高分子结晶
高分子结晶10

第十章、高分子结晶
>2/3 synthetic polymers are crystallizable
Plastics
Semi-crystalline polymers
Textiles
Cellulose
Starch
Silks
Chitins
内容
1、高分子结晶的多层次结构 2、高分子结晶的热力学 3、高分子结晶统计热力学 4、高分子结晶动力学
1、高分子结晶的多层次结构
序列规整- -螺旋链--晶胞-折叠链片晶- 球晶 一级结构 二级结构 三级 四级 五级 近程结构 远程结构 聚集态结构 链结构 分子链构象 超分子结构
0.1nm 0.5nm
1nm
10nm
>1m
高分子结晶链折叠原理
高分子结晶链折叠发现历史
结晶链折叠的发现历史: 1930 Herrmans提出LDPE的缨状微束模型 fringed micelle;
因为缺陷而美丽!
/05/0918/16/1TUQQJNQ00161JVB.html
3、高分子结晶的统计热力学
热力学平衡时 宏观性质 ----- 微观结构信息 统计热力学
棒状分子的液晶有序化转变
稀溶液 浓溶液或本体
流体力学体积>>实占体积 1949,Onsager, 溶致液晶
高分子结晶的晶系分布
约150种高分子结晶体分布于七种晶系的统计 立方 正交 单斜 三方 四方 六方 三斜
cubic orthorhombic monoclinic trigonal tetragonal hexagonal triclinic
---- ---------------- -------------------- ----0 2/3 1/4 1/7 各分数加和>1,这是因为存在同质多晶现象crystal polymorphism,如iPP可出现晶(单斜、最稳定)、晶 (六方)和晶(三方),不同晶型可能由于动力学效应, 也可由相应的成核剂引发结晶。
高分子物理聚合物的结晶态

化学因素对稳定性的影响
某些化学物质可以与聚合物分子发生相互作用,影响晶体结构的稳 定性。
03 聚合物结晶态的结构与性质
晶体结构与形态
晶体结构
聚合物结晶态中分子链以有序的 方式排列,形成晶体结构。晶体 结构决定了聚合物的物理性质, 如硬度、韧性、热稳定性等。
04 聚合物结晶态的转变与动力学
聚合物结晶态的转变
熔融结晶
当温度升高到熔点以上时,聚合物从晶体态转变为液态。
退火结晶
将聚合物加热至高于熔点,然后缓慢冷却,使其重新结晶。
应力结晶
在拉伸或压缩应力的作用下,聚合物发生结晶。
聚合物结晶的动力学
1 2
结晶速率
描述聚合物结晶过程的快慢,通常用结晶速率常 数表示。
晶体缺陷与性质
晶体缺陷
聚合物结晶中存在各种缺陷,如位错、空穴、界面等。这些 缺陷影响聚合物的物理性质,如降低机械性能、耐热性和光 学性能。
性质与应用
聚合物结晶态的性质决定了其在不同领域的应用。例如,在 塑料加工中,通过控制结晶形态和尺寸可以提高产品的机械 性能和热稳定性;在纤维制造中,结晶结构影响纤维的强度 和弹性。
分离与提纯
利用聚合物结晶态的差异,可以实现 混合物中不同组分的分离和提纯,如 利用聚合物吸附剂进行吸附分离和色 谱分离等。
化学反应控制
通过控制聚合物的结晶形态,可以影 响化学反应的速率和选择性,从而实 现化学反应的高效控制。
聚合物结晶态的研究展望
新型聚合物材料的开发
01
随着对聚合物结晶态的深入了解,有望开发出具有优异性能的
无定形态
聚合物分子无序排列,没 有明显的晶体结构。如聚 甲基丙烯酸甲酯、聚碳酸 酯等。
高分子结晶

高分子结晶的形态和结构聚合物的基本性质主要取决于链结构,而高分子材料或制品的使用性能则很大程度上还取决于加工成型过程中形成的聚集态结构。
聚集态可分为晶态、非晶态、取向态、液晶态等,晶态与非晶态是高分子最重要的两种聚集态。
结晶形态主要有球晶、单晶、伸直链晶片、纤维状晶、串晶、树枝晶等。
球晶是其中最常见的一种形态。
各种结晶形态的形成条件列于表2-1,照片示于图2.1中。
表2-1 高分子主要结晶形态的形状结构和形成条件以上结晶形态都是由三种基本结构单元组成,即无规线团的非晶结构、折叠链晶片和伸直链晶体。
所以结晶形态中都含有非晶部分,是因为高分子结晶都不可能达到100%结晶。
(a)球晶(b)单晶(c)伸直链片晶(d)纤维状晶(e)串晶图2-1五种典型的结晶形态描述晶态结构的模型主要有:(1)缨状微束模型,(2)折叠链模型,(3)插线板模型。
折叠链模型适用于解释单晶的结构,而另两个模型更适合于解释快速结晶得到的晶体结构。
描述非晶态的模型主要有:(1)无规线团模型,(2)两相球粒模型。
总之模型的不同观点还在争论中。
对非晶态,争论焦点是完全无序还是局部有序;对于晶态,焦点是有序的程度,是大量的近邻有序还是极少近邻有序。
高分子晶体在七个晶系中只有六个,即不会出现立方晶系(由于高分子结构的复杂性)。
常见的是正交晶系(如聚乙烯)和单斜晶系(如聚丙烯),各均占30%。
高分子在晶胞中呈现两种构象,即平面锯齿形构象(PZ,以PE为例)和螺旋形构象(H,以PP为例)。
通过晶胞参数可以计算完全结晶的密度:式中:为晶胞中链节数;为晶胞体积,通过光衍射测得晶胞参数即可得到。
一种高分子可能由于结晶条件不同而产生不同晶胞,称同质多晶现象。
一、高聚物结晶的形态学结晶形态学研究的对象是单个晶粒的大小、形状以及它们的聚集方式。
1. 单晶:是具有一定几何形状的薄片状晶体,厚度通常在10纳米左右,大小可以从几个微米至几十个微米甚至更大。
在单晶内,分子链作高度规则的三维有续排列,分子链的取向与片状单晶的表面相垂直(即折叠链片晶的结构),但不同的聚合物单晶呈现不同的几何形状。
高分子的结晶态

——高聚物比容 t——结晶时间 K——结晶速率常数 n——Avrami指数 (P166 表6-4)
t eKt n 0
27
t eKt n 0
Avrami方程取二次对数:
log
ln
0t
log
K
n
log
t
t eKt n 0
截距——log K 斜率——n
28
结晶速度的影响因素:
• 适用于多层片晶和熔体结晶的 情况
插线板模型
Paul J. Flory (1910-1985)
10
3. 聚合物的结晶过程
3.1 聚合物的链结构对结晶能力的影响
• 聚合物的结晶是分子链规则有序排列形成的三维远
程有序的晶体结构。
• 聚合物的结晶能力是指聚合物能不能结晶、容易不容
易结晶以及可达到的最大结晶度,聚合物的结晶能力的
19
3.2 聚合物的结晶度及其测定方法
1. 聚合物的结晶度
• 结晶聚合物是部分结晶的物质,其结晶程度的大小常沿 用小分子物质的结晶度来衡量。结晶度的表示方法有两 种:一种是以结晶部分的质量百分数 fw 来表示;另一种 是以结晶部分的体积百分数 fv 来表示。
f cW
mc mc ma
100%
f cV
松散近邻折叠链模型
提出模型:折叠处为松散的环状结 构 可以解释:单晶表面密度低的实验 现象 不能解释: •聚合物(PE)从熔体态冷却结晶的 速度很快,远大于分子链的运动速 度,因此,结晶时来不及作规整的 折叠。 •实验发现,在多层片晶之间存在 着连接分子链。
9
C. 插线板模型——
• 该模型认为,高分子链是完全 无规进入晶体的。在晶片中链 段规则平行排列,而相邻排列 的两个分子链段可能是非近邻 的链段和来自于不同分子的链 段。
高分子胶粘剂结晶问题与解决方案

高分子胶粘剂结晶问题与解决方案引言概述:高分子胶粘剂在工业生产中起着重要的作用,然而,结晶问题却是制约其应用的一个关键因素。
本文将从五个大点出发,详细阐述高分子胶粘剂结晶问题的原因以及解决方案。
正文内容:1. 结晶问题的原因1.1 温度变化:高分子胶粘剂在不同温度下容易发生结晶,特别是在低温环境下。
1.2 溶剂挥发:在胶粘剂固化过程中,溶剂挥发会导致溶剂浓度增加,进而引发结晶问题。
1.3 结晶核形成:胶粘剂中存在微小的杂质或离子,这些物质可以作为结晶核,促使胶粘剂发生结晶。
2. 解决方案2.1 温度控制:通过控制胶粘剂的加热和冷却过程中的温度,可以有效减少结晶问题的发生。
2.2 溶剂选择:选择挥发性较低的溶剂,减少溶剂挥发引起的结晶问题。
2.3 溶剂浓度控制:控制溶剂的使用量,避免溶剂浓度过高,从而减少结晶的可能性。
2.4 纯化处理:通过纯化处理,去除胶粘剂中的杂质和离子,减少结晶核的形成。
2.5 添加抑制剂:添加一定量的抑制剂,能够有效抑制结晶的发生。
3. 结晶问题的影响3.1 胶粘性能下降:结晶会导致胶粘剂的黏度增加,胶粘性能下降,影响胶粘剂的使用效果。
3.2 设备堵塞:结晶物质会在设备中堵塞管道和喷嘴,影响生产效率。
3.3 产品质量下降:结晶的胶粘剂可能导致产品表面出现白点或颗粒,降低产品的质量。
总结:高分子胶粘剂的结晶问题是一个制约其应用的重要因素。
通过控制温度、选择适当的溶剂、控制溶剂浓度、纯化处理和添加抑制剂等解决方案,可以有效减少结晶问题的发生。
结晶问题的解决不仅能提高胶粘剂的使用效果,还能避免设备堵塞和产品质量下降的问题。
因此,针对高分子胶粘剂的结晶问题,我们应该采取有效的措施,以提高生产效率和产品质量。
高分子物理教学中“结晶”概念的讲解

高分子物理教学中“结晶”概念的讲解高分子物理是一门研究高分子化合物的物理性质的学科,它通过研究高分子物质的结构、形态、动力学等方面,来深入了解高分子材料的性质和特性。
在高分子物理教学中,“结晶”概念是重要的一环,下面将从结晶的定义、产生机理、结晶速率与温度的关系以及高分子材料的晶体学等方面展开具体讲解。
首先说到结晶的定义,结晶是指高分子材料形成经典晶体的过程。
当高分子材料分子间的相互作用力已经超过了它们热运动所带来的热能,高分子材料会进入有序排列的状态,形成晶格结构。
高分子晶体可以看成不规则的、类似于几何体的平面毡球,其在的视角应始终保持正平视图,且其空间结构是有序的,表现出X射线衍射图案中的对称性,一般采用点群和空间群的符号来描述。
其次是结晶的产生机理。
高分子材料的结晶过程是一个动静态平衡的过程。
高分子分子在流动条件下呈链状展开的结构,但当高分子分子间的距离小到一定程度时,它们之间的链的空间位置相对固定,形成了一种有序排列的结构,也就是一定形态规则的晶体结构。
加入一些摩擦、外界因素的干扰,可以促进高分子有序排列的形成,形成不同形态的结晶。
同时,高分子材料在冷却过程中也会产生结晶。
一般情况下,随着温度的降低,高分子材料中分子的平均热能降低,使有序结构出现的自由能减少,从而促进结晶的形成。
再来看一下结晶速率与温度的关系。
在高分子物理实验中发现,结晶速率与温度有关联,温度越高,结晶速率就越快。
这是因为高分子分子在高温下具有较大的热运动能量,能够脱离有序排列结构,使结晶难以形成;而在低温条件下,高分子的分子热运动减弱,分子的有序结构应变化较小,从而有助于结晶的加速。
最后是高分子材料的晶体学问题。
高分子材料的晶体学分析是高分子物理中的一个重要领域。
晶体学主要解决了三个问题:一是晶体结构的解析分析,即确定每个分子的精确定位;二是晶体之间的相互作用问题,即利用X射线衍射技术和化学方法来确定精确的空间结构;三是晶体中分子的对称问题,即晶体对称性的问题。
高分子结晶形态

高分子结晶形态1. 概述高分子结晶形态是指高分子材料在固态下的晶体结构和形态特征。
高分子材料具有多种结晶形态,包括无定形态、部分结晶态和完全结晶态。
高分子结晶形态对材料的物理性质和应用性能有着重要的影响,因此对高分子结晶形态的研究具有重要的科学意义和应用价值。
2. 高分子结晶机理高分子的结晶是由于分子间的相互作用力的存在而形成的。
高分子分子链的局部有序排列形成晶体结构,而分子链之间的无序排列则形成无定形态。
高分子结晶的主要机理包括链段的折叠和交叉,分子链的扭曲和屈曲以及分子链之间的相互作用力等。
3. 高分子结晶行为高分子材料的结晶行为可以通过热分析技术进行研究,如差示扫描量热法(DSC)、热重分析法(TGA)等。
这些技术可以通过测量材料的热性能变化来确定结晶温度、结晶度和结晶速率等参数,从而了解高分子材料的结晶行为。
3.1 结晶温度高分子材料的结晶温度是指材料从无定形态转变为结晶态的温度范围。
结晶温度取决于分子链的结晶能力以及外界条件,如温度、压力和结晶助剂等。
高分子材料的结晶温度通常通过DSC技术来测定。
3.2 结晶度高分子材料的结晶度是指材料中结晶部分的比例。
结晶度可以通过测量材料的熔点和热焓来确定。
高分子材料的结晶度与其结晶速率和结晶温度等因素密切相关。
3.3 结晶速率高分子材料的结晶速率是指材料从无定形态转变为结晶态的速度。
结晶速率受到多种因素的影响,包括温度、结晶助剂、分子链的结晶能力等。
高分子材料的结晶速率可以通过DSC技术和透射电子显微镜(TEM)等技术来研究。
4. 高分子结晶形态的影响因素高分子结晶形态的形成受到多种因素的影响,主要包括分子结构、分子量、结晶助剂和加工条件等。
4.1 分子结构高分子材料的分子结构对其结晶形态有着重要的影响。
分子结构中的键长、键角和键的取向等参数会影响分子链的折叠和交叉,从而影响结晶形态的形成。
4.2 分子量高分子材料的分子量对其结晶形态也有着重要的影响。
高分子结晶的特点

高分子结晶有哪些特点?解: ( 1 )高分子晶体属于分子晶体。
已知小分子有分子晶体、原子晶体和离子晶体,而高分子仅有分子晶体,且仅是分子链的一部分形成的晶体。
(2) 高分子晶体的熔点Tm 定义为晶体全部熔化的温度。
Tm 虽是一级相转变点,但却是一个范围称为熔限,一般为Tm 士( 3~5 °C),而小分子的Tm 是一个确定的值,Tm 一般在士0.1 °C范围内。
高分子的与结晶温度有关。
(3) 高分子链细而长(长径比= 500~2000) ,如此严重的几何尺寸的不对称性,使得高分子链结晶得到的晶体只能属于较低级晶系(对称性较差的晶系),如单斜与正交晶系(大约各占30 %)。
至今还没有得到最高级的立方晶系(立方晶系是七大晶系中对称性最好的晶系)。
(4) 高分子的结晶是通过链段的协同运动排入晶格的。
由于链段运动有强烈的温度、时间依赖性,所以高分子结晶也具有很强的对温度、时间的依赖性。
如把结晶性高分子熔体骤冷可得到非晶或结晶度很低的晶体;慢冷却,甚至进行热处理(即在最适宜的结晶温度上保温一段时间),得到的则是高结晶度的大晶粒聚集体。
高分子结晶对温度的依赖性表现为结晶有一定的温度范围( Tg- Tm ) ,且在这个温度范围内,存在一个结晶速度最快的温度。
同时,高分子结晶速率常数K 对温度特别敏感,温度变化1 °C,K 相差2~3 个数量级。
(5) 有结晶度的概念。
当结晶性高聚物达到结晶温度时,即处于Tg- Tm 时,开始结晶。
由于高分子结构的复杂性,使得聚合物的结晶要比小分子晶体有更多的缺陷(如非晶区空间、交联、支化、杂质......),所以结晶总是很不完善,是一种晶区与非晶区共存的体系,结晶聚合物实际上是“部分结晶聚合物”。
按照折叠链的结晶理论,我们如果假设结晶聚合物中只包括完全结晶区和无定形区两个部分,则可定义为晶区部分所占的百分数为聚合物的结晶度,常用质量分数来表示(5) 高聚物的结晶过程分一次结晶(主结晶)和二次结晶(次级结晶)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高分子结晶的形态和结构
聚合物的基本性质主要取决于链结构,而高分子材料或制品的使用性能则很大程度上还取决于加工成型过程中形成的聚集态结构。
聚集态可分为晶态、非晶态、取向态、液晶态等,晶态与非晶态是高分子最重要的两种聚集态。
结晶形态主要有球晶、单晶、伸直链晶片、纤维状晶、串晶、树枝晶等。
球晶是其中最常见的一种形态。
各种结晶形态的形成条件列于表2-1,照片示于图2.1中。
表2-1 高分子主要结晶形态的形状结构和形成条件
以上结晶形态都是由三种基本结构单元组成,即无规线团的非晶结构、折叠链晶片和伸直链晶体。
所以结晶形态中都含有非晶部分,是因为高分子结晶都不可能达到100%结晶。
(a)球晶(b)单晶(c)伸直链片晶(d)纤维状晶(e)串晶
图2-1五种典型的结晶形态
描述晶态结构的模型主要有:
(1)缨状微束模型,(2)折叠链模型,(3)插线板模型。
折叠链模型适用于解释单晶的结构,而另两个模型更适合于解释快速结晶得到的晶体结构。
描述非晶态的模型主要有:
(1)无规线团模型,(2)两相球粒模型。
总之模型的不同观点还在争论中。
对非晶态,争论焦点是完全无序还是局部有序;对于晶态,焦点是有序的程度,是大量的近邻有序还是极少近邻有序。
高分子晶体在七个晶系中只有六个,即不会出现立方晶系(由于高分子结构的复杂性)。
常见的是正交晶系(如聚乙烯)和单斜晶系(如聚丙烯),各均占30%。
高分子在晶胞中呈现两种构象,即平面锯齿形构象(PZ,以PE为例)和螺旋形构象(H,以PP为例)。
通过晶胞参数可以计算完全结晶的密度:
式中:为晶胞中链节数;为晶胞体积,通过光衍射测得晶胞参数即可得到。
一种高分子可能由于结晶条件不同而产生不同晶胞,称同质多晶现象。
一、高聚物结晶的形态学
结晶形态学研究的对象是单个晶粒的大小、形状以及它们的聚集方式。
1. 单晶:是具有一定几何形状的薄片状晶体,厚度通常在10纳米左右,大小可以从几个微米至几十个微米甚至更大。
在单晶内,分子链作高度规则的三维有续排列,分子链的取向与片状
单晶的表面相垂直(即折叠链片晶的结构),但不同的聚合物单晶呈现不同的几何形状。
生长条件对单晶形状和尺寸的影响
1). 溶液的浓度:为了得到完善的单晶,溶液的浓度必须足够稀,使溶液中的高分子可以彼此分离,避免互相缠结。
通常,浓度约为0.01% 时可得单层片晶,浓度约为0.1% 时发展多层片晶,而浓度大于1% 时则形成球晶。
2). 结晶温度:结晶温度的高低直接影响结晶速度,要得到完善的单晶,结晶温度必须足够高,或过冷程度(即结晶熔点与结晶温度之差)要小,使结晶速度足够慢,以保证分子链的规整排列和堆砌。
一般,过冷程度20―30K时,可形成单层片晶,随结晶温度的降低,或过冷程度的增加,结晶速度加快,将形成多层片晶。
此外,随结晶温度的升高或过冷程度的降低,晶片厚度会增加。
3). 其它:采用热力学上的不良溶剂,有利于生长较大的更为完善的晶体。
另外,在同一温度下,高分子倾向于按分子量从大到小先后结晶出来,晶核由样品中最长的分子组成。
2. 球晶:球晶是由无数微小晶片按结晶生长规律长在一起的多晶聚集体。
球晶的直径可以达到0.5至100微米,大的可以达到厘米数量级。
球晶中分子链总是垂直于分子链球晶的半径方向。
这说明球晶的基本结构单元仍然是具有折叠链结构的片晶。
以一定的方式扭曲,同时从一个中心向四面八方生长,发展成为一个球状的多晶聚集体。
球晶是由径向发射的微纤组成的,这些微纤就是长条状的晶片,其厚度在10 ―20纳米之间。
在某些条件下,球晶呈示出某种特征的黑十字图象。
同心消光圆环是径向发射的晶片缎带状地协同扭转的结果, 当结晶温度升高时,同心消光圆环的间距增大。
球晶的生长过程及小角分叉现象。