八年级数学上册整式的混合运算(习题及答案)(人教版)

合集下载

人教版八年级上册专题复习:整式的运算(含答案) (6)

人教版八年级上册专题复习:整式的运算(含答案) (6)

专题全等三角形与角平分线知识点名师点晴全等三角形全等图形理解全等图形的定义,会识别全等图形全等三角形的判定理解并掌握全等三角形的判定方法:SSS、SAS、ASA、AAS,并会判定两个三角形全等直角三角形的判定会利用HL判定两个三角形全等角平分线角平分线的性质理解并掌握角平分线的性质角平分线的判定利用角平分线的判定解决有关的实际问题☞2年中考【2015年题组】1.(2015六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【答案】D.【解析】试题分析:A.可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B.可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.利用ASA判定△ABC≌△DCB,故此选项不符合题意;D.SSA不能判定△ABC≌△DCB,故此选项符合题意;故选D.考点:全等三角形的判定.2.(2015贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【答案】B.考点:全等三角形的判定与性质.3.(2015义乌)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C 画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【答案】D.【解析】试题分析:在△ADC和△ABC中,∵AD=AB,DC=BC,AC=AC,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选D.考点:全等三角形的应用.4.(2015泰州)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对【答案】D.考点:1.全等三角形的判定;2.线段垂直平分线的性质;3.等腰三角形的性质;4.综合题.5.(2015宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=12AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个【答案】D.【解析】试题分析:在△ABD与△CBD中,∵AD=CD,AB=BC,DB=DB,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,∵AD=CD,∠ADB=∠CDB,OD=OD,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选D.考点:1.全等三角形的判定与性质;2.新定义;3.阅读型.6.(2015宜昌)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【答案】C.考点:全等三角形的判定.7.(2015荆门)如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()A.1个B.2个C.3个D.4个【答案】D.考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质;3.综合题;4.压轴题.8.(2015柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=12GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个【答案】B.【解析】试题分析:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:2GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.考点:1.全等三角形的判定与性质;2.正方形的性质;3.相似三角形的判定与性质;4.综合题.9.(2015柳州)如图,△ABC≌△DEF,则EF= .【答案】5.【解析】试题分析:∵△ABC≌△DEF,∴BC=EF,则EF=5.故答案为:5.考点:全等三角形的性质.10.(2015盐城)如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.【答案】DC=BC或∠DAC=∠BAC.考点:1.全等三角形的判定;2.开放型.11.(2015贵港)如图,在正方形ABCD的外侧,作等边三角形CDE,连接AE,BE,则∠AEB的度数为.【答案】30°.考点:1.全等三角形的判定与性质;2.等腰三角形的性质;3.正方形的性质;4.综合题.12.(2015常州)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是.【答案】(400,800).【解析】试题分析:连接AC,由题意可得:AB=300m,BC=400m,在△AOD和△ACB中,∵AD=AB,∠ODA=∠ABC,DO=BC,∴△AOD≌△ACB(SAS),∴∠CAB=∠OAD,∵B、O在一条直线上,∴C,A,D也在一条直线上,∴AC=AO=500m,则CD=AC=AD=800m,∴C点坐标为:(400,800).故答案为:(400,800).考点:1.勾股定理的应用;2.坐标确定位置;3.全等三角形的应用.13.(2015福州)如图,在Rt△ABC中,∠ABC=90°,2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.【答案】13.考点:1.旋转的性质;2.全等三角形的判定与性质;3.角平分线的性质;4.等边三角形的判定与性质;5.等腰直角三角形;6.综合题.14.(2015鄂尔多斯)如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=12∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG= cm.【答案】4.考点:1.全等三角形的判定与性质;2.等腰直角三角形;3.综合题.15.(2015长春)如图,在平面直角坐标系中,点P 在函数6y x =(0x >)的图象上.过点P 分别作x 轴、y 轴的垂线,垂足分别为A 、B ,取线段OB 的中点C ,连结PC 并延长交x 轴于点D .则△APD 的面积为 .【答案】6. 【解析】试题分析:∵PB ⊥y 轴,PA ⊥x 轴,∴APBDS 矩形=|k|=6,在△PBC 与△DOC 中,∵∠PBC=∠DOC=90°,BC=BC ,∠PCB=∠DCO ,∴△PBC ≌△DOC ,∴S △APD=S 矩形APBO=6.故答案为:6.考点:1.反比例函数系数k 的几何意义;2.全等三角形的判定与性质. 16.(2015江西省)如图,OP 平分∠MON ,PE ⊥OM 于E ,PF ⊥ON 于F ,OA=OB ,则图中有 对全等三角形.【答案】3.考点:1.全等三角形的判定;2.角平分线的性质;3.综合题.17.(2015贺州)如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=3 4.有以下的结论:①△ADE ∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤245,其中正确的结论是(填入正确结论的序号).【答案】②③.若△BDE为直角三角形,则有两种情况:(1)若∠BED=90°,∵∠BDE=∠CAD,∠B=∠C,∴△BDE∽△CAD,∴∠CDA=∠BED=90°,∴AD⊥BC,∵AB=AC,∴BD=12BC=12;(2)若∠BDE=90°,如图2,设BD=x,则DC=24-x,∵∠CAD=∠BDE=90°,∠B=∠C=∠α,∴cos∠C=cosB=45,∴154245ACDC x==-,解得:214x=,∴若△BDE为直角三角形,则BD为12或214,故③正确;设BE=x,CD=y,∵△BDE∽△CAD,∴BE CDBD CA=,∴2415x yy=-,∴21524x y y=-,∴215144(12)x y=--,∴15144x≤,∴485x≤,∴0<BE≤485,∴故④错误;故答案为:②③.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.18.(2015南宁)如图,在▱ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:△ADE≌△CBF;(2)若∠DEB=90°,求证:四边形DEBF是矩形.【答案】(1)证明见试题解析;(2)证明见试题解析.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.矩形的判定.19.(2015崇左)如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:BE=CD.【答案】证明见试题解析.【解析】试题分析:根据两边及其夹角对应相等可以判断△ADE≌△AEB,再由全等三角形对应边相等可说明结论.证明:在△ADE和△AEB中,∵AB=AC,∠A=∠A,AD=AE,∴△ADE≌△AEB,∴BE=CD.考点:全等三角形的判定与性质.20.(2015来宾)如图,在▱ABCD中,E、F为对角线AC上的两点,且AE=CF,连接DE、BF,(1)写出图中所有的全等三角形;(2)求证:DE∥BF.【答案】(1)△ABC≌△CDA,△ABF≌△△CDE,△ADE≌△CBF;(2)证明见试题解析.考点:1.平行四边形的性质;2.全等三角形的判定与性质.21.(2015百色)如图,AB∥DE,AB=DE,BF=EC.(1)求证:AC∥DF;(2)若CF=1个单位长度,能由△ABC经过图形变换得到△DEF吗?若能,请你用轴对称、平移或旋转等描述你的图形变换过程;若不能,说明理由.【答案】(1)证明见试题解析;(2)能,△ABC先向右平移1个单位长度,再绕点C旋转180°即可得到△DEF.考点:1.全等三角形的判定与性质;2.几何变换的类型;3.网格型.22.(2015常州)如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.【答案】(1)证明见试题解析;(2)60°.【解析】试题分析:(1)根据平行四边形的性质得到∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,根据等边三角形的性质得到BE=BC,DF=CD,∠EBC=∠CDF=60°,即可证出∠ABE=∠FDA,AB=DF,BE=AD,由SAS证明△ABE≌△FDA,得出对应边相等即可;(2)根据全等三角形的性质得到∠AEB=∠FAD,求出∠AEB+∠BAE=60°,得出∠FAD+∠BAE=60°,即可得出∠EAF的度数.试题解析:(1)∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,∵△BCE和△CDF都是正三角形,∴BE=BC,DF=CD,∠EBC=∠CDF=60°,∴∠ABE=∠FDA,AB=DF,BE=AD,在△ABE和△FDA中,∵AB=DF,∠ABE=JIAO FDA,BE=AD,∴△ABE≌△FDA(SAS),∴AE=AF;(2)∵△ABE≌△FDA,∴∠AEB=∠FAD,∵∠ABE=60°+60°=120°,∴∠AEB+∠BAE=60°,∴∠FAD+∠BAE=60°,∴∠EAF=120°﹣60°=60°.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的性质.23.(2015乐山)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.【答案】(1)证明见试题解析;(2)43 3.试题解析:(1)∵AD∥BC,∴∠ADB=∠DBC,根据折叠的性质∠ADB=∠BDF,∠F=∠A=∠C=90°,∴∠DBC=∠BDF,∴BE=DE,在△DCE和△BFE中,∵∠BEF=∠DEC,∠F=∠C,BE=DE,∴△DCE≌△BFE;(2)在Rt△BCD中,∵CD=2,∠ADB=∠DBC=30°,∴BC=23,在Rt△BCD中,∵CD=2,∠EDC=30°,∴DE=2EC,∴222(2)EC EC CD-=,∴233,∴BE=BC﹣433.考点:1.翻折变换(折叠问题);2.全等三角形的判定与性质;3.综合题.24.(2015潜江)已知∠MAN=135°,正方形ABCD绕点A旋转.(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD的边CB,CD的延长线交于点M,N,连接MN.①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是;②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN分别与直线BD交于点M,N,探究:以线段BM,MN,DN的长度为三边长的三角形是何种三角形,并说明理由.【答案】(1)①MN=BM+DN;②成立;(2)直角三角形.(2)如图3,将△ABM绕点A逆时针旋转90°,得到△ADE,连结NE.由旋转的性质得到DE=BM,AE=AM,∠EAM=90°,∠NDE=90°.先证明△AMN≌△AEN.得到MN=EN.由DN,DE,NE为直角三角形的三边,得到以线段BM,MN,DN的长度为三边长的三角形是直角三角形.②如图2,若BM≠DN,①中的数量关系仍成立.理由如下:延长NC到点P,使DP=BM,连结AP.∵四边形ABCD是正方形,∴AB=AD,∠ABM=∠ADC=90°.在△ABM与△ADP中,∵AB=AD,∠ABM=∠ADP,BM=DP,∴△ABM≌△ADP(SAS),∴AM=AP,∠1=∠2=∠3,∵∠1+∠4=90°,∴∠3+∠4=90°,∵∠MAN=135°,∴∠PAN=360°﹣∠MAN﹣(∠3+∠4)=360°﹣135°﹣90°=135°.在△ANM与△ANP中,∵AM=AP,∠MAN=∠PAN,AN=AN,∴△ANM≌△ANP(SAS),∴MN=PN,∵PN=DP+DN=BM+DN,∴MN=BM+DN;(2)以线段BM,MN,DN的长度为三边长的三角形是直角三角形.理由如下:如图3,将△ABM绕点A逆时针旋转90°,得到△ADE,连结NE.由旋转的性质得:DE=BM,AE=AM,∠EAM=90°,∠NDE=90°.∵∠MAN=135°,∴∠EAN=360°-∠MAN-∠EAM =135°,∴∠EAN =∠MAN.在△AMN与△AEN中,∵AM=AE,∠MAN=∠EAN,AN=AN,∴△AMN≌△AEN.∴MN=EN.∵DN,DE,NE为直角三角形的三边,∴以线段BM,MN,DN的长度为三边长的三角形是直角三角形.考点:1.几何变换综合题;2.全等三角形的判定与性质;3.勾股定理的逆定理;4.和差倍分;5.探究型;6.综合题;7.压轴题.【2014年题组】1.(2014年贵州黔西南)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【答案】C.考点:全等三角形的判定.2.(2014年湖南益阳)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是()A .AE=CFB .BE=FDC .BF=DED .∠1=∠2【答案】A .【解析】试题分析:根据平行四边形的性质以及全等三角形的判定分别作出判断:A 、当AE=CF 时,构成的条件是SSA ,无法得出△ABE ≌△CDF ,故此选项符合题意;B 、当BE=FD 时,构成的条件是SAS ,可得△ABE ≌△CDF ,故此选项不符合题意;C 、当BF=ED 时,由等量减等量差相等得BE=FD ,构成的条件是SAS ,可得△ABE ≌△CDF ,故此选项不符合题意;D 、当∠1=∠2时,构成的条件是ASA ,可得△ABE ≌△CDF ,故此选项不符合题意. 故选A .考点:1.平行四边形的性质;2.全等三角形的判定.3.(2014年江苏连云港)如图,若△ABC 和△DEF 的面积分别为1S 、2S ,则( )A .1212S S =B .1272S S =C .12S S =D .1285S S =【答案】C .考点:1.全等三角形的判定和性质;2.等底等高三角形的性质.4.(2014年福建福州)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是边AB ,AC 的中点,延长BC到点F,使12 CFBC=..若AB=10,则EF的长是_______ .【答案】5.【解析】∵在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,AB=10,∴AD=5,AE=EC,12DE BC=,∠AED=90°.∵12CF BC=,∴DE=FC.在Rt△ADE和Rt△EFC中,∵AE=EC,DE=FC,∴Rt△ADE≌Rt△EFC(SAS).∴EF=AD=5.考点:1.三角形中位线定理;2.全等三角形的判定和性质.5.(2014年湖南长沙)如图,点B、E、C、F在一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF= __________ .【答案】6.考点:1.平行的性质;2.全等三角形的判定和性质.6.(2014年湖南常德)如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为______.【答案】60°.【解析】试题分析:∵△ABC三个内角的平分线交于点O,∴∠ACO=∠BCO.在△COD和△COB中,∵CD=CB,∠OCD=∠OCB,CO=CO,∴△COD≌△COB(SAS).∴∠D=∠CBO.∵∠BAC=80°,∴∠BAD=100°,∠BAO=40°.∴∠DAO=140°.∵AD=AO,∴∠D=20°.∴∠CBO=20°.∴∠ABC=40°.∴∠BCA=60°.考点:1.角的平分线定义;2.全等三角形的判定和性质;3.等腰三角形的性质.7、(2014年福建福州7分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】证明见试题解析.考点:全等三角形的判定和性质.8.(2014年湖北宜昌)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DA=DE.【答案】(1)30°;(2)证明见试题解析.【解析】试题分析:(1)利用“直角三角形的两个锐角互余”的性质和角平分的性质进行解答.(2)由ASA证明△ACD≌△ECD来推知DA=DE.试题解析:解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠CAB=60°.又∵AD平分∠CAB,∴∠CAD=12∠CAB=30°,即∠CAD=30°.(2)证明:∵∠ACD+∠ECD=180°,且∠ACD=90°,∴∠ECD=90°.∴∠ACD=∠ECD.在△ACD与△ECD中,∵AC=EC,∠ACD=∠ECD,CD=CD,∴△ACD≌△ECD(SAS).∴DA=DE.考点:1.直角三角形两锐角的关系;2.全等三角形的判定与性质.☞考点归纳归纳1:全等三角形的性质基础知识归纳:全等三角形的对应边相等,对应角相等基本方法归纳:利用全等三角形的性质解决有关线段相等和角的计算的有关问题注意问题归纳:利用全等三角形的性质时,关键是找准对应点,利用对应点得到相应的对应边以及对应角.【例1】如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为.【答案】60°.考点:1.全等三角形的判定与性质;2.等腰三角形的性质.归纳2:全等三角形的判定方法基础知识归纳:三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”).基本方法归纳:证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.注意问题归纳:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例2】如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【答案】C.考点:全等三角形的判定与性质.归纳3:角平分线基础知识归纳:角平分线上的点到角的两边的距离相等,到角两边距离相等的点在角平分线上.基本方法归纳:角平分线的性质是证明线段相等的重要工具,角平分线的性质经常用来解决点到直线的距离以及三角形的面积问题.注意问题归纳:注意区分角平分线的性质与判定,角平分线的性质和判定都是由三角形全等得到的.【例3】如图所示,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.【答案】证明见试题解析.考点:1.全等三角形的判定和性质;2.角平分线的性质.☞1年模拟1.(2015届北京市平谷区中考二模)用直尺和圆规作一个角等于已知角,如图,能得出A O B AOB '''∠=∠的依据是( )A .(SAS )B .(SSS )C .(AAS )D .(ASA )【答案】B .【解析】试题分析:由题意可知,利用尺规作图法,可知OC=O ′C ′,OD=O ′D ′,CD=C ′D ′,根据全等三角形的判定定理(SSS )可得△OCD ≌△O ′C ′D ′,得出A O B AOB '''∠=∠.故选B .考点:1.全等三角形的判定;2.尺规作图.2.(2015届安徽省安庆市中考二模)如图,等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上的一点,当PA=CQ 时,连接PQ 交AC 于点D ,下列结论中不一定正确的是( )A .PD=DQB .DE=21AC C .AE=21CQ D .PQ ⊥AB【答案】D .考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质;3.平行线的性质.3.(2015届山东省日照市中考模拟)如图,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC 固定不动,△AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合),设BE=m ,CD=n .下列结论:(1)图中有三对相似而不全等的三角形;(2)m•n=2;(3)BD2+CE2=DE2;(4)△ABD ≌△ACE ;(5)DF=AE .其中正确的有( )A、2个B、3个C、4个D、5个【答案】A.(5)当AF与AB重合时,AE=12AF,22AF,得到DF≠12AF,于是由AE与DF 不一定相等;试题解析:(1)△ABE∽△DAE,△ABE∽△DCA,故(1)错误;(2)∵△ABE∽△DCA,∴BE BAAC CD=,由题意可知CA=BA=2,∴22mn=,∴m=2n,∴mn=2;(1<n<2);故(2)正确;(3)证明:将△ACE绕点A顺时针旋转90°至△ABH的位置,则CE=HB,AE=AH,∠ABH=∠C=45°,旋转角∠EAH=90°.连接HD,在△EAD和△HAD中,∵AE=AH,∠HAD=∠EAH-∠FAG=45°=∠EAD,AD=AD,∴△EAD≌△HAD,∴DH=DE.又∠HBD=∠ABH+∠ABD=90°,∴BD2+CE2=DH2,即BD2+CE2=DE2;故(3)正确;(4)若△ABC固定不动,△AFG绕点A旋转,∴∠BAD≠∠CAE,∴△ABD与△ACE不一定全等,∴(4)错误;(5)当AF与AB重合时,AE=12AF,22AF,∴DF≠12AF,∴AE与DF不一定相等;∴(5)错误.故选A.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.等腰直角三角形.4.(2015届山东省济南市平阴县中考二模)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是()A.1:2 B.1:3 C.1:4 D.1:5【答案】A.考点:1.平行四边形的性质;2.全等三角形的判定与性质.5.(2015届河北省中考模拟二)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.7.5 B.8 C.15 D.无法确定【答案】A.考点:1.角平分线的性质;2.全等三角形的判定与性质.6.(2015届北京市平谷区中考二模)如图,点A,B,D,E在同一直线上,AB=ED,AC ∥EF,∠C=∠F.求证:AC=EF.【答案】证明见解析.【解析】试题分析:根据全等三角形的片对于性质,再由原子条件即可证明△ABC≌△EDF(AAS),推出AC=EF即可.试题解析:证明:∵AC∥EF,∴∠A=∠E.在△ABC和△DEF中,A EC FAB ED∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△EDF.∴AC=EF.考点:全等三角形的判定与性质.7.(2015届北京市门头沟区中考二模)如图,在△ABC中,D为AB边上一点,F为AC 的中点,连接DF并延长至E,使得EF=DF,连接AE和EC.(1)求证:四边形ADCE为平行四边形;(2)如果DF=22,∠FCD=30°,∠AED=45°,求DC的长.【答案】(1)证明见解析;(2)223+.(2)解:如图,过点F作FG⊥DC与G.∵四边形ADCE为平行四边形,∴AE∥CD.∴∠FDG=∠AED=45°,在Rt△FDG中,∠FGD=90°,∠FDG=45°,DF=2cos∠FDG=DGDF,∴DG=GF=cosDF FDG⋅∠=2cos45︒=2.在Rt△FCG中,∠FGC=90°,∠FCG=30°,GF=2,∵tan∠FCG=FG GC,∴223tan tan 30FG CG FCG ===∠︒,∴DC=DG+GC=223+.考点:1.解直角三角形;2.平行四边形的判定与性质;3.全等三角形的判定与性质.8.(2015届北京市门头沟区中考二模)如图1,在△ABC 中,CA=CB ,∠ACB=90°,D 是△ABC 内部一点,∠ADC=135°,将线段CD 绕点C 逆时针旋转90°得到线段CE ,连接DE .(1)①依题意补全图形;②请判断∠ADC 和∠CDE 之间的数量关系,并直接写出答案;(2)在(1)的条件下,连接BE ,过点C 作CM ⊥DE ,请判断线段CM ,AE 和BE 之间的数量关系,并说明理由;(3)如图2,在正方形ABCD 中,AB=2,如果PD=1,∠BPD=90°,请直接写出点A 到BP 的距离.【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM ,理由解析;(3)312-(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵线段CD绕点C逆时针旋转90°得到线段CE,∴CD=CE,∠DCE=90°,∴∠CDE=∠CED=45°.又∵∠ADC=135°,∴∠ADC+∠CDE=180°,∴A、D、E三点在同一条直线上,∴AE=AD+DE.又∵∠ACB=90°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE,∴AD=BE.∵CD=CE,∠DCE=90°,CM⊥DE,∴DE=2CM,∴AE=BE+2CM.(3)点A到BP 312.考点:1.作图—旋转变换;2.探究型;3.和差倍分;4.全等三角形的判定与性质.9.(2015届安徽省安庆市中考二模)如图,点D是等边△ABC中BC边上一点,过点D分别作DE∥AB,DF∥AC,交AC,AB于E,F,连接BE,CF,分别交DF,DE于点N,M,连接MN.试判断△DMN的形状,并说明理由.【答案】△DMN为等边三角形,理由见解析.考点:1.等边三角形的判定与性质;2.全等三角形的判定与性质.10.(2015届山东省日照市中考一模)如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.(1)求证:AM=BN;(2)当MA∥CN时,试求旋转角α的余弦值.【答案】(1)证明见解析;(2)13.(2)∵MA∥CN,∴∠ACN=∠CAM,∵∠ACN+∠ACM=90°,∴∠CAM+∠ACM=90°,∴∠AMC=90°,∴cosα=13 CM CEAC AC==.考点:1.全等三角形的判定与性质;2.旋转的性质;3.锐角三角函数的定义.11.(2015届山东省日照市中考模拟)已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.【答案】证明见解析.∴△ABE≌△CBF(SAS);∴∠ABE=∠CBF,BE=BF;∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴AE=1 2BE,CF=12BF;∵∠MBN=60°,BE=BF,∴△BEF为等边三角形;∴AE+CF=12BE+12BF=BE=EF;则△BAE≌△BCK,∴BE=BK,∠ABE=∠KBC,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠KBC=60°,∴∠KBF=∠FBE=60°,在△KBF和△EBF中,BK BEKBF EBF BF BF⎪∠⎪⎩∠⎧⎨===∴△KBF≌△EBF,∴KF=EF,∴KC+CF=EF,即AE+CF=EF.图3不成立,AE、CF、EF的关系是AE-CF=EF.考点:1.全等三角形的判定与性质;2.和差倍分;3.存在型;4.探究型;5.综合题.12.(2015届山东省青岛市李沧区中考一模)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=12AC,则四边形ABCD是什么特殊四边形?请证明你的结论.【答案】(1)证明见解析,(2)四边形ABCD是矩形,理由见解析.考点:1.全等三角形的判定与性质;2.平行四边形的判定与性质;3.矩形的判定;4.探究型.13.(2015届山西省晋中市平遥县九年级下学期4月中考模拟)在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.【答案】(1)BD=DP成立.证明见解析;(2)BD=DP.证明见解析.∵∠1+∠ADB=90°,∠ADB+∠2=90°,∴∠1=∠2.在△BDF 与△PDA 中,⎪⎩⎪⎨⎧︒=∠=∠=∠=∠4521DAP DFB DADF ,∴△BDF ≌△PDA (ASA ),∴BD=DP .(2)BD=DP .证明如下:如答图3,过点D 作DF ⊥MN ,交AB 的延长线于点F ,则△ADF 为等腰直角三角形,∴DA=DF .在△BDF 与△PDA 中,⎪⎩⎪⎨⎧∠=∠=︒=∠=∠PDA BDF DA DF PAD F 45,∴△BDF ≌△PDA (ASA ),∴BD=DP . 考点:1.全等三角形的判定与性质;2.等腰直角三角形;3.平行四边形的性质;4.探究型.14.(2015届广东省佛山市初中毕业班综合测试)如图,在△ABC 与△ABD 中,BC 与AD相交于点O,∠1=∠2,CO=DO.求证:∠C=∠D.【答案】证明见解析.考点:全等三角形的判定与性质.15.(2015届江苏省南京市建邺区中考一模)已知:如图,在▱ABCD中,线段EF分别交AD.AC.BC于点E、O、F,EF⊥AC,AO=CO.(1)求证:△ABF≌△CDE;(2)在本题的已知条件中,有一个条件如果去掉,并不影响(1)的证明,你认为这个多余的条件是(直接写出这个条件).【答案】(1)证明见解析;(2)EF⊥AC.考点:1.平行四边形的性质;2.全等三角形的判定与性质.16.(2015届河北省中考模拟二)如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.【答案】(1)证明见解析.(2)四边形BFGN为菱形,证明见解析.(2)解:四边形BFGN 为菱形,证明如下:∵MN ⊥EF ,∴∠E+∠EBM=90°,且∠EBM=∠ABN ,∴∠ABN+∠E=90°,∵BF=EF ,∴∠E=∠EBF ,∴∠ABN+∠EBF=90°,又∵∠EBC=90°,∴∠CBF+∠EBF=90°,∴∠ABN=∠CBF ,∵四边形ABCD 为正方形,∴AB=BC ,∠NAB=∠CBF=90°,在△ABN 和△CBF 中ABN CBF AB BC NAB BCF ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABN ≌△CBF (ASA ),∴BF=BN ,又由旋转可得EF=FG=BF ,∴BN=FG ,∵∠GFM=∠BME=90°,∴BN ∥FG ,∴四边形BFGN 为菱形.考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的判定;4.旋转的性质;5.和差倍分.。

新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试题(有答案解析)

新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试题(有答案解析)

一、选择题1.若2x y +=,1xy =-,则()()1212x y --的值是( )A .7-B .3-C .1D .9 2.形如ab cd 的式子叫做二阶行列式,它的算法是:ab ad bc cd =-,则221a a a a -++的运算结果是( )A .4aB .4a -C .4D .4-3.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =()A .1B .2C .5D .74.如果x+y =6,x 2-y 2=24,那么y-x 的值为( )A .﹣4B .4C .﹣6D .65.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+=A .1个B .2个C .3个D .4个6.下列多项式中,不能用完全平方公式分解因式的是( )A .214m m ++ B .222x xy y -+-C .221449x xy y -++D .22193x x -+7.下列运算正确的是( )A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-18.下列计算正确的是( )A .()222x y x y +=+B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=-9.已知x ,y ﹣1,则xy 的值为( )A .8B .48C .D .610.下列运算正确的是( ).A .236x x x =B .2242x x x +=C .22(2)4x x -=-D .358(3)(5)15a a a --=11.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( )A .1B .1-C .2D .2- 12.下列运算正确的是( )A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9 二、填空题13.若x 2+4x-4=0,则3(x-2)2-6(x+1)(x-1)的值为_________.14.分解因式:32m n m -=________.15.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.16.已知102m =,103n =,则32210m n ++=_______.17.若2a 与()23b +互为相反数,则2-=b a ______.18.已知正实数a ,满足17a a-=,则1a a +=________. 19.若6x y +=,3xy =-,则2222x y xy +=_____.20.若代数式23y y +-的值为0,则代数式3242020y y ++的值为___________.三、解答题21.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22⨯的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.22.如图1是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b 是直角边,两个小正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图2).用两种不同的方法列代数式表示图2中的大正方形面积:方法一:________________;方法二:________________;(直接把答案填写在答题卡的横线上)(2)观察图2,试写出()2a b +,2a ,2ab ,2b 这四个代数式之间的等量关系:________________.(直接把答案填写在答题卡的横线上)(3)请利用(2)中等量关系解决问题:若图1中一个三角形面积是6,图2的大正方形面积是64,求22a b +的值.23.分解因式:(1)325x x -;(2)(3)2(3)m a a -+-.24.已知多项式35ax bx +-,当2x =-时,该多项式的值是7,则当2x =时,该多项式的值是多少?25.计算(1)()()433a a -⋅- (2)(ab 2)2 •(﹣a 3b )3÷(﹣5ab )26.把下列多项式因式分解(要写出必要的过程):(1)﹣x 2y +6xy ﹣9y ;(2)9(x +2y )2﹣4(x ﹣y )2;(3)1﹣x 2﹣y 2+2xy .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7;故选:A .【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.2.A解析:A【分析】根据定义把二阶行列式表示成整式,然后再化简计算即可.【详解】解:由题意可得:()()()212221aa a a a a a a -=+--+++ =()224a a a +--=224a a a +-+=a+4,故答案为A .【点睛】本题考查整式乘法的混合运算,通过观察题目给出的运算法则,把所求解的算式根据运算法则展开是解题关键. 3.D解析:D【分析】由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可.【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2,∴m +n =5+2=7,故选:D .【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键. 4.A解析:A【分析】先变形为x 2-y 2=(x+y )(x-y ),代入数值即可求解.【详解】解:∵x 2-y 2=(x+y )(x-y )=24,∴6(x-y )=24,∴x-y=4,∴y-x=-4,故选:A .【点睛】本题考查了平方差公式的应用,掌握公式是解题关键.5.A解析:A【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算.【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的;∵()326x x =,∴②是正确的; ∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的;综上所述,只有一个正确,故选:A.【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.6.C解析:C【分析】直接利用完全平方公式分解因式得出答案.【详解】A 、222111(44)(2)444m m m m m ++=++=+能用完全平方公式分解因式,不符合题意; B 、222222(2)()x xy y x xy y x y -+-=--+=--能用完全平方公式分解因式,不符合题意;C 、221449x xy y -++不能用完全平方公式分解因式,符合题意;D 、2222111(69)(3)9399x x x x x -+=-+=-能用完全平方公式分解因式,不符合题意; 故选:C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握完全平方公式是解本题的关键.7.D解析:D【分析】利用同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式的运算法则计算即可判断.【详解】A 、 347·m m m =,该选项错误;B 、624m m m ÷=,该选项错误;C 、236(3)27m m -=-,该选项错误;D 、(()221)121m m m m +-=--,该选项正确; 故选:D .【点睛】本题考查了同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式,熟练掌握运算法则是解题的关键.8.D解析:D【分析】根据完全平方公式,平方差公式和积的乘方公式分别判断即可.【详解】A. ()2222x y x xy y +=++,故原选项错误;B.()32628m m =,故原选项错误;C.()22244x x x -=-+,故原选项错误;D. ()()2111x x x +-=-,故选项正确. 故选:D .【点睛】本题考查完全平方公式,平方差公式和积的乘方公式.熟记公式是解题关键. 9.D解析:D【分析】利用平方差公式计算即可.【详解】当x +1,y 1时,xy +11))2﹣12=7﹣1=6,故选:D.【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键. 10.D解析:D【分析】根据整式的同底数幂的乘法,合并同类项,积的乘方,单项式乘以单项式计算并判断.【详解】A 、235x x x =,故该项错误;B 、2222x x x +=,故该项错误;C 、22(2)4x x -=,故该项错误;D 、358(3)(5)15a a a --=,故该项正确;故选:D .【点睛】此题考查整式的计算,正确掌握整式的同底数幂的乘法,合并同类项,积的乘方,单项式乘以单项式计算法则是解题的关键.11.B解析:B【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得xy 即可求解.【详解】 解:由题意,得:521303100x y x y +-=⎧⎨--=⎩, 解得:31x y =⎧⎨=-⎩, ∴x y =(﹣1)3=﹣1,∴x y 的立方根为﹣1,故选:B .【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.12.B解析:B【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可.【详解】∵x 2•x 3=x 5,∴选项A 不符合题意;∵(x 3)2=x 6,∴选项B 符合题意;∵(−3x )3=−27x 3,∴选项C 不符合题意;∵x 4+x 5≠x 9,∴选项D 不符合题意.故选:B .【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.二、填空题13.6【分析】原式利用完全平方公式平方差公式化简去括号整理后将已知等式代入计算即可求出值【详解】解:∵x2+4x-4=0即x2+4x=4∴原式=3(x2-4x+4)-6(x2-1)=3x2-12x+12解析:6【分析】原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式代入计算即可求出值.【详解】解:∵x 2+4x-4=0,即x 2+4x=4,∴原式=3(x 2-4x+4)-6(x 2-1)=3x 2-12x+12-6x 2+6=-3x 2-12x+18=-3(x 2+4x )+18=-12+18=6. 故答案为:6.【点睛】本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解题的关键.14.【分析】原式提取公因式再利用平方差公式分解即可【详解】解:原式==故答案为:【点睛】此题考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解本题的关键解析:(1)(1)m mn mn -+【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:原式=3222(1)m n m m m n -=-,=(1)(1)m mn mn -+故答案为:(1)(1)m mn mn -+.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.4【分析】根据x2-3x -1=0可得x2-3x =1再将所求代数式适当变形后分两次整体代入即可求得值【详解】解:∵x2-3x -1=0∴x2-3x =1∴==将x2-3x =1代入原式==将x2-3x =1代解析:4【分析】根据x 2-3x -1=0可得x 2-3x =1,再将所求代数式适当变形后分两次整体代入即可求得值.【详解】解:∵x 2-3x -1=0,∴x 2-3x =1,∴3223111x x x --+=223132611x x x x -+-+=()22233111x x x x x -+-+将x 2-3x =1代入原式=221113x x x +-+=23)13(x x -+将x 2-3x =1代入原式=314+=,故答案为:4.【点睛】本题考查代数式求值,因式分解法的应用.解决此题的关键是掌握“降次”思想和整体思想. 16.7200【分析】根据幂的乘方法则分别求出和的值然后根据同底数幂的乘法运算法则计算即可【详解】解:∵∴∴故答案为:7200【点睛】本题考查同底数幂的乘法和幂的乘方解题的关键是掌握运算法则解析:7200【分析】根据幂的乘方法则分别求出3m 10和210n 的值,然后根据同底数幂的乘法运算法则计算即可.【详解】解:∵102m =,103n =,∴()33m 10108m ==,()22n 10109n ==,∴3m+2n+232210101010891007200m n =⋅⋅=⨯⨯=,故答案为:7200.【点睛】本题考查同底数幂的乘法和幂的乘方,解题的关键是掌握运算法则.17.-8【分析】根据题意得到+=0根据绝对值的非负性及偶次方的非负性求出a=2b=-3代入2b-a 计算即可【详解】由题意得:+=0∵00∴a-2=0b+3=0∴a=2b=-3∴2b-a=-6-2=8故答解析:-8【分析】 根据题意得到2a +2(3)b +=0,根据绝对值的非负性及偶次方的非负性求出a=2,b=-3,代入2b-a 计算即可.【详解】 由题意得:2a +2(3)b +=0 ∵2a ≥0,2(3)b +≥0,∴a-2=0,b+3=0,∴a=2,b=-3,∴2b-a=-6-2=8,故答案为:-8.【点睛】此题考查相反数的定义,绝对值的非负性及偶次方的非负性,求代数式的值,根据绝对值的非负性及偶次方的非负性求出a 和b 的值是解题的关键.18.【分析】根据应用完全平方公式求出的值即可求出的值【详解】解:=9=9+2=11故答案为:【点睛】本题考查完全平方公式的应用需要对已知式子平方灵活运用完全平方公式是解决本题的关键【分析】根据1a a -=221a a +的值,即可求出1a a +的值. 【详解】解:1a a -=217a a ⎛⎫∴-= ⎪⎝⎭, ∴22127a a +-=, ∴221a a +=9, 222112a a a a ⎛⎫∴+=++ ⎪⎝⎭=9+2=11, 0a >,10a a ∴+>,1a a∴+=【点睛】本题考查完全平方公式的应用,需要对已知式子平方,灵活运用完全平方公式是解决本题的关键.19.【分析】先将原式因式分解得再整体代入即可求出结果【详解】解:∵∴原式故答案是:【点睛】本题考查因式分解解题的关键是熟练运用因式分解和整体代入的思想求值解析:36-【分析】先将原式因式分解得()2xy x y +,再整体代入即可求出结果.【详解】解:()22222x y xy xy x y +=+, ∵6x y +=,3xy =-,∴原式()23636=⨯-⨯=-.故答案是:36-.【点睛】本题考查因式分解,解题的关键是熟练运用因式分解和整体代入的思想求值. 20.2029【分析】由题意得将原式变形成整体代入得再一次整体代入即可求出结果【详解】解:∵∴原式故答案为:【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想进行求解解析:2029【分析】由题意得23y y +=,将原式变形成()2232020y y y y +++,整体代入得2332020y y ++,再一次整体代入即可求出结果.【详解】解:∵23y y +-,∴23y y +=,原式()2232020y y y y =+++ 2332020y y =++()232020y y =++92020=+2029=.故答案为:2029.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想进行求解.三、解答题21.(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a ,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a ,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a 2+7a+a+7-a 2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.22.(1)()2a b +;222a b ab ++;(2)()2222a b a b ab +=++;(3)40【分析】(1)利用两种方法表示出大正方形面积即可;(2)写出四个代数式之间的等量关系即可;(3)由直角三角形的面积是6,得到ab =12,大正方形②的面积是(a +b )2=64,把(2)变形后,整体代入可直接求值;【详解】解:(1)方法一:()2a b +;方法二:222a b ab ++;故答案为:(a +b )2;a 2+2ab +b 2;(2)()2222a b a b ab +=++;(3)∵162ab =,()264a b +=, ∴224ab =, ∴()222240a b a b ab +=+-=.【点睛】此题考查了完全平方公式的几何背景,代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.23.(1)(5)(5)x x x +-;(2)(3)(2)a m --.【分析】(1)先提公因式x ,再利用平方差公式进行分解,即可得出结果;(2)先将多项式进行变形,再利用提公因式法进行分解,即可得出结果.【详解】解:(1)325x x -2(25)x x =-(5)(5)x x x =+-;(2)(3)2(3)m a a -+-(3)2(3)m a a =---(3)(2)a m =--.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能根据多项式的特点准确选择分解方法是解题的关键.24.-17【分析】首先把x=-2代入多项式35ax bx +-,整理成关于a 、b 的等式,再把x=2代入,观察两个式子的联系,进一步求得数值即可.【详解】解:x =-2时, 35ax bx +-=7,即-8a -2b -5=7,所以8a+2b =-12,当x=2时,35ax bx +-=8a+2b -5=-12-5=-17,所以该多项式的值是-17.【点睛】本题考查了代数式求值,注意代入数值的特点,发现前后式子的联系,整体代入解决问题. 25.(1)15a -;(2)10615a b 【分析】(1)先算乘方,再算同底数幂的乘法即可;(2)先算乘方,再算乘法,后算除法.【详解】(1)()()433a a -⋅- =()123a a ⋅- =15a -;(2)(ab 2)2 •(﹣a 3b)3÷(﹣5ab)=a 2b 4.(-a 9b 3) ÷(﹣5ab)= -a 11b 7÷(﹣5ab) =10615a b . 【点睛】 本题考查了整式的混合运算,熟练掌握运算顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.26.(1)﹣y (x ﹣3)2;(2)(5x +4y )(x +8y );(3)(1+x ﹣y )(1﹣x +y )【分析】(1)先提取公因式,再按照完全平方公式分解;(2)分别把前后两项看成某项的平方并根据平方差分解因式,然后对每个因式去括号及合并同类项进行化简;(3)首先把后面三项看成一组并化成完全平方式,然后与第一项组合并利用平方差公式分解后对每个因式去括号化简即可.【详解】解:(1)﹣x 2y +6xy ﹣9y=﹣y (x 2﹣6x +9)=﹣y (x ﹣3)2;(2)9(x +2y )2﹣4(x ﹣y )2;=[3(x +2y )+2(x ﹣y )][3(x +2y )﹣2(x ﹣y )]=(5x +4y )(x +8y );(3)1﹣x 2﹣y 2+2xy=1﹣(x 2+y 2﹣2xy )=1﹣(x ﹣y )2=[1+(x ﹣y )][1﹣(x ﹣y )]=(1+x ﹣y )(1﹣x +y ).【点睛】本题考查了因式分解,熟练掌握因式分解的各种方法并灵活运用是解题关键.。

八年级数学上册整式的混合运算(习题及答案)(人教版)

八年级数学上册整式的混合运算(习题及答案)(人教版)

整式的混合运算(习题)Ø 例题示范 例1:先化简再求值:2(32)(32)5()(2)x y x y x x y x y +-----,其中13x =-,1y =-. 【过程书写】【过程书写】 解:原式22222(94)(55)(44)x y x xy x xy y =-----+ 22222945544x y x xy x xy y =--+-+-295xy y =-当13x =-,1y =-时,时, 原式219(1)5(1)3æö=´-´--´-ç÷èø35=-2=-例2:若2m n x -=,2n x =,则m n x +=_______________.【思路分析】【思路分析】 ① 观察所求式子,根据同底数幂的乘法,m n m n x x x +=×,我们需要求出m x ,n x 的值;值;② 观察已知条件,由2m n m n xx x -=¸=,2n x =,可求出4m x =; ③ 代入,求得8m n x x ×=,即8m nx +=. 例3:若249x mx ++是一个完全平方式,则m =________.【思路分析】【思路分析】① 完全平方公式是由首平方,尾平方,二倍的乘积组成,观察式子结构,首尾两项是平方项.两项是平方项. ② 将24x ,9写成平方的形式224(2)x x =,293=,故mx 应为二倍的乘积.应为二倍的乘积. ③ 对比完全平方公式的结构,完全平方公式有两个. 222()2a b a ab b ±=±+因此223mx x =±××,所以12m =±.Ø 巩固练习1. 计算:计算: ①2(3)(3)(3)23a b a b a b a b éù----++¸-ëû;②222(1)(1)21()xy xy x y xy éù+--+¸-ëû;③2(12)(21)(41)1a a a -++-;④2222225049484721-+-++-…;⑤222016201640282014-´+.2. 化简求值:化简求值:①22234(2)(2)()(42)()a b a b ab ab a b ab +--×-¸,其中a =1,b =2.②3222(44)()(2)xy x y xy x y -+¸---,其中x =2,y =1.3. 如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形的小正方形(a b >),剩余部分拼成图2的形状,利用这两个图形中面积的等量关系,能验证一个公式,这个公式是_______________.4. 若22(33)(3)x x x x m ++-+的展开式中不含x 2项,则m =_____.5. 若322(3)(21)ax x x x ---的展开式中不含x 4项,则a =______.6. (1)若32x =,则23x =______;若34y =,则33y =______. (2)若32x =,34y =,则233x y +=______,323y x -=______.(3)若2n a =,5n b =,则10n =___________.7. 若9m m x =,3n n x =,则3m m n nx -=________; 若232x y a +=,2x a =,则y a =___________.图2图1a a b b b b a比较有理数运算与整式运算的异同点:有理数运算有理数运算 整式运算整式运算运算法则 有理数加法口诀:同号相加_________,异号相加_________. 有理数减法法则: 减去一个数等于____ 这个数的________.有理数乘法法则:两个有理数相乘,同号得___,异号得___,幂的运算法则: ()()m n m n m n m a a a a a ab ×=¸=== 加减运算法则: 合并同类项:合并同类项: 系数_____,字母和字母的指数_______.。

八年级数学上册整式的混合运算(习题及答案)

八年级数学上册整式的混合运算(习题及答案)

第1页共6页整式的混合运算(习题)
例题示范
例1:先化简再求值:2(32)(32)5()(2)x y x
y x x y x y ,其中13x ,1y .【过程书写】
解:原式22222(94)(55)(44)x
y x xy x xy y 22222945544x
y x xy x xy y 295xy y 当1
3
x ,1y 时,原式2
19
(1)5(1)3
352例2:若2m n x ,2n x ,则m n x =_______________.
【思路分析】①观察所求式子,根据同底数幂的乘法,m n m n x
x x ,我们需要求出m x ,n x 的值;
②观察已知条件,由2m n m n x
x x ,2n x ,可求出4m x ;③代入,求得8m n x
x ,即8m n x .例3:若249x mx 是一个完全平方式,则m=________.
【思路分析】
①完全平方公式是由首平方,尾平方,二倍的乘积组成,观察式子结构,首尾
两项是平方项.
②将24x ,9写成平方的形式224(2)x
x ,293,故mx 应为二倍的乘积.③对比完全平方公式的结构,完全平方公式有两个.222
()2a b a ab b 因此223mx x ,所以12m .
巩固练习
1.计算:
①2(3)(3)(3)23a b a b a b a b ;。

人教版八年级数学上册 分式混合运算(习题及答案)

人教版八年级数学上册 分式混合运算(习题及答案)

÷ x + 2 - ⎪ . 解:原式 = - ÷例 2:先化简 ⎢⎡ x ( x + 1) + x ⎥ ÷ 解:原式 = ⋅例题示范例 1:混合运算: 分式混合运算(习题)4 - x ⎛ 12 ⎫x - 2 ⎝ x - 2 ⎭【过程书写】x - 4 x 2 - 4 - 12x - 2 x - 2 x - 4 x 2 - 16 =- ÷x - 2 x - 2 x - 4 x - 2 =- ⋅x - 2 ( x + 4)( x - 4)=-1x + 4⎤ 2 x⎣ x - 1 ⎦ 1 - x,然后在 -2 ≤ x ≤ 2 的范围内选取一个你认为合适的整数 x 代入求值.【过程书写】x 2 + x + x 2 - x 1 - x x - 1 2 x2 x 2 1 - x = ⋅x - 1 2 x = - x∵ -2 ≤ x ≤ 2 ,且 x 为整数∴使原式有意义的 x 的值为-2,-1 或 2 当 x =2 时,原式=-2(2) - 1⎪ ÷ (3)⎪(4) y - 1 - y - 1 ⎭ y 2 + y巩固练习1. 计算:(1)1 - x - y x 2 - y 2÷x + 2 y x 2 + 4 x y + 4 y 2;⎛ a ⎫ ⎝ a - 1 ⎭ a 1 2 - 2a + 1;⎛ 2 ⎝ a 2 - b 2 - 1 ⎫ a ÷ a 2 - ab ⎭ a + b;⎛ 8 ⎫ y 2 - 6 y + 9 ⎪ ÷ ⎝;(5) ÷ - ⎪ ; (6) ÷ -1⎪ ;x ⎪ ⎪ ; 3 - x ⎛ 5 ⎫ x - 2 ⎛ -5 ⎫ ÷ - x - 3 ⎪ ; ÷ x + 2 -(10) ( x 2 - 1) - - 1⎪ ; 1a 2 - 2ab + b 2 ⎛ 1 1 ⎫ x 2 - 4x + 4 ⎛ 2 ⎫ 2a - 2b ⎝ b a ⎭ ⎝ x ⎭(7) ⎛ ⎝ 3x + 4 2 ⎫ x + 2 - ÷ x 2 - 1 x - 1 ⎭ x 2- 2 x + 1;(8) (9) 2 x - 4 ⎝ x - 2 ⎭ 2 x - 6 ⎝ x - 3 ⎭⎛ 1 ⎫ ⎝ x - 1 x + 1 ⎭(11) - ÷ - - ⎪ . ⎝ x + y x - y ⎭ x 2- 3xy ⎝x y ⎭ (1)先化简,再求值: 1 - ⎪÷(2)先化简,再求值: + ÷ x 2 - y 2 y 2 - x 2 ⎭ x 2 y - xy 2⎛ 2 1 ⎫ x 2 - y 2 ⎛ 1 1 ⎫ ⎪ ⋅2. 化简求值:⎛ ⎝ 1 ⎫ x 2 + 2x + 1 x + 2 ⎭ x + 2,其中 x = 3 -1.⎛ 5x + 3 y 2 x ⎫ 1 ⎪ ⎝x = 3 + 2 , y = 3 - 2 .,其中(3)先化简 ⎛ + 1⎪ ÷ (4)已知 A = .x + 1 ⎫ x 2 + x 2 - 2 x +⎝ x - 1 ⎭ x 2 - 2 x + 1 x 2 - 1,然后在 -2 ≤ x ≤ 2的范围内选取一个合适的整数 x 代入求值.x 2 + 2 x + 1 x -x 2 - 1 x - 1①化简 A ; ⎧ x -1≥ 0②当 x 满足不等式组 ⎨ ,且 x 为整数时,求 A 的值.⎩ x - 3 < 0x 2 + 3 B . x 2 + 1 D. 2ab 中的分子、分母的值同时扩大为原来的 2 倍,则分式的值(ab 中 a ,b 的值都扩大为原来的 2 倍,则分式的值(x 2 + y 2 中 x ,y 的值都扩大为原来的 2 倍,则分式的值(( x - 2)( x + 3) = x + 3,则 A =_______,B =_______.3. 不改变分式13x - y2 的值,把分子、分母中各项系数化为整数,结果是( )1 3 x2 + 1A . 6 x - yC . 3x - 3 y 18 x - 3 y2 x 2 + 6 18 x -3 y2 x 2 + 34. 把分式 a - 3bA .不变B .扩大为原来的 2 倍C .扩大为原来的 4 倍D .缩小为原来的 12)5. 把分式 3a - 4bA .不变B .扩大为原来的 2 倍C .扩大为原来的 4 倍D .缩小为原来的 126. 把分式 2 xyA .不变B .扩大为原来的 2 倍C .扩大为原来的 4 倍D .缩小为原来的 12))7. 已知 4 x + 7A x - 2 + B2.(1)原式=1,当x=3-1时,原式=【参考答案】巩固练习1.(1)-yx+y (2)a-1(3)1 a2(4)y(y+1)(y2-2y-7) (y-1)(y-3)2(5)ab 2(6)-x+2(7)x-1 x+1(8)-(9)-1 2x+6 1 2x+4(10)-x2+3(11)-yx+y3x+13(2)原式=3xy,当x=3+2,y=3-2时,原式=3(3)原式=2x-4x+1,当x=2时,原式=0(4)①1x-1;②13. 4. 5. 6. 7.BADA 3,1。

人教版八年级数学上册 分式混合运算(习题及答案)

人教版八年级数学上册 分式混合运算(习题及答案)

1 2
5.
3a 4b 中 a,b 的值都扩大为原来的 2 倍,则分式的值( ab A.不变 B.扩大为原来的 2 倍 1 C.扩大为原来的 4 倍 D.缩小为原来的 2
把分式

6.
把分式
2 xy 中 x,y 的值都扩大为原来的 2 倍,则分式的值( x y2
2

A.不变 C.扩大为原来的 4 倍
1 1 (10) ( x 2 1) 1 ; x 1 x 1
2 1 x2 y 2 1 1 (11) . 2 x y x y x 3 xy x y
2.
化简求值:
1 x2 2x 1 (1)先化简,再求值: 1 ,其中 x 3 1 . x2 x2
x 2 ,且 x 为整数 ∵ 2 ≤≤
∴使原式有意义的 x 的值为-2,-1 或 2 当 x=2 时,原式=-2
巩固练习
1. 计算: (1) 1
x y x2 y 2 ; 2 x 2 y x 4 xy 4 y 2
1 a (2) ; 1 2 a 1 a 2a 1
分式混合运算(习题)
例题示范
4 x 12 例 1:混合运算: x 2 . x2 x2 【过程书写】
解:原式
x 4 x 2 4 12 x2 x2 2 x 4 x 16 x2 x2 x4 x2 x 2 ( x 4)( x 4) 1 x4

6x y x2 3 3x 3 y C. 2 x 1
A.
18 x 3 y 2x2 6 18 x 3 y D. 2x2 3
B.

专题14.5幂的运算与整式混合运算专项训练-八年级数学上册举一反三系列(人教版)(解析版)

专题14.5幂的运算与整式混合运算专项训练-八年级数学上册举一反三系列(人教版)(解析版)
%229:_`aA!rs@| @m#
!DE45$
MN%12N
1042
= (100 + 4)2
= 1002 + 2 × 100 × 4 + 42
= 10000 + 800 + 16
= 10816F
%22N
( + )2−(−)2
= 2 + 2 + 2−(2−2 + 2)
MN%123 ⋅ 4 ⋅ + (2)4−(−24)2
= 8 + 8−48
= −28F
%22 ⋅ 7−(−34)2 + 10 ÷ 2
= 8−98 + 8
= −78F
%32−32(2−4) +2 2−
= −63 +122 + 23−22
A!WNX$
11$%2023 &·±§²³·+,-./0\23
(1)(−22)3 ⋅ (2) ÷ 4
(2) 22 −32 + 53 (−)
(3)(3 + 2)( + 1) +2(−3)( + 2)
45(1)−835
(2)−1124
(3)52 +3−10
= 22 + −2−2 + 2−2
= 2 +3−22$
OPQbc/RS
!"#@NXWTU
3$%2023 &·ghij·+,-k/0\23
1
(1)(−22)3 ÷ (−2) ⋅ 323F
(2)(273 + 182−3) ÷ (−3)$
4
45(1)375
(2)1032

人教版八年级上册:整式的混合运算—化简求值强化训练 含答案

人教版八年级上册:整式的混合运算—化简求值强化训练   含答案

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯人教版八年级上册:整式的混合运算—化简求值强化训练一.选择题1.当a=时,代数式(a+2)2+(1﹣a)(1+a)的值为()A.5B.4C.3D.22.若x=﹣2,y=,则y(x+y)+(x+y)(x﹣y)﹣x2的值等于()A.﹣2B.C.1D.﹣13.如果x2+x=3,那么代数式(x+1)(x﹣1)+x(x+2)的值是()A.2B.3C.5D.64.若a2+4a=5,则代数式2a(a+2)﹣(a+1)(a﹣1)的值为()A.1B.2C.4D.65.已知a﹣b=5,ab=3,则(a+1)(b﹣1)的值为()A.﹣1B.﹣3C.1D.3二.填空题6.若a=2019,b=2020,则[a2(a﹣2b)﹣a(a﹣b)2]÷b2的值为.7.已知x=﹣2,y=,化简(x+2y)2﹣(x+y)(x﹣y)=.8.若x2﹣2x﹣6=0,则(x﹣3)2+(2x+1)(2x﹣1)﹣2x2的值为.9.已知:a+b=,ab=1,式子(a﹣1)(b﹣1)的结果是.三.解答题10.先化简,再求值:(x﹣1)2﹣2(x+3)(x﹣3)+x(x﹣4),其中x=3.11.先化简,再求值:(2x+2)(2﹣2x)+5x(x+1)﹣(x﹣1)2,其中x=﹣2.12.先化简,再求值:[(2x﹣y)2﹣y(2x+y)]÷2x,其中x=2,y=﹣1.13.先化简再求值:(a+2)2+(a+1)(a﹣1)﹣a(2a﹣1),其中a=﹣.14.先化简,再求值:(x﹣2y)2﹣3(x+y)(x﹣y)+2x2,其中,x=1,y=﹣1.15.先化简,再求值:[(a+2b)(a﹣2b)﹣(a﹣2b)2﹣2b(a﹣b)]÷2b,其中a=1,b =﹣2.16.先化简,再求值:x(x﹣4y)+(2x+y)(2x﹣y)﹣(2x﹣y)2,其中x,y满足|x﹣2|+(y+1)2=0.17.化简求值(1)(2x+1)2﹣4(x﹣1)(x+1),其中x=;(2)[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x),其中x=﹣2,y=.18.先化简,再求值:(1)(9x3y﹣12xy3+3xy2)÷(3xy)+(2y+x)(2y﹣x),其中x=﹣1,y=﹣2.(2)(2a+1)(2a﹣1)﹣(a﹣1)2+(2a)3÷(﹣8a),其中a是方程a2+a﹣2=0的解.参考答案与试题解析一.选择题1.解:∵a=﹣,∴(a+2)2+(1﹣a)(1+a)=a2+4a+4+1﹣a2=4a+5=4×(﹣)+5=2,故选:D.2.解:原式=xy+y2+x2﹣y2﹣x2=xy,当x=﹣2,y=时,原式=﹣1.故选:D.3.解:(x+1)(x﹣1)+x(x+2)=x2﹣1+x2+2x=2x2+2x﹣1=2(x2+x)﹣1,∵x2+x=3,∴原式=2×3﹣1=5.故选:C.4.解:原式=2a2+4a﹣a2+1=(a2+4a)+1,∵a2+4a=5,∴原式=5+1=6.故选:D.5.解:原式=ab﹣a+b﹣1=ab﹣(a﹣b)﹣1,把a﹣b=5,ab=3代入得:原式=3﹣5﹣1=﹣3,故选:B.二.填空题6.解:原式=(a3﹣2a2b﹣a3+2a2b﹣ab2)]÷b2=﹣a,当a=2019时,原式=﹣2019.故答案为:﹣20197.解:原式=x2+4xy+4y2﹣(x2﹣y2)=x2+4xy+4y2﹣x2+y2=5y2+4xy,当x=﹣2,y=时,原式=5×﹣4=,故答案为:8.解:∵x2﹣2x﹣6=0,∴x2﹣2x=6,∴(x﹣3)2+(2x+1)(2x﹣1)﹣2x2=x2﹣6x+9+4x2﹣1﹣2x2=3x2﹣6x+8=3(x2﹣2x)+8=3×6+8=26,故答案为:26.9.解:∵a+b=,ab=1,∴原式=ab﹣(a+b)+1=﹣1+1=,故答案为:三.解答题10.解:原式=x2﹣2x+1﹣2(x2﹣9)+x2﹣4x=x2﹣2x+1﹣2x2+18+x2﹣4x=﹣6x+19.当x=3 时,原式=﹣18+19=1.11.解:当x=﹣2时,原式=4﹣4x2+5x2+5x﹣x2+2x﹣1=7x+3=﹣14+3=﹣1112.解:原式=(4x2﹣4xy+y2﹣2xy﹣y2)÷2x=(4x2﹣6xy)÷2x=2x﹣3y.当x=2,y=﹣1时,原式=2×2﹣3×(﹣1)=7.13.解:原式=a2+4a+4+a2﹣1﹣2a2+a=5a+3,当a=﹣时,原式=5×(﹣)+3=﹣1.14.解:(x﹣2y)2﹣3(x+y)(x﹣y)+2x2=x2﹣4xy+4y2﹣3(x2﹣y2)+2x2=x2﹣4xy+4y2﹣3x2+3y2+2x2=7y2﹣4xy,当x=1,y=﹣1时,原式=7×(﹣1)2﹣4×1×(﹣1)=7+4=13.15.解:原式=(a2﹣4b2﹣a2+4ab﹣4b2﹣2ab+2b2)÷2b =(2ab﹣6b2)÷2b=a﹣3b,当a=1,b=﹣2时,原式=1+6=7.16.解:原式=x2﹣4xy+4x2﹣y2﹣(4x2﹣4xy+y2),=5x2﹣4xy﹣y2﹣4x2+4xy﹣y2,∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,∴x=2,y=﹣1,当x=2,y=﹣1时,原式=22﹣2×(﹣1)2=4﹣2=2.17.解:(1)(2x+1)2﹣4(x﹣1)(x+1)=4x2+4x+1﹣4x2+4=4x+5,当x=时,原式=4×+5=6;(2)[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x)=(x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣5y2)÷(2x)=(﹣2x2+2xy)÷(2x)=﹣x+y,当x=﹣2,y=时.原式=2+=.18.解:(1)(9x3y﹣12xy3+3xy2)÷(3xy)+(2y+x)(2y﹣x)=9x3y÷3xy﹣12xy3÷3xy+3xy2÷(3xy)+4y2﹣x2=3x2﹣4y2+y+4y2﹣x2=2x2+y,当x=﹣1,y=﹣2时,原式=2×1﹣2=0;(2)(2a+1)(2a﹣1)﹣(a﹣1)2+(2a)3÷(﹣8a)=4a2﹣1﹣a2+2a﹣1+8a3÷(﹣8a)=4a2﹣1﹣a2+2a﹣1﹣a2=2a2+2a﹣2,∵a2+a﹣2=0,∴a2+a=2,∴原式=2(a2+a)﹣2=2.一天,毕达哥拉斯应邀到朋友家做客。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页共6页整式的混合运算(习题)
例题示范
例1:先化简再求值:2(32)(32)5()(2)x
y x y x x y x y ,其中13x ,1y .【过程书写】
解:原式22222(94)(55)(44)x
y x xy x xy y 22
222945544x y x xy x xy y 295xy y
当13x
,1y 时,原式2
1
9(1)5(1)335
2
例2:若2m n x ,2n x ,则m n x =_______________.
【思路分析】①观察所求式子,根据同底数幂的乘法,m
n m n x x x ,我们需要求出m x ,n x 的值;
②观察已知条件,由2m n m n x
x x ,2n x ,可求出4m x ;③代入,求得8m n
x x ,即8m n x .例3:若249x mx 是一个完全平方式,则m=________.
【思路分析】
①完全平方公式是由首平方,尾平方,二倍的乘积组成,观察式子结构,首尾
两项是平方项.
②将24x ,9写成平方的形式224(2)x
x ,293,故mx 应为二倍的乘积.③对比完全平方公式的结构,完全平方公式有两个.222()2a b a ab b
因此223mx x ,所以12m .
巩固练习
1.计算:
①2(3)(3)(3)23a b a b a b a b ;。

相关文档
最新文档