可控硅参数名词解释
可控硅参数说明

符号说明:VRRM--反向重复峰值电压:在控制极断路和额定结温的条件下,可以重复加在可控硅上的交流电压。
此电压小于反向最高测试电压100V。
反向最高测试电压,规定为反向漏电流急速增加,反向特性曲线开始弯曲时的电压。
V RSM--反向不重复峰值电压;在控制极断路和额定结温的条件下,不允许加在可控硅上的交流电压。
V DRM――断态重复峰值电压;断态重复峰值电压是在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压.国标规定重复频率为50H,每次持续时间不超高10ms。
规定断态重复峰值电压V DRM为断态不重复峰值电压(即断态最大瞬时电压)UDSM的90%.断态不重复峰值电压应低于正向转折电压Ubo。
IT(AV)/ IF(AV)--通态/正向平均电流;在环境温度+40℃和额定结温下,导通角不小于170°阻性负载电路中,允许通过的50Hz正弦半波电流的平均值。
I T(RMS), I F(RMS)――通态/正向方均根电流;是指在额定结温,允许流过器件的最大有效电流值,用户在使用中须保证,在任何条件下流过器件的电流有效值,不超过对应壳温下的方均根电流值I TSM,I FSM--通态/正向浪涌电流;指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流(半个正弦波t=10ms, 50Hz)I2t--表示可控硅所通过的电流产生的能量,是电流的平方乘以时间,表示可控硅的发热特性。
P GM--门极峰值功率;门极触发电压与最大触发电流的乘积;P G(AV) --门极平均功率;门极触发电压与正常触发电流的乘积;di/dt--通态电流临界上升率;指在额定结温下,可控硅能承受的最大通态电流上升率(如果电流上升太快,可能造成局部过热而使可控硅损坏)V ISO--绝缘电压;芯片与可控硅的底板之间的绝缘电压。
Tj--工作结温;可控硅在正常工作条件下允许的PN结温度。
Tjm--额定结温;可控硅在正常工作条件下允许的最高PN结温度。
可控硅参数名词解释

晶闸管参数名词解释1.反向重复峰值电压(V RRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。
注:反向重复峰值电压(V RRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。
2.反向不重复峰值电压(V RSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态反向电压。
1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。
2)测试条件:a)结温:25℃和125℃; b)门极断路;c)脉冲电压波形:底宽近似10mS的正弦半波; d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压注:反向不重复峰值电压(V RSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。
通常标准规定V RSM =1.11V RRM。
应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。
3.通态方均根电流(IT(RMS)):通态电流在一个周期内的方均根值。
4.通态平均电流(IT(AV)):通态电流在一个周期内的平均值。
5.浪涌电流(I TSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温的不重复性最大通态过载电流。
1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。
2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间6.通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。
1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。
2)测试条件:a)加通态电流前结温: 125℃;b)门极触发条件:I GM=3~5I GT;c)开通前断态电压V DM=2/3V DRM ;d)开通后通态电流峰值:2 I T(AV)~3I T(AV); e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。
可控硅参数注释范文

可控硅参数注释范文可控硅(SCR)是一种具有控制能力的半导体器件,它主要用于功率电子应用中的开关和控制。
可控硅的特殊之处在于,一旦启动,它将一直处于导通状态,直到电流降至零或有外部信号来控制其关断。
以下是可控硅的一些重要参数的注释。
1. 负阻抗比例器(Negative Impedance Proportioner,NIP):负阻抗比例器是此器件的一项重要参数。
它是可控硅的输入特性的度量标准,它表示了控制电压和控制电流之间的关系。
只有当控制电压的变化导致控制电流的相反变化时,负阻抗比例器才被视为合适的。
2. 正向阻抗(Forward Impedance):正向阻抗是指从可控硅正向电压到正向电流之间的阻抗。
通常使用恒定的电流作为输入,并测量输出的电压。
正向阻抗的数值约低,可控硅的性能越好,因为这意味着它能更好地通过电流。
3. 反向阻抗(Reverse Impedance):反向阻抗是指从可控硅反向电压到反向电流之间的阻抗。
类似于正向阻抗,较低的数值代表了更好的性能。
反向阻抗通常很高,以防止在正向电压下产生反向电流。
4. 触发电压(Trigger Voltage):触发电压是指可控硅所需的最低电压,以便使其从关断状态转变为导通状态。
较低的触发电压意味着它更容易被启动,而较高的触发电压可能导致可控硅无法正常启动。
5. 保持电流(Holding Current):保持电流是可控硅在导通状态下所需的最低电流。
一旦电流低于保持电流,可控硅将自动从导通状态切换到关断状态。
保持电流的数值取决于设备的特性和工作要求。
6. 最大正向电压(Maximum Forward Voltage):最大正向电压是可控硅所能承受的最大正向电压。
超过这个值,可控硅可能被损坏或无法正常工作。
因此,在设计和使用可控硅时,必须确保正向电压不超过最大正向电压。
7. 极限温度(Junction Temperature Limits):极限温度是可控硅能够承受的最高温度和最低温度。
可控硅的主要参数与可控硅的基本用途

可控硅的主要参数与可控硅的基本用途可控硅主要参数——电流:1、额定通态电流(IT)即最大稳定工作电流,俗称电流。
常用可控硅的IT一般为一安到几十安。
2、反向重复峰值电压(VRRM)或断态重复峰值电压(VDRM),俗称耐压。
常用可控硅的VRRM/VDRM一般为几百伏到一千伏。
3、控制极触发电流(IGT),俗称触发电流。
常用可控硅的IGT 一般为几微安到几十毫安。
4、在规定环境温度和散热条件下,允许通过阴极和阳极的电流平均值。
可控硅的封装:常用可控硅的封装形式有TO-92、TO-126、TO-202AB、TO-220、TO-220ABC、TO-3P、SOT-89、TO-251、TO-252、SOT-23、SOT23-3L等。
可控硅的用途:普通晶闸管最基本的用途就是可控整流。
大家熟悉的二极管整流电路属于不可控整流电路。
如果把二极管换成晶闸管,就可以构成可控整流电路。
以最简单的单相半波可控整流电路为例,在正弦交流电压U2的正半周期间,如果VS的控制极没有输入触发脉冲Ug,VS仍然不能导通,只有在U2处于正半周,在控制极外加触发脉冲Ug时,晶闸管被触发导通。
画出它的波形(c)及(d),只有在触发脉冲Ug 到来时,负载RL上才有电压UL输出。
Ug到来得早,晶闸管导通的时间就早;Ug到来得晚,晶闸管导通的时间就晚。
通过改变控制极上触发脉冲Ug到来的时间,就可以调节负载上输出电压的平均值UL。
在电工技术中,常把交流电的半个周期定为180°,称为电角度。
这样,在U2的每个正半周,从零值开始到触发脉冲到来瞬间所经历的电角度称为控制角α;在每个正半周内晶闸管导通的电角度叫导通角θ。
很明显,α和θ都是用来表示晶闸管在承受正向电压的半个周期的导通或阻断范围的。
通过改变控制角α或导通角θ,改变负载上脉冲直流电压的平均值UL,实现了可控整流。
1:小功率塑封双向可控硅通常用作声光控灯光系统。
额定电流:IA小于2A。
2:大、中功率塑封和铁封可控硅通常用作功率型可控调压电路。
t0410可控硅参数

t0410可控硅参数摘要:1.介绍可控硅的基本概念和原理2.详述可控硅的参数及其作用3.分析可控硅参数对电路性能的影响4.总结可控硅参数的重要性正文:可控硅,全称为可控硅控流器件,是一种四层三端的半导体器件,具有电压控制的开关特性。
可控硅在电气工程中有着广泛的应用,如整流、交直流转换、逆变等。
对于可控硅的使用,了解其参数特性至关重要。
本文将详细介绍可控硅的参数及其作用,并分析参数对电路性能的影响。
首先,我们来了解可控硅的基本概念和原理。
可控硅的结构包括四层,分别是:第一层N 型半导体、第二层P 型半导体、第三层N 型半导体和第四层P 型半导体。
其中,第一层和第三层称为发射极,第二层和第四层称为集电极。
可控硅的工作原理是,当控制极施加正向电压时,发射极与集电极之间的电流得以导通;当控制极施加负向电压时,发射极与集电极之间的电流截止。
接下来,我们来详述可控硅的参数及其作用。
可控硅的主要参数有:1.额定电压:指可控硅在正常工作状态下,可以承受的最大电压。
选用可控硅时,应确保其额定电压大于电路中的最大电压。
2.额定电流:指可控硅在正常工作状态下,可以承受的最大电流。
选用可控硅时,应确保其额定电流大于电路中的最大电流。
3.控制极触发电压:指控制极施加正向电压时,使可控硅导通的最小电压。
控制极触发电压越低,可控硅的灵敏度越高。
4.动态响应特性:指可控硅在开关状态下,电流从导通到截止或从截止到导通的时间。
动态响应特性越短,可控硅的开关速度越快。
5.温度特性:指可控硅在不同温度下,参数值的变化。
温度特性好的可控硅,在不同温度下参数变化较小,稳定性较高。
然后,我们来分析可控硅参数对电路性能的影响。
可控硅参数的选取应综合考虑电路的工作电压、工作电流、控制方式等因素。
选取不合适的可控硅参数,可能导致电路性能不佳,如工作不稳定、温升过高等问题。
因此,合理选择可控硅参数是提高电路性能的关键。
最后,我们总结可控硅参数的重要性。
可控硅参数说明(精)

符号说明:VRRM--反向重复峰值电压:在控制极断路和额定结温的条件下,可以重复加在可控硅上的交流电压。
此电压小于反向最高测试电压100V。
反向最高测试电压,规定为反向漏电流急速增加,反向特性曲线开始弯曲时的电压。
V RSM--反向不重复峰值电压;在控制极断路和额定结温的条件下,不允许加在可控硅上的交流电压。
V DRM――断态重复峰值电压;断态重复峰值电压是在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压.国标规定重复频率为50H,每次持续时间不超高10ms。
规定断态重复峰值电压V DRM为断态不重复峰值电压(即断态最大瞬时电压UDSM的90%.断态不重复峰值电压应低于正向转折电压Ubo。
IT(AV/ IF(AV--通态/正向平均电流;在环境温度+40℃和额定结温下,导通角不小于170°阻性负载电路中,允许通过的50Hz正弦半波电流的平均值。
I T(RMS, I F(RMS――通态/正向方均根电流;是指在额定结温,允许流过器件的最大有效电流值,用户在使用中须保证,在任何条件下流过器件的电流有效值,不超过对应壳温下的方均根电流值I TSM,I FSM--通态/正向浪涌电流;指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流(半个正弦波t=10ms, 50HzI2t--表示可控硅所通过的电流产生的能量,是电流的平方乘以时间,表示可控硅的发热特性。
P GM--门极峰值功率;门极触发电压与最大触发电流的乘积;P G(AV --门极平均功率;门极触发电压与正常触发电流的乘积;di/dt--通态电流临界上升率;指在额定结温下,可控硅能承受的最大通态电流上升率(如果电流上升太快,可能造成局部过热而使可控硅损坏V ISO--绝缘电压;芯片与可控硅的底板之间的绝缘电压。
Tj--工作结温;可控硅在正常工作条件下允许的PN结温度。
Tjm--额定结温;可控硅在正常工作条件下允许的最高PN结温度。
y65kphot可控硅参数解读

y65kphot可控硅参数解读
(实用版)
目录
1.可控硅的基本概念与结构
2.可控硅的参数及其含义
3.y65kphot 型号可控硅的主要参数解读
4.y65kphot 型号可控硅的应用领域
5.结论
正文
一、可控硅的基本概念与结构
可控硅,全称为可控硅控整流器,是一种四层三端的半导体器件,具有电压控制的开关特性。
它主要由 p 型半导体、n 型半导体以及控制极组成,结构如图 1 所示。
可控硅广泛应用于交流调速、逆变器、斩波器、恒流源等领域。
二、可控硅的参数及其含义
可控硅的参数主要包括:额定电压、额定电流、控制极触发电流、动态响应特性等。
1.额定电压:可控硅在正向导通状态下,所能承受的最大电压。
2.额定电流:可控硅在正向导通状态下,所能承受的最大电流。
3.控制极触发电流:也称为门限电流,是指控制极电流达到一定值时,可控硅开始导通的最小电流。
4.动态响应特性:可控硅从关态到导态的切换速度。
三、y65kphot 型号可控硅的主要参数解读
y65kphot 型号可控硅是一款常见的可控硅型号,其主要参数如下:
1.额定电压:600V
2.额定电流:50A
3.控制极触发电流:50μA
4.动态响应特性:快速
四、y65kphot 型号可控硅的应用领域
y65kphot 型号可控硅广泛应用于工业控制、交流调速、逆变器、斩波器、恒流源等领域,具有较强的通用性和稳定性。
五、结论
可控硅作为一种重要的半导体器件,其参数对器件性能和应用范围具有重要影响。
可控硅的主要参数

可控硅可控硅是硅可控整流元件的简称,亦称为晶闸管。
具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。
该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。
家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。
按其工作特性,可控硅(THYRISTOR)可分为普通可控硅( SCR)即单向可控硅、双向可控硅( TRIAC)和其它特殊可控硅。
可控硅的主要参数非过零触发 - 无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过可控硅的主要参数1、额定通态平均电流IT 在一定条件下,阳极 --- 阴极间可以连续通过的50 赫兹正弦半波电流的平均值。
2 、正向阻断峰值电压VPF 在控制极开路未加触发信号,阳极正向电压还未超过导能电压时,可以重复加在可控硅两端的正向峰值电压。
可控硅承受的正向电压峰值,不能超过手册给出的这个参数值。
3 、反向阴断峰值电压VPR当可控硅加反向电压,处于反向关断状态时,可以重复加在可控硅两端的反向峰值电压。
使用时,不能超过手册给出的这个参数值。
4 、控制极触发电流 Ig1、触发电压VGT在规定的环境温度下,阳极--- 阴极间加有一定电压时,可控硅从关断状态转为导通状态所需要的最小控制极电流和电压。
5 、维持电流 IH 在规定温度下,控制极断路,维持可控硅导通所必需的最小阳极正向电流。
近年来,许多新型可控硅元件相继问世,如适于高频应用的快速可控硅,可以用正或负的触发信号控制两个方向导通的双向可控硅,可以用正触发信号使其导通,用负触发信号使其关断的可控硅等等。
可控硅的触发过零触发 - 一般是调功,即当正弦交流电交流电电压相位过零点触发,必须是过零点才触发,导通可控硅。
非过零触发 - 无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过改变正弦交流电的导通角(角相位),来改变输出百分比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶闸管参数名词解释
1. 反向重复峰值电压(VRRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。
注:反向重复峰值电压(VRRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。
2. 反向不重复峰值电压(VRSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态反向电压。
1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。
2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压
注:反向不重复峰值电压(VRSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。
通常标准规定VRSM =1.11VRRM。
应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。
3. 通态方均根电流(IT(RMS)):通态电流在一个周期内的方均根值。
4. 通态平均电流(IT(AV)):通态电流在一个周期内的平均值。
5. 浪涌电流(ITSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温的不重复性最大通态过载电流。
1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。
2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间
6. 通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。
1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。
2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:IGM =3~5IGT;c)开通前断态电压VDM=2/3VDRM ;d)开通后通态电流峰值:2 IT(AV)~3IT(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。
7. I2t值:浪涌电流的平方在其持续时间内的积分值。
1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值
2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波;
3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。
通过浪涌电流it对其持续时间t积分∫it2dt,即可求得I2t值。
8. 门极平均值耗散功率(PG(AV)):在规定条件下,门极正向所允许的最大平均功率。
1) 测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值
2) 测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S;d)主电路条件:阳,阴极间断路。
3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率PG(AV),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则PG(AV)额定值得到确认。
9. 反向重复峰值电流(IRRM):晶闸管加上反向重复峰值电压时的峰值电流。
10. 断态重复峰值电流(IDRM):晶闸管加上断态重复峰值电压时的峰值电流。
1)测试目的:在规定条件下,测量晶闸管的断态重复峰值电压下的断态重复峰值电流和反向重复峰值电压下的反向重复峰值电流。
2)测试条件:a) 结温:25℃和125℃;b)断态电压和反向电压:断态重复峰值电压(VDRM)或反向重复峰值电压(VRRM);c)门极断路。
3)测量程序:A)被测器件分别在25℃和125℃下,调节交流电压源,使断态电压达到断态重复峰值电压,由示波器显示的断态电流即为所测断态重复峰值电流(IDRM)。
B)被测器件主电极的极性交换,重复上述操作即可测得反向重复峰值电流(IRRM)。
11. 峰值通态电压(VTM):晶闸管通以π倍或规定倍数额定通态平均电流值时的瞬态峰值电压。
1)测试目的:在规定条件下,用脉冲法测量晶闸管的通态峰值电压。
2)测试条件:a)结温:出厂试验为25℃,型式试验为25℃和125℃;b)通态峰值电流:通态平均电流的π倍;c)电流脉冲可以使单次的,也可以是发热效应能忽略的低重复频率脉冲;
d)电流脉冲宽度应足够宽,以使被测器件完全开通。
3)测量程序:a)电源电压和门极触发电压先调至零。
b)被测器件按规定压力和接线法接入电路中。
结温调至规定值,门极电路调至规定的偏置条件。
C)电源电压由零增加,通过L,C 振荡,使流过被测器件的脉冲电流整定到规定值,此时示波器上显示的数值即为所测通态峰值电压。
12. 门槛电压:由通态特性近似直线与电压轴的交点确定的通态电压值。
13. 斜率电阻:由通态特性近似直线的斜率电阻确定的电阻值。
14. 延迟时间:在用门极脉冲使晶闸管从断态转入通态的过程中,从门极脉冲前沿的规定点起,至主电压下降到接近初始值的某一规定值为止的时间间隔。
15. 关断时间(tq):外部使主电路转换动作后,从主电流下降至零值瞬间起,到晶闸管能承受规定的断态电压而不致过零开通的时间间隔。
1)测试目的:在规定条件下测量晶反向阻断三极闸管的关断时间。
2)测试条件:a)通电前结温:125℃;b) 关断前通态电流:波形优选位矩形波,峰值优选为3 ITAV,上升率di/dt≤30A/us;c)通态电流持续时间:按被测器件完全导通而发热尽可能小确定,数百微秒至几毫秒;d)关断期间施加反向电压幅值为100V,最小值不小于20V;e)再加断态电压幅值VDM=2/3VDRM,其上升率dv/dt=30V/us;f)重复频率f≤50HZ。
3)测量程序:a)被测器件结温控制在125℃;b)调整通态电流电源使被测器件流过规定的电流ITM,切断门极电流,持续规定的时间;c)调整反向电压电源,对被测器件施加幅值和最小值的反向电压,使其阳极电流反向并可靠地关断;d)在双迹示波器上观察,调整规定值再加断态电压施加时间,当被测器件刚能承受此电压而又不转为通态的最小时间间隔,即为所测关断时间。
16. 恢复电荷(Qr):从规定的通态电流条件向规定的反向条件转换期间,晶闸管内存在的恢复性总电荷。
它包括储存的载流子和耗尽层电容两部分电荷。
1)测试目的:在规定条件下,用测量晶闸管反向恢复电流和反向恢复时间的方法求出恢复电荷。
2)测试条件:a)结温:125℃;b)换向前的通态电流;额定通态平均电流值;c)通态电流下降率:规定;d)通态电流通电时间:按被测器件完全开通,又可忽视发热效应的原则选取;
e)反向电压:50%反向重复峰值电压。
17. 临界电压上升率(dv/dt):紧跟着一个方向通态电流之后,在相反方向上导致断态到通态转换的最小主电压上升率。
1)测试目的:在规定条件下,用电压线形上升法或指数上升法,测量晶闸管的断态电压临界上升率。
2)测试条件:a)结温:125℃;b)断态峰值电压(VDM):从零开始施加2/3倍断态重复峰值电压;c)门极断路或规定偏置电阻值;d)断态电压脉冲间隔时间:重复频率≤50HZ;3)测试程序:被测器件加热到125℃。
按示波器或峰值电压表显示,从零开始施加规定的断态电压,调整电压上升率,直至刚好开通,即电压波形突然下降,开通前瞬间的dV/dt即为所求断态电压临界上升率。
18. 门极触发电流(IGT):使晶闸管由断态转入通态所必需的最小门极电流。
19. 门极触发电压(VGT):产生门极触发电流所必须的最小门极电压。
1)测试目的:在规定条件下,测量晶闸管的门极触发电流和门极触发电压。
2)测试条件:a)结温:25℃;b)断态电压:直流12V或6V;c)负载电阻(R)值:应予规定;
3)测量:被测器件在25℃下,由零开始逐渐增加门极至阴极间电压,当V1表指示的断态电压突然下降,A1表指示出通态电流的瞬间,此时毫安表A2和V2表的指示分别为所测门极触发电流和门极触发电压。
20. 门极峰值电流:包括所有门极正向瞬态电流的最大瞬时值门极正向电流。
21. 门极反向峰值电压:门极反向电压的最大瞬时值,包括所有的门极反向瞬态电压。
1) 测试目的:在规定条件下,检验反向阻断三级晶闸管的门极正向额定值。
2) 测试条件:a)结温:125℃;b)重复频率:50HZ;c)门极脉冲波形:方波,脉冲幅值对应的平均功率不超过其额定值;d)试验持续时间:3S;e)主电路条件:阳,阴极间断路。
3) 测试程序:A)将被测器件温度加热到规定结温;B)在被测器件的门极和阴极间施加门极触发脉冲,在示波器上观察门极伏安特性曲线,调整电源E,缓慢增大触发信号,当该曲线与额定门极正向峰值电流,额定门极正向峰值电压和额定门极正向峰值功率三条极限线的任一条相交时,在此点保持触发信号的大小持续3S时间,然后将电源输出调至零;C)测试后,进行断态和反向峰值电流,门极触发电流和电压测量,如无异常,则被测门极反向峰值电压额定值得到确认。
22. 结壳热阻:结到管壳基准点的热阻。
23. 壳散热阻;管壳基准点到散热器基准点的热阻。