船舶设计原理 型线设计
船舶设计原理_05_船舶型线设计_0511_型线设绘的基本要求

第五章船舶型线设计5.11 型线设绘的基本要求9191第五章船舶型线设计5.11 型线设绘的基本要求型线图的设绘方法型线图的设绘方法主要有4种,自行设绘法、母型改造法、系列船型方法和数学型线方法,我们已经在5.2横剖面面积曲线的特征这一节中学过。
无论采用何种型线设计方法,现在都可以借助计算机和绘图机来进行型线图的设绘。
目前,国内外已开发应用的许多船舶CAD软件系统中,很多具有型线设计功能。
但是,任何型线设计软件的应用,使用者都必须掌握型线图设绘的基本原理和方法,否则,盲目操作软件是不可能得到符合设计意图的优良型线的。
第五章船舶型线设计5.11 型线设绘的基本要求型线图的表达形式型线设计的结果是以型线图来表达的。
型线图是以横剖线图、水线图和纵剖线图(包括斜剖线)来表达船体形状。
横剖线图是以一组沿船长不同位置,垂直于基平面的横剖面与船体型表面相交的横剖线叠绘在一起而得。
由于船体形状一般左右对称,所以仅绘一侧横剖线即可,规定前半体绘在右侧,后半体绘在左侧。
横剖面的位置称为站,站号编排自尾向首(军船和国外有些民船是自首向尾的)。
站距通常按垂线间长20等分,也可取10等分,首尾可再加密(如1/2站或1/4站等)。
第五章船舶型线设计5.11 型线设绘的基本要求型线图的表达形式水线图是以一组平行于基平面的平面与船体型表面相交的水线叠绘在一起而得到的,通常只绘左侧。
设计水线以下的水线根数常取5-8根,在底部船体表面宽度变化剧烈处加密,设计水线以上的水线根数可取2-4根。
水线间距可不按设计吃水等分,而取整数。
纵剖线图是以一组平行于中纵剖面的平面与船体型表面相交的纵剖线叠绘在一起而得到的。
纵剖线的数目和位置根据船体表面的弯曲程度来选取,可取2-5根。
纵剖线的间距最好与水线间距一致或成倍数,这样便于放样。
纵剖线图还包括侧面轮廓线。
甲板边线、折角线、舷墙顶线等空间曲线在三个平面上的投影线均应分别绘制在横剖线图、水线图和纵剖线图上。
船舶设计原理_05_船舶型线设计_0510_侧面轮廓线的选择

第五章船舶型线设计5.10 侧面轮廓线的选择7878第五章船舶型线设计5.10 侧面轮廓线的选择型线的侧面轮廓线型线的侧面轮廓线包括首轮廓线(有球首时包括球首)、尾轮廓线、龙骨线、甲板中心线和甲板边线。
侧面轮廓线是船体型线最基本的边界线,也是船体形状特征的重要控制要素之一。
侧面轮廓线的设计也同样关系到船舶性能。
甲板边线与总布置关系密切,设计中必须与总布置设计相互协调。
第五章船舶型线设计5.10 侧面轮廓线的选择首轮廓线常规船不带球首的首轮廓线基本形状如图所示,现代船最常用的首轮廓线形状就是图中的前倾型首。
5.10 侧面轮廓线的选择尾轮廓线第五章船舶型线设计尾轮廓线形状的选择主要是考虑舵和螺旋桨的布置以及与横剖型线的配合,现代单桨运输船一般都采用巡洋舰尾,其侧面轮廓形状如图所示。
为了简化工艺,大多在水线以上切除了巡洋舰尾的曲面尾端,改用一块后倾0°-15°的平板作为尾封板,如图中的虚线所示。
5.10 侧面轮廓线的选择尾轮廓线第五章船舶型线设计当吃水较浅且螺旋桨直径较大时,为了布置螺旋桨,不得已只好减小浸深,使尾悬体的轮廓线比较平坦,如图中的点划线所示,此时应注意尾悬体横剖线的形状应具有一定的V形,否则容易引起尾部砰击和螺旋桨对船体产生较大的激振力。
5.10 侧面轮廓线的选择尾轮廓线第五章船舶型线设计尾框设有底龙骨(也称舵托)的称为闭式尾框,不设底龙骨的称为开式尾框,如图中的双点划线所示。
第五章船舶型线设计5.10 侧面轮廓线的选择尾轮廓线设计尾轮廓线时,尾框内的形状、尺寸应根据舵和螺旋桨的具体位置、尺寸,考虑桨叶与尾框间的间隙来决定,如图所示。
桨叶与舵及尾框之间的间隙大小主要影响螺旋桨对船体的激振力,同时也与推进效率、阻力有关。
第五章船舶型线设计5.10 侧面轮廓线的选择尾轮廓线总的来说,尾框的设计以防止大的激振为主要考虑因素,为此适当牺牲点快速性的要求也是值得的。
为了防止产生过大的激振,各船级社的船舶建造规范对尾框间隙尺寸提出了最小值的要求,在设计中应予以满足。
船舶设计原理

船舶设计原理第一章1. 船舶设计分为船体、轮机、电气设计;其中船体设计又分为总体、结构和舾装设计;总体设计的工作主要包括:主尺度和船型参数的确定、总布置设计、型线设计、各项性能的计算和保证。
2. 船舶设计的特点:1)必须贯彻系统工程的思想,考虑问题要全面,决策时要统筹兼顾;2)设计工作是由粗到细,逐步近似,反复迭代完成的。
船舶设计也可以说是一个多参数、多目标、多约束的求解和优化问题。
3.船舶设计的基本要求:适用、经济;安全、可靠;先进、美观4.续航力是指在规定的航速(通常为服务航速)或主机功率下,船上所带的燃料储备量可供连续航行的距离。
自持力是指船上所带淡水和食品可供使用的天数。
船舶设计一般分为初步设计、详细设计、生产设计和完工文件四个阶段。
前一阶段的设计结果是后一阶段设计的依据,后一阶段是前一阶段的深入和发展。
第二章1.图纸审查是指新船或改建船舶在设计阶段按规定的送审图纸资料目录将设计资料送交审图部门审查,审图部门审查后提出对设计图纸资料的审查意见书,设计单位依此修改设计并提交对审图意见的答复书。
这个图纸审查的过程通常称为“送审”。
2.干舷是指船中处从干舷甲板的上表面量至有关载重线的垂直距离。
最小干舷是根据规范有关规定计算得到的最小干舷值,它是保证安全性而限制船在劳动过程最大吃水而提出的要求。
船舶具有足够的干舷一方面可以保证有一定的储备浮力,另一方面可以减少甲板上浪。
最小干舷主要从甲板淹湿性和储备浮力这两个基本点来考虑。
3.“A”型船舶——专为载运散装液体货物而设计的一种船舶。
“B”型船舶——达不到上述“A”型船舶各项条件的所有船舶。
4.船长L是指最小型深85%处水线部长的96%,或沿该水线从首柱前缘至舵杆中心线的长度,取其大者。
5.B—60型船舶:船长超过100m的B型船舶,在计算干舷时,其基本干舷取为B型船舶表列干舷值减去了对应船长的B型船舶表列干舷与A 型船舶表列干舷值之差的60%,这种船称为B—60型船舶。
船头设计的原理与方法

船头设计的原理与方法
船头设计的原理和方法是为了确保船舶在行驶过程中具有良好的航行性能和稳定性。
以下是一些常用的船头设计原理和方法:
1. 流线型设计:船头通常采用流线型设计,以减小阻力、提高船舶的速度和燃油效率。
流线型船头可以减少水流的阻力,使船舶在航行时能够更顺利地通过水流。
2. 弯曲船首设计:弯曲船首设计可以减小船舶在波浪中的受力,提高船舶的稳定性和舒适性。
通过将船首的形状设计成圆弧形或者弯曲形状,可以减小波浪对船舶的冲击和摆动。
3. V形船首设计:V形船首设计通常用于快速船舶,它可以将水流分割开并将其抬离船身,从而减小阻力和摩擦力。
这种设计可以使船舶更容易穿过波浪,并提高船舶的稳定性和操控性能。
4. 宽船头设计:宽船头设计可以提供更大的浮力和稳定性,减小侧风或侧浪对船舶的影响。
宽船头设计可以增加船舶的横向稳定性,使船舶更容易保持平衡。
5. 纵向配重设计:通过在船头部位增加适当的重量,可以提高船舶的纵向稳定性,并减小船艏的上下波动。
这种设计可以使船舶在航行过程中更加稳定,减少翻倾的风险。
6. 船首形状选择:船首形状的选择也很重要,通常有尖头、圆头和平头等形状。
不同的船首形状会对船舶的行驶阻力、稳定性和航行特性产生不同的影响。
因此,在船首设计中需要考虑船舶的用途、航行环境和载重等因素。
总之,船头设计的原理和方法是多方面综合考虑的,其中包括减小阻力、提高稳定性和舒适性等因素。
根据具体的船舶类型和需求,可以采用不同的设计原理和方法来优化船头设计。
船的设计原理

船的设计原理船的设计原理涉及多个方面,包括形状、结构和材料选择等。
以下是船的设计原理的具体内容。
1. 形状设计:船的形状对其性能具有重要影响。
大多数船只采用流线型的设计,以减小水阻、提高速度和稳定性。
船体底部通常呈现弧形,使水流能够顺畅地通过船体,减少阻力。
2. 结构设计:船的结构设计包括船体、甲板、舱室等。
船体通常采用钢铁、铝合金或复合材料制成,具有较高的强度和耐久性。
不同类型的船根据其特定用途和负载要求,选择不同的结构设计,以保证船体的稳定性和安全性。
3. 材料选择:船的材料选择取决于船的类型、规模和用途。
常用的材料包括钢铁、铝合金、复合材料和木材等。
材料的选择需要考虑其强度、重量、耐久性和成本等因素。
4. 增稳设计:船的增稳设计用于提高航行的稳定性。
常见的增稳方法包括增加船体宽度、采用稳定性增强装置(如稳定翼和稳定杆)、使用艏舵和艉舵等措施。
5. 推进系统设计:船的推进系统设计主要包括发动机、传动装置和螺旋桨等组成部分。
船的推进系统对船的速度、操纵性和能效等性能有直接影响。
因此,推进系统的设计需要考虑船的规模、用途以及经济和环境等方面的因素。
6. 安全设计:船的安全设计主要包括防波堤、泄漏和火灾措施等。
船在设计阶段必须考虑到船员和乘客的安全,并确保在紧急情况下具备必要的逃生和救援设备。
7. 操纵性设计:船的操纵性设计包括舵和操纵系统的设计。
船的操纵性对于航行安全和效率至关重要,因此需要设计合适的舵和舵机等操纵设备,以保证船能够准确、灵活地转向。
综上所述,船的设计原理涉及到形状、结构、材料选择、增稳设计、推进系统设计、安全设计和操纵性设计等多个方面。
通过综合考虑这些设计原理,可以制造出安全、稳定且高效的船舶。
船体型线放样

甲板线:甲板边线和甲板中线的统称。 甲板边线(deck line at side,deck side line):甲板 型表面的边缘线。甲板边线有舷弧。 甲板中线(deck line at center,deck center line): 甲板型表面与中线面的交线。甲板中心线有脊弧。 甲板线的特点: 同一层甲板自首至尾所有的梁拱曲线的形状都相同; 同一层甲板从中心至两舷所有的纵剖线形状都相同,甲板 中心线可代表所有甲板纵剖线。 梁拱高:甲板在其与肿横剖面交线上的最高点与最低点之 间的高度差称为甲板的梁拱高度。
➢ 选择几根站线分别量取各纵剖线的宽度值,每 过三点弹一直线即得纵剖线。
3、横剖线图格子线的做法 作横剖面图上的格子线 ,必须单独以1:1
比例作出,分为左右两部分,左为艉半段,右 为艏半段,两图间距1米左右,共工作人员起动 和钉制样板用,以便保持整洁。
4、格子线的检验 用对角线验证其精确性。
戳型值并攀顺型线
(3)作其余站线
➢ 在三条垂线上各量取大于船体最高点的一个定值作一 条水平直线,检查0~10、10~20和0~20站之间的 值;
➢ 在最高水平线上在0~20站线之间作20等分点;
➢ 将基线和最高水平线上对应的站号点连成直线并划出 色漆线即得站线。
2、作水线或纵剖线
➢ 选择几根站线分别量取各水线的高度值,每过 三点弹一直线即得水线;
肋骨型线放样:在理论线放样的基础上,在 纵剖型线图和半宽水线图上,按照实际肋骨 间距插入其间作出肋骨型线图
理论型线放样的步骤
作基线 作格子线 戳型值并攀顺型线
作基线(molded base line)
基线是理论型线放样中作为基准的一根直线,通常 指纵剖型线图底部的一条基准平直线,也是格子线 的基准。
船舶设计原理_05_船舶型线设计_0502_横剖面面积曲线的特征

第五章船舶型线设计
5.2 横剖面面积曲线的特征
1414
第五章船舶型线设计
5.2 横剖面面积曲线的特征
型线设计的方法
型线设计的方法归纳起来有:自行绘制法、母型改造法、系列船型法及数学型线等。
无论采用哪种方法,都必须首先掌握控制船体型线的要素曲线形状特征参数以及它对船舶性能、布置等方面的影响规律,以此作为型线设计的基础。
横剖面面积曲线是控制型线的重要要素,型线设计通常从确定横剖面面积曲线入手。
5.2 横剖面面积曲线的特征
横剖面面积曲线是以船长为横坐标、设计水线下各站横剖面面积为纵坐标所绘制的曲线,纵坐标也可以用各站横剖面面积与最大横剖面面积之比来表达。
横剖面面积曲线的定义
第五章
船舶型线设计
5.2 横剖面面积曲线的特征
(1)横剖面面积曲线与横向坐标轴所包围的面积等于设计水线下船的型排水体积▽。
横剖面面积曲线的特征
第五章船舶型线设计
/2
s /2A dx L L -=∇
⎰
L/2
s yoz b
L/2xA dx M x -∇=∇=⎰x b
5.2 横剖面面积曲线的特征
(3)横剖面面积曲线的最大纵坐标值代表最大横剖面面积A max 。
横剖面面积曲线的特征
第五章船舶型线设计
p max pp
=C A L
5.2 横剖面面积曲线的特征
(5)丰满船的横剖面面积曲线中部有一平行段,称为船的平行中体长度L p ,平行中体前后两段长度分别称为进流段长L e 和去流段长L r 。
方形系数小的船一般没有平行中体,其最大横剖面面积常在中后。
横剖面面积曲线的特征
第五章船舶型线设计。
船舶设计原理

船舶设计原理首先是艏型设计。
艏型是指船舶前部的形状,艏型对船舶的水动力性能以及航行的稳定性有着重要的影响。
常见的艏型有尖头艏、盾型艏、切割艏等。
艏型的设计应根据船舶用途、工作环境、船舶运动性能和航行速度等因素进行合理选择,以保证船舶的综合性能。
其次是船体形状设计。
船体形状是指船舶外形的整体形态,包括船体几何结构和船壳线形。
船体形状的设计要满足载重要求、保证航行速度、提高航行稳定性和降低阻力等要求。
船体形状的设计包括船厂线型设计、船体斜角设计、船体几何参数的选择等。
第三是船舶稳性设计。
船舶稳性设计是指保证船舶在各种运营条件下能够保持稳定的设计工作。
船舶稳性设计包括船舶静力稳性设计和船舶动力稳性设计。
静力稳性是指船舶在平稳浮水线上的稳定性,包括艏倾角、横倾角等;动力稳性是指船舶在运动中的稳定性,包括纵摇、横摇等。
船舶稳性设计要满足船体高度、水线高度、产水量等要求,以保证船舶在各种载重条件下的稳定性。
最后是船舶运动性能设计。
船舶运动性能设计是指满足船舶航行速度、操纵性、滞尾波等方面的设计工作。
船舶运动性能设计应综合考虑船舶结构的刚度、船型的阻力、艏、船舶操纵装置和推进器的选型等因素。
船舶运动性能设计的目标是实现船舶安全、舒适、高效的运行。
综上所述,船舶设计原理包括艏型设计、船体形状设计、船舶稳性设计和船舶运动性能设计等方面。
在船舶设计中,要根据船舶用途和运营环境等因素合理选择艏型、确定船体形状,保证船舶的稳定性和运动性能,从而实现船舶的安全和高效的运行。
船舶设计原理是船舶设计的基础和核心,对于设计一艘性能优良的船舶具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 六章 型线设计
封面
课号:001-(2015-2016-1) 教学班:NA404
上海交通大学 船舶海洋与建筑工程学院
2015年
第六章、型线设计
6.1 概 述
船舶原理与设计
型线图是性能计算、结构设计,各种布置和建造放样的依据。型线 设计是船舶总体设计的一项重要内容。
首先,型线与阻力性能关系重大,尾部型线与螺旋桨的配合对推进效率 和振动有很大的影响。此外,型线与船舶的稳性、操纵性、横摇阻尼、船在 波浪上的运动特性、砰击等都有关系。在使用方面,型线影响布置和舱容, 例如机舱内的布置条件、货舱和压载舱的容积、甲板的布置地位等。在建造 方面,型线的平直部分、可展曲面部分可以简化施工的工艺,而复杂曲面增 加了施工难度和工作量。
第六章、型线设计
进流段长度LE
LPP/2
LPP/2
X或X/L
横剖面面积曲线的特征:
横剖面面积曲线下的面积相当于船的型排水体积(▽),曲线下面积的丰满 度系数等于船的纵向棱形系数CP(CP=▽/(AM ·LPP));
面积形心的纵向位置相当于船的浮心纵向位置XB; 丰满船的横剖面面积曲线的中部有一平行段,称为船的平行中体,长度为LP,
此时后端对阻力影响较微
6.2 横剖面面积曲线 四、生成横剖面面积的母型改造法
船舶原理与设计
第六章、型线设计
根据优良母型船的横剖面面积曲线,按设计要求 改变棱形系数CP,浮心纵向位置 XB 和平行中体长度 (LP)及位置时,可以用适当的修改方法,在保留 曲线原有基本形状的条件下修改得到新的横剖面面积 曲线。常用的一种修改方法称为 “1-CP”法。
(1)设计水线
设计水线的特征主要有水线面系数CW、平行中段长度、端部形状、半 进流角iE(近首垂线处设计水线相对中心线的夹角)。
水线面系数CW 设计水线的首端形状和半进流角(iE) 设计水线尾段的形状 设计水线的平行中段长度
6.3 型线几何形状特征和参数的选择
一、设计水线及横剖线形状特征和参数的选择
由此可见,型线设计需要考虑许多方面的要求,有些要求还会相互抵触, 设计者必须加以权衡。
6.1 概 述
船舶原理与设计
第六章、型线设计
型线设计中应注意的几个方面:
保证良好的航海性能。除了某些有特殊要求的情况以外,通常把快速 性(阻力与推进)放在主要地位来考虑,同时兼顾耐波性、操纵性和 稳性。
考虑总布置的要求。总布置所需的甲板面积,货舱大开口的尺寸,纵 倾的调整等对型线设计都有一定的要求,型线设计中应加以考虑和满 足。必要时,当布置与性能对型线的要求发生矛盾时,通常是适当降 低对性能方面的要求,来满足布置和使用的需要。
6.2 横剖面面积曲线 一、 棱形系数CP 和中剖面系数CM 的选择
船舶原理与设计
第六章、型线设计
中等航速的船(如0.2<Fn<0.3),兴波阻力已占总阻力相当的比例, 且兴波主要发生在首部,船首应尖瘦些,所以取较小的CP 可减少剩余阻 力,对总阻力有利。但过小的CP 意味着CM 很大,会引起横剖面面积曲线 和水线明显的突肩,这是不利的,应避免。所以随着Fn增加,在CP 减小 的同时,CM 也应相应地取小一些。
从阻力方面看,当浮心位置改变时,前体兴波阻力和后体形状阻力的相 对比例发生变化。浮心位置向后移动,前体丰满度就减小,后体丰满度增 大,因而形状阻力由小变大,而兴波阻力由大变小。因此,对应于给定速 度的船,存在着一个阻力最小的最佳浮心位置。
6.2 横剖面面积曲线
船舶原理与设计
第六章、型线设计
二、 浮心纵向位置XB 的选择
(2)首部横剖线形状 阻力方面: V形的横剖线形状湿表面积较
小,可减小摩擦阻力,同时它 的舭部较瘦,有利于减少丰满 船(CB>0.75)的舭部漩涡。 但V形剖面兴波阻力较大,因 为它所对应的设计水线首端丰 满,半进流角也大。 U形剖面船的排水量相对集中 在下部,设计水线削瘦,半进 流角小,有利于减小兴波阻力, 但湿面积大,摩擦阻力大。
6.2 横剖面面积曲线 四、生成横剖面面积的母型改造法
船舶原理与设计
第六章、型线设计
δCPF
x
X
图中各无因次量表示:
CPF——修改前曲线下的面积,即前半体棱形系数;
δCPF——CPF 的修改量,即阴影部分的面积;
lPF——前半体平行中体长度; δlPF——lPF 的修改量;
hF——δCPF 的形心距中;
水上部分的形状 船首水上部分的横剖线形状通常具有一定的外飘,这样储备浮力和甲 板面积都大些。适量的外飘可减少甲板的上浪和淹湿
船舶原理与设计
第六章、型线设计
6.3 型线几何形状特征和参数的选择
船舶原理与设计
第六章、型线设计
一、设计水线及横剖线形状特征和参数的选择
(2)首部横剖线形状
耐波性方面: 船在纵摇和升沉运动中,V形剖面下沉时,浮力和阻尼力矩大,能减小 纵摇和升沉运动,且能缓和船底砰击(尤其当波长与船长之比λ/L>1.0 时),但V形剖面增加波浪中航行的阻力(尤其是λ/L<1.2时)。由于耐 波性的问题与船的大小关系密切,大船这方面的矛盾较小。
应符合要求的浮心纵向位置。文献[1]建议,在纵倾允许误差为 ±0.2%L时,型线设计结果的浮心纵向位置允许误差约为0.3%L。
控制船体型线的要素: 横剖面面积曲线; 设计水线和甲板边线; 横剖线形状; 侧面轮廓线。
Ai或 Ai/AM
6.2 横剖面面积曲线
去流段长度LR
平行中=
δ xdy =
0
0 a(1 − x)dy = a(1 − CPF )
得:a=δCPF / (1-CPF) , 代入式δx 的表达式,可得:
δ x= 1− x
1 − CPF
δ C PF
6.2 横剖面面积曲线
四、生成横剖面面积的母型改造法
(2)同时修改CP 和 lP (3)同时修改CP,lP 和 xB
三、横剖面面积曲线形状的选择
(1)平行中体长度和位置
在一定的 Fn范围内,船体采用适量的平行中体,无论从阻力性能方面 还是在使用和建造方面都是有利的。
6.2 横剖面面积曲线
船舶原理与设计
第六章、型线设计
三、横剖面面积曲线形状的选择
(1)平行中体长度和位置
从阻力方面看,将排水体积适当地向中部集中,采用一段平行中体,对 于前体可使进流段尖瘦些,降低兴波阻力;对于后体,可削瘦去流段的 船体形状,有利于改善形状阻力。但是,设置太长的平行中体后,过短 的进流段和去流段,会使平行中体的两端形成过硬的“前肩”和“后 肩”,这对阻力是不利的。
从阻力的影响来看,CM 是不重要的,因此,CM 的选择很大程度上 是考虑与CP 的配合。
低速船(如Fn<0.2),兴波阻力所占比例不大,CP 对总阻力影响较小, 但选取较小的CP 总还是有利的。低速船一般CB 都比较大,所以这种情况下 CM 都取得很大,以利减小CP 。一般运输货船CM 为0.98~0.99,大型船甚至 达到0.995。
通常,设计中平行中体长度和位置可以根据优良的母型船资料并参照经 验公式来确定。
6.2 横剖面面积曲线
船舶原理与设计
第六章、型线设计
三、横剖面面积曲线形状的选择
(2)最大横剖面位置
无平行中体的船舶,最大横剖面位置决定了进流段和 去流段的长度。由于前体兴波阻力随航速的增大而增大, 所以最大横剖面位置也应相应后移。
考虑船体结构的合理性和工艺性。例如,不必要的复杂曲面的船体形 状,不仅增加建造工时,多耗材料,而且不易保证施工质量,影响结 构强度。
外观造型。水线以上的首尾轮廓线、甲板边线以及外露的折角线应考 虑美观和造型方面的要求。
6.1 概 述
船舶原理与设计
第六章、型线设计
型线设计的精度:
应符合要求的排水体积,其误差要求与设计中对排水量考虑的余量 有关。如果重量裕度在1%~2%时,排水体积允许的误差约为±0.5%。
∫ xBF——CPF 的形心距中, xBF
=
1 2CPF
1
x 2 dy
0
6.2 横剖面面积曲线 四、生成横剖面面积的母型改造法
船舶原理与设计
第六章、型线设计
δCPF
(1)仅修改CP
x
X
设修改函数为: δx= a(1-x)
该函数的边界条件为:x=1.0时,δx=0。
∫ ∫ 由约束条件:
δ C PF
1
(Lackenby 法 ) (4)仅修改浮心纵向位置xB
船舶原理与设计
第六章、型线设计
θ
θ
θ
θ
θ
θ
θ
θ
θ
0
1
2
3
4
K5
6
7
8
9
10
6.3 型线几何形状特征和参数的选择
船舶原理与设计
第六章、型线设计
一、设计水线及横剖线形状特征和参数的选择
设计水线的形状特征和横剖面形状特征是相关的,设计水线丰满意味 着横剖面在设计水线处较宽,在一定的横剖面面积下,下部必然较窄,剖 面形状成V形。反之,设计水线削瘦,横剖面形状成U形
航速高的船不能设置平行中体。原因是这种船一般船体已很瘦削,设置 平行中体后,平行中体和过分瘦削的首部连接处会形成凸肩,航行时产生 的肩波和严重的肩部旋涡使阻力性能恶化。Fn>0.25(CB<0.62~0.64)的船, 不宜设置平行中体。
确定平行中体长度和位置的原则是确定不引起阻力激增的最短进流段长 度和去流段长度。
6.3 型线几何形状特征和参数的选择
船舶原理与设计
第六章、型线设计
一、设计水线及横剖线形状特征和参数的选择
(2)首部横剖线形状 综合静水阻力和耐波性的因素,船的前体横剖线形状大致可这样考虑: