放疗术语-精选.doc

合集下载

放疗专业词汇

放疗专业词汇

• • • • • • • • 剂量计算 Dose verification 剂量验证 RTPS 放射治疗计划系统 BEV射野方向视观 DRR 数字重建射线影像 EPID 电子射野影像装置 CT simulator CT模拟机 SAD 源轴距 SSD 源皮距 Cyber Knife 射波刀 Electronic Linear Accelerator 电子直线加速器
放疗专业词汇
• • • • • • • • • •
IMRT 调强放射治疗 PTV 计划靶区 CTV 临床靶区 GTV 大体靶区 OAR 危及器官 DVH 剂量体积直方图 3D CRT 三维适形放射治疗 X-knife x-刀 Quality Assurance 质量保证 Quality Control 质量控制
• ICRU 国际辐射单位和测量委员会(International Commission on Radiation Units and Measurement) • MLC 多叶准直器 • PDD 百分深度剂量 • HVL 半价层 • Afterloader 后装机 • SRS 立体定向放射手术 • SRT 立体定向放射治疗 • Tomotherapy 断层治疗 • Collimator 准直器
• • • • • • • • • • •
Primary collimator 初级准直器 Secondary collimator 次级准直器 Independent collimator 独立准直器 Isocenter 等中心 AAPM 美国医学物理学会 WHO 世界卫生组织 IGRT 图像引导放射治疗 Adaptive radiotherapy 自适应放疗 VMAT 容积弧形(旋转)调强放射治疗 Gamma knife 伽玛刀 portal imaging射野影像照相

放疗术语

放疗术语

放疗术语OIS:放疗信息系统TPS:放疗计划系统LCS:加速器控制系统MLC(Multi-Leaf Collimator):多叶准直器或多页光栅过滤X射线,形成特定形状的剂量分布,减小放疗对正常组织的损伤。

EPID(Electronic Portal Imaging Device):电子射野影像装置,EPID系统由射线探测和射线信号的计算机处理两部分组成不同系统的差别主要表现在前一部分,后一部分大部分相似,一句射线探测方法的不同可以将EPID系统划分为荧光、固体探测器、液体电离室三大类型,利用平板探测器测量放疗时剂量分布,来监视适形放疗的结果CBCT(Cone Beam computor tomography),锥形数CTBrachyTherapy(近距离治疗)别名:内照射放疗,将放射源放置于需要治疗的部位内部或者附近,主要用于前列腺、乳腺、皮肤癌治疗。

External beam radiotherapy EBRT:远距离治疗。

三维放疗:通过不同方向的X射线,提高病灶区的剂量,避免一些组织受到严重的辐射伤害三维适形放疗3D CRT:是高能射束的形态始终与对肿瘤的投影一致或是近似一致,可以较大幅度增加肿瘤剂量,提高肿瘤控制率,并使周边免受损伤。

射线是均匀结束的,但是肿瘤大多是不规则的,且肿瘤各点离人体表皮的射入距离也是不一样的,所以不能解决肿瘤内部剂量均匀性问题。

IMRT(intensity-modulated radiation therapy):逆向调强放疗或适形调强放疗,通过第二次限束以改变加速器限束出束剂量率,达到肿瘤内部剂量均匀性。

IGRT(image guide radiation therapy):图像应到治疗,思维的放射治疗技术,在三维放疗技术的基础上加入了时间因数的概念。

控制摆位误差,对器官的移动进行监控。

在治疗机上安装兆伏级或KV级的X线射野影像监视器(EPID)可在治疗中实时监测和验证射野几何位置乃至野内剂量分布。

放疗的专有名词解释

放疗的专有名词解释

放疗的专有名词解释放疗是一种常见的癌症治疗方式,它通过利用高能射线或其他形式的辐射来杀死癌细胞或抑制它们的生长。

在放疗过程中,涉及到一些专有名词,这些名词对于了解放疗的原理和效果非常重要。

本文将解释一些放疗领域的专有名词,帮助读者更好地理解这种治疗方式。

1. 辐射治疗(Radiation Therapy)辐射治疗是指利用射线来治疗癌症或其他疾病。

它是通过将高能射线直接照射到癌细胞或肿瘤上,破坏其遗传物质,以阻止其增殖和生长。

因为射线可以穿透人体组织,所以辐射治疗可以精确地定位在肿瘤区域释放辐射,同时尽可能减小对周围正常组织的伤害。

2. 线性加速器(Linear Accelerator)线性加速器是放疗中常用的治疗设备,它能够产生高能射线。

通过电磁场的作用,这种设备能够加速电子并使其以接近光速的速度运动。

线性加速器能够产生不同类型的射线,如X射线、γ射线和高能电子射线,具有精确照射和深度调节的能力,因此被广泛应用于放疗领域。

3. 照射计划(Treatment Plan)照射计划是放疗治疗开始之前制定的详细计划,用于确定照射次数、剂量、照射方向以及照射区域等治疗参数。

放疗师将根据医生的指示和患者的具体情况制定照射计划,以保证辐射能够准确地瞄准肿瘤并最大限度地减少对正常组织的损伤。

4. 剂量分布(Dose Distribution)剂量分布指的是辐射治疗中射线的剂量在人体组织中的分布情况。

剂量分布的均匀性和覆盖率是评估治疗质量的重要指标。

剂量分布的均匀性应足够,以确保肿瘤区域得到足够的辐射,而正常组织的剂量应尽可能低。

5. 生物学有效剂量(Biologically Effective Dose, BED)生物学有效剂量是一种衡量辐射治疗效果的指标,它综合考虑了剂量分布、辐射类型和生物学修正因子等因素。

生物学有效剂量可以用于预测和比较不同治疗方案的疗效,为制定个性化治疗方案提供参考。

6. 放射性皮炎(Radiation Dermatitis)放射性皮炎是放疗中常见的不良反应之一,表现为皮肤红肿、瘙痒、脱屑等症状。

放射治疗技术名词解释

放射治疗技术名词解释

放射治疗技术名词解释
放射治疗技术是一种利用放射线治疗肿瘤等疾病的技术。

以下是一些常见的放射治疗技术名词解释:
1. 放射治疗:利用放射线治疗肿瘤等疾病的技术。

放射治疗是通过放射线杀死癌细胞,减缓肿瘤生长和治疗癌症的一种方式。

2. X 射线:X 射线是一种光子束,通过医疗设备产生,用于诊断和治疗疾病。

X 射线可以穿过人体,透过物体,并且可以照射到不同的组织中,从而产生图像。

3. 加速器:加速器是一种医疗设备,通过加快电子的速度来产生高能射线,用于诊断和治疗疾病。

加速器通常用于放射治疗中,可以提供更高的放疗剂量。

4. 立体定向放射治疗:立体定向放射治疗是一种局部放射治疗,通过使用多种不同角度和剂量的放射线来治疗肿瘤。

这种治疗方式可以精确地控制放射剂量,只对肿瘤进行治疗,而对周围的组织和器官造成最小的损伤。

5. 放疗剂量:放疗剂量是指放射线治疗肿瘤时所释放的剂量。

放疗剂量的大小取决于肿瘤的大小和位置,以及患者的身体状况等因
素。

6. 放疗分期:放疗分期是指将肿瘤和周围组织划分为不同区域,并对每个区域分配不同的放疗剂量和角度,以便更好地治疗肿瘤。

7. 辐射暴露:辐射暴露是指患者在放射治疗期间所面临的风险。

这种风险可以通过合理的治疗计划和防护措施来降低。

8. 辐射防护:辐射防护是指通过采取措施来降低患者和工作人员暴露在辐射下的风险。

辐射防护的措施包括屏蔽、限制接触时间和剂量、使用辐射防护设备等。

放疗名词解释

放疗名词解释

放疗名词解释:1、放射生物学:临床放射生物学是在放射生物基础理论研究的基础上,探讨人类肿瘤及其正常组织在放射治疗过程中放射生物学效应问题的一门科学,是肿瘤放射治疗技术学的重要基础之一。

2、相对生物效应:是指要达到同样生物效应时的标准射线(250KV X射线)所用剂量和某种射线所用剂量的比值。

3、直接作用:指放射线直接作用于生物组织细胞中的生物大分子,使其产生电离和激发,并最终导致其发生放射性损伤称之为电离辐射的直接作用。

高LET射线以直接作用为主。

4、间接作用:指在放射线与生物组织作用、尤其是与生物组织内水分子作用产生自由基,这些自由基再与生物大分子作用使其损伤。

这种放射性损伤称之为电离辐射的间接作用。

5、核衰变:放射性核素自发地发出一种或一种以上的射线并转变成另一种核素的过程称为核衰变。

核衰变是放射性核素的一种属性。

衰变必然伴随有放射。

6、放射性活度:指单位时间内原子核衰变的数目,其单位为1/秒。

专用名:贝可Bq7、放射性同位素:不稳定的同位素具有放射性。

这种不稳定性主要是由于原子核中的质子和中子不平衡性造成的。

随着原子序数的增加,一种元素的同位素越来越多。

元素周期表后面的重元素都具有天然放射性。

8、放射源:在没有特别说明的情况下,一般规定为放射源前表面的中心,或产生辐射的靶面中心。

9、照射野中心轴:射线束的中心对称轴线,临床上一般用放射源S与穿过照射野中心的连线作为照射野的中心轴。

10、等中心:是准直器旋转轴(假定为照射野中心)和机架旋转轴的相交点,与机房中所有激光灯出射平面的焦点相重合。

此点到放射源的距离称源轴距11、肿瘤的致死剂量:通过放射治疗使绝大部分的肿瘤细胞死亡而达到控制肿瘤,局部治愈的放射剂量即为肿瘤的放射剂量。

12、正常组织耐受量:各种不同组织接受射线照射后能够耐受而不致造成不可逆性损伤所需要的最大剂量为该组织的耐受量。

13、组织量:所谓组织量是指患者受照射组织在一定深度的射线吸收剂量。

放疗术语

放疗术语

放疗术语OIS:放疗信息系统TPS:放疗计划系统LCS:加速器控制系统MLC(Multi-Leaf Collimator):多叶准直器或多页光栅过滤X射线,形成特定形状得剂量分布,减小放疗对正常组织得损伤、EPID(Electronic PortalImaging Device):电子射野影像装置,EPID系统由射线探测与射线信号得计算机处理两部分组成不同系统得差别主要表现在前一部分,后一部分大部分相似,一句射线探测方法得不同可以将EPID系统划分为荧光、固体探测器、液体电离室三大类型,利用平板探测器测量放疗时剂量分布,来监视适形放疗得结果CBCT(ConeBeamcomputor tomography),锥形数CTBrachyTherapy(近距离治疗)别名:内照射放疗,将放射源放置于需要治疗得部位内部或者附近,主要用于前列腺、乳腺、皮肤癌治疗。

Externalbeam radiotherapy EBRT:远距离治疗、三维放疗:通过不同方向得X射线,提高病灶区得剂量,避免一些组织受到严重得辐射伤害三维适形放疗3DCRT:就是高能射束得形态始终与对肿瘤得投影一致或就是近似一致,可以较大幅度增加肿瘤剂量,提高肿瘤控制率,并使周边免受损伤。

射线就是均匀结束得,但就是肿瘤大多就是不规则得,且肿瘤各点离人体表皮得射入距离也就是不一样得,所以不能解决肿瘤内部剂量均匀性问题。

IMRT(intensity-modulatedradiation therapy):逆向调强放疗或适形调强放疗,通过第二次限束以改变加速器限束出束剂量率,达到肿瘤内部剂量均匀性。

IGRT(imageguide radiation therapy):图像应到治疗,思维得放射治疗技术,在三维放疗技术得基础上加入了时间因数得概念、控制摆位误差,对器官得移动进行监控、在治疗机上安装兆伏级或KV级得X线射野影像监视器(EPID)可在治疗中实时监测与验证射野几何位置乃至野内剂量分布。

放疗名词解释

放疗名词解释

放疗名词解释:1、放射生物学:临床放射生物学是在放射生物基础理论研究的基础上,探讨人类肿瘤及其正常组织在放射治疗过程中放射生物学效应问题的一门科学,是肿瘤放射治疗技术学的重要基础之一。

2、相对生物效应:是指要达到同样生物效应时的标准射线(250KV X 射线)所用剂量和某种射线所用剂量的比值。

3、直接作用:指放射线直接作用于生物组织细胞中的生物大分子,使其产生电离和激发,并最终导致其发生放射性损伤称之为电离辐射的直接作用。

高LET射线以直接作用为主。

4、间接作用:指在放射线与生物组织作用、尤其是与生物组织内水分子作用产生自由基,这些自由基再与生物大分子作用使其损伤。

这种放射性损伤称之为电离辐射的间接作用。

5、核衰变:放射性核素自发地发出一种或一种以上的射线并转变成另一种核素的过程称为核衰变。

核衰变是放射性核素的一种属性。

衰变必然伴随有放射。

6、放射性活度:指单位时间内原子核衰变的数目,其单位为1/秒。

专用名:贝可Bq7、放射性同位素:不稳定的同位素具有放射性。

这种不稳定性主要是由于原子核中的质子和中子不平衡性造成的。

随着原子序数的增加,一种元素的同位素越来越多。

元素周期表后面的重元素都具有天然放射性。

8、放射源:在没有特别说明的情况下,一般规定为放射源前表面的中心,或产生辐射的靶面中心。

9、照射野中心轴:射线束的中心对称轴线,临床上一般用放射源S 与穿过照射野中心的连线作为照射野的中心轴。

10、等中心:是准直器旋转轴(假定为照射野中心)和机架旋转轴的相交点,与机房中所有激光灯出射平面的焦点相重合。

此点到放射源的距离称源轴距11、肿瘤的致死剂量:通过放射治疗使绝大部分的肿瘤细胞死亡而达到控制肿瘤,局部治愈的放射剂量即为肿瘤的放射剂量。

12、正常组织耐受量:各种不同组织接受射线照射后能够耐受而不致造成不可逆性损伤所需要的最大剂量为该组织的耐受量。

13、组织量:所谓组织量是指患者受照射组织在一定深度的射线吸收剂量。

放疗名词解释

放疗名词解释

放疗名词解释:1、放射生物学:临床放射生物学是在放射生物基础理论研究的基础上,探讨人类肿瘤及其正常组织在放射治疗过程中放射生物学效应问题的一门科学,是肿瘤放射治疗技术学的重要基础之一。

2、相对生物效应:是指要达到同样生物效应时的标准射线(250KV X射线)所用剂量和某种射线所用剂量的比值。

3、直接作用:指放射线直接作用于生物组织细胞中的生物大分子,使其产生电离和激发,并最终导致其发生放射性损伤称之为电离辐射的直接作用。

高LET射线以直接作用为主。

4、间接作用:指在放射线与生物组织作用、尤其是与生物组织内水分子作用产生自由基,这些自由基再与生物大分子作用使其损伤。

这种放射性损伤称之为电离辐射的间接作用。

5、核衰变:放射性核素自发地发出一种或一种以上的射线并转变成另一种核素的过程称为核衰变。

核衰变是放射性核素的一种属性。

衰变必然伴随有放射。

6、放射性活度:指单位时间内原子核衰变的数目,其单位为1/秒。

专用名:贝可Bq7、放射性同位素:不稳定的同位素具有放射性。

这种不稳定性主要是由于原子核中的质子和中子不平衡性造成的。

随着原子序数的增加,一种元素的同位素越来越多。

元素周期表后面的重元素都具有天然放射性。

8、放射源:在没有特别说明的情况下,一般规定为放射源前表面的中心,或产生辐射的靶面中心。

9、照射野中心轴:射线束的中心对称轴线,临床上一般用放射源S与穿过照射野中心的连线作为照射野的中心轴。

10、等中心:是准直器旋转轴(假定为照射野中心)和机架旋转轴的相交点,与机房中所有激光灯出射平面的焦点相重合。

此点到放射源的距离称源轴距11、肿瘤的致死剂量:通过放射治疗使绝大部分的肿瘤细胞死亡而达到控制肿瘤,局部治愈的放射剂量即为肿瘤的放射剂量。

12、正常组织耐受量:各种不同组织接受射线照射后能够耐受而不致造成不可逆性损伤所需要的最大剂量为该组织的耐受量。

13、组织量:所谓组织量是指患者受照射组织在一定深度的射线吸收剂量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

放疗术语OIS:放疗信息系统TPS:放疗计划系统LCS:加速器控制系统MLC (Multi-Leaf Collimator ):多叶准直器或多页光栅过滤X 射线,形成特定形状的剂量分布,减小放疗对正常组织的损伤。

EPID(Electronic Portal Imaging Device):电子射野影像装置,EPID 系统由射线探测和射线信号的计算机处理两部分组成不同系统的差别主要表现在前一部分,后一部分大部分相似,一句射线探测方法的不同可以将EPID 系统划分为荧光、固体探测器、液体电离室三大类型,利用平板探测器测量放疗时剂量分布,来监视适形放疗的结果CBCT(Cone Beam computor tomography) ,锥形数CTBrachyTherapy (近距离治疗)别名:内照射放疗,将放射源放置于需要治疗的部位内部或者附近,主要用于前列腺、乳腺、皮肤癌治疗。

External beam radiotherapy EBRT :远距离治疗。

三维放疗:通过不同方向的X 射线,提高病灶区的剂量,避免一些组织受到严重的辐射伤害三维适形放疗3D CRT:是高能射束的形态始终与对肿瘤的投影一致或是近似一致,可以较大幅度增加肿瘤剂量,提高肿瘤控制率,并使周边免受损伤。

射线是均匀结束的,但是肿瘤大多是不规则的,且肿瘤各点离人体表皮的射入距离也是不一样的,所以不能解决肿瘤内部剂量均匀性问题。

IMRT (intensity-modulated radiation therapy ):逆向调强放疗或适形调强放疗,通过第二次限束以改变加速器限束出束剂量率,达到肿瘤内部剂量均匀性。

IGRT(image guide radiation therapy ):图像应到治疗,思维的放射治疗技术,在三维放疗技术的基础上加入了时间因数的概念。

控制摆位误差,对器官的移动进行监控。

在治疗机上安装兆伏级或KV 级的X 线射野影像监视器(EPID)可在治疗中实时监测和验证射野几何位置乃至野内剂量分布。

目前,在多数加速器上均可安装EPID 设备,先进的EPID 设备还可以进行剂量分布计算和验证。

如果将治疗机与影像系统结合在一起,每天治疗时采集有关的影像学信息,确定治疗靶区,做到每日一靶,也可称为IGRT 。

机械手臂放疗(Robotic RT ):将加速器安置在机械手臂内,机械手臂自由活动实现放疗。

赛博刀(Cyberknife )实现了这种方式。

容积调强放疗(VMA T):一次照射一个区域,调节治疗头旋转速度或者剂量率实现调强,MLC 在治疗头旋转时就可以及时的调整形状,不需要停顿。

螺旋扫描放疗(Tomotherpy):利用多叶准直器控制剂量分布,通过不同的角度投射不同分布的剂量,可以绘制出人以复杂的剂量分布。

剂量:射线穿透人体时,会损失一部分能量,单位质量的物质内所沉积的能量被称为剂量。

单位:1Gy = 1J/kgtarget:靶区,肿瘤GTV :肉眼肿瘤区,指影像所能见到的、肉眼能见到的和可触及的恶性肿瘤生长范围。

CTV :临床耙区,是GTV 和需要杀灭的亚临床显微恶性病变组织的总和。

PTV :计划耙区,一个集合,CTV 加上器官自主运动和不自主运运动造成的肿瘤位移范围以及摆位造成的误差等。

TV :治疗区域,为达到治疗目的所选择的等剂量线包含的区域。

IV :照射区域,指受到正常组织耐受剂量照射的组织体积。

OAR:危险器官,保护器官,指其放射敏感性显著的影响到处方剂量的正常组织。

小结:就区域范围大小对上述区域排序:IV > TV > PTV > CTV > GTV照射野:由准直器确定的射线束的边界,并垂直于射线束中心轴的射线束平面。

有两种定义方法:一是几何学照射野,即放射源的前表面经准直器在模体表面的投影;二是物理学照射野,即以射线束中心轴剂量为100%,照射野两边50%等剂量线之间的距离。

源皮距(SSD):从放射源前表面沿射线束中心轴到受照物体表面的距离。

源轴距(SAD ):从放射源前表面沿射线束中心轴到等中心的距离。

参考点:模体中沿射线束中心轴深度剂量为100%的位置。

对于低于400KV 的X 线来说,该点定义为模体表面。

射线质:用于表示射线束在水模中穿射本领的术语,该质是带电和非带电粒子能量的函数。

百分深度剂量(percentage depth dose PDD):水模体中射线束中心轴某一深度的吸收剂量与参考深度的吸收剂量的比值。

影响因素包括:射线能量,照射野,源皮距和深度。

各个放疗中心应根据机型的不同具体测量和建立不同射线束的百分深度剂量数据。

组织空气比(tissue air ratio TAR ):水模体射线束中心轴某一深度的吸收剂量,与空气中距离放射源相同距离处,在一刚好建立电子平衡的模体材料中吸收剂量的比值。

若深度正好位于参考深度d0 处,其组织空气比通常取名为反向散射因子或峰值散射因子。

影响因素包括:射线能量,照射野,深度。

组织模体比(tissue phantom ratio TPR ):水模中射线束中心轴某一深度的吸收剂量,与距放射源相同距离的同一位置,校准深度处吸收剂量的比值。

校准深度的选择低于10MV的X 线为5cm,10~25MV 的X 线为7cm。

影响因素同TAR。

组织最大比(tissue maximum ratio TMR ):水模中射线束中心轴某一深度的吸收剂量,与距放射源相同距离的同一位置,参考深度处吸收剂量的比值。

影响因素同TAR 。

散射空气比(scatter air ratio SAR):水模中某一深度的散射线剂量,与空间同一点空气吸收剂量的比值,等于某一点某一放射野的组织空气比减去零野的组织空气比,若该点为最大剂量点,则这时称散射最大剂量比(scatter maximun ratio SMR )。

X 线百分深度剂量的影响因素:能量和深度:对于中低能X 线来说,随着深度增加,百分深度剂量减小,下降速率较快;对于高能X 线来说,由于剂量建成效应,百分深度剂量先增大后减小,减小的速率较慢;照射野:由于照射野中某一点的吸收剂量包有效原辐射(放射源原射线和经准直器产生的散射线)和有效原辐射在模体中产生的散射线,而高能X 射线散射方向更多的是沿其入射方向向前散射,中低能X 线旁向散射多见,所以,中低能X 射线的百分深度剂量随照射野的变化比高能X 线显著;源皮距:由于平方反比定律即近源处剂量减少的速率大于远源处的影响,所以百分深度剂量随源皮距的增加而增加。

等效方野:如果两个野的面积周长比相等,则两野等效,适用条件为:长方形照射野的边长不超过20cm,面积周长比不大于4,经计算,c=2ab/(a+b)。

等效方野代表不同照射野下,散射线的贡献量相等。

照射野的平坦度与对称性:照射野的平坦度定义为标准源皮距条件或等中心条件下,模体中10cm 深度处,照射野80%宽度内,最大或最小剂量与中心轴剂量的偏差值,应好于±3%,照射野对称性的定义为与平坦度同样条件下,中心轴对称任一两点的剂量差与中心轴剂量的比值,应好于±3%。

半影:照射野边缘80%与20%等剂量曲线之间的宽度,表示物理半影的大小。

半影分为几何半影、穿射半影和散射半影。

几何半影是由射源的大小、源到准直器的距离和源皮距形成的,穿射半影受准直器漏射线影响,散射半影是准直器和模体内的散射线形成的。

等剂量曲线与能量的关系:低能射线的等剂量曲线深度浅,较为弯曲,边缘中断,低值等剂量曲线向外膨胀,有较大的半影区;高能射线的等剂量曲线深度较深,较为平直,边缘连续,半影区小。

楔形角:模体内特定深度,楔形照射野等剂量曲线与1/2照射野宽的交点连线和射线束中心轴垂直线的夹角。

目前特定深度的选择尚有争议,普遍的做法是选择模体中10cm处。

楔形因子:模体内射线束中心轴某一深度d处楔形照射野和开放照射野分别照射时吸收剂量的比值。

楔形板多为不锈钢或铅材料制成,楔形板对X射线有“硬化”作用,低能射线更明显,对高能射线影响小。

楔形板分为物理楔形板和虚拟楔形板,物理楔形板的角度有15,30,45,60四种。

高能电子束百分深度剂量分布的特点:组成:剂量建成区、高剂量坪区、剂量跌落区和X射线污染区;剂量建成效应不明显,表面剂量高,多在75%~80%以上,并随剂量增加而增加,百分深度剂量很快达到最大点,由于电子容易散射的缘故;剂量跌落用剂量梯度G度量,一般在2~2.5之间。

有效治疗深度(Rt):皮下至85%最大剂量点处的深度。

高能电子束百分深度剂量的主要影响因素:能量,随着射线能量的增加,表面剂量增加,高剂量坪区变宽,剂量梯度变小,X线污染增加。

电子束的临床剂量学优点逐渐消失;照射野,照射野较小时,百分深度剂量随深度增加迅速减小,照射野较大时,百分深度剂量不再随设野的变化而变化,一般条件下,当照射野的直径大于电子束射程的1/2时,百分深度剂量随照射野增大变化极微,低能时, 由于射程较短, 照射野对百分深度剂量的影响较小,高能时,影响较大; 源皮距,固定源皮距照射。

电子束等剂量曲线分布的特点: 随深度增加, 低值等剂量曲线向外侧扩张, 高值等剂量 曲线向内侧收缩,并随着能量的变高而更明显,野越大,曲线越平直。

选择电子束照射野的一般办法:表面位置的照射野应按照靶区的最大横径而适当扩大, 根据 L90/L50 ≥ 0.85 的规定, 所选择电子束设野应至少等于或大于靶区横径的 1.18 倍,即射 野大小应比计划靶区横径大20%。

并在此基础上,根据靶区最深部分的宽度的情况射野再放 0.5~1.0cm 。

电子束挡铅厚度的确定:最低挡铅厚度(mm )应是电子束能量( Mev )数值的二分之 一,同时从安全考虑,可将挡铅厚度再增加1mm 。

内挡铅一般选用低原子序数材料,如有 机玻璃等。

钴60 的半衰期为5.26 年,半值厚 12mm ,铱192 的半衰期为73.83 天,半值厚 3mm , 铱源能谱复杂, γ 射线平均能量为350kev ,由于铱源 γ射线能量范围使其在水中指数衰减 率恰好被散射线建成所补偿,在距离5cm 范围内,剂量率与距离的平方的乘积近似不变, 不遵循平方反比定律。

相关文档
最新文档