18飞机飞行性能计算

合集下载

直升机前飞性能计算

直升机前飞性能计算

直升机前飞性能计算直升机前飛性能是指在起飛和爬升階段,直升機所展現的運動特性與性能。

直升機的前飛性能直接影響其起飛、爬升和飛行的能力和效率。

該性能主要由幾個關鍵因素決定,包括動力系統、旋翼系統、氣動系統和重量等。

以下將逐一介紹這些因素。

動力系統是直升機前飛性能的基礎。

它通常由渦輪軸發動機或活塞發動機提供動力。

渦輪軸發動機以其高功率、高效率和較小的重量而被廣泛應用。

直升機的起飛動力需求高,因此通常采用渦輪軸發動機。

動力系統的性能將直接影響直升機的起飛速度和爬升率。

旋翼系統也是直升機前飛性能的重要組成部分。

旋翼的主要功能是提供揚力並產生推力。

直升機的旋翼可分為主旋翼和尾旋翼。

主旋翼提供直升機的升力,尾旋翼用於抵消主旋翼產生的扭矩。

旋翼設計的目標是提供最大的揚力和推力,同時降低順風阻力和橫風敏感性。

旋翼的設計和旋翼葉片的幾何形狀對直升機的前飛性能有重要影響。

氣動系統對直升機前飛性能也有重要影響。

氣動系統包括機身和機翼的氣流流動,以及與旋翼交互作用的氣流。

氣動系統的設計應將氣流損失降至最低,同時提供足夠的揚力和推力。

氣動性能的改進可以通過改變機身和機翼的外形、增加機身後掠角和安裝氣體轉向裝置等手段來實現。

重量是影響直升機前飛性能的另一重要因素。

直升機的起飛和爬升性能直接受到其重量的限制。

重量越大,所需揚力和推力越多,起飛速度和爬升率就越慢。

因此,重量降低可以提高直升機的前飛性能。

降低重量的方法包括使用輕量化材料、減少機身和系統的重量以及減少燃料負載等。

除了上述因素外,直升機前飛性能還受到一些外界因素的影響。

這些因素包括高度、溫度、氣壓和相對濕度等。

例如,在高海拔地區,空氣稀薄使得直升機的揚力和動力降低,進而影響其起飛和爬升性能。

因此,在設計和操作直升機時,需要考慮這些外界因素對性能的影響。

總結起來,直升機的前飛性能是由動力系統、旋翼系統、氣動系統、重量和外界因素等多個因素共同作用而形成的。

通過適當的設計和改進,可以提高直升機的起飛速度、爬升率和飛行效率,從而增強其前飛性能。

飞机气动估算及飞行性能计算-课程设计

飞机气动估算及飞行性能计算-课程设计

本科课程设计报告题目飞机气动估算及飞行性能计算学生姓名班级日期目录气动特性估算................................................. 错误!未定义书签。

升力特性估算............................................. 错误!未定义书签。

外露翼升力估算....................................... 错误!未定义书签。

机身升力的估算...................................... 错误!未定义书签。

尾翼的升力估算...................................... 错误!未定义书签。

合升力线斜率的计算................................... 错误!未定义书签。

临界马赫数的计算..................................... 错误!未定义书签。

阻力特性的估算.......................................... 错误!未定义书签。

全机摩擦阻力的估算................................... 错误!未定义书签。

亚音速压差阻力的估算................................. 错误!未定义书签。

亚声速升致阻力特性估算............................... 错误!未定义书签。

超音速零升波阻估算................................... 错误!未定义书签。

超声速升致阻力....................................... 错误!未定义书签。

飞机基本飞行性能计算......................................... 错误!未定义书签。

飞机起飞着陆性能计算模型及其应用分析

飞机起飞着陆性能计算模型及其应用分析

飞机起飞着陆性能计算模型及其应用分析
随着航空业的发展和飞机制造技术的不断进步,飞机的起降性能计算模型及其应用分析也变得愈发重要。

起降性能是飞机从起飞到着陆的关键环节,直接关系到飞机在空中的安全和效率。

科学合理地计算和分析飞机的起降性能对于航空公司、飞行员和飞机制造商来说都至关重要。

本文将从飞机起飞着陆性能计算模型的基本原理出发,详细介绍该模型的应用分析及其在航空领域的实际意义。

一、飞机起飞着陆性能计算模型的基本原理
飞机的起飞性能计算模型主要包括了净重、气象条件和跑道长度等因素。

在实际计算中,需要考虑飞机的空重、油重、载客量以及气温、气压和湿度等气象因素。

根据不同的跑道长度和坡度,还需要计算出最佳的起飞速度和爬升角度。

在计算模型中,还需要考虑到起飞过程中的一些异常情况,比如发动机失效、风切变等,以便飞行员在紧急情况下能够做出正确的决策。

1. 在航空公司的应用
航空公司需要根据不同的飞机型号和航线特点,对飞机的起飞着陆性能进行精确的计算和分析。

通过科学合理地计算飞机的起飞和着陆性能,可以有效地提高飞机的安全性和经济性。

在航空公司的管理中,起飞着陆性能计算模型还可以用来评估飞机的运行效率和安全性,从而为飞行员提供相关的飞行指导。

2. 在飞行员的应用
飞机起飞着陆性能计算模型及其应用分析具有重要的实际意义,对于提高飞机的运行效率和安全性、降低运营成本、提高飞机的市场竞争力都具有重要的作用。

航空行业需要不断地加强飞机起飞着陆性能计算模型的研究和应用,不断地提高飞机的起飞着陆性能,为航空业的发展做出重要的贡献。

飞行梯度的计算公式

飞行梯度的计算公式

飞行梯度的计算公式飞行梯度是指飞机在垂直方向上爬升或下降的速率。

在航空领域中,飞行梯度的计算是非常重要的,因为它直接影响着飞机的性能和燃料消耗。

飞行梯度的计算公式可以帮助飞行员和航空工程师更好地理解飞机的性能特点,从而做出更合理的飞行计划和飞机设计。

飞行梯度的计算公式可以表示为:梯度 = (爬升率 / 飞行速度) 100。

其中,梯度是以百分比表示的,爬升率是飞机在垂直方向上的爬升速率(通常以英尺/分钟或米/秒表示),飞行速度是飞机在水平方向上的飞行速度(通常以节或米/秒表示)。

飞行梯度的计算公式可以帮助我们理解飞机在不同飞行状态下的性能特点。

在爬升状态下,飞机的爬升率和飞行速度都会影响到飞行梯度的大小。

一般来说,爬升率越大,飞行速度越小,飞行梯度就会越大,反之亦然。

这就意味着在相同的爬升率下,飞机的飞行速度越小,它的爬升梯度就会越大,这也是为什么飞机在爬升状态下会选择较低的速度来获得更大的爬升梯度。

另外,在下降状态下,飞机的下降率和飞行速度也会影响到飞行梯度的大小。

一般来说,下降率越大,飞行速度越大,飞行梯度就会越小,反之亦然。

这就意味着在相同的下降率下,飞机的飞行速度越大,它的下降梯度就会越小,这也是为什么飞机在下降状态下会选择较高的速度来减小下降梯度。

飞行梯度的计算公式还可以帮助我们理解飞机在不同飞行状态下的燃料消耗。

一般来说,飞机在爬升状态下需要消耗更多的燃料,因为它需要克服重力和空气阻力来实现爬升。

而在下降状态下,飞机的燃料消耗会相对较小,因为它可以利用重力和空气阻力来实现下降。

因此,通过计算飞行梯度,我们可以更好地理解飞机在不同飞行状态下的燃料消耗特点,从而做出更合理的飞行计划。

除了飞机的性能特点,飞行梯度的计算公式还可以帮助我们理解飞机的设计特点。

一般来说,飞机的设计会考虑到不同飞行状态下的性能特点,从而在设计阶段就可以确定飞机的最佳飞行梯度范围。

通过计算飞行梯度,我们可以更好地理解飞机的设计特点,从而为飞机的改进和优化提供参考。

飞行性能和要求图文

飞行性能和要求图文

飞行性能和要求飞行性能是指飞机在飞行中表现出的各种性能指标。

这些性能指标包括飞行速度、飞行高度、爬升速度、下降速度等等。

作为一名飞行员或航空工程师,对于飞行性能的了解和掌握至关重要。

因此,在设计和操作飞机时,需要考虑到飞行性能以及相应的要求。

飞行速度飞行速度是指飞机在空中飞行时的速度。

飞机的最大飞行速度受到多种因素的限制,包括设计制约、气动效应、动力系统等。

除了最大速度之外,还有最小速度、巡航速度、着陆速度等不同的速度要求,这些要求需要遵循以确保飞机的飞行安全。

飞行高度飞行高度是指飞机在空中飞行时的高度。

与飞行速度一样,飞行高度也受到多种因素的限制,包括气压高度、飞机结构限制、人员舒适度等等。

在规定的飞行高度内保持飞行安全是飞行员和航空工程师的重要任务之一。

爬升和下降速度爬升和下降速度分别指飞机向上爬升和向下下降的速度。

这些速度指标对飞机的安全性和舒适度都有重要影响。

在起飞和着陆时,飞机需要保持特定的爬升和下降速度,以确保航班的顺利进行。

此外,这些速度指标还需要保持在一定的范围内,以确保航班的舒适度和乘客的安全。

转弯半径和坡度转弯半径和坡度分别指飞机在空中转弯时的半径和倾斜度。

这些指标同样对飞机的安全性和舒适度都有着重要的影响。

在进行大转弯时,飞机需要保持大的转弯半径以确保安全;而在进行小转弯时,飞机需要保持小的转弯半径以确保舒适度和乘客的安全。

能源消耗和经济性能源消耗和经济性是指飞机在空中飞行时所消耗的燃油数量和相关的经济成本。

这些指标对航空公司和航班运营商来说尤为重要,因为它们可以直接影响航班运营的成本和盈利能力。

在设计飞机时,需要考虑到能源消耗和经济性,以确保航空公司和航班运营商能获得最大的经济效益。

在设计和操作飞机时,飞行性能和相应的要求都是非常重要的。

飞行性能包括飞行速度、飞行高度、爬升速度、下降速度等等;而要求则涉及到制约因素、安全标准、舒适度等等。

对于飞行员和航空工程师来说,了解这些指标和要求是非常必要的,因为它们能够确保航班的顺利进行和乘客的安全。

固定翼无人机技术-飞机基本飞行性能

固定翼无人机技术-飞机基本飞行性能
Ma
动压限制
动压限制(qmax)属于飞机结构强度和刚度限制。过大的动压,可能会使机体受 到过大的空气动力作用,从而引起蒙皮铆钉松动,过大的变形甚至引起结构破坏。
由于中、低空飞行时,空气密度较大,表速较大,动压比较容易超出规定的数值 。因此,动压限制对飞行员来说就是最大允许表速限制。
温度限制
在环境温度一定的情况下,机体表面的气流滞止温度仅由Ma决定。因此温度限制 在飞机包线上往往以Malim给出。
2.已知某飞机以500 km/h的速度平飞,升阻比为1.2,飞行质量为6960 kg,可用推力 为68600 N,试问:
(1)平飞所需推力是多少?
(2)当发动机推力为可用推力时,若飞机以500 km/h的速度等速上升,上升角是多少? 上升率又是多少?
(3)发动机推力为可用推力时,飞机平飞加速度是多少?
感 谢 聆听
TR D CD 1 G L CL K
TR
G K
CD CD0 CDi CDh
平飞所需推力
CD0为零升阻力系数,一般是飞行Ma的函数(见图);CD i为诱导阻力系数。一般 在迎角较小时(CL≤0.3),CD i=ACL2,诱导阻力系数因子A为Ma的函数;当迎角较 大(CL>0.3)时,CD i除随Ma而变外,还是迎角(即CL)的复杂函数,在某些飞机说 明书中以诱导阻力曲线的形式给出(见图)。ΔCD h是考虑到不同高度的雷诺数影响 系数
最大上升率曲线及静升限的确定
升限(ceiling)通常是指静升限(absolute ceiling),也叫理论升限,是飞机 能保持等速直线水平飞行的最大高度,也就是最大上升率为零的高度。
实用升限(service ceiling)应是:在给定飞行重量和发动机工作状态(最大加 力、最大或额定状态)下,在垂直平面内作等速爬升时,对于亚声速飞行,最大上升 率为0.5m/s时的飞行高度;对于超声速飞行,最大上升率为5 m/s时的飞行高度。

飞机计算公式

飞机计算公式

飞机计算公式飞机的飞行涉及到众多复杂的计算公式,这些公式可不是随便就能搞明白的,得下一番功夫呢!先来说说升力的计算公式。

升力,这可是让飞机能飞起来的关键力量。

升力公式是:L = 1/2 ρv²SCL 。

这里面的“ρ”代表空气密度,“v”是飞机相对气流的速度,“S”是机翼面积,“CL”则是升力系数。

举个例子,就像我之前去参观一个小型飞机制造工厂,看到工程师们在计算一架轻型飞机的升力。

他们拿着各种测量工具,神情专注又严肃。

空气密度得根据当时的天气和海拔来准确测量,速度则要考虑飞机的设计速度和预期的飞行条件。

机翼面积的测量更是要精确到小数点后几位,因为哪怕一点点的误差,都可能影响飞机的飞行性能。

再说说阻力的计算公式。

阻力公式:D = 1/2 ρv²SCD 。

这里的“CD”就是阻力系数啦。

阻力可分为很多种,比如摩擦阻力、压差阻力、诱导阻力等等。

想起有一次坐飞机,遇到气流颠簸,当时心里就琢磨着,这阻力变化得多大呀,飞机都晃悠成这样了。

飞机在空气中飞行,就像我们在人群中穿梭,会碰到各种各样的阻碍。

还有推力的计算公式。

推力和发动机的性能密切相关。

不同类型的发动机,计算公式也有所不同。

在学习这些公式的过程中,我发现要真正理解它们,不能只是死记硬背,得结合实际情况去思考。

就好比我们学数学,光记住公式不行,得会用,得知道在什么场景下用哪个公式。

飞机的重量和平衡的计算也很重要。

如果飞机的重心位置不对,那飞行可就危险了。

这就像我们挑担子,两边重量不均衡,走起路来就不稳当。

总之,飞机的计算公式虽然复杂,但每一个都有它的道理和用途。

了解这些公式,能让我们更好地理解飞机是怎么飞起来的,怎么飞得稳、飞得快。

希望大家通过我的这些分享,对飞机的计算公式能有更清晰的认识,也能感受到航空领域的神奇和魅力!。

飞机飞行性能计算

飞机飞行性能计算
代入公式求 pH;否则,求 CD,i ,并以此 CD,i 值查飞机基
准高度、基本构形的极曲线,求得 CL,i 值,代入公式
求 pH 。
5.最后查国际标准大气表得到计算升限高度。
6. 若精度不够,则重复以上步骤。
航空宇航学院
航空宇航学院
水平加(减)速性能计算
• 计算公式
∆t = ∆v
gnx
∆x = v∆t
航空宇航学院
飞机飞行性能计算
设设计计 要要求求
航空宇航学院
飞机总体设计框架
主主要要参参数数计计算算 布布局局型型式式选选择择
发发动动机机选选择择
部部件件外外形形设设计计
机机身身 机机翼翼 尾尾翼翼 起起落落架架 进进气气道道
是是否否满满足足 设设计计要要求求??
最最优优??
分分析析计计算算
重重量量计计算算 气气动动计计算算 性性能能计计算算
ω = g nz2 −1 × 57.3 [(º)/s]
v
盘旋过载:
nz = CL CL, pf
航空宇航学院
式中: CL ——盘旋状态飞机升力系数
( ) CL =
CF − CD,0 + ∆CD,Re +系数
CL, pf = G qS
• 计算方法
航空宇航学院
1.给定计算高度、计算Ma数和计算重量 。
航空宇航学院
爬升性能计算
1.等速爬升计算公式
vy
=
F −Dv G
=
F
− qS(CD
+
∆CD,Re
G
+
∆CD,c )
⋅v
• 计算方法
航空宇航学院
爬升时间、水平前进距离、轨迹角及耗油量,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( ) 2.根据式
CL =
CF − CD,0 + ∆CD,Re + ∆CD,c
A
、CL, pf = G qS
和飞机气动力特性及动力装置推力特性计算 CL和 CL, pf
3.当在小升力系数范围,如 CL≤0.3,则可根据式 nz = CL CL, pf
计算盘旋过载 nz 。
4.升力系数比较大时(如 CL>0.3),则可根据由飞机基准 高度、基本构形的极曲线查得 CL值,然后用式 nz = CL CL, pf
vld = 3.6
2[G − F sin(α + ϕ )]
ρSCL,ld
2.起飞滑跑距离计算
航空宇航学院
把起飞滑跑分成三轮滑跑和抬前轮后的两轮滑 跑两个部分。
航空宇航学院
第一部分假定从零速度开始加速到起飞离 地速度,滑跑距离为:
l1
=
1 2gb
ln⎜⎜⎝⎛
a
+ bvl2d a
⎟⎟⎠⎞
式中:
a=F− f G
阻力系数;
CL,1 、CL,2 ——分别是两轮滑跑和三轮滑跑时的升力
系数。
航空宇航学院
goodbye
航空宇航学院
• 飞行升力系数
在小迎角(如 此时
CL
≤0.3)升致阻力因子A值可看成A=f(Ma),
( ) CL
=
⎜⎛ ⎜⎜⎝

v y,max v
+
⎜⎜⎝⎛
v y,max v
⎟⎟⎠⎞2
+
4A
CF
− CD,0 − ∆CD,Re − ∆CD,c
∆mT
=
qh • ∆t
3600
• 计算方法
航空宇航学院
1.把要计算的加(减)速段分成若干个小速度段,在每个小 速度段中都假定飞机作等加(减)速运动。
2.计算 ∆v = vi+1 − vi
v = (vi + vi+1) 2
nx = nx,i + nx,(i+1)
( ) qh = qh,i + qh,(i+1) 2
vy
=
(F
− D)v
G
⎜⎜⎝⎛1 +
v g

dv dH
⎟⎟⎠⎞
其余式与等速爬升相 同。也可以采用给定初值 的数值积分进行计算。
航空宇航学院
航程计算
技术航程——飞机沿预定航线,耗尽其可用燃油所 经过的水平距离(包括爬升、下滑段的水平距离)。 (投掉耗尽燃油的空副油箱。)
实用航程——飞机沿预定航线并留有规定的着陆余 油所能达到的水平距离。(投掉耗尽燃油的空副 油箱。)
2.着陆滑跑距离计算
航空宇航学院
lzh
=
1 2g
⎡ ⎢
1
⎢⎣b1
ln⎜⎜⎝⎛
a1
+
b1v
2 jd
a1 + b1vq2j
⎟⎞ ⎟⎠
+
1 b2
ln⎜⎜⎝⎛
a2
+ b2vq2j a2
⎟⎟⎠⎞⎥⎥⎦⎤
航空宇航学院
式中:a1 = f1 ——滚动摩擦因数(0.03~0.05);
( ) b1
=
ρS
2G
CD,1 + CD,s +
( ) θi = arcsin−1 vy
v
i
式中:∆ti = ∆H / vy,i 、∆xi = v cosθi ⋅ ∆ti 、∆mT ,i = (qh / 3600)∆ti
vy,i
=
⎜⎛ ⎝
F − D ⎟⎞ G ⎠i
⋅v
2.加速爬升计算公式
航空宇航学院
加速爬升,即爬升过程中边爬升边加速。此 种爬升常用于飞机离地后的加速爬升和现代歼击 机保持最大能量状态的加速爬升,即最短时间爬 升或最少耗油爬升。
txih = ∆mT / qh
qh
=
Ce
η
D
航空宇航学院
最大航程和最大续航时间
航空宇航学院
航空宇航学院
起飞性能计算
1.起飞速度计算
受失速速度限制时,飞机离地速度为
vld = 1.2vs = 1.2 × 3.6
2[G − F sin(α + ϕ )]
ρSCL,max
受擦地角或前方视界限制时,飞机离地速度为
lxih = ∆mT / qk
qk
=
Ce
η

D v
航空宇航学院
式中:
∆mT ——巡航段可用燃油量(kg);
qk ——平均公里耗油量(kg/km); Ce ——发动机耗油率[kg(/N·h)]
η ——推力有效系数;
v ——巡航速度(km/h);
D ——巡航段飞机阻力。
• 计算方法
① 确定 ∆mT
② 计算飞机阻力——需用推力
代入公式求 pH;否则,求 CD,i ,并以此 CD,i 值查飞机基
准高度、基本构形的极曲线,求得 CL,i 值,代入公式
求 pH 。
5.最后查国际标准大气表得到计算升限高度。
6. 若精度不够,则重复以上步源自。航空宇航学院航空宇航学院
水平加(减)速性能计算
• 计算公式
∆t = ∆v
gnx
∆x = v∆t
• 最大平飞速度
航空宇航学院
航空宇航学院
升限计算
•定 义
(1)理论升限——在给定飞机重量和给定发动机 状态下,飞机能保持等速水平直线飞行的最大高 度,也就是最大爬升率等于零时的飞行高度。
(2)实用升限——在给定飞机重量和给定发动机 状态下,对于军用飞机,亚声速飞行最大爬升率 为0.5m/s时的飞行高度;超声速飞行最大爬升 率为5 m/s时的飞行高度。
航空宇航学院
D = qS(CD,0 + ACL2 + ∆CD,Re + ∆CD,c )
③ 确定 Ce
发动机耗油率是飞行高度、速度和发动机转速 的函数,通常以转速特性给出。
由 F = D /η ,就可以在图上查得 Ce
航空宇航学院
续航时间计算
续航时间是指飞机从起飞爬升到安全 高度起,至下滑到着陆航线高度止所经过 的飞行时间。
ω = g nz2 −1 × 57.3 [(º)/s]
v
盘旋过载:
nz = CL CL, pf
航空宇航学院
式中: CL ——盘旋状态飞机升力系数
( ) CL =
CF − CD,0 + ∆CD,Re + ∆CD,c
A
CL, pf ——平飞升力系数
CL, pf = G qS
• 计算方法
航空宇航学院
1.给定计算高度、计算Ma数和计算重量 。
航空宇航学院
• 计算公式
pH
=
G 0.7 Ma 2 SC L
其中: pH ——计算升限高度上的大气压力 G ——升限计算所用给定重力 CL ——升限飞行升力系数
• 计算方法
航空宇航学院
1.确定升限计算重量;
2.采用逐次逼近的方法,首先假定一个升限,
3.利用图4查得 ∆CD,Re ,再利用图2、3、5查得对应速 度的 CD,0 、A、∆CD,c 值, 4.计算 CF。把这些参数代入公式求得 CL 值,如果≤0.3,
⎟⎞ ⎟⎟⎠
2A
升力系数比较大时(如 CL>0.3),A值是Ma数和 CL的函数,
此时可根据:
CD,i
=
Cp

v y,max v

G qS

∆CD,Re

∆CD,c
求出飞机阻力系数,并在飞机的基准高度、基本构形极 曲线上得到对应的升力系数值。
航空宇航学院
发动机转速特性曲线
• 计算方法
航空宇航学院
航空宇航学院
平飞需用功率
• 计算公式
Px
=
G 270

vH K
vH = v0 1 ∆
v0 = 1.44
G SCL
其中: Px ——需用功率(W) v0 ——H=0时的速度(km/h) vH ——在不同高度上对应的速度(km/h) ∆ = ρ ρ0 ——密度比
K ——升阻比
转场航程——飞机装载最大燃油量所能达到的航程。 (中途不投掉空副油箱。)
航空宇航学院
• 计算公式
飞机的航程是由爬升段、巡航段和下滑段组成的, 其式为:
l = l ps + lxih + lxh
其中爬升段和下滑段航程约占飞机总航程的10% 左右。爬升段航程按前面介绍的方法计算。
对于等高、等速航程,巡航段航程为:
航空宇航学院
飞行包线
航空宇航学院
平飞需用推力
• 计算公式
D = qS(CD,0 + ACL2 + ∆CD,Re + ∆CD,c )
其中: q = 1 ρv2 ——速压Pa
2
S ——机翼参考面积(m2) CD,0 ——基准高度、基本构形的零升阻力系数
A ——升致阻力因子 ∆CD,Re ——高度修正量(或雷诺数修正量) ∆CD,c ——外挂物阻力系数增量 CL = G / qS ——飞机升力系数
b
=
ρ
2(G /
S
)

(
fCL,0

CD
)
第二段滑跑假定以 vld 跑3s,则:
l2 = 3×
2G
ρSCL.ld
总滑跑距离为: lqh = l1 + l2
航空宇航学院
着陆性能计算
1.着陆速度计算
飞机的着陆速度为:
v jd = 3.6K
相关文档
最新文档