_浙江省金华市浦江县2018-2019学年八年级上学期数学期中考试试卷(解析版)

合集下载

2018-2019学年八年级上期中考试数学试卷(含答案解析)

2018-2019学年八年级上期中考试数学试卷(含答案解析)

初二年级上传数学期中试卷(满分150,考试时间120分钟)第Ⅰ卷(选择题共48分)一. 选择题(本大题共12小题,每小题 4分,共 48 分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列图形中,是轴对称图形的是( )A. B. C. D.2. 已知等腰三角形的两边长分别为 6 和1,则这个等腰三角形的周长为( )A. 13B. 8C. 10D. 8 或 133. 若一个多边形的内角和为720°,则这个多边形是()A. 三角形B. 四边形C. 五边形D. 六边形4. 如图,用尺规作图作已知角平分线,其根据是构造两个三角形全等,它所用到的判别方法是()A. SASB. AASC. ASAD. SSS5. 如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B=35°,∠ACE=60°,则∠A=()A. 50°B. 60°C. 70°D. 80°6. 如图,∠A=50°,P 是等腰△ABC 内一点,AB=AC,BP 平分∠ABC,CP平分∠ACB,则∠BPC 的度数为( )A. 100°B.115°C.130°D. 1407. 如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是( )A. AB=DEB. BE=CFC. AB//DED. EC=4cm8. 如图,△ABC 中,∠C=90°,AD 平分∠BAC,过点 D 作 DE⊥AB 于 E,测得 BC=9,BD=5,则DE的长为()A. 3B. 4C. 5D. 69. 如图,AB=AC,AD=AE,BE、CD 交于点 O,则图中全等的三角形共有()A.四对 B. 三对 C. 二对 D. 一对10. 如图,△ABC 中,AB=AC,BD 平分∠ABC 交 AC 于 G,DM//BC 交∠ABC 的外角平分线于 M,交AB、AC 于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE. 其中一定正确的有( )A. 0 个B. 1 个C. 2 个D. 3 个第 7 题第 8 题第 9 题第 10 题11、如图,△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=()A. 360°B. 180°C. 255°D. 145°12、一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线第Ⅱ卷(非选择题共102分)二. 填空题(每小题 4 分,共 24 分)11. 已知△ABC 中,AB=6,BC=4,那么边 AC 的长可以是(填一个满足题意的即可).12. 如图,一扇窗户打开后,用窗钩 BC 将其固定. 这里所运用的几何原理是.13. 点 M 与点 N(-2,-3)关于y 轴对称,则点 M 的坐标为.1∠C,则△ABC 是三角形.14. 在△ABC 中,∠A=∠B=215. 如图,D 是 AB 边上的中点,将△ABC 沿过点 D 的直线折叠,DE 为折痕,使点 A 落在 BC 上 F 处,若∠B=40°,则∠EDF=_度.16. 如图,在 Rt△ABC 中,∠C=90°,∠BAC=30°,点 D 是 BC 边上的点,AB=18,将△ABC 沿直线AD 翻折,使点 C 落在 AB 边上的点 E 处,若点 P 是直线 AD 上的动点,则 BP+EP 的最小值是.第 15 题第 16 题三、解答题(一)(每小题 6 分,共 18 分)17. 如图,A、F、B、D 在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18. 一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19. 如图,已知△ABC,∠C=90°,AC<BC.D 为 BC 上一点,且到 A,B 两点的距离相等.(1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B= 35°,则∠CAD=°.四、解答题(二)(每小题 7 分,共 21 分)21. 如图,在△ABC 中,∠ACB=90°,AC=BC,BE⊥CE 于 E,AD⊥CE 于 D,AD=2.5,DE=1.7,求 BE 的长.22. 如图,在△ABC 中,D 是 BC 的中点,DE⊥AB 于点 E,DF⊥AC 于点 F,BE=CF.(1)求证:AD 平分∠BAC.(2)连接 EF,求证:AD 垂直平分 EF.五、解答题(三)(每小题 9 分,共 27 分)23. 如图, AD 为△ ABC 的中线, BE 为△ ABD 的中线.(1)∠ ABE=15°,∠ BED=55°,求∠ BAD 的度数;(2)作△ BED 的边 BD 边上的高;(3)若△ ABC 的面积为 20, BD=2.5,求△ BDE 中 BD 边上的高.24. 如图,在△ ABC 中,∠BAC=120°,AB=AC=4,AD⊥BC,BD= 2 3 ,延长 AD 到 E,使 AE=2AD,连接 BE.(1)求证:△ ABE 为等边三角形;(2)将一块含 60°角的直角三角板 PMN 如图放置,其中点 P 与点 E 重合,且∠NEM=60°,边 NE与AB 交于点 G,边 ME 与 AC 交于点 F. 求证:BG=AF;(3)在(2)的条件下,求四边形AGEF 的面积.25. 如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点 P 在线段 AB 上以 1cm/s 的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t(s).(1)若点 Q 的运动速度与点 P 的运动速度相等,当 t=1 时,△ACP 与△BPQ 是否全等,请说明理由,并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点 Q 的运动速度为 x cm/s,是否存在实数 x,使得△ACP 与△BPQ 全等?若存在,求出相应的x、t 的值;若不存在,请说明理由.参考答案一. 选择题(每小题 3 分,共 30 分)1. 【分析】根据轴对称图形的概念解答即可【解答】选项A、C、D 中的图形是不是轴对称图形故答案为:B【点评】本题考查轴对称图形,掌握轴对称图形的概念,要求会判断一个图形是否是轴对称图形2. 【分析】根据等腰三角形边的定义及三角形三边关系解答即可【解答】∵等腰三角形的两边长分别是 6 和 1,①当腰为1 时,1+1=3<6,三角形不成立;②当腰为6 时,三角形的周长为:6+6+1=13;∴此等腰三角形的周长是 13.故答案为:A.【点评】本题考查三角形三边关系,等腰三角形的定义,及分类讨论的思想.3. 【分析】根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数。

2018-2019学年最新浙教版八年级上册数学期中考试试卷及答案

2018-2019学年最新浙教版八年级上册数学期中考试试卷及答案

2018-2019学年第一学期八年级期中考试数学试卷一、选择题(每小题3分,共计30分)1. 下面有4个汽车标志图案,其中不是轴对称图形的是……………()A.三个角对应相等的三角形全等B.一组对边平行,另一组对边相等的四边形是平行四边形C.三角形的内角和小于180°D.三角形的两边之和大于第三边4.下列各组数中不能作为直角三角形三边长的是……………………()A.3, 4, 5 B.4, 5, 6C.5, 12, 13 D.7,24,255.已知三角形的两边分别为3和7,则此三角形的第三边可能是……()A.3 B.4 C.5 D.106.用直尺和圆规作一个角等于已知角,如图,能得出的依据是…………………………………………………………………………()A.SAS B.SSS C.AAS D.ASA7.在△ABC中,AD是∠BAC的角平分线,自D向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是………………………………………………()A.DE=DFB.AE=AFC.BD=CDD.∠ADE=∠ADF8.如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠DAC的度数为…………………………………………………………………………()A.90° B.80° C.70°D.60°9.如图,直线l上有三个正方形A、B、C,若正方形A、C的面积分别为5和11,则正方形B的面积为……………………………………………………()A.4 B.6 C.16 D.5510.矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在某一面着色(如图),则着色部分的面为……………………()A.12 B.16 C.18 D.22二、填空题(每小题3分,共计24分)11.△ABC中,已知∠A=90°,∠B=65°,则∠C= ▲.12.足球比赛中,每队上场队员人数n不超过11,这个数量关系用不等式表示:▲ .13.如图,已知BC平分∠ABD,要使△ABC≌△DBC,请添加一个条件▲.(只需写出一个条件)14.如图,∠ACB=Rt∠,D为AB的中点,已知BC=6,AC=8,则CD的长为▲ .15. 若等腰三角形的两边长为4cm,9cm,则等腰三角形的周长为▲ cm.16.如图,在Rt△ABC中,BC=3,AC=4,CD⊥AB,则CD的长为▲ .17.如图,把一张等腰直角三角形纸片和一张等边三角形纸片叠在一起(等腰直角4, 则三角形的斜边等于等边三角形的边长),若AB=3CD= ▲ .18.如图AB=4cm, AC=BD=3cm.∠CAB=∠DBA=60°,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s),则点Q的运动速度为▲第18题图cm/s,使得A、C、P三点构成的三角形与B、P、Qa图2图1AB第19题图Ob a 第20题图三点构成的三角形全等.三、解答题(第19题8分,第20题5分,第21题8分,第22题5分,第23题8分,第24题12分,共计46分)19.作图题:用直尺与圆规作图,保留作图痕迹,不写作法. (1) 如图1,在直线a 上找一个点P, 使PA=PB.(2) 如图2,在直线a 上找一点M ,使得M 到边AB 和AC 的距离相等.20.实数a 和b 在数轴上的位置如图所示,试比较5-3a 与5-3b 的大小关系,并说明理由.21. 如图,在△ABC 中,AB=AC ,取点D 与点E ,使得AD=AE ,∠BAE=∠CAD ,连结BD 与CE交于点O 。

2018-2019学年八年级数学(浙教版)上册期中测试卷及答案

2018-2019学年八年级数学(浙教版)上册期中测试卷及答案

2018-2019学年八年级(上册)期中数学试卷(时间 90分钟 满分120分)一、选择题(每小题3分,共30分)1.能将三角形面积平分的是三角形的( )A .角平分线B .高C .中线D .外角平分线2.根据下列条件不能唯一画出△ABC 的是( )A .AB =5,BC =6,AC =7 B .AB =5,BC =6,∠B =45°C .AB =5,AC =4,∠C =90°D .AB =5,AC =4,∠C =45°3.下列各图中,正确画出AC 边上的高的是( )4.在下列条件中①∠A =∠C-∠B ,②∠A ∶∠B ∶∠C=1∶1∶2,③∠A=90°-∠B ,④∠A=∠B=21∠C ,⑤C B A ∠=∠=∠3121中,能确定△ABC 是直角三角形的条件有 ( )A .2个;B .3个;C .4个;D .5个5.一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( )A .165°B .150°C .135°D .145°6.为了测量河两岸相对点A 、B 的距离,小明先在AB 的垂线BF 上取两点C 、D ,使CD =BC ,再定出BF 的垂线DE ,使A 、C 、E 在同一条直线上(如图所示),可以证明△EDC ≌△ABC ,得ED =AB ,因此测得ED 的长度就是AB 的长,判定△EDC ≌△ABC 的理由是( )A .SASB .ASAC .SSSD .HL 7.如图,点O 是△ABC 内一点,∠A =80°,BO 、CO 分别是∠ABC 和∠ACB 的角平分线,则∠BOC 等于( )A .140°B .120°C .130°D .无法确定8.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于O ,MN 过点O 且与BC 平行.△ABC 的周长为20,△AMN 的周长为12,则BC 的长为( )A .10B .16C .8D .4 9.在等腰三角形ABC 中,AB=AC ,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为( )A .7B .7或11C .11D .7或1010.如图钢架中,10A ∠=︒,焊上等长的钢条来加固钢架,若112PA PP =,则这样的钢条至多..需要( ) A .5根 B .6根 C .7根 D .8二、填空题(每小题3分,共24分) 11.如图,已知△ABC ≌△ADE ,若∠BAE =120°,∠BAD =40°,则∠DAC = .12.如果一个三角形两边为2cm ,7cm ,且三角形的第三边为奇数,则三角形的周长是 cm .13.若b a >,则a 312- b 312-(填“<”或“>”). 14.在数学活动课上,小明提出这样一个问题:∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CED =35°.如图,则∠EAB 的度数为 .15.在△ABC 中,AB 的垂直平分线分别交AB 、BC 于点D 、E ,AC 的垂直平分线分别交AC 、BC 于点F 、G ,若∠BAC =110°,则∠EAG = °.16.已知直角三角形的周长为,624+ 斜边的中线为2,则它的面积是 .17.用一副三角板可以直接得到30°、45°、60°、90°四种角,利用一副三角板可以拼出另外一些特殊角,如75°、120°等,请你拼一拼,用一副三角板还能拼还能拼出哪些小于平角的角?这些角的度数是: .(写出三个即可)18.如图,直角三角形ABC 中, AC=1,BC =2,P 为斜边AB 上一动点.PE ⊥BC ,PF ⊥CA ,则线段EF 长的最小值为 .三、解答题(共8小题,满分66分)19.(本题6分)如图,已知AB ⊥l 于点B ,CD ⊥l 于点D ,AB=1,BD=CD=3,点P 是线段BD 上的一个动点,试确定点P 的位置,使PA+PC 的值最小,并求出这个最小值.20.(本题8分)如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4 求证:(1) △ABC≌△ADC;(2) BO=DO.21.(本题8分)如图,已知△ABC与△CDE都是等腰直角三角形,连结AE与BD,试探究线段AE与BD的数量关系和位置关系.22.(本题8分)已知AD为△ABC的高,∠BAD=70°,∠CAD=20°,求∠BAC的度数.23.(本题8分)如图,等边△ABC中,D是BC上一点,以AD为边作等腰△ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°,求∠FDC的度数.24.(本题8分)如图,在边长为2的正三角形ABC中,已知点P是三角形内任意一点,求点P到三角形的三边的距离之和PD+PE+PF的值.25.(本题10分)如图,已知△ABC中,AB=AC,点D是BC的中点,DE⊥AB于点E,DF⊥AC 于点F,请你用不同的方法证明:DE=DF.(用到相同的知识点即视为同一种方法)26.(本题10分)图甲中D是△ABC的边BC的延长线上一点,∠ABC、∠ACD的平分线交于点P1.(1) 若∠ABC=80°,∠ACB=40°,则∠P1的度数为_________;(2) 若∠A=α,求∠P1的度数(用含α的代数式表示)(写出求解过程);(3) 如图(乙),∠A=α,∠ABC、∠ACD的平分线交于点P1,∠P1BC、∠P1CD的平分线相交于P2,∠P2BC、∠P2CD的平分线相交于P3,依次类推,则P n(n为正整数)的度数为________(用n与α的代数式表示).八年级(上)期中数学试题卷参考答案(时间 90分钟 满分120分)一、选择题(每小题3分,共30分)1.能将三角形面积平分的是三角形的( C )A .角平分线B .高C .中线D .外角平分线2.根据下列条件不能唯一画出△ABC 的是( D )A .AB =5,BC =6,AC =7 B .AB =5,BC =6,∠B =45°C .AB =5,AC =4,∠C =90°D .AB =5,AC =4,∠C =45°3.下列各图中,正确画出AC 边上的高的是( D )4.在下列条件中①∠A =∠C-∠B ,②∠A ∶∠B ∶∠C=1∶1∶2,③∠A=90°-∠B ,④∠A=∠B=21∠C ,⑤C B A ∠=∠=∠3121中,能确定△ABC 是直角三角形的条件有 (D )A .2个;B .3个;C .4个;D .5个5.一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( A )A .165°B .150°C .135°D .145°6.为了测量河两岸相对点A 、B 的距离,小明先在AB 的垂线BF 上取两点C 、D ,使CD =BC ,再定出BF 的垂线DE ,使A 、C 、E 在同一条直线上(如图所示),可以证明△EDC ≌△ABC ,得ED =AB ,因此测得ED 的长度就是AB 的长,判定△EDC ≌△ABC 的理由是( B )A .SASB .ASAC .SSSD .HL 7.如图,点O 是△ABC 内一点,∠A =80°,BO 、CO 分别是∠ABC 和∠ACB 的角平分线,则∠BOC 等于( C )A .140°B .120°C .130°D .无法确定8.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于O ,MN 过点O 且与BC 平行.△ABC 的周长为20,△AMN 的周长为12,则BC 的长为( C )A .10B .16C .8D .4 9.在等腰三角形ABC 中,AB=AC ,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为( B )A .7B .7或11C .11D .7或1010.如图钢架中,10A ∠=︒,焊上等长的钢条来加固钢架,若112PA PP =,则这样的钢条至多..需要( D ) A .5根 B .6根 C .7根 D .8二、填空题(每小题3分,共24分)11.如图,已知△ABC ≌△ADE ,若∠BAE =120°,∠BAD =40°,则∠DAC = ︒40 .13.若b a >,则a 32- < b 32-(填“<”或“>”). 14.在数学活动课上,小明提出这样一个问题:∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CED =35°.如图,则∠EAB 的度数为 ︒35 .15.在△ABC 中,AB 的垂直平分线分别交AB 、BC 于点D 、E ,AC 的垂直平分线分别交AC 、BC 于点F 、G ,若∠BAC =110°,则∠EAG = ︒40 °.16.已知直角三角形的周长为,624+ 斜边的中线为2,则它的面积是 2 .17.用一副三角板可以直接得到30°、45°、60°、90°四种角,利用一副三角板可以拼出另外一些特殊角,如75°、120°等,请你拼一拼,用一副三角板还能拼还能拼出哪些小于平角的角?这些角的度数是: ︒︒︒︒︒165,150,135,105,15 .(写出三个即可)18.如图,直角三角形ABC 中, AC=1,BC =2,P 为斜边AB 上一动点.PE ⊥BC ,PF ⊥CA ,则线段EF三、解答题(共8小题,满分66分)19.(本题6分)如图,已知AB ⊥l 于点B ,CD ⊥l 于点D ,AB=1,BD=CD=3,点P 是线段BD 上的一个动点,试确定点P 的位置,使PA+PC 的值最小,并求出这个最小值.解:作出点A 关于l 的对称点A ’,连A ’C 与l 的交点即为所求作的点P ,最小值为5. (3’+3’)20.(本题8分)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4 求证:(1) △ABC ≌△ADC ;(2) BO =DO .证明:(1)利用ASA 即可证明△ABC ≌△ADC ,(2)可以利用SAS 证明△ABO ≌△ADO,也可以等腰三角形三线合一来证明.(4’+4’)21.(本题8分)如图,已知△ABC 与△CDE 都是等腰直角三角形,连结AE 与BD ,试探究线段AE 与BD 的数量关系和位置关系.解:利用SAS 证明△AEC ≌△BCD ,可以得到AE=BD ,∠EAC=∠DBC ,进而可得:∠EAC+∠BDC=∠DBC+∠BDC=︒90,即AE ⊥BD(5’+3’)22.(本题8分)已知AD 为△ABC 的高,∠BAD =70°,∠CAD =20°,求∠BAC 的度数. 解:无图题,画出图形,三角形的高线可以在形内,也可以在形外,所以有两解, 答案为︒︒5090或(5’+3’)23.(本题8分)如图,等边△ABC 中,D 是BC 上一点, 以AD 为边作等腰△ADE ,使AD =AE ,∠DAE =80°,DE 交AC 于点F ,∠BAD =15°,求∠FDC 的度数.解:答案为︒2524.(本题8分)如图,在边长为2的正三角形ABC 中,已知点P 是三角形内任意一点,求点P 到三角形的三边的距离之和PD+PE+PF 的值.解:利用面积,连PA ,PB ,PC ,则三个小三角形的面积等于大三角形的面积.3221221221221⨯⨯=⨯⨯+⨯⨯+⨯⨯PF PE PD 所以 PD+PE+PF=325.(本题10分)如图,已知△ABC 中,AB=AC ,点D 是BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,请你用不同的方法证明:DE=DF .证明:一、证明△BDE ≌△CDF 即可得DE=DF ;二、连AD ,利用等腰三角形的三线合一和角平分线的性质即可证明;三、利用面积关系即可证明结论.(4’+3’+3’)26.(本题10分)图甲中D 是△ABC 的边BC 的延长线上一点,∠ABC 、∠ACD 的平分线交于点P 1.(1) 若∠ABC =80°,∠ACB =40°,则∠P 1的度数为__︒30__;(2) 若∠A =α,求∠P 1的度数(用含α的代数式表示)(写出求解过程);∂=∠21P (3) 如图(乙),∠A =α,∠ABC 、∠ACD 的平分线交于点P 1,∠P 1BC 、∠P 1CD 的平分线相交于P 2,∠P 2BC 、∠P 2CD 的平分线相交于P 3,依次类推,则P n (n 为正整数)的度数为__∂n21______(用n 与α的代数式表示).(3’+4’+3’)。

浙江省金华市2018-2019学年第一学期八年级期中测试-数学试题卷参考答案及评分建议

浙江省金华市2018-2019学年第一学期八年级期中测试-数学试题卷参考答案及评分建议

AB DC 在△ABF 和△DCE 中, ∠B ∠C , BF CE
∴△ABF≌△DCE(SAS); (2)∵△ABF≌△DCE, ∴∠DEC=∠AFB, ∴OE=OF, ∴△OEF 是等腰三角形. 21.(8 分) 解:(1)设 BD=x,则 CD=28﹣x. ∵AD⊥BC, ∴∠ADB=∠ADC=90° . 在 Rt△ABD 中,由勾股定理,得 AD2=AB2﹣BD2. ∴AD2=252﹣x2. 在 Rt△ACD 中,由勾股定理,得 AD2=AC2﹣CD2. ∴AD2=172﹣(28﹣x)2. ∴252﹣x2=172﹣(28﹣x)2. 解得 x=20,即 BD=20. ∴CD=28﹣20=8. (2)在 Rt△ABD 中,由勾股定理,得 AD AB2 BD2 15 . ∴ S△ABC
2018-2019 学年第一学期八年级期中测试数学试题卷 参考答案及评分建议
一、单选题(共 10 题 共 30 分) 1.D 2.A 3.B 4.D 5.C 6.B 7.B 8.C 9.A 10.A 二、填空题(共 6 题 共 24 分) 11. 26≤t≤36 13. 如果两个角相等,那么这两个角是对顶角 15. 9.5
∠ABE ∠CAF ∵ AB AC ∠BAE ∠ACF
∴△ABE≌△CAF(ASA); ∴BE=AF,AE=CF, 所以 CF+EF=AE+EF=AF=BE
(3) 图④, 解:∵△ABC 的面积为 15,CD=2BD,
1 3 由图 3 中证出△ ABE≌△CAF, ∴△ACF 与△ BDE 的面积之和等于△ ABE 与△ BDE 的面积之和, 即等于△ ABD 的面 积,是 5.
∵DE 是线段 AC 的垂直平分线, ∴EA=EC,即△ EAC 是等腰三角形, ∴∠EAC=∠C, ∴∠AEB=∠EAC+∠C=2∠C, ∵∠B=2∠C, ∴∠AEB=∠B,即△ EAB 是等腰三角形, ∴AE 是△ ABC 是一条特异线. (2)解:如图 2 中,

2018-2019学年人教版上学期初二数学期中考试试卷及答案解析

2018-2019学年人教版上学期初二数学期中考试试卷及答案解析

2018-2019学年初二数学第一学期期中检测学校:___________姓名:___________班级:___________考号:___________一、选择题(每题3分,共30分)1.下列计算错误的是(▲ )A .a 2·a=a 3B .(ab )2=a 2b 2C .(a 2)3=a 5D .-a+2a=a2.下列四个图案中,是轴对称图形的是 (▲)3.下面各角能成为某多边形的内角和的是 (▲)A.430°B.4320°C. 4334°D.4360°4.如图,已知MB=ND,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( ▲ )A .∠M=∠NB . AM ∥CNC .AB = CD D . AM=CN5.已知等腰三角形的两条边长分别是2和4,则它的周长是( ▲ )A .10B .8C .8或10D .无法确定6. 如图,点D 为△ABC 边AB 的中点,将△ABC 沿经过点D 的直线折叠,使点A 刚好落在BC 边上的点F 处,若∠B=48°,则∠BDF 的度数为( ▲ )A .88°B .86°C .84°D .82°7.如图,∠MON 内有一点P ,P 点关于OM 的轴对称点是G ,P 点关于ON 的轴对称点是H ,GH分别交OM 、ON 于A 、B 点,若GH 的长为10cm ,求△PAB 的周长为( ▲ )A .5cmB . 10cmC . 20cmD . 15cm8.如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ▲ )A .△ACE≌△BCDB.△BGC≌△AFC C .△ADB≌△CEAD.△DCG≌△ECF9.如图,在△ABC 中,AB =AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E.某同学分析图形后得出以下结论: A B D C M N①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.上述结论一定正确的是( )A.①②③ B.②③④C.①③⑤ D.①③④10.如图所示,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在点C´的位置,则图中的一个等腰直角三角形是()A. △ADCB. △BDC’C. △ADC´D. 不存在二、填空题(每题3分,共24分)11.实数4的平方根是.12.点A(-5,-6)与点B(5,-6)关于__________对称。

2018-2019学年度第一学期八年级(上)期中数学试题(含答案).doc

2018-2019学年度第一学期八年级(上)期中数学试题(含答案).doc

2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学(满分:100分考试时间:100分钟)注意事项:1.选择题请用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.2.非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列“表情”中属于轴对称图案的是A. B. C. D.2.下列说法正确的是A .两个等边三角形一定全等B .形状相同的两个三角形全等C .面积相等的两个三角形全等D .全等三角形的面积一定相等3.下列长度的三条线段,能组成直角三角形的是 A .1,2,3B .2,3,4C .3,4,5D .4,5,64.在△ABC 中,AB =AC ,BD 为△ABC 的高,若∠BAC =40°,则∠CBD 的度数是 A .70°B .40°C .20°D .30°5.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A 的面积是 A .16 B .32 C .34 D .64925A(第5题)(第4题)ABCD6.到三角形三条边距离相等的点是A .三条边的垂直平分线的交点B .三条边上高的交点C .三条边上中线的交点D .三个内角平分线的交点7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′C ′B ′=∠ACB 的依据是A .SASB .SSSC .ASAD .AAS8.如图,长方形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′,点B 落在点B ′处.若∠2=40°,则∠1的度数为 A .115°B .120°C .130°D .140°二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题..卷.相应位置....上) 9.等边三角形有▲条对称轴.10.在Rt △ABC 中,∠C =90°,AB =13,BC =12,则AC =▲.11.已知△ABC ≌△DEF ,且△DEF 的周长为12.若AB =5,BC =4,则AC =▲. 12.若等腰三角形的两边长分别为4和8,则这个三角形的周长为▲. 13.在等腰△ABC 中,AC =AB ,∠A =70°,则∠B =▲°.14.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB ,垂足为D ,CD =▲.15.如图,在等腰△ABC 中,AB =AC ,AD 为△ABC 的中线,∠B =72°,则∠DAC =▲°. 16.在Rt △ABC 中,∠C =90°,∠A =30°,D 是斜边AB 的中点,DE ⊥AC ,垂足为E ,DE =2,则AB =▲.(第7题) AC DBB ′A ′C ′D ′(第8题)1 2BB ′ CA ′ DEAF(第15题)DACBDACB(第14题)(第16题)ACBDE17.如图,△DEF 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形.若在图中再画1个格点△ABC (不包括△DEF ),使△ABC ≌△DEF ,这样的格点三角形能画▲个.18.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =4,M 在BC 上,且BM =1,N 是AC上一动点,则BN +MN 的最小值为▲.三、解答题(本大题共9小题,共64分.请在答题..卷.指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)已知:如图,在△ABC 中,DE ∥BC ,AD =AE .求证:AB =AC .20.(5分)如图,三个直角三角形(Ⅰ,Ⅱ,Ⅲ)拼成一个梯形(两底分别为a 、b ,高为a +b ),利用这个图形,小明验证了勾股定理.请将计算过程补充完整. 解:S 梯形=12(上底+下底)×高=12(a +b )•(a +b ),即S 梯形=12(▲).①S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =▲+▲+▲.即S 梯形=12(▲).②由①、②,得a 2+b 2=c 2.DE C(第19题)A(第20题)cⅢcⅡⅠb ba a(第17题)EDFMNABC(第18题)21.(6分)如图,育苗棚的顶部是长方形,求育苗棚顶部薄膜ABDE 的面积.22.(6分)已知:如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .23.(6分)如图,△ABC 是等边三角形,D 是BC 上任意一点(与点B 、C 不重合),以AD 为一边向右侧作等边△ADE ,连接CE .求证:△CAE ≌△BAD .FECBA(第22题)DCEA(第23题)B(第21题)E24.(7分)如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,CD =12,AD =13.求四边形ABCD 的面积.25.(8分)如图,在△ABC 中,∠C =90°.E 是AB 中点,DE ⊥AB ,垂足为E .若CD =ED ,求∠BAC ,∠B 的度数.26.(8分)如图,在四边形ABCD 中,∠ABC =∠ADC =90°,M 为AC 的中点.(1)求证:MB =MD .(2)若∠BAD =100°,求∠BMD 的度数.M(第26题)CABD (第24题)CBDA(第25题)BE DC27.(12分)在Rt △ABC 中,∠C =90°,将△ABC 沿着某条直线折叠.(1)若该直线经过点A ,且折叠后点C 落在AB 边上,请用直尺和圆规在图①中作出该直线(不写作法,保留作图痕迹); (2)若折叠后点A 与点B 重合.①请用直尺和圆规在图②中作出该直线(不写作法,保留作图痕迹); ②若图②中所画直线与AC 交于点P ,且AB =8,AP =5,求CP 的长.(第27题)AC图①AC图②2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计16分)二、填空题(每小题2分,共计20分)9.3 10.5 11.3 12.20 13.55 14.4.8 15.18 16.8 17.3 18.5三、解答题(本大题共9小题,共计64分) 19.(本题6分) 证明:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C .……………………………………………2分 ∵AD =AE ,∴∠ADE =∠AED . …………………………………………………………4分 ∴∠B =∠C . ………………………………………………………………5分 ∴AB =AC .……………………………………………………………………6分20.(本题5分)解:S 梯形=12(上底+下底)•高=12(a +b )•(a +b ),即S 梯形=12(a 2+2ab +b 2).①…………………………1分S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =12ab +12c 2+12ab .…………………………4分即S 梯形=12(c 2+2 ab ).②……………………………5分由①、②,得a 2+b 2=c 2.21.(本题6分)解:在Rt △ABC 中,∠ACB =90°,由勾股定理得:AB 2=AC 2+BC 2=22+1.52=6.25,∴AB =2.5(m ).…………3分∴S 四边形ABDE =2.5×20=50(m 2).……………………………………………5分 答:四边形ABDE 的面积是50m 2.……………………………………………6分 22.(本题6分)证明:∵AF =DC ,∴AF +FC =DC +FC .即AC =DF .………………………1分在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠A =∠D ,AC =DF .∴△ABC ≌△DEF (SAS ).…………………4分∴∠BCA =∠EFD .……………………………………………5分 ∴BC ∥EF .……………………………………………6分 23.(本题6分)证明:∵△ABC 和△ADE 是等边三角形,∴AC =AB ,AE =AD ,∠DAE =∠BAC =60°.………………………………3分 ∴∠DAE -∠CAD =∠BAC -∠CAD ,即∠CAE =∠BAD .………………4分 在△CAE 和△BAD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD .∴△CAE ≌△BAD (SAS ).………6分24.(本题7分)解:∵在△ABC 中,∠B =90°,AB =4,BC =3,∴AC =5.………………………2分在△ADC 中,AD =13,CD =12,AC =5. ∵122+52=132,即CD 2+AC 2=AD 2,∴△ADC 是直角三角形,且∠DCA =90°.……………………………………4分∴S 四边形ABCD =S △ABC +S △ADC =12AB •BC +12AC •CD =12×3×4+12×5×12=36.……7分25.(本题8分) 解:连接AD .∵∠C =90°,DE ⊥AB ,CD =ED , ∴点D 在∠BAC 的角平分线上.∴∠CAD =∠EAD .……………………………………………………………………2分 ∵E 是AB 中点,DE ⊥AB ,∴DB =DA .……………………………………………………………………4分 ∴∠DBA =∠DAB .……………………………………………………………………6分 ∵∠DBA +∠CAB =90°, ∴3∠DBA =90°. ∴∠DBA =30°.∴∠B =30°,∠BAC =60°.…………………………………………………………8分 26.(本题8分)(1)证明:∵∠ABC =∠ADC =90°,又∵M 为AC 的中点,∴MB =12AC ,MD =12AC .………………………………4分∴MB =MD .…………………………………………………………………………5分 (2)解:∵∠BAD =100°,∴∠BCD =360°-(∠ABC +∠ACB )-∠BAD =80°,……………………………6分 ∵MB =MC =MD ,∴∠MBC =∠MCB ,∠MCD =∠MDC .……………………………………………7分 ∴∠BMD =∠BMA +∠DMA =2∠BCA +2∠DCA =2∠ACB =2×80°=160°.……8分27.(本题12分)解:(1)如图,直线AD 即为所求.…………………………………………………3分(2)①如图,直线MN 即为所求.……………………………………………………6分②由①中的作图得:AP =PB .…………………………………………………7分 ∵∠C =90º,∴ △BCP 和△ACB 是直角三角形. 在Rt △ABC 中,∵AC 2+CB 2=AB 2,∴BC 2=AB 2-AC 2.………………………………………8分 在Rt △PCB 中,∵PC 2+CB 2=PB 2,∴ BC 2=PB 2-CP 2.………………………………………9分 ∴ AB 2-AC 2=PB 2-CP 2. 设CP =x ,则AC =5+x ,52-x 2=82-(5+x )2.……………………………………………………………11分 ∴ x =1.4.即CP 的长为1.4.…………………………12分.ACDBBCAPMN。

2018-2019学年最新浙教版八年级数学上学期期中考试模拟测试卷及答案解析-精品试题

2018-2019学年最新浙教版八年级数学上学期期中考试模拟测试卷及答案解析-精品试题

八年级(上)期中数学试卷一、选择题(每小题3分,共30分):1.下列交通标志图案是轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.(x3)4=x7B.x3•x4=x12C.(﹣2x)2=4x2 D.(3x)3=9x33.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性4.关于点P(﹣1,3)和点Q(﹣1,5)的说法正确的是()A.关于直线x=4对称B.关于直线x=2对称C.关于直线y=4对称D.关于直线y=2对称5.在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A,B的距离之和最小,现有如下四种方案,其中正确的是()A.B.C.D.6.若等腰三角形一边长为5,另一边长为6,则这个三角形的周长是()A.18或15 B.18 C.15 D.16或177.下列各图中,不一定全等的是()A.有一个角是45°腰长相等的两个等腰三角形B.周长相等的两个等边三角形C.有一个角是100°,腰长相等的两个等腰三角形D.斜边和一条直角边分别相等的两个直角三角形8.已知:如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90° C.2α+∠A=90°D.α+∠A=180°9.将一张正方形纸片按图①、图②所示的方式依次对折后,再沿图③中的虚线剪裁,最后将图④中的纸片打开铺平,所得到的图案是()A.B.C.D.10.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行二、填空题(每小题3分,共30分):11.计算:(1)b5•b=;(2)(103)5= ;(3)(2ab2)3= .12.三角形按边分类可分为:三边都不相等的三角形和三角形两类.13.已知点A(2,﹣3),则点A关于y轴的对称点坐标为.14.如图,∠BAC=∠ABD,请你添加一个条件:,使OC=OD(只添一个即可).15.“生活中处处有数学”,请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,我们就可以得到一个著名的常用几何结论,这一结论是:.16.一个凸多边形的内角和是其外角和的2倍,则这个多边形是边形.17.如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为.18.已知2m=a,32n=b,则23m+10n= .三、填空题(共3小题,每小题2分,满分6分)19.通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形.20.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论中:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,正确的是.21.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.三、解答题(共60分)2)如图1,在平面直角坐标系x0y中,A(﹣1,5),B(﹣1,0),C(﹣4,3).①△ABC的面积是.②作出△ABC关于y轴的对称图形△A1B1C1.(2)如图2,按下列要求作图:(不写作法,保留作图痕迹)①作出△ABC的角平分线BD;②作出△ABC的高CG..23.如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,求△ADE的周长.24.已知:如图,C、D在AB上,且AC=BD,AE∥FB,DE∥FC.求证:AE=BF.25.如图,已知△ABC≌△A′B′C′,AD、A′D′分别是△ABC和△A′B′C′的角平分线.(1)请证明:AD=A′D′;(2)把上述结论用文字叙述出来:;(3)请你再写出一条其他类似的结论:.26.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:作法:如图1,①在OA和OB上分别截取OD、OE,使OD=OE.②分别以D、E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C.③作射线OC,则OC就是∠AOB的平分线.小聪的作法步骤:如图2,①利用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是.②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)27.如图(1),在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D.点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)当x= 时,PQ⊥AC;(2)当0<x<2时,求出使PQ∥AB的x值;(3)当2<x<4时,①是否存在x,使△BPQ是直角三角形?若存在,请求出x的值,若不存在,请说明理由;②设PQ与AD交于点O,探索:OP与OQ的关系,并说明理由.参考答案与试题解析一、选择题(每小题3分,共30分):1.下列交通标志图案是轴对称图形的是()A.B.C.D.考点:轴对称图形.专题:常规题型.分析:根据轴对称的定义结合选项所给的特点即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列运算正确的是()A.(x3)4=x7B.x3•x4=x12C.(﹣2x)2=4x2 D.(3x)3=9x3考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方与积的乘方运算法则、同底数幂的乘法,结合选项进行判断即可.解答:解:A、(x3)4=x12,计算错误,故本选项错误;B、x3•x4=x7,计算错误,故本选项错误;C、(﹣2x)2=4x2,计算正确,故本选项正确;D、(3x)3=27x3,计算错误,故本选项错误;故选C.点评:本题考查了幂的乘方与积的乘方、同底数幂的乘法,属于基础题,掌握运算法则是关键.3.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性考点:三角形的稳定性.分析:用木条EF固定矩形门框ABCD,即是组成△AEF,故可用三角形的稳定性解释.解答:解:加上EF后,原不稳定的四边形ABCD中具有了稳定的△EAF,故这种做法根据的是三角形的稳定性.故选D.点评:本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.4.关于点P(﹣1,3)和点Q(﹣1,5)的说法正确的是()A.关于直线x=4对称B.关于直线x=2对称C.关于直线y=4对称D.关于直线y=2对称考点:坐标与图形变化-对称.分析:观察两坐标的特点,发现横坐标相同,所以对称轴为平行与x轴的直线,即y=纵坐标的平均数.解答:解:∵点P(﹣1,3)和点Q(﹣1,5)对称,∴PQ平行与y轴,所以对称轴是直线y=(3+5)=4.∴点P(﹣1,3)和点Q(﹣1,5)关于直线y=4对称.故选C.点评:本题主要考查了坐标与图形变化﹣﹣对称特;解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标或利用对应点的坐标求得对称轴.5.在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A,B的距离之和最小,现有如下四种方案,其中正确的是()A.B.C.D.考点:轴对称-最短路线问题;坐标与图形性质.分析:根据在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.解答:解:若在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A,B 的距离之和最小,则可以过点A作关于y轴的对称点,再连接B和作出的对称点连线和y轴的交点即为所求,由给出的四个选项可知选项C满足条件.故选C.点评:本题考查了轴对称﹣最短路线问题,在一条直线上找一点使它到直线同旁的两个点的距离之和最小,所找的点应是其中已知一点关于这条直线的对称点与已知另一点的交点.6.若等腰三角形一边长为5,另一边长为6,则这个三角形的周长是()A.18或15 B.18 C.15 D.16或17考点:等腰三角形的性质;三角形三边关系.专题:计算题.分析:分两种情况考虑:当5为等腰三角形的腰长时和底边时,分别求出周长即可.解答:解:当5为等腰三角形的腰长时,6为底边,此时等腰三角形三边长分别为5,5,6,周长为5+5+6=16;当5为等腰三角形的底边时,腰长为6,此时等腰三角形三边长分别为5,6,6,周长为5+6+6=17,综上这个等腰三角形的周长为16或17.故选D点评:此题考查了等腰三角形的性质,以及三角形的三边关系,熟练掌握等腰三角形的性质是解本题的关键.7.下列各图中,不一定全等的是()A.有一个角是45°腰长相等的两个等腰三角形B.周长相等的两个等边三角形C.有一个角是100°,腰长相等的两个等腰三角形D.斜边和一条直角边分别相等的两个直角三角形考点:全等三角形的判定.专题:推理填空题.分析:熟练运用全等三角形的判定定理解答.做题时根据已知条件,结合全等的判定方法逐一验证.解答:解:A、有一个角是45°腰长相等的两个等腰三角形,没有边对应相等不能判断全等,故选项错误;B、周长相等的等边三角形,边长也相等,根据SSS可判定两三角形全等,故选项正确;C、因为已知一个角为100°的等腰三角形,没有指出该角是顶角还是底角,根据三角形内角和公式得,该角为顶角,又因为是等腰三角形则两腰对应相等,根据SAS判定两三角形全等,故选项正确;D、斜边和一条直角边分别相等的两个直角三角形,根据HL判定两三角形全等,故选项正确.故选A.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要认真仔细,最好画图结合图形进行判断.8.已知:如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90° C.2α+∠A=90°D.α+∠A=180°考点:全等三角形的判定与性质;等腰三角形的性质.专题:压轴题.分析:由AB=AC,根据等边对等角,即可得∠B=∠C,又由BF=CD,BD=CE,可证得△BDF≌△CED(SAS),根据全等三角形的性质,即可求得∠B=∠C=α,根据三角形的内角和定理,即可求得答案.解答:解:∵AB=AC,∴∠B=∠C,∵BF=CD,BD=CE,∴△BDF≌△CED(SAS),∴∠BFD=∠EDC,∵α+∠BDF+∠EDC=180°,∴α+∠BDF+∠BFD=180°,∵∠B+∠BDF+∠BFD=180°,∴∠B=α,∴∠C=∠B=α,∵∠A+∠B+∠C=180°,∴2α+∠A=180°.故选:A.点评:此题考查了等腰三角形的性质、全等三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.9.将一张正方形纸片按图①、图②所示的方式依次对折后,再沿图③中的虚线剪裁,最后将图④中的纸片打开铺平,所得到的图案是()A.B.C.D.考点:剪纸问题.分析:根据题中所给剪纸方法,进行动手操作,答案就会很直观地呈现.解答:解:严格按照图中的顺序进行操作,展开得到的图形如选项B中所示.故选B.点评:本题考查的是剪纸问题,此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.10.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行考点:轴对称的性质;平移的性质.分析:由已知条件,根据轴对称的性质和平移的基本性质可得答案.解答:解:观察原图,由于进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选:B.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键.二、填空题(每小题3分,共30分):11.计算:(1)b5•b=b6;(2)(103)5= 1015;(3)(2ab2)3= 8a3b6.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据同底数幂的乘法及幂的乘方的定义解答.解答:解:(1)原式=b5+1=b6;(2)原式=103×5=1015;(3)原式=23a3b6=8a3b6;故答案为(1)b6;(2)1015;(3)8a3b6.点评:本题考查了幂的乘方及同底数幂的乘法,理清指数的变化是解题的关键.12.三角形按边分类可分为:三边都不相等的三角形和等腰三角形两类.考点:三角形.分析:三角形按边分,可分为两类:不等边三角形和等腰三角形;进而解答即可.解答:解:三角形按边分类可以分为不等边三角形和等腰三角形;故答案为:等腰.点评:此题考查了三角形的分类.按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).13.已知点A(2,﹣3),则点A关于y轴的对称点坐标为(﹣2,﹣3).考点:关于x轴、y轴对称的点的坐标.分析:根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.解答:解:点A(2,﹣3)关于y轴的对称点坐标为(﹣2,﹣3).故答案为:(﹣2,﹣3).点评:本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.如图,∠BAC=∠ABD,请你添加一个条件:∠C=∠D或AC=BD ,使OC=OD (只添一个即可).考点:全等三角形的判定.专题:开放型.分析:本题可通过全等三角形来证简单的线段相等.△AOD和△BOC中,由于∠BAC=∠ABD,可得出OA=OB,又已知了∠AOD=∠BOC,因此只需添加一组对应角相等即可得出两三角形全等,进而的得出OC=OD.也可直接添加AC=BD,然后联立OA=OB,即可得出OC=OD.解答:解:∵∠BAC=∠ABD,∴OA=OB,又有∠AOD=∠BOC;∴当∠C=∠D时,△AOD≌△BOC;∴OC=OD.故填∠C=∠D或AC=BD.点评:本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.15.“生活中处处有数学”,请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,我们就可以得到一个著名的常用几何结论,这一结论是:三角形的内角和是180°.考点:三角形内角和定理.分析:根据折叠前后的两个角相等,把三角形的三个角转化为一个平角,可以得到三角形内角和定理.解答:解:根据折叠的性质,∠A=∠1,∠B=∠2,∠C=∠3,∵∠1+∠2+∠=180°,∴∠A+∠B+∠C=180°,∴定理为:三角形的内角和是180°.故答案为:三角形的内角和是180°.点评:本题主要考查了三角形的内角和定理的证明,熟练掌握翻折变换的性质是解题的关键.16.一个凸多边形的内角和是其外角和的2倍,则这个多边形是 6 边形.考点:多边形内角与外角.专题:探究型.分析:多边形的外角和是360度,多边形的内角和是它的外角和的2倍,则多边形的内角和是720度,根据多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.解答:解:设多边形边数为n.则360°×2=(n﹣2)•180°,解得n=6.故答案为:6.点评:本题主要考查了多边形内角和公式及外角的特征,求多边形的边数,可以转化为方程的问题来解决.17.如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为12 .考点:线段垂直平分线的性质;等腰三角形的性质;含30度角的直角三角形.专题:计算题.分析:连接AF,根据等腰三角形性质求出∠C=∠B=30°,根据线段垂直平分线求出AF=BF=2EF=4,求出CF=2AF=8,即可求出答案.解答:解:连接AF,∵AC=AB,∴∠C=∠B=30°,∵EF是AB的垂直平分线,∴AF=BF,∴∠B=∠FAB=30°,∴∠CFA=30°+30°=60°,∴∠CAF=180°﹣∠C﹣∠CFA=90°,∵EF⊥AB,EF=2,∴AF=BF=2EF=4,∵∠C=30°,∠CAF=90°,∴CF=2AF=8,∴BC=CF+BF=8+4=12,故答案为:12.点评:本题考查了等腰三角形性质,线段垂直平分线性质,含30度角的直角三角形性质等知识点的应用,关键是求出CF和BF的长,题目比较典型,难度不大18.已知2m=a,32n=b,则23m+10n= a3b2.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方和同底数幂的乘法运算规则进行计算.解答:解:∵32n=b,∴25n=b,∴23m+10n,=23m•210n,=(2m)3•(25n)2,=a3b2.点评:此题考查幂的乘方和同底数幂的乘法运算;幂的乘方:底数不变,指数相乘;同底数幂的乘法:底数不变,指数相加.三、填空题(共3小题,每小题2分,满分6分)19.通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形.考点:规律型:图形的变化类.专题:压轴题.分析:对称规律是:(1)这几幅图是A、B、C、D、E、F六个字母的对称图形;(2)1、3、5是上下对称;2、4、6是左右对称.根据此规律即可得到图形.解答:解:由题意,1,3,5上下对称即得,且图形由复杂变简单.故答案为.点评:本题考查了图形的变化,1,3,5图形上下对称,2,4,6左右对称,即得.20.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论中:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,正确的是①②③④.考点:全等三角形的判定与性质;等边三角形的性质;相似三角形的判定与性质.专题:推理填空题.分析:首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS判定△BCD≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,同理证得CF=CG,得到△CFG是等边三角形,易得③正确.解答:解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,∴△BCD≌△ACE(SAS),∴AE=BD,(①正确)∠CBD=∠CAE,∵∠BCA=∠ACG=60°,AC=BC,∴△BCF≌△ACG(ASA),∴AG=BF,(②正确)同理:△DFC≌△EGC(ASA),∴CF=CG,∴△CFG是等边三角形,∴∠CFG=∠FCB=60°,∴FG∥BE,(③正确)过C作CM⊥AE于M,CN⊥BD于N,∵△BCD≌△ACE,∴∠BDC=∠AEC,∵CD=CE,∠CND=∠CMA=90°,∴△CDN≌△CEM,∴CM=CN,∵CM⊥AE,CN⊥BD,∴△Rt△OCN≌Rt△OCM(HL)∴∠BOC=∠EOC,∴④正确;故答案为:①②③④.点评:此题考查了等边三角形的判定与性质与全等三角形的判定与性质.此题图形比较复杂,解题的关键是仔细识图,合理应用数形结合思想.21.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有13 种.考点:利用轴对称设计图案.专题:压轴题.分析:根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案.解答:解:如图所示:故一共有13做法,故答案为:13.点评:此题主要考查了利用轴对称设计图案,熟练利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.三、解答题(共60分)2)如图1,在平面直角坐标系x0y中,A(﹣1,5),B(﹣1,0),C(﹣4,3).①△ABC的面积是.②作出△ABC关于y轴的对称图形△A1B1C1.(2)如图2,按下列要求作图:(不写作法,保留作图痕迹)①作出△ABC的角平分线BD;②作出△ABC的高CG..考点:作图-轴对称变换;作图—复杂作图.分析:(1)①直接根据三角形的面积公式解答即可;②根据轴对称的性质作出△A1B1C1;(2)①以点B为圆心,以任意长为半径画圆,分别交AB、BC于点EF,再分别以E、F为圆心,以大于EF为半径画圆,两圆相交于点D,连接BD即可;②过点C作CG⊥BA的延长线于点G即可.解答:解:(1)①∵由图可知,AB=5,边AB上的高为3,∴S△ABC=×5×3=.故答案为:;②如图1所示;(2)如图2,①以点B为圆心,以任意长为半径画圆,分别交AB、BC于点EF,再分别以E、F为圆心,以大于EF为半径画圆,两圆相交于点D,连接BD,则BD为∠ABC的平分线;②过点C作CG⊥BA的延长线于点G,则CG为△ABC的高.点评:本题考查的是轴对称变换及基本作出,熟知关于y轴对称的点的坐标特点是解答此题的关键.23.如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,求△ADE的周长.考点:翻折变换(折叠问题).分析:根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.解答:解:∵BC沿BD折叠点C落在AB边上的点E处,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,∴AE=AB﹣BE=AB﹣BC=8﹣6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.点评:本题考查了翻折变换的性质,熟记翻折前后两个图形能够完全重合得到相等的线段是解题的关键.24.已知:如图,C、D在AB上,且AC=BD,AE∥FB,DE∥FC.求证:AE=BF.考点:全等三角形的判定与性质.专题:证明题.分析:求出AD=BC,根据平行线性质求出∠A=∠B,∠ADE=∠BCF,根据ASA推出△AED≌△BFC即可.解答:证明:∵AC=BD,∴AC+CD=BD+CD,即AD=BC,∵AE∥FB,DE∥FC,∴∠A=∠B,∠ADE=∠BCF,∵在△AED和△BFC中,∴△AED≌△BFC(ASA),∴AE=BF.点评:本题考查了全等三角形的性质和判定,平行线的性质,解此题的关键是推出△AED≌△BFC,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等.25.如图,已知△ABC≌△A′B′C′,AD、A′D′分别是△ABC和△A′B′C′的角平分线.(1)请证明:AD=A′D′;(2)把上述结论用文字叙述出来:全等三角形的对应角的平分线相等;(3)请你再写出一条其他类似的结论:全等三角形的对应边上的高(或中线)相等.考点:全等三角形的判定与性质.分析:(1)由△ABC≌△A'B'C'的对应边、角相等得到:∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,然后由角平分线的定义可以证得∠BAD=∠B′A′D′,则根据ASA证得△ABD≌△A′B′D′;(2)根据证得的结论得到:全等三角形的对应角的平分线相等;(3)类似的得到:全等三角形的对应边上的高(或中线)相等解答:(1)证明:如图,∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,又∵AD、A′D′分别是△ABC和△A′B′C′的角平分线,∴∠BAD=∠B′A′D′,∴在△ABD与△A′B′D′中,,∴△ABD≌△A′B′D′(ASA),∴AD=A′D′;(2)由(2)中的结论得到:全等三角形的对应角的平分线相等;(3)同理:全等三角形的对应边上的高(或中线)相等.故答案是:全等三角形的对应角的平分线相等;全等三角形的对应边上的高(或中线)相等.点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.26.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:作法:如图1,①在OA和OB上分别截取OD、OE,使OD=OE.②分别以D、E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C.③作射线OC,则OC就是∠AOB的平分线.小聪的作法步骤:如图2,①利用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS .②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)考点:作图—复杂作图;全等三角形的判定与性质.分析:①根据全等三角形的判定即可求解;②根据HL可证Rt△OMP≌Rt△ONP,再根据全等三角形的性质即可作出判断;③根据用刻度尺作角平分线的方法作出图形,写出作图步骤即可.解答:解:①李老师用尺规作角平分线时,用到的三角形全等的判定方法SSS.故答案为:SSS;②小聪的作法正确.理由:∵PM⊥OM,PN⊥ON∴∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中∵,∴Rt△OMP≌Rt△ONP(HL).∴∠MOP=∠NOP∴OP平分∠AOB.③如图所示.。

2018-2019学年浙教版上学期八年级期中考试数学试题(卷)及答案

2018-2019学年浙教版上学期八年级期中考试数学试题(卷)及答案

17.解下列不等式(组) .
( 1) 4x+5≤2(x +1)
2x 1> x 1
( 2)
x 8<4 x 1
18. 如图,阴影部分 是由 5 个小正方形组成的一个直角图形,请用二种方法分别在下图的空白 内.添涂黑二.个.小正方形,使阴影部分成为轴对称图形.
..方.格.
19. 如图,在△ ABC 中,∠ ACB=114°,∠ B=46 °, CD 平分∠ ACB, CE 为 AB 边上的高,求∠ DCE 的度数.
A . 21°
B . 22°
C. 23 °
D.
24°10.如图,∠ BAC=∠ DAF =90°, AB= AC, AD= AF ,点 D, E 为 BC
边上的两点,且∠ DAE =45°,连接 EF, BF ,则下列结论:
① △ AFB ≌△ ADC ②△ ABD 为等腰三角形 ③∠ ADC =120° ④ B E2+ DC2=DE 2,其中正确的有(

▲; ;
14. 如图,△ ABC 三边的中线 AD ,BE,CF 的公共点为 G,若 S△ABC=15 ,则图中阴影部分的面积
是 __▲ ____;
B E
C
第 14 题图
O
D
A
第 15 题图
15.如图,射线 OA⊥射线 OB 于点 O,线段 CD =10, CE=4,且 CE⊥CD 于点 C,当线段 CD 的两个
端点分别在射线 OB 和射线 OA 上滑动时,点 E 到点 O 的最短距离为


16.如果一个三角形能被一条线段分割成两个等腰三角形,
那么称这条线段为这个三角形的等腰线,
称这个三角形为 双等腰三角形 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A . 14 B . 7 C . 4 D . 2
第Ⅱ卷的注释
第Ⅱ卷 主观题
评卷人 得分
一、填空题(共 6 题)
1. 如图,长为 8cm 的橡皮筋放置在 x 轴上,固定两端 A 和 B,然后把中点 C 向上拉升 3cm 到 D,则橡皮
筋被拉长了
cm .
2. 已知两线段的长分别为 5cm 和 3cm,则第三条线段为
考试试卷
考试时间:**分钟 满分:**分
姓名:____________班级:____________学号:___________
题号 得分




1、填写答
2、提前 15 分钟收取答题卡
三题卡四源自五六事 的内容用
总分

2B

核分人
: 笔填写
第Ⅰ卷的注释
第Ⅰ卷 客观题
评卷人 得分
一、单选题(共 10 题)
A . 10 cm B . 20 cm C . 5 cm D . 不能确定 8. 如图,△ABC 中,∠ACB=90°,点 D 在 CB 上,E 为 AB 的中点,AD,CE 相交于点 F,且 AD=DB.若 ∠B=20°,则∠DFE=( )
A . 40° B . 50° C . 60° D . 70° 9. 已知:如图△ABC 中,AB=AC,∠C=30°,AB⊥AD,AD=2cm.则 CB 的长=( ).
至少要答对
道题.
6. 如图,已知在平面直角坐标系 xOy 中,O 是坐标原点,直线 l:y= x,点 A1 坐标为(4,0),过点 A1 作 x 轴的垂线交直线 l 于点 B1 , 以原点 O 为圆心,OB1 长为半径画弧交 x 轴正半轴于点 A2 , 再过点 A2
作 x 轴的垂线交直线 l 于点 B2 , 以原点 O 为圆心,OB2 为半径画弧交 x 轴正半轴于点 A3……按此做法进
A . 8cm B . 6cm C . 4cm D . 2cm 10. 如图①,在 Rt△ABC 中,∠ACB=90°,D 是斜边 AB 的中点,动点 P 从 B 点出发,沿 B→C→A 运动, 设 S△PDB=y,点 P 运动的路程为 x,若 y 与 x 之间的函数图象如图②所示,则 AC 的长为( )
答案第 2页,总 20页
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
评卷人 得分
二、计算题(共 1 题)
7. 解不等式组
,并写出它的所有整数解.
评卷人 得分
三、解答题(共 1 题)
8. 如图,已知∠DAB=∠CAE,AB=AE,AD=AC. 求证:BC=DE.
评卷人 得分
四、作图题(共 1 题)
9. 如图,在平面直角坐标系中,△ABC 的顶点 A(0,1),B(3,2),C(1,4)均在正方形网格的格点 上.
时,这三条线段构成直角三角形。
3. 已知等腰三角形的一个外角为 108°,则其底角的度数为
4. 如图,AD 是△ABC 的角平分线,AB=3,AC=2,△ABD 的面积为 15,则△ACD 的面积为
.
5. 某次知识竞赛共有 20 道题,每一题答对得 10 分,答错或不答都扣 5 分.小明得分要超过 90 分,他
(1)画出△ABC 关于 x 轴的对称图形△A1B1C1;
第 1页,总 20页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
A . 92° B . 94° C . 96° D . 98° 7. 如图,△ABC 的两边 AC 和 BA 的垂直平分线分别交 BC 于 D,E 两点,若 BC 边的长为 10 cm,则△ADE 的周长为( )
答案第 4页,总 20页
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
行下去,点 A2 017 的横坐标为
第 3页,总 20页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
D . -2a>-2b
4. 在平面直角坐标系中,将点(-2,-3)向上平移 3 个单位长度,则平移后的点的坐标为( ) A . (-2,0) B . (-2,1) C . (0,-2) D . (1,-1)
5. 在△ABC 中,AB=5,AC=8,则 BC 长可能是( ) A . 3 B . 8 C . 13 D . 14 6. 如图,在△ABC 中,D,E 分别是 AB,AC 上的点,点 F 在 BC 的延长线上,DE∥BC,∠A=46°,∠1= 52°,则∠2=( )
1. 下列图形中是轴对称图形的是( )
A.
B.
C.
D.
2. 在平面直角坐标系中,点 A(5,6)与点 B 关于 x 轴对称,则点 B 的坐标为( ) A . (5,6) B . (-5,-6) C . (-5,6) D . (5,-6) 3. 若 a>b,则下列各式中一定成立的是( )
A . a+2<b+2 B . a-2<b-2 C . >
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
浙江省金华市浦江县 2018-2019 学年八年级上学期数学期中
相关文档
最新文档