验数据精确一些㊂35㊀㊀二㊁已有实验研究分析(一)晶体材料选择对比分析对于晶体材料的选择,现有文献中记录的数据均值及各材料优缺点分析如表2㊁表3所示㊂表2㊀晶体的熔化与凝固实验晶体比较(a)晶体熔点(ħ)质量(g)熔化时间(min)凝固时间(min)实验总时长(min)萘80184 4.520海波47~4910g 3.5 2.532冰0ħ5~104210.5合金70353~53~512Zn(NO3)2㊃6H2O36.4150g713(熔化)Mg(NO3)2㊃6H2O89~905~1015表3㊀晶体的熔化与凝固实验晶体比较(b)药品名称优点缺点萘价格低㊁现象明显导热性差㊁加热分解产生有毒气体海波价格低㊁便于观察,熔点较低导热性差㊁加热有气味㊁结晶水易散失冰取材方便㊁价格低㊁操作较简单导热性差㊁熔点低㊁凝固时间较长低熔点合金(熔点70ħ)价格低㊁导热性好㊁现象明显㊁无刺激性气味试管易破裂Mg(NO3)2㊃6H2O价格低㊁现象明显结晶水易散失㊁熔点偏高,高于100ħ易分解Zn(NO3)2㊃6H2O价格低㊁现象明显,熔点低㊁50ħ以内性质稳定,实验时间短有腐蚀性㊁易制爆㊁高温易分解产生有毒气体㊀㊀表2中各时间除冰取最短时间以外,其他都是利用所综述文献中的数据去掉差异过大的值所得到的平均值,其中晶体质量为在保证实验现象明显的情况下耗时最短的用量㊂在所综述的文献中有三篇记录了冰的熔化与凝固实验全过程的时间,其温度变化范围与时间分别是: -13ħ~23ħ,1.7h[2];-3.8ħ~7ħ,1.25h[3]; -5ħ~5ħ,10.5min[4]㊂第一组数据由于温度变化范围过大,耗时过长,第二组利用自然熔化耗时长,相比之下第三组实验利用自制冷库㊁加金属丝增强导热以及水浴加热有效缩短实验时间更适合课堂教学㊂(二)实验问题分析与改进本实验易受环境温度干扰,一般的中学很难控温,且该实验是学生进入初中以来首次利用图像对物理现象进行研究,在实验中难免出现许多困难㊂对 晶体的熔化与凝固 实验的研究主要由实验问题分析和实验改进两部分组成,文献中关于晶体的熔化与凝固存在问题及解决方法见表4㊂表4㊀晶体的熔化与凝固存在问题及解决方法问题主要原因解决方法温度难测量晶体导热性差搅拌㊁研磨㊁组合试管㊁加入金属粉末或金属丝㊁改变温度计位置㊁间歇式加热存在过冷现象自发成核温度低于凝固点在凝固点附近投入晶核存在不溶现象结晶水损失严重加橡皮塞减少蒸发㊁提高纯度时间过长晶体凝固时间长预热㊀㊀(1)晶体温度难测定在进行 晶体的熔化与凝固 的实验教学中,由于萘㊁海波和冰都是热的不良导体,水浴加热过程中,试管壁附近的晶体比试管中心温度高㊂李安生基于传热学解释了产生温度梯度的原因是试管热阻小于晶体本身热阻,导致靠近试管壁的晶体先熔化[5]㊂对于海波,由于加热过程中风化加剧,最终熔化时所得到的并不45是均一的液体,而是由NaS2O3㊃5H2O㊁NaS2O3㊃2H2O和NaS2O3所组成的混合物[6],晶体真实温度难以测定㊂在实验改进方面,对于晶体温度测定的改进方案最多㊂在操作方面,温度计玻璃泡靠近试管底部测出的温度更准确[7]㊂间歇式加热也可提高实验精度,其具体做法有两种:一是每加热30s将酒精灯撤去,待示数稳定后读数[8];二是在海波未达到熔点前多次撤去㊁移回酒精灯[9]㊂但第一种做法可能会让学生误以为熔化时温度不变是人为造成的㊂在装置改进方面,加入金属丝[4,10-11]㊁利用组合试管[12]㊁量热器等都是为了减小试管与样品本身热阻之间的差距,从而达到均匀传热的效果㊂固液分离[13]也可以使温度测量更准确㊂在材料改进方面,利用低熔点合金进行实验可以解决晶体导热性不佳的问题,但在合金凝固的过程中试管底部破裂[11,14],作者并没有解释破裂原因㊂在实验中试管出现破裂一般是由于内外压强不等所致㊂在凝固的过程中,合金放热方式主要是热辐射与热传导,而试管除了上述两种方式外还有空气对流,且空气对流是其主要放热方式,冷空气在吸热后膨胀,造成合金与试管接触部分温度远高于未接触部分,导致试管受热不均而破裂[15]㊂(2)存在过冷现象过冷现象是晶体在温度降到凝固点时依旧没有凝固的现象,是晶体在进行自发凝固的过程中必经的现象㊂张雪[16]基于热力学与晶体生长理论解释了过冷现象产生的原因:晶体在凝固过程中需要足够大的结晶中心即晶核,对于自发凝固的晶体,在凝固过程中需要先形成晶核㊂在凝固的初始阶段由于形成的晶核较小,晶相的化学势高于熔体的化学势,所以刚刚凝固的晶体会直接变回熔融态,当温度低于凝固温度时,才能自发成核完成凝固㊂况朝辉[17]在17ħ室温下通过实验测出海波的过冷点在18ħ左右㊂对于过冷现象的改进方法只有加入晶核这一种㊂有些教师发现用六水合硝酸镁[6]进行实验时即使不加晶核也不会出现过冷现象,可能是由于温度记录的时间间隔较大(大于30s),晶体过冷时间较短,所以未取得过冷的数据㊂文献中记录的加入晶核时的温度也不同,这与实验环境温度㊁搅拌是否充分以及晶体纯度有关㊂(3)存在不熔现象不熔现象是针对海波提出的,主要原因是海波加热分解后结晶水散失,无法完全凝固成NaS2O3㊃5H2O[6]㊂在试管口加橡皮塞以及提高海波纯度可以减少水分的散失,从而减少不熔现象的发生[7]㊂(4)实验时间过长实验时间过长主要是由于在熔化过程中受热不均或是相变过程中环境温度与晶体温度温差小导致㊂针对实验时间耗时过长的问题大多数老师选择舍弃凝固实验,只做熔化实验或是用冰做实验,其中对于冰的凝固实验,利用冰盐水㊁硝酸铵与水混合都可以加快凝固的速度[4]㊂对于海波的熔化实验,做好课前准备,样品预热提高实验初始温度,控制水浴与样品的温差在3ħ以内,46ħ的270mL温水可在6min内将20g海波加热至40ħ,同时水温降至42ħ,开始实验至熔化结束共耗时13min[18]㊂利用计算机辅助物理实验系统(DIS)或者使用数字温度计配合电加热[2,19]可以得到更准确的图像,其中电加热可使温度升高更均匀,有效延长可观察的熔化时间㊂(5)其他问题有些老师在实验过程中发现最终测出的晶体的凝固点与熔点与实际数值不符,主要是由于样品纯度较低或者实验环境不满足标准大气压所致㊂㊀㊀三㊁结论与改进方案通过上述分析可以看出,对于使晶体受热均匀从而测定准确温度的文献最多,对于过冷现象的实验改进较少,多数教师选择只演示晶55体的熔化,凝固特点让学生用逆向思维得出即可[4]㊂笔者认为对于物理实验要抱着实事求是的态度,这也是我们要培养学生科学素养的一部分,虽然在初中阶段我们只要求学生知道熔化和凝固的吸热与放热特点,但将晶体在凝固过程中出现的过冷现象作为一个拓展知识让学生了解也未尝不可㊂根据以上对于晶体的分析,从实验安全㊁实验材料的普及性以及操作难度角度来说冰的确是最佳的选择,近5年的文献提出的实验改进也多是基于 冰的熔化与凝固 提出的㊂根据以上的分析提出改进的实验方案㊂(一)实验仪器与材料铁架台㊁试管(12mm~15mm)㊁烧杯㊁温水(30ħ~40ħ)㊁自制螺旋型搅拌器(铜丝)㊁自制降温器(烧杯内装硝酸铵水溶液)㊁碎冰10g (不超过6cm)㊁计算机辅助物理实验系统(DIS)㊂(二)实验操作①将碎冰加入试管中,插入搅拌器与温度传感器,起始温度在-5ħ左右为宜,将试管放入水浴中加热,搅拌加速熔化㊂②观察计算机生成的图像,待熔化结束后2min结束实验㊂③将试管从水浴中取出放入自制降温装置中,搅拌,在1ħ时加入晶核,充分搅拌,待全部凝固2min后结束实验㊂上述实验方案,在时间方面,利用水浴加热㊁自制金属搅拌棒以及冻盐水或硝酸铵水溶液降温可有效缩短实验时间,解决了冰导热性差㊁耗时长的问题;在自制降温器中保存可以解决冰熔点低难以保存的问题;DIS采集温度准确且数目多,可以让学生更清晰地观察到实验中晶体温度的变化㊂参考文献:[1]刘炳昇,李容.义务教育教科书物理八年级上册[M].3版.南京市:江苏凤凰科学技术出版社,2019:39-41.[2]陈晓艳.基于用DIS系统对晶体凝固和熔化的研究[J].物理通报,2015,(11):83-84.[3]汪维澄.凝固与熔化创新实验装置[J].教学仪器与实验,2014,30(5):55-56.[4]方军.水的凝固和熔化实验的探究[J].物理教学探讨,2007,(4):37-38.[5]李安生,吴全洲.晶体熔化实验失败原因的类比分析[J].安阳师范学院学报,2002,(5):41-43. [6]郝详,蔡秀莲.用海波做熔化凝固实验的困难与更好实验物质的选择[J].物理通报,1999,(2):22 -23.[7]付荣兴.初中物理熔化和凝固实验的研究[J].教学仪器与实验,2013,29(12):12-13.[8]任俊仙.晶体熔化和凝固实验的改进[J].物理实验,2011,31(12):15-16.[9]龙绍洲.晶体熔化实验的改进[J].实验教学与仪器,2016,(S1):70-71.[10]夏守行.晶体熔化与凝固实验的改进[J].实验教学与仪器,2010,27(Z1):55-56.[11]吴兆军,高佳利.熔化和凝固的实验改进[J].湖南中学物理,2017,32(5):57-58.[12]满玉珍,陈歌实,张丽,刘守谦.做好海波晶体的熔化与凝固实验的两个要点[J].物理通报,1996,(4):22.[13]王友贵.固液分离法海波熔化实验器[J].物理教师,2001,(8):28-29.[14]吴爱华.探究物质的熔化和凝固的实验改进[J].物理通报,2012,(11):81-82.[15]陈宏.制氨试管破裂后的探索[J].中学化学教学参考,1989,(5):40-41.[16]张雪,徐莹,于海波.热力学视角下 晶体的熔化与凝固实验 问题探究[J].物理实验,2018,38(2):59-62.[17]况朝晖.海波熔化和凝固实验的探索及思考[J].实验教学与仪器,2009,26(4):30-31.[18]张仪成.让 物质熔化和凝固 实验真正成为学生的随堂实验[J].物理教学探讨,2009,27(10):21-22.[19]陈洪云.HPCI-1物理实验微机辅助教学系统应用(四) 研究晶体的熔化与凝固实验[J].教学仪器与实验,2002(11):14-16.65。
晶体融化实验探究过程

晶体融化实验探究过程
晶体融化实验探究过程可以按照以下步骤进行:
1. 准备实验器材:需要准备一些晶体、热敏电阻、加热器、电源、数据采集器和一些支架等器材。
2. 安装实验装置:根据实验要求,将热敏电阻连接到电源上,并将数据采集器连接到电脑中。
然后将晶体放置在加热器上,并将加热器放置在热敏电阻上。
最后将整个装置放置在支架上,以便进行实验观察。
3. 开始实验:打开电脑中的数据采集软件,设置实验参数,如加热时间、加热温度等。
然后开始加热,并观察温度变化情况。
4. 记录实验数据:在实验过程中,需要记录每个时间点的温度值,并绘制温度随时间变化的曲线。
观察晶体在不同温度下的变化情况,并记录下来。
5. 分析实验结果:根据实验数据,分析晶体在不同温度下的变化情况,并得出晶体融化的规律。
6. 总结实验结论:根据实验结果和分析结果,总结出晶体的熔化规律和特点,并得出实验结论。
在进行晶体融化实验时,需要注意以下几点:
1. 实验前需要了解晶体的性质和特点,选择合适的加热方式和加热温度。
2. 在实验过程中,需要保持恒定的加热时间和加热温度,以确保实验结果的准确性。
3. 在实验过程中,需要注意安全问题,避免加热过度导致热敏电阻损坏或引起其他安全问题。
4. 在实验结束后,需要及时清理实验现场,确保实验室的整洁和卫生。
晶体和非晶体熔化和凝固过程

银 962 铝 660 铅 328 锡 232
奈 80 海波 48
固态酒精 -117 固态氮 -210
冰0
固态氧 -218
固态水银 -38.3 固态氢 -259
讨论:能否用铝制的容器熔化铜或锡? 在南极考察站能使用水银温度计测量气温吗? (南极最低气温-94.3℃)
小结:
共同 点
熔化
都需吸热
晶
不体
有熔点和凝固 点,熔化和凝 固过程吸热, 温度不变
吸热,达到熔点
没有熔点和凝固 点,熔化和凝固 过程吸热,温度 不段升高
吸热
放热,达到凝 固点
放热
返回
2.考点延伸
1.纯铁的熔点是1535℃,液态纯铁的凝固点(1535℃ ),俗话说:
“下雪不冷,化雪冷”是因为化雪过程要( 吸热)。
2.如图是某晶体溶液的凝固图象, T/℃
n
0
t/min
熔点:固体在熔化过程中,保持不变的温度 海波的熔化条件:吸热,达到熔点
蜂蜡熔化的条件:吸热
有固定熔点的固体。
固 晶 体 晶体熔化的条件:吸热,达到熔点
体
常见的晶体:海波、冰、食盐、奈、石英、各种
的
金属等
分 类
没有固定熔点的固体。
非晶体 非晶体熔化的条件:吸热
常见的非晶体:蜂蜡、松香、沥青、玻璃、橡 胶等
铁架台
温度计
试管 烧杯 石棉网 酒精灯
加热的固体有:海波(硫代硫酸钠) 或蜂蜡
从实验现象及描绘出的图象容易看出,海波经过缓慢加热,温度逐渐 (上升),当温度达到(48℃ ),海波开始熔化。在熔化过程中,虽然继 续加热,但海波的温度(不变),直到(完全熔化)后,温度才继续上升。
晶体熔化现象实验报告

一、实验目的1. 理解晶体熔化过程中的温度变化规律。
2. 掌握晶体熔点的概念。
3. 通过实验观察,了解晶体熔化过程中吸热但温度保持不变的现象。
4. 熟悉实验操作步骤,提高实验技能。
二、实验原理晶体在熔化过程中,当温度达到其熔点时,晶体开始由固态转变为液态。
在熔化过程中,晶体不断吸收热量,但温度保持不变,这个温度称为晶体的熔点。
本实验通过观察不同晶体的熔化过程,验证晶体熔化过程中吸热但温度保持不变的特点。
三、实验器材1. 实验室温度计2. 烧杯3. 铝制试管4. 晶体样品(如海波、冰、硫酸铜晶体等)5. 酒精灯6. 搅拌棒7. 秒表四、实验步骤1. 准备实验器材,将晶体样品放入铝制试管中。
2. 将试管放入烧杯中,加入适量的水,使水浴温度略低于晶体样品的熔点。
3. 使用酒精灯加热烧杯中的水,观察晶体样品的熔化过程。
4. 在晶体开始熔化时,记录温度计的示数,每隔一定时间记录一次,直到晶体完全熔化。
5. 观察晶体熔化过程中温度的变化,记录实验数据。
五、实验结果与分析1. 实验结果显示,晶体在熔化过程中温度保持不变,这个温度即为晶体的熔点。
2. 不同晶体的熔点不同,实验中观察到的熔点如下:- 海波:约48℃- 冰:0℃- 硫酸铜晶体:约110℃3. 在晶体熔化过程中,观察到晶体逐渐软化,熔化成液态,但温度保持不变。
六、实验结论1. 晶体在熔化过程中,当温度达到其熔点时,晶体开始由固态转变为液态,但温度保持不变。
2. 不同晶体的熔点不同,实验中观察到的熔点与理论值基本一致。
3. 本实验验证了晶体熔化过程中吸热但温度保持不变的特点,加深了对晶体熔化过程的理解。
七、实验注意事项1. 实验过程中,注意安全操作,避免烫伤。
2. 实验时,控制好加热速度,避免加热过快导致实验失败。
3. 观察晶体熔化过程中温度变化时,注意记录数据,以便分析。
4. 实验结束后,清理实验器材,保持实验室整洁。
八、实验总结通过本次实验,我们了解了晶体熔化过程中的温度变化规律,掌握了晶体熔点的概念,提高了实验技能。
熔化和凝固的图像及其应用

实验目的和实验原理
实验目的
通过观察物质在熔化和凝固过程中的温 度变化,了解熔化和凝固现象的基本原 理,并探究影响熔点和凝固点的因素。
VS
实验原理
熔化是指物质从固态变为液态的过程,需 要吸收热量;凝固则是物质从液态变为固 态的过程,需要释放热量。熔点和凝固点 是物质在熔化和凝固过程中温度保持不变 的点,是物质的重要物理属性。
凝固点是物质从液态到固态 的相变温度,在凝固图像上 表现为液体曲线与固体曲线
的交点。
在实际应用中,熔点和凝固点 是物质的重要物理性质,对于 工业生产、食品保存等领域具
有重要意义。
03
熔化和凝固的应用
在工业生产中的应用
金属冶炼
熔化是将金属加热至其熔点后转变成液态的过程,是金属 冶炼的关键步骤。凝固是将液态金属冷却至其凝固点后转 变成固态的过程,是金属成型的基础。
塑料加工
塑料的熔化和凝固在塑料加工中广泛应用,如注塑、挤出 、吹塑等。熔化塑料后通过模具成型,再冷却凝固,得到 所需形状的产品。
食品加工
熔化和凝固在食品加工中有广泛应用,如巧克力制作、糖 浆熬制等。通过熔化原料,再进行冷却凝固,得到各种美 味的食品。
在科学研究中的应用
01
பைடு நூலகம்
晶体生长
熔化和凝固在晶体生长中起到关键作用。通过控制熔化与凝固过程,可
3
熔化图像可以用于研究物质的熔点、液相线等性 质。
凝固图像
凝固图像描述了物质从液态到固 态的相变过程。
在图像上,凝固过程表现为液体 曲线逐渐降低,最终与固体曲线 相交,表示液相消失,固相出现
。
凝固图像可以用于研究物质的凝 固点、固相线等性质。
熔点和凝固点在图像上的表示
《熔化与凝固》凝固结晶,微观奥秘

《熔化与凝固》凝固结晶,微观奥秘在我们日常生活中,熔化和凝固现象随处可见。
比如炎热的夏天,冰棍儿在太阳下逐渐融化;寒冬腊月,水结成冰。
然而,这些看似简单的现象背后,却隐藏着深奥的微观奥秘。
当我们谈到凝固结晶,首先要了解物质的状态。
物质通常有三种状态:固态、液态和气态。
而熔化和凝固则是物质在固态和液态之间相互转化的过程。
从微观角度来看,物质是由大量的分子或原子组成的。
在固态时,这些分子或原子排列得非常整齐和紧密,它们之间的相互作用力很强,使得固体具有固定的形状和体积。
当物质受热时,分子或原子获得了更多的能量,它们的运动变得更加剧烈。
在达到一定温度时,分子或原子之间的相互作用力不再能够束缚它们的运动,固体开始熔化,变成液态。
那么,凝固又是怎么一回事呢?当液态物质冷却时,分子或原子的能量逐渐减少,运动速度减慢。
当温度降低到一定程度时,分子或原子之间的相互作用力足以使它们重新排列成规则的结构,液体就开始凝固成固体。
在凝固结晶的过程中,有一个关键的概念叫做“晶核”。
晶核就像是结晶过程的“种子”,它为晶体的生长提供了起点。
晶核可以是外来的杂质颗粒,也可以是液体内部自发形成的微小有序区域。
一旦晶核形成,周围的分子或原子就会以它为基础,按照一定的规律排列和堆积,逐渐形成晶体。
晶体的生长过程是一个逐渐扩展的过程,直到整个液体都凝固成晶体,或者液体的温度下降过快,导致结晶不完全,形成了非晶态物质。
不同的物质在凝固结晶时具有不同的特点。
有些物质的晶体结构比较简单,比如金属,它们的原子通常以紧密堆积的方式排列,形成规则的晶格结构。
而有些物质的晶体结构则非常复杂,比如一些有机化合物。
凝固结晶的条件对晶体的形成和性质有着重要的影响。
冷却速度就是其中一个关键因素。
如果冷却速度非常快,分子或原子来不及有序排列,就会形成非晶态物质,比如玻璃。
而缓慢冷却则有利于形成规则的晶体。
此外,压力也会对凝固结晶产生影响。
在高压下,物质的凝固点可能会升高或降低,从而改变其凝固结晶的过程和性质。
融化凝固实验报告

一、实验目的1. 了解物质的熔化和凝固现象;2. 掌握晶体和非晶体在熔化和凝固过程中的特点;3. 通过实验,验证晶体和非晶体的熔点和凝固点。
二、实验器材1. 冰块;2. 蜡块;3. 酒精温度计;4. 烧杯;5. 秒表;6. 玻璃棒;7. 加热器。
三、实验步骤1. 将冰块和蜡块分别放入两个烧杯中;2. 同时开启加热器,对两个烧杯中的物质进行加热;3. 使用酒精温度计分别测量冰块和蜡块的温度,并记录;4. 观察冰块和蜡块在加热过程中的变化,如熔化、凝固等;5. 记录冰块和蜡块的熔点和凝固点;6. 对比晶体和非晶体在熔化和凝固过程中的特点。
四、实验结果与分析1. 冰块在加热过程中,温度逐渐升高,当温度达到0℃时,冰块开始熔化,熔化过程中温度保持不变,直到熔化完毕,温度继续升高;2. 蜡块在加热过程中,温度逐渐升高,没有明显的熔化现象,当温度达到一定值时,蜡块开始熔化,熔化过程中温度继续升高;3. 冰块的熔点为0℃,凝固点也为0℃;4. 蜡块的熔点不确定,凝固点也不确定。
五、实验结论1. 晶体在熔化和凝固过程中,温度保持不变,直到熔化或凝固完毕;2. 非晶体在熔化和凝固过程中,温度逐渐升高或降低;3. 冰块属于晶体,蜡块属于非晶体;4. 通过实验,我们了解了物质的熔化和凝固现象,掌握了晶体和非晶体在熔化和凝固过程中的特点。
六、实验心得1. 本次实验让我深刻了解了物质的熔化和凝固现象,以及晶体和非晶体在熔化和凝固过程中的特点;2. 通过实验,我学会了使用酒精温度计测量温度,以及如何观察和记录实验现象;3. 实验过程中,我明白了实验操作的严谨性,以及实验数据的重要性;4. 在实验过程中,我遇到了一些问题,如蜡块的熔点不确定等,通过查阅资料和与同学讨论,最终解决了问题,提高了我的问题解决能力。
总之,本次实验让我受益匪浅,不仅加深了我对物理知识的理解,还锻炼了我的实验操作能力和问题解决能力。
在今后的学习和生活中,我会继续努力,不断提高自己的综合素质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海波肉热不均匀而出现有的温度高有的温度低,温度低的来不及吸收热
量升温,所以在熔化过程中出现过冷现象;同理在凝固过程中由于搅拌 不均匀,吸附在试管内壁的海波降温快,而内部降温过慢,导致出现过 热现象。 6、 如何节省教学时间:a.实验数据记录:在了解晶体熔化凝固的规律 情况下,记录3个熔化前的数据;然后加速升温到海波熔化记录3、4个 数据;之后再继续加速加热使海波全部熔化后记录3个数据最后连成熔 化曲线。同理凝固过程也可以这样做,选择迅速降温的方式,比如将试 管取出置于无气流的空气中。b.由于水、试管、导热性都比较差延长了 海波受热均匀的时间,所在海波中掺如某些导热性好、低熔点的金属杂 质(如铜丝)加快受热时间。 7、 实验改进:间歇式加热的方法,即每次加热0.5min后撤去火焰, 观测温度计读数,直到温度计稳定后,读出结果。如此继续进行下去, 直到晶体熔化可连续加热,此时晶液温度不再变化。温度计内的工作物 质与晶液始终保持热平衡。这种间歇式加热方法的特征是每次温度计的 读数是温度计的工作物质与被测物达到热平衡时的读数, 即温度计的 读数等于晶体的温度值 。
晶体的熔化与凝固实验研究实验报告
姓名:
学号:
【实验目的】
1、 研究如何指导中学生的分组实验。
2、 如何做好指导学生做好实验记录和绘制实验曲线并用曲线解释物理
现象。
3、 找出做好本实验的关键问题及误差产生的主要原因。
【实验器材】
温度计(100℃)2个、烧杯(400~500ml)、试管、酒精灯、石棉
网、支架、秒表、晶体(硫代硫酸钠,俗称海波)等
10
11
12
13
14
15
16
17
18
19
温度/℃ 47 47.5 47.5 48 48 48 48 48 48 48
时 间/1×20s
20
21
22
23
24
25
26
27
28
29
温度/℃ 48 48 48 48 48 48.5 49 49.5 50 51
时 间/1×20s
30
31
32
33
温度/℃ 51.5 53.5 55
【实验方法】 本实验利用“水浴法”观察并测量海波在加热及冷却过程中的温度变 化,从而绘制出海波的熔化和凝固曲线,并用曲线确定其熔点。 1、 在试管内放入温度计和海波,海波约占试管的1/3左右。 2、 在烧杯内放入预先加热温度为40℃的热水,水量以能浸没试管中的 海波为准。
3、 按上述装置图装置仪器,点燃酒精灯待海波的温度稳定上升到43℃ 时开始计录,每20s记录一次温度知道55℃为止。 4、 将酒精灯盖灭撤去,是融化的海波和烧杯中的水一起在空气中冷 却,在降温的同时每隔1分钟记录一次温度变化,读到40℃为止。 5、 当海波开始融化到全部融化的过程中,要不断搅拌,尤其在凝固的 过程中当看到有闪闪发光的晶体析出时更需要不断搅拌直到海波全部凝
3、 熔化凝固曲线
根据实验曲线可知:
海波熔点:48℃
海波凝固点:48℃
【实验反思及实验改进】
1、 水浴法:直接用酒精灯加热海波导致受热不均匀,物态变化不明
显;由法时要将装海波的试管浸入水中保证海波全部在水面
下,并对海波不断搅拌使其各部分受热均匀。
固。 6、 整理实验仪器用品,根据实验数据在坐标纸上绘制出海波的温度随 时间变化的熔化和凝固曲线,并从中确定海波的熔点。
【实验数据及其处理】
1、 熔化过程
时 间/1×20s
0
1
2
3
4
5
6
7
8
9
温度/℃ 43 43.5 44 44.5 45 45.5 45.5 45.5 46 47
时 间/1×20s
2、 做好本实验的关键问题:合适的搅拌时海波受热均匀,并且保证水
温和海波的温度相差保持2~3℃.
3、 搅拌棒的设计:a.本实验中用温度计当搅拌棒显然不合温度计的使
用方法。搅拌棒的目的是时海波受热均匀并将吸附在试管壁的海波抹下
去,所以可设计一个带有小刷的搅拌棒可绕着试管内壁旋转而不影响温
度计测量温度。b.取温度计,把线径合适的铜丝弯成螺旋状绕在温度计
上充当搅拌棒,大小要合适试管大小。
4、 海波、水的量及火焰的大小对实验的影响:海波过少或过多热传导
过快或过慢导致温度计测量不准;水的量只要能淹没试管内的海波即
可,过少导致海波受热不均匀;火焰过大海波物态变化过快温度测量不
准确且不易观察,火焰过小物态变化过慢延长了教学时间。
5、 实验中出现过冷和过热的现象:熔化过程中,由于搅拌不均匀导致
2、 凝固过程
时 间/min
1
2
3
4
5
6
7
8
9 10
温度/ ℃
60
58.5
58
57.5 56.5
56
55.5 54.5
54
54
时
间/min 11 12 13 14 15 16 17 18 19 20
温度/ ℃
53.5
53
52.5
52
51
50 49.5 49
48
48
时 间/min
21
22
23
24
25
26
27
28
29
30
温度/ ℃
47
47 46.5 46 45.5 45.5 44.5 44.5 44
44
时 间/min
31
32
33
34
35
36
37
38
39
40
温度/ ℃
43.5
47
48
48
48
48
48
48
48
47
时 间/min
41
42
43
44
45
46
47
48
49
50
温度/ ℃
46
45
44
42
41
40