2019年高考试题汇编:三角函数

合集下载

2019年高考试题分类汇编(三角函数)

2019年高考试题分类汇编(三角函数)

2019年高考试题分类汇编(三角函数)考法1 三角函数的图像及性质1.(2019·全国卷Ⅰ·文科)tan 225=A.2-.2-+.2 D.22.(2019·全国卷Ⅱ·文科)若14x π=,234x π=是函数()sin f x x ω=(0ω>)两个相邻的极值点,则ω=A .2B .32C .1D .123.(2019·全国卷Ⅲ·文科)函数()2sin sin2f x x x =-在[0,2]π的零点个数为A .2B .3C .4D .54.(2019·全国卷Ⅰ·文理科)函数2sin ()cos x x f x x x +=+在[,]ππ-的图像大致为5.(2019·全国卷Ⅰ·理科)关于函数()sin sin f x x x =+有以下四个结论: ①()f x 是偶函数 ②()f x 在区间(,)2ππ单调递增 ③()f x 在[,]ππ-有个零点 ④()f x 有最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③6.(2019·全国卷Ⅱ·理科)下列函数中,以2π为周期且在区间(,)42ππ单调递增的是A .()cos2f x x =B .()sin 2f x x =C .()cos f x x =D .()sin f x x =7.(2019·北京卷·理科)函数f (x )=sin 22x 的最小正周期是 .8.(2019·全国卷Ⅱ·理科)已知(0,)2πα∈,2sin 2cos21αα=+,则sin α=A .15B 9.(2019·全国卷Ⅰ·文科)函数3π()sin(2)3cos 2f x x x =+-的最小值为 . 10.(2019·全国卷Ⅲ·理科)设函数()sin()5f x x ωπ=+(0ω>),已知()f x 在[0,2]π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是1229[)510, 其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④11.(2019·天津卷·文理科)已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且()4g π=,则3()8f π=A.2-B. D.212.(2019·浙江卷)设函数()sin f x x =,x R ∈.(Ⅰ)已知[0,2)θ∈π,函数()f x θ+是偶函数,求θ的值; (Ⅱ)求函数22[()][()]124y f x f x ππ=+++的值域. 考法2 解三角形1.(2019·浙江卷)在ABC ∆中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD = ,cos ABD ∠= .2.(2019·全国卷Ⅰ·文科)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,14cos A =-,则b c =A .6B .5C .4D .33.(2019·全国卷Ⅰ·理科)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .设22(sin sin )sin B C A -=-sin sin B C .(Ⅰ)求A ;2b c +=,求sin C .4.(2019·全国卷Ⅲ·文理科)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin 2A C a b A +=. (Ⅰ)求B ;(Ⅱ)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.5.(2019·北京卷·文理科)在ABC ∆中,a =3,b -c =2,1cos 2B =-. (Ⅰ)求b ,c 的值;(Ⅱ)求sin()B C -的值.6.(2019·天津卷·文理科)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2b c a +=,3sin c B =4sin a C . (Ⅰ)求cos B 的值; (Ⅱ)求sin(2)6B π+的值.。

2019年高考数学试题分项版——三角函数(解析版)

2019年高考数学试题分项版——三角函数(解析版)

2019年高考数学试题分项版——三角函数(解析版)1、(2019年高考新课标Ⅰ卷文)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a ,2c ,2cos 3A,则b=(A )2(B )3(C )2 (D )3【答案】D 【解析】试题分析:由由余弦定理得3222452b b,解得3b(31b舍去),选 D.2、(2019年高考新课标Ⅰ卷文)若将函数y=2sin (2x+π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y=2sin(2x+π4) (B )y=2sin(2x+π3) (C )y=2sin(2x –π4) (D )y=2sin(2x –π3)【答案】D 【解析】试题分析:函数y2sin(2x)6的周期为,将函数y2sin(2x)6的图像向右平移14个周期即4个单位,所得函数为y2sin[2(x))]2sin(2x)463,故选 D.3、(2019年高考新课标Ⅰ卷文)若函数1()sin 2sin 3f x x -x a x 在,单调递增,则a 的取值范围是(A )1,1(B )11,3(C )11,33(D )11,3【答案】C 【解析】试题分析:用特殊值法:取1a ,1sin 2sin 3f x xx x,21cos 2cos 3f x x x,但2201133f ,不具备在,单调递增,排除A ,B ,D .故选C .4、(2019年高考新课标Ⅰ卷理)已知函数()sin()(0),24f x x+x,为()f x 的零点,4x为()y f x 图像的对称轴,且()f x 在51836,单调,则的最大值为(A )11 (B )9 (C )7 (D )5 【答案】B 【解析】试题分析:因为4x为()f x 的零点,4x为()f x 图像的对称轴,所以()444T kT ,即41412244k k T,所以41(*)k kN ,又因为()f x 在5,1836单调,所以5236181222T,即12,由此的最大值为9.故选B.5、(2019年高考新课标Ⅱ卷文)函数=sin()y A x 的部分图像如图所示,则(A )2sin(2)6y x(B )2sin(2)3yx(C )2sin(2+)6yx (D )2sin(2+)3yx 【答案】A6、(2019年高考新课标Ⅱ卷理)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为(A )ππ26k x k Z (B )ππ26k x k Z (C )ππ212Zk xk(D )ππ212Zk xk【答案】B考点:三角函数的图象变换与对称性.【名师点睛】平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx加减多少值.7、(2019年高考新课标Ⅱ卷理)若π3cos45,则sin 2= (A )725(B )15(C )15(D )725【答案】D 【解析】试题分析:2237cos 22cos12144525,且cos 2cos2sin 242,故选 D.8、(2019年高考新课标Ⅲ卷文)若,则()(A )(B )(C )(D )【答案】D考点:1、同角三角函数间的基本关系;2、二倍角.9、(2019年高考新课标Ⅲ卷文理)在中,,BC 边上的高等于,则tan13cos 245151545ABC △π4B =13BC sin A =(A )(B )(C )(D )【答案】D 【解析】试题分析:设边上的高线为,则,所以.由正弦定理,知,即,解得,故选D .[来源:学科网ZXXK]10、(2019年高考新课标Ⅲ卷理)若,则(A)(B)(C) 1 (D)【答案】A 【解析】试题分析:由,得或,所以,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式.11、(2019年高考北京卷理) 将函数图象上的点向左平移()个单位长度得到点,若位于函数的图象上,则()A.,的最小值为B.,的最小值为[来源:Z 。

2019届高考数学总复习分类试卷 三角函数、解三角形、平面向量

2019届高考数学总复习分类试卷 三角函数、解三角形、平面向量

2019届高考数学总复习分类试卷三角函数、解三角形、平面向量(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知sin(88°+θ)=23,则cos(178°+θ)=()A.23B.-23C.√53D.-√532.设P是△ABC所在平面内的一点,且CP⃗⃗⃗⃗ =2PA⃗⃗⃗⃗ ,则△PAB与△PBC的面积的比值是( )A.13B.12C.23D.343.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知bsin A=3csin B,a=3,cos B=23,则b=( ) A.14 B.6 C.√14 D.√64.函数f(x)=cos(x+π4)-cos(x-π4)是( )A.周期为π的偶函数B.周期为2π的偶函数C.周期为π的奇函数D.周期为2π的奇函数5.函数y=2sin(π6-2x)(x∈[-π,0])的单调递增区间是( )A.[-π,-5π6] B.[-π3,0] C.[-2π3,-π6] D.[-π3,-π6]6.已知函数y=sin ωx(ω>0)在区间[0,π2]上为增函数,且图象关于点(3π,0)对称,则ω的取值集合为( )A.{13,23,1} B.{16,13} C.{13,23} D.{16,23}7.若把函数y=sin(ωx-π6)的图象向左平移π3个单位,所得到的图象与函数y=cos ωx的图象重合,则ω的一个可能取值是( )A.2B.32C.23D.128.在△ABC中,A=π3,AB=2,AC=3,CM⃗⃗⃗⃗⃗ =2MB⃗⃗⃗⃗⃗⃗ ,则AM⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗ =( )A.-113B.-43C.43D.1139.在△ABC中,内角A,B,C所对的边分别是a,b,c.若c2=(a-b)2+6,C=π3,则△ABC的面积是( )A.3B.9√32C.3√32D.3√310.在△ABC中,内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2-c2,则tan C 等于( )A.34B.43C.-43D.-3411.已知△ABC是边长为1的等边三角形,则(AB⃗⃗⃗⃗⃗ -2BC⃗⃗⃗⃗ )·(3BC⃗⃗⃗⃗ +4CA⃗⃗⃗⃗ )=( )A.-132B.-112C.-6-√32D.-6+√3212.将函数f(x)=2sin(ωx-π3)(ω>0)的图象向左平移π3ω个单位,得到函数y=g(x)的图象.若y=g(x)在[0,π4]上为增函数,则ω的最大值为( )A.1B.2C.3D.41 2 3 4 5 6 7 8 9 10 11 12 得分二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.若单位向量e1,e2的夹角为π3,向量a=e1+λe2(λ∈R),且|a|=√32,则λ=.14.△ABC中,角A,B,C所对的边分别为a,b,c,△ABC的面积为S,若4√3S=(a+b)2-c2,则角C的大小为.15.已知函数f(x)=Atan(ωx+φ)(ω>0,|φ|<π2),y=f(x)的部分图象如图,则f(π24)= .16.在平面四边形ABCD中,若AB=1,BC=2,∠B=60°,∠C=45°,∠D=120°,则AD= .三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f(x)=√3sin 2ωx+cos4ωx-sin4ωx+1(其中0<ω<1),若点(-π6,1)是函数f(x)图象的一个对称中心.(1)求f(x)的解析式,并求距y轴最近的一条对称轴的方程;(2)先列表,再作出函数f(x)在区间[-π,π]上的图象.18.(本小题满分12分)已知函数f(x)=2√3sin(x+π4)·cos(x+π4)+sin 2x+a的最大值为1.(1)求函数f(x)的单调递增区间;(2)将函数f(x)的图象向左平移π6个单位,得到函数g(x)的图象,若方程g(x)=m在x∈[0,π2]上有解,求实数m的取值范围.19.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,a+1a=4cos C,b=1.(1)若A=90°,求△ABC的面积;(2)若△ABC的面积为√32,求a,c.20.(本小题满分12分)设△ABC的内角A,B,C的对边分别为a,b,c,满足2asin A=(2sin B-√3sinC)b+(2sin C-√3sin B)c.(1)求角A的大小;(2)若a=2,b=2√3,求△ABC的面积.21.(本小题满分12分)已知函数f(x)=2cos(2x+2π3)+√3sin 2x.(1)求函数f(x)的最小正周期和最大值;(2)设△ABC的三个内角分别是A,B,C,若f(C2)=-12,且AC=1,BC=3,求sin A的值.22.(本小题满分12分)已知函数f(x)=2√3sin xcos x-3sin 2x-cos 2x+2. (1)当x ∈[0,π2]时,求f(x)的值域;(2)若△ABC 的内角A,B,C 的对边分别为a,b,c,且满足ba =√3,sin(2A+C)sinA=2+2cos(A+C),求f(B)的值.三角函数、解三角形、平面向量一、选择题1.B ∵sin(88°+θ)=23,∴cos(178°+θ)=cos(90°+88°+θ)=-sin(88°+θ)=-23.2.B ∵CP ⃗⃗⃗⃗ =2PA ⃗⃗⃗⃗⃗ ,∴|CP ⃗⃗⃗⃗⃗ ||PA ⃗⃗⃗⃗⃗ |=2,又△PAB 边PA 上的高与△PBC 边PC 上的高相等,∴S △PAB S△PBC=|PA ⃗⃗⃗⃗⃗||CP ⃗⃗⃗⃗⃗ |=12. 3.D 在△ABC 中,由asinA =bsinB,可得bsin A=asin B,又bsin A=3csin B,所以a=3c,又a=3,故c=1.由b 2=a 2+c 2-2accos B,cos B=23,可得b=√6.故选D.4.D f(x)=cos (x +π4)-cos (x -π4)=-√2sin x,所以函数f(x)是周期为2π的奇函数. 5.C 因为y=2sin (π6-2x)=-2sin (2x -π6),所以函数y=2sin (π6-2x)的单调递增区间就是函数y=sin (2x -π6)的单调递减区间.由π2+2kπ≤2x-π6≤3π2+2kπ(k∈Z ),解得π3+kπ≤x ≤5π6+kπ(k∈Z ),即函数y=2sin (π6-2x)的单调递增区间为[π3+kπ,5π6+kπ](k ∈Z ),又x ∈[-π,0],所以k=-1,故函数y=2sin (π6-2x)(x ∈[-π,0])的单调递增区间为[-2π3,-π6].6.A 由题意知{π2ω≥π2,3ωπ=kπ,k ∈Z,即{0<ω≤1,ω=k 3,k ∈Z,则ω=13或ω=23或ω=1.7.A 把函数y=sin (ωx -π6)的图象向左平移π3个单位得函数y=sin [ω(x +π3)-π6]=sin [ωx +(π3ω-π6)]的图象,由题意,得π3ω-π6=2kπ+π2(k ∈Z ),所以ω=6k+2(k∈Z ),所以ω的一个可能取值是2,故选A.8.C 因为AM ⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CM ⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +23CB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +23(AB ⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ )=13AC ⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ ,所以AM ⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =(13AC ⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ )·(AC ⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ )=13×32-23×22+13AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =13+13×3×2cos π3=43,故选C. 9.C c 2=(a-b)2+6,即c 2=a 2+b 2-2ab+6①.∵C=π3,∴由余弦定理得c 2=a 2+b 2-ab②,由①和②得ab=6,∴S △ABC =12absin C=12×6×√32=3√32,故选C.10.C 由2S=(a+b)2-c 2得2×12absin C=a 2+b 2-c 2+2ab,得absin C=2abcos C+2ab,sin C-2cos C=2,∴sin 2C+4cos 2C-4sin Ccos C=4, ∴tan 2C -4tanC+4tan 2C+1=4,∴tan C=-43或0(舍去),故选C.11.B (AB ⃗⃗⃗⃗⃗ -2BC ⃗⃗⃗⃗⃗ )·(3BC ⃗⃗⃗⃗⃗ +4CA ⃗⃗⃗⃗⃗ )=3AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ -6BC ⃗⃗⃗⃗⃗ 2+4AB ⃗⃗⃗⃗⃗ ·CA ⃗⃗⃗⃗⃗ -8BC ⃗⃗⃗⃗⃗ ·CA ⃗⃗⃗⃗⃗ =3|AB ⃗⃗⃗⃗⃗ |·|BC⃗⃗⃗⃗⃗ |cos 120°-6|BC ⃗⃗⃗⃗⃗ |2+4|AB ⃗⃗⃗⃗⃗ |·|CA ⃗⃗⃗⃗⃗ |cos 120°-8|BC ⃗⃗⃗⃗⃗ |·|CA ⃗⃗⃗⃗⃗ |cos 120°=3×1×1×(-12)-6×12+4×1×1×(-12)-8×1×1×(-12)=-32-6-2+4=-112,故选B. 12.B 将函数f(x)=2sin (ωx -π3)(ω>0)的图象向左平移π3ω个单位,得g(x)=2sin ω(x +π3ω)-π3=2sin (ωx +π3-π3)=2sin ωx 的图象,当x ∈[0,π4]时,ωx∈[0,ωπ4],要使y=g(x)在[0,π4]上为增函数,需满足ωπ4≤π2,即ω≤2,故ω的最大值为2.二、填空题 13.答案 -12解析 由题意可得e 1·e 2=12,|a |2=(e 1+λe 2)2=1+2λ×12+λ2=34,化简得λ2+λ+14=0,解得λ=-12. 14.答案π3解析 由4√3S=a 2+b 2-c 2+2ab 可得,2√3absin C=2abcos C+2ab,即√3sin C-cos C =2sin (C -π6)=1,sin (C -π6)=12,由题意知0<C<π,∴-π6<C-π6<56π,∴C -π6=π6,解得C=π3. 15.答案 √3解析 由题图可知:T=2(3π8-π8)=π2, ∴ω=2,∴2×π8+φ=kπ+π2,k ∈Z ,又|φ|<π2, ∴φ=π4.又f(0)=1,∴Atan π4=1, 得A=1,∴f(x)=tan (2x +π4),∴f (π24)=tan (π12+π4)=tan π3=√3. 16.答案√6-√22解析 连接AC.在△ABC 中,AC 2=BA 2+BC 2-2BA ·BC ·cos 60°=3,所以AC=√3,又AC 2+BA 2=4=BC 2,所以△ABC 是直角三角形,且∠BAC=90°.在四边形ABCD 中,∠BAD=360°-(60°+45°+120°)=135°,因此∠CAD=∠BAD-∠BAC=45°,所以∠ACD=180°-∠CAD-∠D=15°.在△ACD 中,由ADsin ∠ACD =ACsin ∠D,即ADsin15°=√3sin120°,得AD=√3sin15°sin120°=√3×(√6-√2)4×√3=√6-√22. 三、解答题17.解析 (1)f(x)=√3sin 2ωx+(cos 2ωx -sin 2ωx)(cos 2ωx+sin 2ωx)+1=√3sin 2ωx+cos 2ωx+1 =2sin (2ωx +π6)+1.∵点(-π6,1)是函数f(x)图象的一个对称中心,∴-ωπ3+π6=kπ,k∈Z ,∴ω=-3k+12,k ∈Z . ∵0<ω<1,∴ω=12,∴f(x)=2sin (x +π6)+1.由x+π6=kπ+π2,k ∈Z ,得x=kπ+π3,k ∈Z ,令k=0,得距y 轴最近的一条对称轴方程为x=π3.(2)由(1)知, f(x)=2sin (x +π6)+1,当x ∈[-π,π]时,列表如下:x+π6-5π6-π2π2π 7π6 x-π -2π3 -π6π3 5π6 π f(x) 0 -1 13 1则函数f(x)在区间[-π,π]上的图象如图所示.18.解析 (1)f(x)=√3sin (2x +π2)+sin 2x+a=√3cos 2x+sin 2x+a=2sin (2x +π3)+a,由题意知2+a=1,解得a=-1. 由-π2+2kπ≤2x+π3≤π2+2kπ,k∈Z , 解得-5π12+kπ≤x ≤π12+kπ,k∈Z ,∴函数f(x)的单调递增区间是[-5π12+kπ,π12+kπ],k ∈Z .(2)∵将函数f(x)的图象向左平移π6个单位,得到函数g(x)的图象,∴g(x)=f (x +π6)=2sin [2(x +π6)+π3]-1=2sin (2x +2π3)-1,当x ∈[0,π2]时,2x+2π3∈[2π3,5π3],当2x+2π3=2π3时,sin (2x +2π3)=√32,g(x)取最大值√3-1; 当2x+2π3=3π2时,sin (2x +2π3)=-1,g(x)取最小值-3.∴-3≤m ≤√3-1. 19.解析 (1)∵b=1, ∴a+1a =4cos C=4×a 2+b 2-c 22ab=2(a 2+1−c 2)a,∴2c 2=a 2+1.又A=90°,∴a 2=b 2+c 2=c 2+1, ∴2c 2=a 2+1=c 2+2,解得c=√2, ∴S △ABC =12bcsin A=12bc=12×1×√2=√22.(2)∵S △ABC =12absin C=12asin C=√32, ∴sin C=√3a ,∵a+1a=4cos C,∴[14(a +1a)]2+(√3a)2=1, 化简得(a 2-7)2=0,∴a=√7, ∴cos C=2√77. 由余弦定理得c 2=a 2+b 2-2ab ·cos C =7+1-2×√7×1×2√77=4,从而c=2.20.解析 (1)由已知及正弦定理可得2a 2=(2b-√3c)b+(2c-√3b)c,整理得b 2+c 2-a 2=√3bc,所以cos A =√32. 又A ∈(0,π),故A=π6. (2)由a sinA=b sinB ,a=2,b=2√3,A=π6, 得sin B=√32. 又B ∈(0,5π6),故B=π3或2π3. 若B=π3,则C=π2,于是S △ABC =12ab=2√3; 若B=2π3,则C=π6,于是S △ABC =12absin C=√3. 21.解析 (1)f(x)=2cos (2x +2π3)+√3sin 2x=-cos 2x,∴函数f(x)的最小正周期T=π,函数f(x)的最大值为1. (2)由(1)知f(x)=-cos 2x, ∴f (C2)=-cos C=-12,可得cos C=12. ∵C∈(0,π),∴sin C=√32. 由余弦定理可得,AB 2=AC 2+BC 2-2AC ·BC ·cos C=1+9-2×1×3×12=7, ∴AB=√7.第 11 页 共 11 页 ∴由正弦定理可得,sin A=BC ·sinC AB =3×√32√7=3√2114. 22.解析 (1)f(x)=2√3sin xcos x-3sin 2x-cos 2x+2 =√3sin 2x-2sin 2x+1=√3sin 2x+cos 2x=2sin (2x +π6).∵x∈[0,π2],∴2x+π6∈[π6,7π6], ∴sin (2x +π6)∈[-12,1],∴f(x)在x ∈[0,π2]上的值域是[-1,2]. (2)由题意可知sin[A+(A+C)]=2sin A+2sin Acos(A+C),即sin Acos(A+C)+cos Asin(A+C)=2sin A+2sin Acos(A+C), 化简可得sin C=2sin A,由正弦定理可得c=2a,∵b=√3a,∴cos B=a 2+c 2-b 22ac =a 2+4a 2-3a 22a ·2a =12, ∵0<B<π,∴B=π3.∴f(B)=2sin (2×π3+π6)=1.。

2019高考数学真题(理)分类汇编三角函数及解三角形含答案解析

2019高考数学真题(理)分类汇编三角函数及解三角形含答案解析

三角函数及解三角形专题1.【2019年高考全国Ⅰ卷文数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案. 2.【2019年高考全国Ⅰ卷文数】tan255°=A .−2B .−C .2D .【答案】D【解析】tan 255tan(18075)tan 75tan(4530)︒=︒+︒=︒=︒+︒=tan 45tan 301tan 45tan 30︒+︒-︒︒12+==+故选D. 【名师点睛】本题主要考查三角函数的诱导公式、两角和与差的三角函数、特殊角的三角函数值、运算求解能力.首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式2sin cos ++x xx x计算求解.题目较易,注重了基础知识、基本计算能力的考查.3.【2019年高考全国Ⅰ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A −b sin B =4c sin C ,cos A =−14,则b c=A .6B .5C .4D .3【答案】A【解析】由已知及正弦定理可得2224a b c -=,由余弦定理推论可得2222214131cos ,,,422424b c a c c c A bc bc b +---==∴=-∴=3462b c ∴=⨯=,故选A . 【名师点睛】本题考查正弦定理及余弦定理推论的应用.先利用余弦定理推论得出a ,b ,c 关系,再结合正弦定理边角互换列出方程,解出结果. 4.【2019年高考全国Ⅱ卷文数】若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .12【答案】A【解析】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,解得2ω=.故选A . 【名师点睛】本题考查三角函数的极值和周期,渗透了直观想象、逻辑推理和数学运算素养.利用周期公式,通过方程思想解题.5.【2019年高考全国Ⅱ卷文数】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=A .15BCD 【答案】B 【解析】2sin 2cos21αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin 5α∴=,故选B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.6.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2 B .3 C .4D .5【答案】B【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2πx ∈,0π2πx ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【名师点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养.令()0f x =,得sin 0x =或cos 1x =,再根据x 的取值范围可求得零点.7.【2019年高考北京卷文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数;()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,即()cos()sin()cos sin f x x b x x b x -=-+-=-,cos sin cos sin x b x x b x +=-,得sin 0b x =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【名师点睛】本题较易,注重基础知识、逻辑推理能力的考查.根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -恒成立进行判断.8.【2019年高考北京卷文数】如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β【答案】B【解析】设圆心为O ,如图1,连接OA ,OB ,AB ,OP ,则22AOB APB ∠=∠=β,所以22242OABS ⨯==扇形ββ,因为ABP AOB OAB S S S S =+-△△阴影扇形,且AOB OAB S S △扇形,都已确定, 所以当ABP S △最大时,阴影部分面积最大.观察图象可知,当P 为弧AB 的中点时(如图2),阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π−β,面积S 的最大值为ABP AOB OAB S S S S =+-△△阴影扇形=4β+S △POB + S △POA =4β+12|OP ||OB |sin (π−β)+12|OP ||OA |sin (π−β)=4β+2sin β+2sin β=4β+4 sin β,故选B. 【名师点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键是观察分析区域面积最大时的状态,并将面积用边角等表示.9.【2019年高考天津卷文数】已知函数()sin()(0,0,||π)f x A x A ωϕωϕ=+>><是奇函数,且()f x 的最小正周期为π,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若π4g ⎛⎫= ⎪⎝⎭3π8f ⎛⎫= ⎪⎝⎭A .−2B .C D .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; ∵()f x 的最小正周期为π,2ππ,T ∴==ω∴2ω=,∴1()sin sin ,2g x A x A x ==ω又π()4g =2A =,∴()2sin 2f x x =,3π()8f = 故选C.【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数()g x ,结合函数性质逐步得出,,A ωϕ的值即可.10.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【答案】4-【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+ 23172(cos )48x =-++,1cos 1x -≤≤,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【名师点睛】本题首先应用诱导公式,转化得到二倍角的余弦,进一步应用二倍角的余弦公式,得到关于cos x 的二次函数,从而得解.注意解答本题的过程中,部分考生易忽视1cos 1x -≤≤的限制,而简单应用二次函数的性质,出现运算错误.11.【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 【答案】3π4【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠∴sin cos 0B B +=,即tan 1B =-,3.4B π∴=【名师点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.本题容易忽视三角形内角的范围致误,三角形内角均在(0,π)范围内,化边为角,结合三角函数的恒等变化求角.12.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭222tan 1tan =2tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式=22112()1()33[]=1210()13⨯-+--⨯-+综上,πsin 2410α⎛⎫+= ⎪⎝⎭ 【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.由题意首先求得tan α的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.13.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以BD =.ππcos cos()cos cos sin sin 44ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征. 14.【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2). 【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=.因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积ABC S =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,△ABC面积的取值范围是⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 15.【2019年高考北京卷文数】在△ABC 中,a =3,–2b c =,cos B =12-. (1)求b ,c 的值; (2)求sin (B +C )的值. 【答案】(1)7b =,5c =;(2【解析】(1)由余弦定理2222cos b a c ac B =+-,得2221323()2b c c =+-⨯⨯⨯-.因为2b c =+,所以2221(2)323()2c c c +=+-⨯⨯⨯-. 解得5c =.所以7b =. (2)由1cos 2B =-得sin 2B =.由正弦定理得sin sin 14a A Bb ==. 在ABC △中,B C A +=π-.所以sin()sin B C A +==【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.16.【2019年高考天津卷文数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26πB ⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2)716+-. 【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅.(2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=⨯= ⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.17.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.【答案】(1)c =(2.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 2B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.18.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+.【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.'因为PB ⊥AB , 所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==, 从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15.再讨论点Q 的位置. 由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,1CQ =此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+.解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3.因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (−4,−3),直线AB 的斜率为34.因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==.因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3),所以线段AD :36(44)4y x x =-+-剟.在线段AD 上取点M (3,154),因为5OM =<=, 所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.19.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)[1-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=.又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y f x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π123x ⎛⎫=+ ⎪⎝⎭.因此,函数的值域是[1+. 【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.20.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,则cos2=αAB .13C .13- D.3-【答案】B【解析】因为角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,所以cos3==-α, 因此21cos 22cos 13=-=αα.故选B. 【名师点睛】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.解答本题时,先由角α的终边过点(1)P ,求出cos α,再由二倍角公式,即可得出结果.。

2019年高考数学真题分类汇编专题15:三角函数(综合题含解析)

2019年高考数学真题分类汇编专题15:三角函数(综合题含解析)

2019年高考数学真题分类汇编专题15:三角函数(综合题)一、解答题1.(2019•江苏)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b= ,cos B= ,求c的值;(2)若,求的值.2.[选修4-4:坐标系与参数方程]在极坐标系中,已知两点,直线l的方程为.(1)求A,B两点间的距离;(2)求点B到直线l的距离.3.(2019•江苏)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB 是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.4.(2019•浙江)设函数f(x)=sinx,x R。

(1)已知θ=[0,2x),函数f(x+θ)是偶函数,求θ的值(2)求函数y=[f(x)+ ]2+[f(x+ )]2的值域5.(2019•天津)在中,内角所对的边分别为.已知,.(Ⅰ)求的值;(Ⅱ)求的值.6.(2019•全国Ⅲ)△ABC的内角A、B、C的对边分别为a,b,c,已知(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.7.(2019•北京)在△ABC中,a=3,b-c=2,cosB=- .(I)求b,c的值:(II)求sin(B+C)的值.8.(2019•北京)在△ABC中,a=3,b-c=2,cosB=- .(I)求b,c的值;(II)求sin(B-C)的值.9.(2019•卷Ⅰ)∆ABC的内角A,B,C的对边分别为a,b,c.设(sinB-sinC)2=sin2A-sinBsinC。

2019年高考数学真题分类汇编:专题(04)三角函数与三角形(理科)及答案

2019年高考数学真题分类汇编:专题(04)三角函数与三角形(理科)及答案

专题四 三角函数与三角形1.【2018高考新课标1,理2】o o o o sin 20cos10cos160sin10- =( )(A ) (B (C )12- (D )12【答案】D【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin 30=12,故选D. 【考点定位】三角函数求值.【名师点睛】本题解题的关键在于观察到20°与160°之间的联系,会用诱导公式将不同角化为同角,再用两角和与差的三角公式化为一个角的三角函数,利用特殊角的三角函数值即可求出值,注意要准确记忆公式和灵活运用公式.2.【2018高考山东,理3】要得到函数sin 43y x π⎛⎫=-⎪⎝⎭的图象,只需要将函数sin 4y x =的图象( ) (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B【解析】因为sin 4sin 4312y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,所以要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 4y x = 的图象向右平移12π个单位.故选B.【考点定位】三角函数的图象变换.【名师点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.3.【2018高考新课标1,理8】函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A)13(,),44k k k Z ππ-+∈ (B)13(2,2),44k k k Z ππ-+∈ (C)13(,),44k k k Z -+∈ (D)13(2,2),44k k k Z -+∈【答案】D【考点定位】三角函数图像与性质【名师点睛】本题考查函数cos()y A x ωϕ=+的图像与性质,先利用五点作图法列出关于ωϕ,方程,求出ωϕ,,或利用利用图像先求出周期,用周期公式求出ω,利用特殊点求出ϕ,再利用复合函数单调性求其单调递减区间,是中档题,正确求ωϕ,使解题的关键.4.【2018高考四川,理4】下列函数中,最小正周期为且图象关于原点对称的函数是( )()cos(2)2A y x π=+ ()sin(2)2B y x π=+ ()sin 2cos 2C y x x =+ ()sin cos D y x x =+【答案】A【解析】对于选项A ,因为2sin 2,2y x T ππ=-==,且图象关于原点对称,故选A. 【考点定位】三角函数的性质.【名师点睛】本题不是直接据条件求结果,而是从4个选项中找出符合条件的一项,故一般是逐项检验,但这类题常常可采用排除法.很明显,C 、D 选项中的函数既不是奇函数也不是偶函数,而B 选项中的函数是偶函数,故均可排除,所以选A.5.【2018高考重庆,理9】若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( )A 、1B 、2C 、3D 、4 【答案】C 【解析】由已知,3cos()10sin()5παπα-=-33cos cos sin sin 1010sin cos cos sin 55ππααππαα+-33cos tan sin 1010tan cos sin 55ππαππα+=-33cos 2tan sin 105102tan cos sin555ππππππ+=- 33cos cos 2sin sin 510510sin cos 55ππππππ+==155(cos cos )(cos cos )21010101012sin 25πππππ++-3cos103cos 10ππ==,选C. 【考点定位】两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换.【名师点晴】三角恒等变换的主要题目类型是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算即可.本例应用两角和与差的正弦(余弦)公式化解所求式子,利用同角关系式使得已知条件可代入后再化简,求解过程中注意公式的顺用和逆用.6.【2018高考陕西,理3】如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为( )A .5B .6C .8D .10【答案】C【解析】由图象知:min 2y =,因为min 3y k =-+,所以32k -+=,解得:5k =,所以这段时间水深的最大值是max 3358y k =+=+=,故选C . 【考点定位】三角函数的图象与性质.【名师点晴】本题主要考查的是三角函数的图象与性质,属于容易题.解题时一定要抓住重要字眼“最大值”,否则很容易出现错误.解三角函数求最值的试题时,我们经常使用的是整体法.本题从图象中可知sin 16x πϕ⎛⎫+=- ⎪⎝⎭时,y 取得最小值,进而求出k 的值,当sin 16x πϕ⎛⎫+= ⎪⎝⎭时,y 取得最大值. 7.【2018高考安徽,理10】已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) (A )()()()220f f f <-< (B )()()()022f f f <<- (C )()()()202f f f -<< (D )()()()202f f f <<- 【答案】A【考点定位】1.三角函数的图象与应用;2.函数值的大小比较.【名师点睛】对于三角函数中比较大小的问题,一般的步骤是:第一步,根据题中所给的条件写出三角函数解析式,如本题通过周期判断出ω,通过最值判断出ϕ,从而得出三角函数解析式;第二步,需要比较大小的函数值代入解析式或者通过函数图象进行判断,本题中代入函数值计算不太方便,故可以根据函数图象的特征进行判断即可.【2018高考湖南,理9】将函数()sin 2f x x =的图像向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图像,若对满足12()()2f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( )A.512π B.3π C.4π D.6π 【答案】D. 【解析】试题分析:向右平移ϕ个单位后,得到)22sin()(ϕ-=x x g ,又∵2|)()(|21=-x g x f ,∴不妨ππk x 2221+=,ππϕm x 22222+-=-,∴πϕπ)(221m k x x -+-=-,又∵12min 3x x π-=,∴632πϕπϕπ=⇒=-,故选D.【考点定位】三角函数的图象和性质.【名师点睛】本题主要考查了三角函数的图象和性质,属于中档题,高考题对于三角函数的考查,多以)sin()(ϕω+=x A x f 为背景来考查其性质,解决此类问题的关键:一是会化简,熟悉三角恒等变形,对三角函数进行化简;二是会用性质,熟悉正弦函数的单调性,周期性,对称性,奇偶性等.【2018高考上海,理13】已知函数()sin f x x =.若存在1x ,2x ,⋅⋅⋅,m x 满足1206m x x x π≤<<⋅⋅⋅<≤,且()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=(2m ≥,m *∈N ),则m 的最小值 为 . 【答案】8【解析】因为()sin f x x =,所以()()max min ()()2m n f x f x f x f x -≤-=,因此要使得满足条件()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=的m 最小,须取123456783579110,,,,,,,6,222222x x x x x x x x πππππππ========即8.m = 【考点定位】三角函数性质【名师点睛】三角函数最值与绝对值的综合,可结合数形结合解决.极端位置的考虑方法是解决非常规题的一个行之有效的方法.8.【2018高考天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 .【答案】8【解析】因为0A π<<,所以sin A ==又1sin 242ABC S bc A bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得 2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【考点定位】同角三角函数关系、三角形面积公式、余弦定理.【名师点睛】本题主要考查同角三角函数关系、三角形面积公式、余弦定理.解三角形是实际应用问题之一,先根据同角三角关系求角A 的正弦值,再由三角形面积公式求出24bc =,解方程组求出,b c 的值,用余弦定理可求边a 有值.体现了综合运用三角知识、正余弦定理的能力与运算能力,是数学重要思想方法的体现. 【2018高考上海,理14】在锐角三角形C AB 中,1tan 2A =,D 为边C B 上的点,D ∆AB 与CD ∆A 的面积分别为2和4.过D 作D E ⊥AB 于E ,DF C ⊥A 于F ,则D DF E ⋅= . 【答案】1615-【考点定位】向量数量积,解三角形【名师点睛】向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b=|a||b|cos<a ,b>.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a·b=x 1x 2+y 1y 2.向量夹角与三角形内角的关系,可利用三角形解决;向量的模与三角形的边的关系,可利用面积解决.9.【2018高考广东,理11】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若a = 1sin 2B =,6C =π,则b = . 【答案】1. 【解析】因为1sin 2B =且()0,B π∈,所以6B π=或56B π=,又6C π=,所以6B π=,23A B C ππ=--=,又a =sin sin a b A B =sin 36bπ=解得1b =,故应填入1. 【考点定位】三角形的内角和定理,正弦定理应用.【名师点睛】本题主要考查三角形的内角和定理、运用正弦定理解三角形,属于容易题,解答此题要注意由1sin 2B =得出6B π=或56B π=时,结合三角形内角和定理舍去56B π=. 10.【2018高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc+-==⋅2425361616256⨯+-=⋅=⨯⨯ 考点定位:本题考点为正弦定理、余弦定理的应用及二倍角公式,灵活使用正弦定理、余弦定理进行边化角、角化边.【名师点睛】本题考查二倍角公式及正弦定理和余弦定理,本题属于基础题,题目所求分式的分子为二倍角正弦,应用二倍角的正弦公式进行恒等变形,变形后为角的正弦、余弦式,灵活运用正弦定理和余弦定理进行角化边,再把边长代入求值.11.【2018高考湖北,理12】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 .【答案】2【解析】因为2π()4cos cos()2sin |ln(1)|22x f x x x x =---+ |)1ln(|sin 2sin )cos 1(2+--+=x x x x |)1ln(|2sin +-=x x所以函数)(x f 的零点个数为函数x y 2sin =与|)1ln(|+=x y 图象的交点的个数, 函数x y 2sin =与|)1ln(|+=x y 图象如图,由图知,两函数图象有2个交点, 所以函数)(x f 有2个零点.【考点定位】二倍角的正弦、余弦公式,诱导公式,函数的零点.【名师点睛】数形结合思想方法是高考考查的重点. 已知函数的零点个数,一般利用数形结合转化为两个图象的交点个数,这时图形一定要准确。

2019年全国高考理科数学数学分类汇编---三角函数

2019年全国高考理科数学数学分类汇编---三角函数
7.(2019全国2卷理科) 的内角 的对边分别为 .若 ,则 的面积为__________.
【答案】
【解析】
【分析】
本题首先应用余弦定理,建立关于 的方程,应用 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.
【详解】由余弦定理得 ,
∴ ,
∴ ,故④正确,
由 ,知 时,
令 时取得极大值,①正确;
极小值点不确定,可能是2个也可能是3个,②不正确;
因此由选项可知只需判断③是否正确即可得到答案,
当 时, ,
若f(x)在 单调递增,
则 ,即 ,
∵ ,故③正确.
故选:D.
【点睛】极小值点个数动态的,易错,③正确性考查需认真计算,易出错,本题主要考查了整体换元的思想解三角函数问题,属于中档题.
③f(x)在 有4个零点④f(x)的最大值为2
其中所有正确结论的编号是
A.①②④B.②④C.①④D.①③
【答案】C
【解析】
【分析】
化简函数 ,研究它的性质从而得出正确答案.
【详解】 为偶函数,故①正确.当 时, ,它在区间 单调递减,故②错误.当 时, ,它有两个零点: ;当 时, ,它有一个零点: ,故 在 有 个零点: ,故③错误.当 时, ;当 时, ,又 为偶函数, 的最大值为 ,故④正确.综上所述,①④正确,故选C.
【详解】(1)
即:
由正弦定理可得:
(2) ,由正弦定理得:
又 ,
整理可得:
解得: 或
因 所以 ,故 .
(2)法二: ,由正弦定理得:
又 ,
整理可得: ,即
由 ,所以
.

《精品》专题06 三角函数及解三角形-2019年高考真题和模拟题分项汇编数学(文)(解析版)

《精品》专题06 三角函数及解三角形-2019年高考真题和模拟题分项汇编数学(文)(解析版)

1 +2 = 4 + 2π> 1, f (π) = 排除 A .又 f ( ) =( )2π专题 06 三角函数及解三角形1.【2019 年高考全国Ⅰ卷文数】函数 f(x)= sinx + x在 [-π, π] 的图像大致为cosx + x 2A .B .C .D .【答案】D【解析】由 f (- x ) = sin(- x) + (- x) cos(- x ) + (- x )2 - sin x - x= = - f ( x ) ,得 f ( x ) 是奇函数,其图象关于原点对称,cos x + x 2π 2 π22π π -1 + π2 > 0 ,排除 B ,C ,故选 D .【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得f ( x ) 是奇函数,排除 A ,再注意到选项的区别,利用特殊值得正确答案.2.【2019 年高考全国Ⅰ卷文数】tan255°=A .−2− 3C .2− 3【答案】DB .−2+ 3D .2+ 3【解析】 tan 255︒ = tan(180︒ + 75︒) = tan 75︒ = tan(45 ︒ + 30︒) =tan 45︒ + tan 30︒ 1 - tan 45︒ tan 30︒= 1 +1 -33 = 2 + 3. 故选 D. 33【名师点睛】本题主要考查三角函数的诱导公式、两角和与差的三角函数、特殊角的三角函数值、运1,x 2= 是函数 f(x)= sin ω x ( ω >0)两个相邻的极值点,则ω = ω = 2(2sin 2α = cos2 α +1 , ∴ 4sin α ⋅ cos α = 2cos 2 α . α ∈ 0, ⎪ ,∴ cos α > 0 , sin α > 0,计算求解.题目较易,注重了基础知识、基本计算能力的考查.3.【2019 年高考全国Ⅰ卷文数】△ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 asinA −b sinB =4csinC ,cosA =− 1 4 ,则 bc =A .6C .4B .5D .3【答案】A【解析】由已知及正弦定理可得 a 2 - b 2 = 4c 2 ,1 b2 + c 2 - a 2 c 2 - 4c 2 1 3c 1由余弦定理推论可得 - = cos A = , ∴ = - , ∴ = ,4 2bc 2bc 4 2b 4b 3∴ = ⨯ 4 = 6 ,故选 A .c 2【名师点睛】本题考查正弦定理及余弦定理推论的应用.先利用余弦定理推论得出 a ,b ,c 关系,再结合正弦定理边角互换列出方程,解出结果.4.【2019 年高考全国Ⅱ卷文数】若 x 1= π 3π 4 4A .2 C .1【答案】AB .D .32 12【解析】由题意知, f ( x ) = sin ω x 的周期 T = 2π 3π π- ) = π ,解得 ω = 2 .故选 A .4 4【名师点睛】本题考查三角函数的极值和周期,渗透了直观想象、逻辑推理和数学运算素养.利用周期公式,通过方程思想解题.5.【2019 年高考全国Ⅱ卷文数】已知 a ∈(0,π ),2sin2α=cos2α+1,则 sin α= 2A .15B .5 5C .33【答案】BD .2 5 5【解析】⎛ π ⎫ ⎝ 2 ⎭∴2sin α = cos α ,又sin 2 α + cos 2 α = 1 ,∴ 5sin 2α = 1,sin 2α = ,又sin α >0 ,∴ s in α =15 5 5,故选 B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为 1 关系得出答案.6.【2019年高考全国Ⅲ卷文数】函数 f ( x ) = 2sinx - sin2 x 在[0,2π]的零点个数为A .2C .4B .3D .5【答案】B【解析】由 f ( x ) = 2sin x - sin 2 x = 2sin x - 2sin x cos x = 2sin x(1- cos x) = 0 ,得 sin x = 0 或 cos x = 1 ,x ∈[0,2 π],∴ x = 0、π或2π .∴ f ( x ) 在 [0,2 π]的零点个数是 3,故选 B .【名师点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养.令 f ( x ) = 0 ,得 sin x = 0 或 cos x = 1 ,再根据 x 的取值范围可求得零点.7.【2019 年高考北京卷文数】设函数 f (x )=cosx +b sinx (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件C .充分必要条件B .必要而不充分条件D .既不充分也不必要条件【答案】C【解析】 b = 0 时, f ( x ) = cos x + b s in x = cos x , f ( x ) 为偶函数;f ( x ) 为偶函数时,f (- x )=f ( x ) 对任意的 x 恒成立,即 f (- x ) = cos(- x ) + b s in(- x ) = cos x - b s in x ,cos x + b s in x = cos x - b s in x ,得 b s in x = 0 对任意的 x 恒成立,从而 b = 0 .从而“ b = 0 ”是“ f ( x ) 为偶函数”的充分必要条件,故选 C.【名师点睛】本题较易,注重基础知识、逻辑推理能力的考查.根据定义域为 R 的函数 f ( x ) 为偶函数等2价于 f (- x )=f ( x ) 恒成立进行判断.8.【2019 年高考北京卷文数】如图,A ,B 是半径为 2 的圆周上的定点,P 为圆周上的动点, ∠APB 是锐角,大小为 β.图中阴影区域的面积的最大值为A .4β+4cos βC .2β+2cos βB .4β+4sin βD .2β+2sin β【答案】B【解析】设圆心为 O ,如图 1,连接 OA ,OB ,AB ,OP ,则 ∠AOB = 2∠APB = 2β ,所以 S扇形OAB2β ⨯ 22= = 4β ,2因为 S 阴影 = S 扇形OAB + S △ABP - S △AOB ,且 S 扇形OAB ,S △AOB 都已确定,所以当 S △ABP 最大时,阴影部分面积最大.观察图象可知,当 P 为弧 AB 的中点时(如图 2),阴影部分的面积 S 取最大值,此时∠BOP =∠AOP =π−β,面积 S 的最大值为 S 阴影 = S 扇形OAB + S △ABP - S △AOB =4β+△S POB + △S POA =4β+1|OP||OB|sin (π−β)+ 12|OP||OA|sin (π−β)=4β+2sin β+2sin β=4β+4 sin β,故选 B.【名师点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解对应的函数为g(x).若g ⎪=2,则f ⎪=.ω=π,∴ω=2,能力,有一定的难度.关键是观察分析区域面积最大时的状态,并将面积用边角等表示9.【2019年高考天津卷文数】已知函数f(x)=A s in(ωx+ϕ)(A>0,ω>0,|ϕ|<π)是奇函数,且f(x)的最小正周期为π,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象⎛π⎫⎛3π⎫⎝4⎭⎝8⎭A.−2 C.2B.-2 D.2【答案】C【解析】∵f(x)为奇函数,∴f(0)=A s inϕ=0,∴ϕ=kπ,k∈Z,∴k=0,ϕ=0;∵f(x)的最小正周期为π,∴T=2π∴g(x)=A s in 12ωx=A s in x,π又g()=2,∴A=2,4∴f(x)=2sin2x,f(3π8)= 2.故选C.【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数g(x),结合函数性质逐步得出A,ω,ϕ的值即可.10.【2019年高考全国Ⅰ卷文数】函数f(x)=sin(2x+【答案】-43π2)-3cos x的最小值为___________.【解析】f(x)=sin(2x+317 =-2(cos x+)2+,483π2)-3cos x=-cos2x-3cos x=-2cos2x-3cos x+1-1≤cos x≤1,∴当cos x=1时,f(x)min=-4,故函数f(x)的最小值为-4.【名师点睛】本题首先应用诱导公式,转化得到二倍角的余弦,进一步应用二倍角的余弦公式,得到关于cos x的二次函数,从而得解.注意解答本题的过程中,部分考生易忽视-1≤cos x≤1的限制,而简单应用二次函数的性质,出现运算错误.⎛ α π ⎫ 3 ,则 sin 2α + ⎪ 的值是 ▲ . tan + ⎪ ⎝ 4 ⎭ π ⎫ tan α + 1tan α + 13 ,得 3tan 2α - 5tan α - 2 = 0 ,tan α + ⎪ tan α (1 - tan α )sin2α + ⎪ = sin 2α cos + cos 2α sin 2 (sin 2α + cos 2α )=2 2 ⎝ sin 2 α + cos 2 α⎭2 ⎝tan 2 α + 1⎭=; 当 tan α = 2 时,上式 = ⎪ ⎝ 22 + 1 ⎭ 10 1 3 3 ]= 2 .⨯ [2 ⨯ (- ) + 1 - (- )2 当 tan α = - 时,上式=111.【2019 年高考全国Ⅱ卷文数】 △ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c .已知 b sinA +acosB =0,则 B=___________. 【答案】3π4【 解 析 】 由 正 弦 定 理 , 得 sin B s in A + sin A c os B = 0 .A ∈ (0, π),B ∈ (0, π) , ∴ s in A ≠ 0, ∴sin B + cos B = 0 ,即 tan B = -1,∴ B =3π 4.【名师点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.本题容易忽视三角形内角的范围致误,三角形内角均在 (0, π) 范围内,化边为角,结合三角函数的恒等变化求角.12.【2019 年高考江苏卷】已知【答案】210tan α 2=- ⎛ π ⎫⎝ 4 ⎭ 【解析】由解得 tan α = 2 ,或 tan α = -13.⎛π ⎫ π π ⎝4 ⎭ 4 4==2 ⎛ 2sin α cos α + cos 2 α - sin 2 α ⎫ ⎪2 ⎛ 2 tan α + 1 - tan 2 α ⎫ ⎪ ,2 ⎛ 2 ⨯ 2 + 1 - 22 ⎫ 2 21 1 23 2 10 (- )2 + 1 36综上,sin2π【答案】122【解析】如图,在△ABD中,由正弦定理有:ABAC=AB2+BC2=5,sin BACBC3AB4122【B2410.【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.由题意首先求得tan的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.13.【2019年高考浙江卷】在△ABC中,ABC90,AB4,BC3,点D在线段AC上,若BDC45,则BD___________,cos ABD___________.72,510BD3π,而AB4,ADB,sin ADB sin BAC4,cos BAC,所以BDAC5AC55.ππ72cos ABD cos(BDC BAC)cos cos BAC sin sin BAC4410.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在△ABD中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征. 14.2019年高考全国Ⅲ卷文数】△ABC的内角A、、C的对边分别为a、b、c.已知a sin (1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.33【答案】(1)B=60°;(2)(,).82【解析】(1)由题设及正弦定理得s inA sinA CsinB sinA.2A C2bsinA.因为 cos B sin (120︒ - C)从而 3△ABC <因此,△ABC 面积的取值范围是 8 , 2 ⎪⎭.c因为sinA ≠ 0,所以 sin A + C= sin B .2由 A + B + C = 180︒ ,可得 sin A + C B B B B= cos ,故 cos = 2sin cos .2 2 2 2 2B 1≠ 0 ,故 sin = ,因此B =60°.2 2 2(2)由题设及(1△)知 ABC 的面积 S△ABC = 3 4a .c sin A3 1由正弦定理得 a = == + . sin Csin C2 tan C 2△由于 ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故 1< a < 2 , 23 < S 8 2.⎛ 3 3 ⎫ .⎝【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查 V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题15.【2019 年高考北京卷文数】在△ABC 中,a =3, b – = 2 ,cosB = -(1)求 b ,c 的值;(2)求 sin (B +C )的值.1 2.【答案】(1) b = 7 , c = 5 ;(2)3 3 14.【解析】(1)由余弦定理 b 2 = a 2 + c 2 - 2ac cos B ,得1b 2 = 32 +c 2 - 2 ⨯ 3 ⨯ c ⨯ (- ) .2因为 b = c + 2 ,1所以 (c + 2)2= 32+ c 2- 2 ⨯ 3 ⨯ c ⨯ (- ) .2解得 c = 5 .(2)由 cos B = - 得 sin B =6 ⎭⎛⎫ 【答案】(1) - 1【解析】(1)在 △ABC 中,由正弦定理ba 2 + c 2 -b 2 a 2 + a 2 - a 29 92 2 ⋅ a ⋅ a( 2 ) 由 ( 1 ) 可 得 sin B = 1 - cos 2 B =15sin 2B + ⎪ = sin 2B cos + cos 2B sin =- ⨯ - ⨯ =-所以 b = 7 .1 32 2.由正弦定理得 s in A = a 3 3 sin B = b 14.在 △ABC 中, B + C = π- A .所以 sin( B + C ) = sin A = 3 314.【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.16.【 2019 年高考天津卷文数】在 △ABC 中,内角 A, B, C 所对的边分别为 a, b , c .已知 b + c = 2 a ,3c s in B = 4a sin C .(1)求 cos B 的值;(2)求 sin 2 B + ⎝π ⎪ 的值.3 5 + 7;(2) -4 16.c= ,得 b s in C = c sin B , sin B sin C又由 3c s in B = 4a sin C ,得 3b s in C = 4a sin C ,即 3b = 4a .4 2又因为 b + c = 2a ,得到 b = a , c = a .3 3 由余弦定理可得 cos B =4 16 1 = =- .2ac 4315, 从 而 sin 2 B = 2sin B cos B = - ,487cos 2B = cos 2 B - sin 2 B = - ,故8⎛ π⎫ π π 15 3 7 1 3 5 + 7 ⎝6 ⎭ 6 6 8 2 8 2 16.【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公(2)若 sin A ( ) 从而 cos 2 B = (2sin B)2 ,即 cos 2 B = 4 1 - cos 2 B ,故 cos 2 B = .= = 因此 sin B + ⎪ = cos B = ⎫ 要求:线段 PB 、QA 上的所有点到点 O 的距离均不小于圆 O 的半径.已知点 A 、B 到直线 l 的距离分式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.17.【2019 年高考江苏卷】在△ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c .(1)若 a =3c ,b = 2 ,cosB = 23,求 c 的值;cos B π= ,求 sin(B + ) 的值.a 2b 2【答案】(1) c =3 2 5 ;(2)3 5.【解析】(1)因为 a = 3c, b =2,cos B = 23,a 2 + c 2 -b 22 (3c)2 + c 2 - ( 2) 21 由余弦定理 cos B =,得 = ,即 c 2 = .2ac3 2 ⨯ 3c ⨯ c3所以 c =3 3.(2)因为 sin A cos B= ,a 2ba b cos B sin B由正弦定理 ,得 ,所以 cos B = 2sin B .sin A sin B 2b b45因为 sin B > 0 ,所以 cos B = 2sin B > 0 ,从而 cos B = 2 5 5.⎛ π 2 5⎝2 ⎭ 5.【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.18.【2019 年高考江苏卷】如图,一个湖的边界是圆心为 O 的圆,湖的一侧有一条直线型公路 l ,湖上有桥 AB (AB 是圆 O 的直径).规划在公路 l 上选两个点 P 、Q ,并修建两段直线型道路 PB 、QA .规划....别为 AC 和 BD (C 、D 为垂足),测得 AB =10,AC =6,BD =12(单位:百米).(1)若道路 PB 与桥 AB 垂直,求道路 PB 的长;(2)在规划要求下,P 和 Q 中能否有一个点选在 D 处?并说明理由;所以cos∠PBD=sin∠ABE=8(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+321(百米).【解析】解法一:(1)过A作AE⊥BD,垂足为E.由已知条件得,四边形ACDE为矩形,DE=BE=AC=6,AE=CD=8.'因为PB⊥AB,4=.105所以PB=BD12==15cos∠PBD4.5因此道路PB的长为15(百米).(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知AD=AE2+ED2=10,AD2+AB2-BD27从而cos∠BAD==>0,所以∠BAD为锐角.2A D⋅AB25所以线段AD上存在点到点O的距离小于圆O的半径.因此,Q选在D处也不满足规划要求.51 1 12 2 .1综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设 P 为l 上一点,且 PB ⊥ AB ,由(1)知, P B =15,3 此时 PD = PB sin ∠PBD = PB cos ∠EBA = 15 ⨯= 9 ;1 111当∠OBP >90°时,在 △PPB 中, PB > PB = 15 .11由上可知,d ≥15.再讨论点Q 的位置.由 ( 2 ) 知 , 要 使 得 QA ≥15 , 点 Q 只 有 位 于 点 C 的 右 侧 , 才 能 符 合 规 划 要 求 . 当 QA =15 时 ,CQ = QA - AC = 1 5 2 -6 2 = 3 2 此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综 上 , 当 PB ⊥ AB , 点 Q 位 于 点 C 右 侧 , 且 CQ = 3 21 时 , d 最 小 , 此 时 P , Q 两 点 间 的 距 离PQ =PD +CD +CQ =17+ 3 21 .因此,d 最小时,P ,Q 两点间的距离为17+ 3 21 (百米).解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3.因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (−4,−3),直线AB 的斜率为34.在线段AD 上取点M (3, ),因为 OM = 32 +⎪ < 32 + 42 = 5 , ⎝ 4 ⎭1 1 1 1因为PB ⊥AB ,所以直线PB 的斜率为 -4 25直线PB 的方程为 y =- x -.334 3,所以P (−13,9), PB =(-13 + 4)2 + (9 + 3)2 = 15 .因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD : y = - 3x + 6(-4剟x 4) .415⎛ 15 ⎫24所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设 P 为l 上一点,且 PB ⊥ AB ,由(1)知, P B =15,此时 P (−13,9);当∠OBP >90°时,在 △PPB 中, PB > PB = 15 .1 1由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由 AQ = (a - 4)2 + (9 - 3)2 = 15(a > 4) ,得a = 4 + 3 21 ,所以Q ( 4 + 3 21 ,9),此时,线段QA上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q ( 4 + 3 21 ,9)时,d 最小,此时P ,Q 两点间的距离PQ = 4 + 3 21 - (-13) = 17 + 3 21 .因此,d 最小时,P ,Q 两点间的距离为17 + 3 21 (百米).)]2+ [ f ( x + )]2 的值域.又 θ ∈ [0, 2π) ,因此θ =π(2) y = ⎢ f x + ⎪⎥ + ⎢ f x + ⎪⎥ = sin 2 x + + sin 2 x + ⎪ ⎝12 ⎭⎦ ⎣ ⎝ ⎝ 12 ⎭ ⎝ 4 ⎭⎦ 4 ⎭ 1 - cos 2 x + ⎪ 1 - cos 2 x + ⎪= + = 1 - cos 2 x - sin 2 x ⎪⎪π ⎫ 6 ⎭ cos 2 x + ⎪ ..【3B .C . - 1【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.19.【2019 年高考浙江卷】设函数 f ( x ) = sinx, x ∈ R .(1)已知θ ∈ [0,2 π), 函数 f ( x + θ ) 是偶函数,求θ 的值;(2)求函数 y = [ f ( x + π π 12 4【答案】(1)θ = π 3π 3 3或 ;(2) [1- ,1 + ] .2 2 2 2【解析】(1)因为 f ( x + θ ) = sin( x + θ ) 是偶函数,所以,对任意实数x 都有 sin( x + θ ) = sin( - x + θ) ,即 sin x cos θ + cos x s in θ = - s in x cos θ + cos x sin θ ,故 2sin x cos θ = 0 ,所以 cos θ = 0 .3π或 . 2 2⎡ ⎣ ⎛ π ⎫⎤ 2 ⎡ ⎛ π ⎫⎤ 2⎛ π ⎫ ⎛ π ⎫ ⎪⎛ ⎛ π ⎫ ⎝⎝ 2 ⎭ 1 ⎛ 3 3 ⎫ 2 2 2 ⎝ 2 2⎭= 1 - 3 2⎛ π ⎫⎝ 3 ⎭因此,函数的值域是[1- 3 3,1 + ] .2 2【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力20. 重庆西南大学附属中学校 2019 届高三第十次月考数学试题】已知角 α 的顶点在坐标原点,始边与 x 轴正半轴重合,终边经过点 P(- 2,1) ,则 cos2α =A . 2 21 33D . -2 2 3tan α - ⎪=cos α = - , a ∈ (- π,0 ),∴ α ∈ - π, -⎪ ,π ⎫ tan α - 1 4 1 则 tan α - ⎪ = = = - .故选 C . 4 ⎭ 1 + tan α 73 1 + ,将函数图象向左平移 个单位得到函数 g ( x ) 的图象,则 g ( x ) =【答案】B【解析】因为角α 的顶点在坐标原点,始边与 x 轴正半轴重合,终边经过点 P(- 2,1) ,所以 cos α = - 2 2 + 1=- 6 3,因此 cos 2α = 2cos 2α - 1 = 13.故选 B.【名师点睛】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.解答本题时,先由角α 的终边过点 P(- 2,1) ,求出 cos α ,再由二倍角公式,即可得出结果.21.【四川省宜宾市 2019 届高三第三次诊断性考试数学试题】已知 c os α = - 4, α ∈ (-π,0 ),则5⎛ π ⎫ ⎝4 ⎭A .1 7B .7C . -17D . -7【答案】C【解析】3 3∴ s in α = - , tan α = ,5 43- 1⎛⎝4【名师点睛】本题主要考查了同角三角函数关系式及两角差的正切公式的简单应用,属于基础题.解答本题时,根据已知 cos α 的值,结合同角三角函数关系式可求 tan α,然后根据两角差的正切公式即可求解.22.【广东省韶关市 2019 届高考模拟测试(4 月)数学文试题】已知函数 f ( x ) = sin(ω x +π 6) (ω > 0)的相邻对称轴之间的距离为π A . sin( x + ) 3 π π2 6 πB . sin(2 x + )3) + ] = sin 2 x + + ⎪ = cos 2 x 的图象,故选 C . ⇒ > ,∴ω <C . cos2 x【答案】C【解析】由函数 f ( x ) = sin(ω x + πD . cos(2 x + )3π π T π)(ω > 0) 的相邻对称轴之间的距离为 ,得 = ,即 T = π ,所6 2 2 2以 π =2πω ,解得 ω = 2 ,π π将函数 f ( x ) = sin(2 x + ) 的图象向左平移 个单位,6 6得到 g ( x ) = sin[2( x + π 6 π ⎛ 6 ⎝ π π ⎫ 3 6 ⎭【名师点睛】本题考查的知识要点:三角函数关系式的平移变换和伸缩变换的应用,正弦型函数性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.解答本题时,首先利用函数的图象求出函数的关系式,进一步利用图象的平移变换的应用求出结果.23.【河南省郑州市 2019 届高三第三次质量检测数学试题】已知函数 f (x ) = A s in (ωx + ϕ ),A > 0,ω > 0, ϕ < π的部分图象如图所示,则使 f (a + x )- f (a - x ) = 0 成立的 a 的最小正值为2A .C .π12 π 4B .D .π 6 π 3【答案】B【解析】由图象易知, A = 2 , f (0) = 1 ,即 2sin ϕ = 1 ,且 ϕ <π π,即 ϕ = , 2 6由图可知, f ( 11π 11π π 11π π 12k - 2) = 0, 所以 sin( ⋅ ω + ) = 0,∴ ⋅ ω + = k π, k ∈ Z ,即 ω = , k ∈ Z ,12 12 6 12 6 1111π 2π 11π 24又由图可知,周期T >,且 ω > 0 , 12 ω 12 11所以由五点作图法可知 k = 2, ω = 2 ,所以函数 f ( x ) = 2sin(2 x + π) ,6C的对边,若△ABC的面积为S,且43S=(a+b)2-c2,则sin C+⎪= 4D.即3sin C-cos C=1,即2sin C-6⎭=1,则sin C-⎪=,则sin C+4⎭+=sin cos+cos sin=3⨯2+⨯2=6+2 =sin⎝34⎭222243434因为f(a+x)-f(a-x)=0,所以函数f(x)关于x=a对称,即有2a+ππkππ=kπ+,k∈Z,所以可得a=+,k∈Z,6226π所以a的最小正值为.6故选B.【名师点睛】本题考查了三角函数的图象和性质,熟练运用三角函数的图象和周期对称性是解题的关键,属于中档题.解答本题时,先由图象,求出A,ϕ,ω,可得函数f(x)的解析式,再由f(a+x)-f(a-x)=0易知f(x)的图象关于x=a对称,即可求得a的值.24.【山东省实验中学等四校2019届高三联合考试数学试题】在△ABC中,a,b,c分别为角A,B,⎛π⎫⎝4⎭A.1B.C.6-2【答案】D 226+2 4【解析】由43S=(a+b )2-c2,得43⨯12ab sin C=a2+b2-c2+2ab,∵a2+b2-c2=2ab cos C,∴23ab sin C=2ab cos C+2ab,⎛⎝π⎫⎪⎛⎝π⎫16⎭2∵0<C<π,∴-ππ5ππππ<C-<,∴C-=,即C=,666663⎛⎝π⎫⎪⎛ππ⎫ππππ1⎪,故选D.【名师点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出C的值以及利用两角和差的正弦公式进行计算是解决本题的关键.解答本题时,根据三角形的面积公式以及余弦定理进行化简求出C的值,然后利用两角和的正弦公式进行求解即可.25.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在△ABC中,角A,B,C的对边【分别为 a , b , c ,若 a = 1 , 3 sin A cos C + ( 3 sin C + b ) cos A = 0 ,则角 A =A .C .2π 3 π 6B .D .π 3 5π 6【答案】D【解析】∵ a = 1 , 3 sin A cos C + ( 3 sin C + b ) cos A = 0 ,∴ 3 sin A cos C + 3 sin C cos A = -b cos A ,∴ 3 sin( A + C ) = 3 sin B = -b cos A ,∴ 3a sin B = -b cos A ,由正弦定理可得: 3 sin A s in B = - sin B cos A ,∵ sin B > 0 ,∴ 3 sin A = - cos A ,即 tan A = - 3 3,∵ A ∈ (0, π) ,∴ A = 5π 6.故选 D .【名师点睛】本题主要考查解三角形,熟记正弦定理,两角和的正弦公式即可,属于基础题.解答本题时,由 3 sin A cos C + ( 3 sin C + b ) cos A = 0 ,可得 3a sin B = -b cos A ,再由正弦定理得到tan A = -3 ,结合 A ∈ (0, π) ,即可求得 A 的值.326. 广东省韶关市 2019 届高考模拟测试(4 月)数学试题】在 △ABC 中,a 、b 、c 分别是内角 A 、 B 、C 的对边,且 3b cos A = sin A(a cos C + c cos A) .(1)求角 A 的大小;(2)若 a = 2 3 , △ABC 的面积为5 3 4,求 △ABC 的周长.【答案】(1) A =π 3;(2) 5 3 .【解析】(1)∵ 3b cos A = sin A(a cos C + c cos A) ,∴由正弦定理可得:3 sin B cos A = sin A(sin A cos C + sin C cos A) = sin A s in( A + C ) = sin A s in B ,, a = 2 3 , △ABC 的面积为, (2)当 x ∈ [0, ] 时,不等式 c < f ( x ) < c + 2 恒成立,求实数 c 的取值范围.【 = =即 3 sin B cos A = sin A s in B ,∵ sin B ≠ 0 ,∴ tan A = 3 ,∵ A ∈ (0, π) ,∴ A = π3.(2)∵ A = π 5 33 41 3 5 3∴ bc sin A = bc =2 4 4,∴ bc = 5 ,∴由余弦定理可得: a 2 = b 2 + c 2 - 2bc cos A ,即12 = b 2 + c 2 - bc = (b + c)2 - 3bc = (b + c)2 - 15 ,解得: b + c = 3 3 ,∴ △ABC 的周长为 a + b + c = 2 3 + 3 3 = 5 3 .【名师点睛】本题主要考查了正弦定理,两角和的正弦函数公式,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.(1)由正弦定理,两角和的正弦函数公式化简已知等式可得 3 sin B cos A = sin A s in B ,由nisB0≠ ,可求 tan A = 3 ,结合 A ∈ (0, π) ,可求 A = π 3.(2)利用三角形的面积公式可求bc = 5 ,进而根据余弦定理可得b + c = 3 3 ,即可计算△ABC 的周长的值.27. 北京市昌平区 2019 届高三 5 月综合练习(二模)数学试题】已知函数 f ( x ) cos x( 3 sin x - cos x)+π(1)求 f ( ) 的值;3π21【答案】(1)1;(2) (-1,- ) .21【解析】(1) f ( x )3 sin x cos x - cos 2 x + 21 2.sin 2 x - 所以 - ≤ sin (2 x - )≤ 1 . ⎪⎩c + 2 > 1 (2)首先求得函数 f (x )在区间 ⎢0, ⎥ 上的值域,然后结合恒成立的结论得到关于 c 的不等式组,求 2= 31 cos2 x 2 2π =sin(2 x - ) , 6 π 所以 f ( ) = 1 . 3 (2)因为 0 ≤ x ≤ π 2, π π 5π 所以 - ≤ 2 x - ≤ , 6 6 6 1 π 2 6 ⎧ 1 ⎪ c <- 1 由不等式 c < f ( x ) < c + 2 恒成立,得 ⎨ 2 ,解得 -1 < c < - . 21 所以实数 c 的取值范围为 (-1,- ) . 2【名师点睛】本题主要考查三角函数的性质及其应用,恒成立问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.(1)首先整理函数的解析式,然后结合函数的解析式求解函数值即可;⎡ π ⎤ ⎣ ⎦解不等式组可得 c 的取值范围.20。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考试题汇编:三角函数
1.(2019•新课标Ⅰ)tan255°=()
A.﹣2﹣B.﹣2+C.2﹣D.2+ 2.(2019•新课标Ⅰ)函数f(x)=在[﹣π,π]的图象大致为()
A.B.
C.D.
3.(2019•新课标Ⅰ)关于函数f(x)=sin|x|+|sin x|有下述四个结论:
①f(x)是偶函数
②f(x)在区间(,π)单调递增
③f(x)在[﹣π,π]有4个零点
④f(x)的最大值为2
其中所有正确结论的编号是()
A.①②④B.②④C.①④D.①③4.(2019•新课标II)下列函数中,以为周期且在区间(,)单调递增的是()A.f(x)=|cos2x|B.f(x)=|sin2x|C.f(x)=cos|x|D.f(x)=sin|x| 5.(2019•新课标II)已知α∈(0,),2sin2α=cos2α+1,则sinα=()A.B.C.D.
6.(2019•新课标Ⅲ)设函数f(x)=sin(ωx+)(ω>0),已知f(x)在[0,2π]有且仅
有5个零点.下述四个结论:
①f(x)在(0,2π)有且仅有3个极大值点
②f(x)在(0,2π)有且仅有2个极小值点
③f(x)在(0,)单调递增
④ω的取值范围是[,)
其中所有正确结论的编号是()
A.①④B.②③C.①②③D.①③④
7.(2019•北京)设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件8.(2019•天津)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y =f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数
为g(x).若g(x)的最小正周期为2π,且g()=,则f()=()A.﹣2B.﹣C.D.2 9.(2019•新课标II)若x1=,x2=是函数f(x)=sinωx(ω>0)两个相邻的极值点,则ω=()
A.2B.C.1D.
10.(2019•新课标Ⅲ)函数f(x)=2sin x﹣sin2x在[0,2π]的零点个数为()A.2B.3C.4D.5
11.(2019•江苏)已知=﹣,则sin(2α+)的值是.
12.(2019•新课标Ⅰ)函数f(x)=sin(2x+)﹣3cos x的最小值为.
13.(2019•北京)函数f(x)=sin22x的最小正周期是.
14.(2019•浙江)设函数f(x)=sin x,x∈R.
(Ⅰ)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值;
(Ⅱ)求函数y=[f(x+)]2+[f(x+)]2的值域.。

相关文档
最新文档