统计学计算题练习
统计学计算题

统计学计算题27、【104199】(计算题)某班级30名学生统计学成绩被分为四个等级:A .优;B .良;C .中;D .差。
结果如下:B C B A B D B C C B C D B C A B B C B A B A B B D C C B C A BDAACDCABD(1)根据数据,计算分类频数,编制频数分布表;(2)按ABCD 顺序计算累积频数,编制向上累积频数分布表和向下累计频数分布表。
【答案】28、【104202】(计算题)某企业某班组工人日产量资料如下:根据上表指出:(1)上表变量数列属于哪一种变量数列;(2)上表中的变量、变量值、上限、下限、次数; (3)计算组距、组中值、频率。
【答案】(1)该数列是等距式变量数列。
(2)变量是日产量,变量值是50-100,下限是,、、、、9080706050上限是,、、、、10090807060次数是111625199、、、、; (3)组距是10,组中值分别是 9585756555、、、、,频率分别是13.75%31.25%.20%23.75%11.25% 、、。
29、【104203】(计算题) 甲乙两班各有30名学生,统计学考试成绩如下:(1)根据表中的数据,制作甲乙两班考试成绩分类的对比条形图; (2)比较两班考试成绩分布的特点。
【答案】乙班学生考试成绩为优和良的比重均比甲班学生高,而甲班学生考试成绩为中和差的比重比乙班学生高。
因此乙班学生考试成绩平均比乙班好。
两个班学生都呈现出"两头大,中间小"的特点,即考试成绩为良和中的占多数,而考试成绩为优和差的占少数。
30、【104205】(计算题)科学研究表明成年人的身高和体重之间存在着某种关系,根据下面一组体重身高数据绘制散点图,说明这种关系的特征。
体重(Kg )5053 57 60 66 70 76 75 80 85 身高(cm ) 150155160165168172178180182185【答案】散点图:可以看出,身高与体重近似呈现出线性关系。
统计学计算题

第三章统计整理例 1、某厂工人日产量资料如下:(单位:公斤)162 158 158 163 156 157 160 162 168 160164 152 159 159 168 159 154 157 160 159163 160 158 154 156 156 156 169 163 167试根据上述资料,编制组距式变量数列,并计算出频率。
解:将原始资料按其数值大小重新排列。
152158 159154 154 156 156 156 156 157 157 158 158 159 159 159 159 160 160 160 162 162 163 163 163 164 167168 168 169最大数=169,最小数=152,全距=169-152=17n=30, 分为 6 组例 2、某企业 50 个职工的月工资资料如下:113 125 78 115 84 135 97 105 110 130105 85 88 102 101 103 107 118 103 87116 67 106 63 115 85 121 97 117 10794 115 105 145 103 97 120 130 125 127122 88 98 131 112 94 96 115 145 143试根据上述资料,将50 个职工的工资编制成等距数列,列出累计频数和累计频率。
解:将原始资料按其数值大小重新排列。
63 97 117 118工人按日产量分组(公斤)152-154155-157158-160161-163164-166 工人数(人)361151比率(频率)(%)10.0020.0036.6016.7067 78 84 85 85 87 88 88 94 94 96 97 97 98 101 102 103 103 103 105 105 105 107 110 112 113 115 115 115 115 116 118 120 121 122 125 125 127 130 130 131 135 143 145 145按工资额分组(元)60-70 70-80 80-90频数216工人数频率( %)4212频数239向上累计频率( %)4618频数504847向下累计频率(%)1009694例 3、有 27 个工人看管机器台数如下:5 4 2 4 3 4 3 4 4 2 4 3 4 3 26 4 4 2 2 3 4 5 3 2 4 3试编制分布数列。
统计学计算题例题

第四章1。
某企业1982年12月工人工资的资料如下:要求:(1)计算平均工资;(79元)(2)用简捷法计算平均工资.2。
某企业劳动生产率1995年比1990年增长7%,超额完成计划2%,试确定劳动生产率计划增长数。
7%—2%=5%3。
某厂按计划规定,第一季度的单位产品成本比去年同期降低8%。
实际执行结果,单位产品成本较去年同期降低4%。
问该厂第一季度产品单位成本计划的完成程度如何?104。
35%( (1-4%)/(1-8%)*100%=96%/92%*100%=104.35%结果表明:超额完成4.35%(104。
35%-100%))4. 某公社农户年收入额的分组资料如下:要求:试确定其中位数及众数。
中位数为774.3(元)众数为755。
9(元)求中位数:先求比例: (1500—720)/(1770-720)=0。
74286分割中位数组的组距:(800-700)*0。
74286=74.286加下限700+74。
286=774。
286求众数:D1=1050—480=570D2=1050-600=450求比例:d1/(d1+d2)=570/(570+450)=0。
55882分割众数组的组距:0。
55882*(800-700)=55。
882加下限:700+55.882=755。
8825.1996年某月份某企业按工人劳动生产率高底分组的生产班组数和产量资料如下:.64。
43(件/*140+85*60)/)6。
根据表中资料计算中位数和众数。
中位数为733.33(元)众数为711。
11(元)求中位数:先求比例:(50-20)/(65-20)=0。
6667分割中位数组的组距:(800—600)*0。
6667=66。
67 加下限:600+66.67=666。
677。
某企业产值计划完成103%,比去年增长5%.试问计划规定比去年增长 多少?1。
94%(上年实际完成1。
03/1.05=0。
981 本年实际计划比上年增长(1-0。
统计学期末考试练习题及参考答案

D、把多种产品的价格乘以报告期相应的数量,然后进行对比
答案:A
16、当变量值有一项为0时,不能计算
A、算术平均数B、中位数C、调和平均数D、众数
答案:C
17、标志变异系数的主要用途是()
A、反映一组数据的离散程度B、反映一组数据的平均水平
C、比较多组数据的离散程度D、比较多组数据的平均水平
答案:D
20、无交互作用的双因素方差分析是指用于检验的两个因素
A、对因变量的影响是有交互作用的;B、对自变量的影响是有交互作用的;
C、对自变量的影响是独立的;D、对因变量的影响是独立的;
答案:A
21、收入水平与受教育程度之间关系数为0.6314,这种相关肯定属于
A、显著相关;B、负相关;C、高度相关;D、正相关
答案:
3.研究表明,某地区机电行业的销售额与该地区汽本产量及建筑业的产值关系十分密切,搜集1996~2012年共17年的相关资料,利用Exe得到下面的国日结果(是著性》
a=0.05):
42074……
(1)将方差分析表中的所缺数值补齐。(保留到小数点后两位数字)
(2)写出该地区机电行业的销售额(单位:万元)与该地区汽车产量及建筑业的产值的多元线性回归方程,并解释各回归系数的意)
答案:单纯随机抽样系统抽样分层抽样整群抽样
7、统计学的基本方法有哪些?
答案:大量观察法统计推断法统计描述法
8、综合指数的编制原理?
答案:综合指数是设法将各个个体的数量先综合以后再通过两个时期的综合数值对比来计算的总指数。先综合、后对比
9、在应用平均指标分析说明社会经济现急时,应注意哪些问题?
答案:(1)注意所研究对象的同质性(2)用组平均数补充说明总平均数(3)用分配数列补充说明平均数(4)注意一般和个别相结合
统计学练习题(计算题)

统计学练习题(计算题)第四章第一部分总量指标与相对指标4.1 : (1)某企业产值计划完成程度为105%,比上年增长7%,试计算计划规定比上年增长多少?(2)单位产品成本上年为420元,计划规定今年成本降低5%,实际降低6%,试确定今年单位成本的计划数字和实际数字,并计算出降低成本计划完成程度指标。
(3)按计划规定,劳动生产率比上年提高10%实际执行结果提高了12%劳动生产率计划完成程度是多少?4.2 :某市三个企业某年的下半年产值及计划执行情况如下:要求:[1] 试计算并填写上表空栏,并分别说明(3)、(5)、(6)、(7)是何种相对数;[2] 丙企业若能完成计划,从相对数和绝对数两方面说明该市三个企业将超额完成计划多少?4.3 :我国2008年-2013年国内生产总值资料如下:根据上述资料,自行设计表格:(1)计算各年的第一产业、第二产业、第三产业的结构相对指标和比例相对指标;(2)计算我国国内生产总值、第一产业、第二产业、第三产业与上年对比的增长率;(3)简要说明我国经济变动情况。
4.4 :某公司下属四个企业的有关销售资料如下:根据上述资料:(1)完成上述表格中空栏数据的计算;(2)若A能完成计划,则公司的实际销售额将达到多少?比计划超额完成多少?(3)若每个企业的计划完成程度都达到B企业的水平,则公司的实际销售额将达到多少? 比计划超额完成多少?第四章-----第二部分平均指标与变异指标4.5 :已知某地区各工业企业产值计划完成情况以及计划产值资料如下:要求:(1 )根据上述资料计算该地区各企业产值计划的平均完成程度。
(2)如果在上表中所给资料不是计划产值而是实际产值,试计算产值计划平均完成程度。
、4.6 :已知某厂三个车间生产不同的产品,其废品率、产量和工时资料如下:计算:(1)三种产品的平均废品率;(2)假定三个车间生产的是同一产品,但独立完成,产品的平均废品率是多少;(3)假定三个车间是连续加工某一产品,产品的平均废品率是多少。
统计学练习题(计算题)

统计学练习题(计算题)第四章----第一部分总量指标与相对指标:(1)某企业产值计划完成程度为105%,比上年增长7%,试计算计划规定比上年增长多少(2)单位产品成本上年为420元,计划规定今年成本降低5%,实际降低6%,试确定今年单位成本的计划数字和实际数字,并计算出降低成本计划完成程度指标。
(3)按计划规定,劳动生产率比上年提高10%,实际执行结果提高了12%,劳动生产率计划完成程度是多少:某市三个企业某年的下半年产值及计划执行情况如下:要求:[1]试计算并填写上表空栏,并分别说明(3)、(5)、(6)、(7)是何种相对数;[2]丙企业若能完成计划,从相对数和绝对数两方面说明该市三个企业将超额完成计划多少:我国2008年-2013年国内生产总值资料如下:单位:亿元根据上述资料,自行设计表格:(1)计算各年的第一产业、第二产业、第三产业的结构相对指标和比例相对指标;(2)计算我国国内生产总值、第一产业、第二产业、第三产业与上年对比的增长率;(3)简要说明我国经济变动情况。
:某公司下属四个企业的有关销售资料如下:根据上述资料:(1)完成上述表格中空栏数据的计算;(2)若A能完成计划,则公司的实际销售额将达到多少比计划超额完成多少(3)若每个企业的计划完成程度都达到B企业的水平,则公司的实际销售额将达到多少比计划超额完成多少第四章-----第二部分平均指标与变异指标:已知某地区各工业企业产值计划完成情况以及计划产值资料如下:要求:(1)根据上述资料计算该地区各企业产值计划的平均完成程度。
(2)如果在上表中所给资料不是计划产值而是实际产值,试计算产值计划平均完成程度。
、:已知某厂三个车间生产不同的产品,其废品率、产量和工时资料如下:计算:(1)三种产品的平均废品率;(2)假定三个车间生产的是同一产品,但独立完成,产品的平均废品率是多少;(3)假定三个车间是连续加工某一产品,产品的平均废品率是多少。
:对某车间甲、乙两工人当日产品中各抽取10件产品进行质量检查,得资料如下:试比较甲乙两工人谁生产的零件质量较稳定。
统计学计算题8个例题及答案

统计学计算题8个例题及答案
1.给定一组数据,X=(13,12,13,13,10,13,11),求它的众数:
答:13(众数是出现次数最多的值)
2.给定一组数据,X=(1,2,3,4,5,6,7),求它的中位数:
答:4(中位数是将一组数据按照大小顺序排列后位于正中间的一个数)
3.给定一组数据,X=(1,2,3,4,5,6,7),求它的样本标准差:
答:(样本标准差S=√ [(∑(Xi−X平均数)2)/ (n−1)],其中,Xi代表样本的每一项,X平均数是样本的平均值,n是样本的总观测值数量)
4.给定一组数据,X=(1,2,3,4,5,6,7,8,9),求它的方差:
答:(方差σ^2=∑(Xi−X平均数)^2/n,其中,Xi代表样本的每一项,X平均数是样本的平均值,n是样本的总观测值数量)
5.给定一组数据,X=(21, 25, 28, 31, 34, 37, 40),求它的算术平均数:
答:31(算术平均数是将样本中数据求和,再除以样本的个数得到的数)
6.给定一组数据,X=(1,2,3,4,5,6,7,8,9),求它的期望:
答:5(期望是一组数据根据概率分布定义出的一种数学期望)
7.给定一组数据,X=(3,4,5,7,12,15,18),求它的方差:
答:(方差σ^2=∑(Xi−X平均数)^2/n,其中,Xi代表样本的每一项,X平均数是样本的平均值,n是样本的总观测值数量)
8.给定一组数据,X=(7,7,7,7,8,8,9),求它的众数:
答:7(众数是出现次数最多的值)。
统计学计算题

统计学计算题1. 某企业生产的A、B两种产品的产量及产值资料如下:产品总产值(万元)产量的环比发展速度(%)基期报告期A B 400600580760110100★标准答案:产品名称产量单位产品成本基期报告期基期报告期甲1000 1200 10 8乙5000 5000 4 4.5丙1500 2000 8 7要求:计算三种产品的成本总指数以及由于单位产品成本变动使总成本使总成本变动的绝★标准答案:产品成本指数=由于单位产品成本变动使总成本使总成本变动的绝对额;(-)=461000-48000=-1900(万元)3. 某企业本月分三批购进某种原材料,已知每批购进的价格及总金额如下:购进批次价格(元/吨)总金额(元)一二三200190205160001900028700★标准答案:4. 某厂三个车间一季度生产情况如下:第一车间实际产量为200件,完成计划95%;第二车间实际产量280件,完成计划100%;第三车间实际产量650件,完成计划105%,请★标准答案:平均计划完成程度☆考生答案:解:三个车间总的计划产量=200/95%+280/100%+650/105%=1110(件)三个车间总的实际产量=200+280+650=1130(件)三个车间产品产量的平均计划完成程度=1130/1110*100%=101.8%商品销售额(万元)报告期价格比基期增(+)或减(-)的%基期报告期甲乙丙5070809010060+10+8-4合计200 250 —试计算价格总指数和销售量总指数。
★标准答案:企业计划产量(件)计划完成(%)实际一级品率(%)甲乙丙50034025010310198969895根据资料计算:(1)产量计划平均完成百分比;★标准答案:☆考生答案:解:(1)计划平均完成百分比=(500*1.03+340*1.01+250*0.98)/(500+340+250)*100%=101.2%(2)平均一级品率=(500*1.03*0.96+340*1.01*0.98+250*0.98*0.95)/(500*1.03+340*1.01+250*0.98)*100%=96.4%7. 某商店主要商品价格和销售额资料如下:商品计量单位价格本月销售额(万元)上月本月甲乙丙件台套100506011048631102437.8★标准答案:8. 某市场上某种蔬菜早市每斤0.25元,中午每斤0.2元,晚市每斤0.1元,现在早、中、★标准答案:.平均价格H==0.158(元)☆考生答案:解:购买的总斤数=1/0.25+1/0.2+1/0.1=19(斤)平均价格=(1+1+1)/19=0.16(元/斤)9. 某商店出售某种商品第一季度价格为6.5元,第二季度价格为6.25元,第三季度为6元,第四季度为6.2元,已知第一季度销售额3150元,第二季度销售额3000元,第三季度销★标准答案:☆考生答案:解:平均价格=(3150+3000+5400+4650)/(3150/6.5+3000/6.25+5400/6+4650/6.2)=6.20(元)10. 某厂生产某种机床配件,要经过三道工序,各加工工序的合格率分别为95.74%,★标准答案:=0.9474=94.74%企业名称2006年职工人数2005年工业总产值(万元)2006年工业总产值2006年全员劳动生产率(元/人)2006年工业总产值为2005年的(%)各企业和全公司劳动生产率为乙企业的倍数人数(人)比重(%)计划(万元)实际(万元)完成计划(%)(甲)(1)(2) (3)(4)(5)(6)(7)(8)(9)甲300 900 1500 1800乙3000 3000 130.0 260.0丙450 12.0 1200 1800 300.0合计3750 100.0试根据上表已知数据计算空格中的数字(保留一位小数并分别说明⑵、⑹、⑻、⑼栏是何★标准答案:季度2000 2001 2002 2003 20041 580 610 660 700 8502 190 200 220 230 3203 230 250 260 290 3104 620 670 710 730 780★标准答案:销售量(万斤)价格(元)2002年2003年2002年2003年甲乙丙30140100361601001.801.901.502.02.201.60试计算:(1)三种商品的销售额总指数(2)三种商品的价格综合指数和销售量综合指数★标准答案:月份 1 2 3 4 5 6产量(件)单位成本(元) 200073300072400071300073400069500068★标准答案:按农户年收入分组(元)行政村数(个)各组农户占农户总数(%)2000以下2000~4000 4000~6000 6000~8000 8000~10000 10000以上23669481015302512合计30 100 ★标准答案:☆考生答案:解:平均收入=(8%*1000+10%*3000+15%*5000+30%*7000+25%*9000+12%*11000)/100%=4910(元)16. 甲乙两企业生产同种产品,1月份各批产量和单位产品成本资料如下:甲企业乙企业单位产品成本(元)产量比重(%)单位产品成本(元)产量比重(%)第一批第二批1.0 10 1.2 301.1 20 1.1 30第三批 1.2 70 1.0 40★标准答案:☆考生答案:解:甲企业的平均单位成本=(1.0*10%+1.1*20%+1.2*70%)/100%=1.16(元)乙企业的平均单位成本=(1.2*30%+1.1*30%+1.0*40%)/100%=1.09(元)因为1.16>1.09所以甲企业的单位成本更高日期9月30日10月31日11月30日12月31日在业人口(万人)a 劳动力资源人口(万人)b280680 285685280684270686★标准答案:18. 某自行车车库4月1日有自行车320辆,4月6日调出70辆,4月18日进货120辆,4月26日调出80辆,直至月末再未发生变动,问该库4月份平均库存自行车多少辆?★标准答案:因为数据取得的资料是连续时点数列,但资料间隔不等,故采取加权平均法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章统计资料整理一、单选题1.某连续变量组距数列,其末组为500以上,又知其邻组组中值为480,则其末组组中值为()。
A.510B.520C.500D.4903.对某一总体同时选择三个标志进行复合分组,各个标志所分组数分别分2、4、3,则最后所得组数为()。
A.3B.9C.24D.27二、操作题某班50名学生的统计学考试成绩如下:50 70 71 72 73 73 72 71 60 6869 70 70 81 82 75 76 78 78 8181 83 84 86 91 92 96 86 88 8489 90 92 93 95 78 79 80 76 7456 72 69 70 80 81 84 48 53 68要求:1、按考试成绩分组编制组距式变量数列,并计算出各组频率和组中值。
2、绘制频数分布直方图、折线图、曲线图和径叶图。
第五章统计比较分析法一、单选题1.某厂劳动生产率计划比上年提高8%,实际仅提高4%,则其计划完成百分数为()。
A.4%B.50%C.96.30%D.103.85%2.某企业某型号电视机,上年实际成本每台6000元,本年计划降低4%,实际降低了5%,则该产品成本计划的完成程度为()。
A.1%B.104.0%C.98.96%D.95%二、计算或分析题1.某企业2010年某产品单位成本为4200元,计划规定2010年成本降低5%,实际降低6%,试确定2011年该产品单位成本的计划数与实际数,并计算该产品单位成本的计划完成程度指标。
2.(1)某企业2011年产品销售计划为上年的110%,实际为上年的114%,试计算该企业2011年度产品销售计划完成百分数。
(2)某企业2011年劳动生产率增长计划完成102%,这一年劳动生产率为2010年的107%,试计算该企业2011年劳动生产率计划比2010年增长百分数。
3.某省城镇居民生活消费资料如下表:要求:计算某省城镇居民各年生活消费的恩格尔系系数,并依据联合国粮农组织提出的贫富标准,指同到2010年底,该城镇居民的生活整体上已达到什么水平。
第六章 数据分布特征测度一、填空题1..某些存款存期为10年,前三年利率为4.5%,中间三年为5.5%,后4年为6%,则平均年本利率为___________,平均年利率为___________。
2.当成数为0或1时,其方差有最小值为___________;当成数为0.5时,其方差有最大值为___________。
3.已知某班40名学生,其中男、女学生各占一半,则该班学生性别成数方差为___________。
二、计算题1.已知甲班50名学生统计学考试成绩的平均数为80分,标准差为10分,又知乙班成绩资料如下表:要求:通过计算比较甲、乙两班学生平均成绩代表性的大小。
2.设甲、乙两钢铁企业某月上旬的钢材供货量资料如下表:要求:通过计算比较甲、乙两企业的供货哪一个更均匀一些。
3、某企业40名销售人员四月份销售某产品的数据如下表(单位:台)。
(1)试根据上表资料,绘制数据的茎叶图。
(2)根据下表资料,编制变量数列(要求为组距式数列),列出频数和频率。
(3)根据你所编制的变量数列,计算产品销售量的中位数和众数。
(4)根据你所编制的变量数列,计算产品销售量的算术平均数、标准差。
(5)企业规定,员工月销售量至少110台视为销售业绩合格,根据你所编制的变量数列,计算销售业绩合格人员的比率及其标准差。
(6)该企业40名销售人员三月份产品平均销售量为125台,标准差为16.22台,试比较三、四月份产品销售情况的均衡性。
第七章时间数列分析又,该企业十二月末的职工人数为910人。
要求计算该企业2010年下半年:(1)人均总产值;(2)平均每季人均总产值;(3)平均每月人均总产值;(4)平均每天的人均总产值。
要求:(1)计算并填写表中空白。
(2)计算“十一五”期间我国出口总额的年平均发展水平、年平均增长水平,总发展速度、总增长速度、年平均发展速度和年平均增长速度。
要求:(1)分别计算甲、乙两省该产品产量的年平均发展速度;(2)若今后两省仍按所求平均速度发展,试计算多少年后甲省可赶上乙省产量;(3)若甲省想在今后15年内赶上乙省,则其平均发展速度应为多少(乙省速度不变)?要求:(1)根据表中数据,计算季节指数;(2)若已知2012年1季度湖南省零售业商品销售总额为65万元,试预测2012年湖南省全年该商品销售总额,及各季度的销售额。
第八章 统计指数请计算销售量指数、价格指数,并作因素分析。
要求计算产量总指数、价格总指数、产值总指数,并分析产量和价格变动对总产值变动的影响程度和影响额。
3.某市2000年和2006年居民生活费用价格指数(1978=100) 分别为238.5%和288.6%,则(1)2000年和2006年货币购买力指数分别为1978年的多少?(2)2000年和2006年通货膨胀率分别为1978年的多少?(3)2006年通货膨胀率为2000年的多少?第九章 相关与回归分析一、填空题1.当变量x 的值增加,变量y 值也增加,这是___________相关关系;当变量x 的值减少,变量y 值也减少,这是___________相关关系。
2.计算相关系数的两个变量都是___________变量,相关系数的取值范围是___________。
3.若变量x 与y 为完全线性相关,则相关系数的值为___________;若变量x 与y 完全没有直线相关,则相关系数的值为___________。
4.若相关系数r <0.3,则变量x 与y___________相关;若相关系数0.3<r <0.5,则变量x 与y___________相关。
5. 若相关系数0.5<r <0.8,则变量x 与y___________相关;若相关系数0.8<r <1,则变量x 与y___________相关。
6.回归分析中,两变量不是对等的关系,其中因变量是___________变量,自变量是___________变量。
7.已知变量x 的标准差为2,y 的标准差为5,两变量的相关系数为0.8,则回归系数为___________,估计标准误差为___________。
8.已知直线回归方程中bx a y+=ˆ中,5.17=b ,已知,12,13500==∑x y 则=a ___________,若,16=x 则预测值=c y ___________。
二、计算题要求:(1)根据上表数据绘制散点图,判断销售利润与可比产品成本降低率之间的关系形态。
(2)计算销售利润与可比产品成本降低率之间的简单相关系数,并说明二者之间的密切程度。
2要求:(1)计算产量与单位成本间的线性相关系数;(2)拟合单位成本与产量的一元线性回归模型,并指出产量每增加1千件时,单位成本如何变化?(3)计算单位成本的估计标准误差。
3.已知X 、Y 两变量的相关系数r = 0.8,X = 20,Y = 50,x σ是y σ的两倍。
要求:拟合Y 与X 的线性回归模型。
4.已知X 、Y 两变量,且点(X =15,Y =14)在回归直线上,当x=0时,Yˆ=5;又知5.1,362==x y σσ。
要求:计算Y 的估计标准误差。
5.某市人民银行为了解该市居民年收入与储蓄之间的关系,对年收入在5,000-20,000元的100户居民家庭进行了调查。
设每户年收入为X 元,储蓄额为Y 元。
调查资料经初步整理如下:X =1,240,Y =880,---XY =11,440,---2X =17,330。
要求:(1)拟合储蓄额倚年收入的一元线性回归模型;(2)估计年收入为18,000元时的储蓄额。
6.在x 、y 两变量中,已知x σ是而的y σ两倍,而y σ又是Y S ˆ的两倍。
要求计算:(1)相关系数r ;(2)回归系数b 。
7.下面是根据20个城市写字楼出租率(y ,单位:%)和每平方米月租金(x ,单位:元)的数据,计算得到的有关结果:方差分析表dfSSMSFSignificance F回归分析2.79889E-05残差 129.8452 总计 19352.9855Coefficients标准误差 t Stat P-valueIntercept 49.31768 3.805016 12.96123 1.45E-10 X Variable 10.2492230.044815.5617612.8E-05(1)完成上面的方差分析表;(2)写字楼出租率的变差中有多少是由于月租金的变动引起的?(3)写字楼出租率与其月租金之间的相关系数是多少?(4)写出估计的回归方程并解释回归系数的实际意义;(5)检验回归系数的显著性。
(α=0.05)8.下面是根据10个品牌啤酒的广告费用(x,单位:万元)和销售量(y,单位:万箱)的数据,计算得到的有关结果:方差分析表df SS MS F Significance F 回归分析0.000651698残差202.3298 ————总计9 937.82 ——————Coefficients 标准误差t Stat P-value Intercept 4.068465591 2.166189 1.878167 0.097179X Variable 1 0.195840356 0.036316 5.392666 0.000652 (1)完成上面的方差分析表;(2)啤酒销售量的变差中有多少是由于广告费用的变动引起的?(3)销售量与广告费用之间的相关系数是多少?(4)写出估计的回归方程并解释回归系数的实际意义;(5)检验线性关系的显著性。
(α=0.05)。