(学生版)第10讲 统计与概率
统计与概率-人教版六年级数学下册教案

统计与概率-人教版六年级数学下册教案第一部分:教学目标本单元的目标是使学生能够理解概率的定义,了解并掌握概率的计算方法,以及能够应用概率来解决实际问题。
第二部分:教学重点和难点本单元的教学重点为:1.概率的定义和基本概念;2.概率的计算方法;3.概率应用问题的思路及解题方法。
本单元的教学难点为:1.如何理解和运用概率的概念;2.如何运用概率解决实际问题。
第三部分:教学内容及教学过程1. 概率的定义和基本概念教学内容:1.概率的定义;2.事件、样本空间和总事件;3.等可能事件;4.不等可能事件。
教学过程:1.通过图片或图示,引导学生思考随机事件的不确定性,了解概率的基本定义;2.通过实例介绍事件、样本空间和总事件的概念及这些概念的关系;3.引导学生思考和理解等可能事件和不等可能事件的区别。
2. 概率的计算方法教学内容:1.概率计算的基本方法;2.相关概率的计算。
教学过程:1.通过实例,介绍事件的概率的计算方法,包括统计概率和几何概率;2.通过实例,介绍相关概率的计算方法,如并、交、补集等。
3. 概率应用问题的思路及解题方法教学内容:1.概率在实际中的应用;2.常见的概率应用问题及解决方法。
教学过程:1.通过实例介绍概率在实际中的应用情况;2.以常见的概率应用问题为例,说明解题的思路和方法,引导学生独立解决实际问题。
第四部分:教学评价教师可以通过布置作业、讲解练习题或组织小型竞赛等形式,评价学生对本单元的掌握情况以及对概率解题方法的理解能力。
第五部分:教学反思教学过程中注意以下几点:1.通过互动式教学和多元化教学方法,引导学生主动思考学习;2.引导学生从生活实际中解题,加深对概率的理解;3.在讲解过程中,要严谨、透彻地讲解,避免教学过于简化;同时也要注意帮助学生理解难点和关键点。
《统计与概率》教案

《统计与概率》教案《统计与概率》教案1设计说明由于数据的收集与整理和现实生活息息相关,因此本设计注重从熟悉的现实生活情境引入,激发学生的学习兴趣,使学生体会学习统计的必要性。
同时让学生再次经历收集、整理、分析、决策的过程,培养学生收集数据、整理信息和分析数据的能力。
课前准备教师准备:PPT课件学生准备:纸卡教学过程⊙引入课题,明确目标今天这节课我们复习数据的收集与整理。
(板书课题)⊙分工合作,梳理知识1.引导学生小组合作,交流第一单元学习的内容。
2.组织学生汇报所回顾的知识。
(1)用调查法收集数据。
收集数据可以采用举手、起立、画“√”“○”作记号等方式,但无论选择哪种方式,都要做到不重复、不遗漏。
(2)用画“正”字法记录数据。
记录数据时的方法不唯一,可以采用画“正”字、画“√”、画“○”等方法。
当我们要记录的数量越来越多时,圆圈、对号的个数也会越来越多,这样看上去就会比较乱,数的时候不好数,而用画“正”字法记录数据时,就很清楚,所以采用画“正”字法记录数据,既方便又快捷。
(3)认识统计表。
统计表就是将统计的结果用表格的形式展示出来的一种表格。
统计表可以直接看出各种数据的多少,便于分析问题和解决问题。
3.引导学生自主整理知识结构,并展示知识结构图。
数据的收集与整理4.提出问题。
(1)过渡:对以上的学习内容,你有什么疑问?(2)组织学生质疑、释疑并交流整理知识的体会。
设计意图:根据二年级学生的年龄及心理特点,先引导学生在合作交流中,初步理清知识层次,激活学生的思维,使学生乐于合作,勇于探究。
在此基础上,再给予学生充分的时间进行自主整理知识结构图,以便培养学生的复习、整理的能力,这样可以有效地调动学生的学习积极性。
⊙借助习题,回顾重点,强化提高1.复习用调查法收集数据。
(1)课件出示习题:统计一下班级同学的出生月份情况。
1~12月哪月出生的人数最多?哪月出生的人数最少?(2)引导学生思考:要完成这项统计,你准备怎么办?引导学生找出一些容易操作的方法:举手或组内报名,小组汇报等。
四年级下册数学教案:统计与概率

四年级下册数学教案:统计与概率一、教学目标:通过本单元的学习,学生能够:1. 掌握统计的基本方法和过程,并能够根据给出的数据进行统计分析;2. 熟练掌握概率的定义和基本概念,并能够用概率的思想解决问题;3. 认识到统计与概率在生活中的应用,并能够用所学知识进行分析。
二、教材分析:本单元的教材主要包括以下几个方面:1. 统计的基本概念和方法:如调查、统计表、图表的绘制和分析等;2. 概率的基本概念和公式:如概率的定义、加法原理、乘法原理等;3. 统计和概率的应用:如生活中的概率问题、统计调查的分析等。
本单元的教材重点在于让学生掌握统计和概率的基本概念和方法,并能够应用所学知识解决实际问题。
在教学中应注重培养学生的观察力、分析能力和解决问题的能力。
三、教学过程:1. 教学准备:制定教学计划、准备教学资料和教具、备课、安排师生活动空间等。
2. 教学设计:(1)引入新课通过一段小故事或实例来介绍统计和概率在生活中的应用,激发学生的兴趣,引发学生的思考。
(2)知识点讲解通过多媒体、图表、讲解等形式,将统计和概率的基本概念和方法讲解给学生,让学生掌握统计表、图表的绘制和分析方法,熟练掌握概率的基本概念和公式,学习如何用概率的思想解决问题等。
(3)课堂练习为巩固学生的所学知识,教师可以出一些课堂练习,要求学生用所学知识解决问题,检验学生的掌握程度。
(4)拓展学习引导学生学习相关领域的知识,如生态统计、生物统计、经济统计等,拓展学习领域。
(5)教学反思及时反思教学过程,总结教学效果,发现问题并加以改进,提高自身教学水平。
四、教学方法:本单元的教学方法主要为多种形式相结合的综合性教学方法。
在教学中应采用针对性强、实用性强的授课方法,注重培养学生的实践能力和解决问题的能力,推崇启发式教学方法,引导学生发现问题,激发他们的思考和创造力。
五、教学手段:本单元的教学手段主要包括多媒体、图表、实物模型等多种手段。
通过多种形式的教学手段可以激发学生的学习兴趣,提高教学质量。
【小学精品奥数】概率-学生版

“统计与概率”主要研究现实生活中的数据和客观世界中的随机现象,兼有应用性和趣味性,其内容及延伸贯穿于初等数学到高等数学,因此成为小学数学中新增内容.1.能准确判断事件发生的等可能性以及游戏规则的公平性问题.2.运用排列组合知识和枚举等计数方法求解概率问题.3.理解和运用概率性质进行概率的运算.一、概率的古典定义如果一个试验满足两条:⑴试验只有有限个基本结果;⑵试验的每个基本结果出现的可能性是一样的.这样的试验,称为古典试验.对于古典试验中的事件A ,它的概率定义为:()m P A n=,n 表示该试验中所有可能出现的基本结果的总数目,m 表示事件A 包含的试验基本结果数.小学奥数中所涉及的概率都属于古典概率.其中的m 和n 需要我们用枚举、加乘原理、排列组合等方法求出.二、对立事件对立事件的含义:两个事件在任何一次试验中有且仅有一个发生,那么这两个事件叫作对立事件如果事件A 和B 为对立事件(互斥事件),那么A 或B 中之一发生的概率等于事件A 发生的概率与事件B 发生的概率之和,为1,即:()()1P A P B +=.三、相互独立事件事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫做相互独立事件.如果事件A 和B 为独立事件,那么A 和B 都发生的概率等于事件A 发生的概率与事件B 发生的概率之积,即:()()()P A B P A P B ⋅=⋅.模块一、概率的意义【例 1】 气象台预报“本市明天降雨概率是80%”.对此信息,下列说法中正确的是________.教学目标例题精讲知识要点7-9-1.概率①本市明天将有80%的地区降水.②本市明天将有80%的时间降水.③明天肯定下雨.④明天降水的可能性比较大.【考点】概率的意义【难度】1星【题型】填空【关键词】希望杯,决赛【解析】降水概率指的是可能性的大小,并不是降水覆盖的地区或者降水的时间.80%的概率也不是指肯定下雨,100%的概率才是肯定下雨.80%的概率是说明有比较大的可能性下雨.【答案】④【例 2】约翰与汤姆掷硬币,约翰掷两次,汤姆掷两次,约翰掷两次,……,这样轮流掷下去.若约翰连续两次掷得的结果相同,则记1分,否则记0分.若汤姆连续两次掷得的结果中至少有1次硬币的正面向上,则记1分,否则记0分.谁先记满10分谁就赢.赢的可能性较大(请填汤姆或约翰).【考点】概率的意义【难度】2星【题型】填空【关键词】走美杯,5年级,决赛,第7题【解析】连续扔两次硬币可能出现的情况有(正,正);(正,反);(反,正);(反,反)共四种情况。
2024年高考数学一轮复习课件(新高考版) 第10章 §10.8 概率与统计的综合问题

X012 3
P
27 27 9 64 64 64
1 64
则 E(X)=3×14=34.
思维升华
高考常将独立性检验与分布列等交汇在一起进行考查,解决独立性检 验问题,要注意过好“三关”:假设关、公式关、对比关.解决概率 问题要准确地把握题中所涉及的事件,明确所求问题所属的事件类型.
跟踪训练3 (2023·昆明模拟)2022年,举世瞩目的冬奥会在北京举行,冬 奥会吉祥物“冰墩墩”和“雪容融”有着可爱的外表和丰富的寓意,自 亮相以来就好评不断,深受各国人民的喜爱.某市一媒体就本市小学生是 否喜爱这两种吉祥物对他们进行了一次抽样调查,列联表如下(单位:人):
2024年高考数学一轮复习课件(新高考版)
第十章 计数原理、概率、随机变量及其分布
§10.8 概率与统计 的综合问题
题型一 频率分布直方图与分布列的综合问题
例1 2022年是中国共产主义青年团成立100周年,为引导和带动青少年 重温共青团百年光辉历程,某校组织全体学生参加共青团百年历史知识 竞赛,现从中随机抽取了100名学生的 成绩组成样本,并将得分分成以下6组: [40,50),[50,60),[60,70),…,[90,100], 统计结果如图所示. (1)试估计这100名学生得分的平均数;
^
^
,a= y -b x .
n
x2i -n x 2
i=1
由题意得, x =1+2+3+10…+9+10=5.5,
10
10
又 y =1.5,xiyi=89.1,x2i =385,
i=1
i=1
10
xiyi-10 x y
^ i=1
所以b=
10
=89.318-5-101×0×5.55×.521.5=0.08,
2021_2022学年新教材高中数学第10章概率10.1.4概率的基本性质课件新人教A版必修第二册

解决与古典概型交汇命题的问题时,把相关的知识转化为事 件,列举基本事件,求出基本事件和随机事件的个数,然后利用古 典概型的概率计算公式进行计算.
[跟进训练] 2.已知国家某5A级大型景区对拥挤等级与每日游客数量n(单 位:百人)的关系有如下规定:当n∈[0,100)时,拥挤等级为 “优”;当n∈[100,200)时,拥挤等级为“良”;当n∈[200,300) 时,拥挤等级为“拥挤”;当n≥300时,拥挤等级为“严重拥 挤”.该景区对6月份的游客数量作出如图的统计数据:
“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发
生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即
中国队夺得女子乒乓球单打冠军的概率为37+14=1298.]
4.若P(A∪B)=0.7,P(A)=0.4,P(B)=0.6,则P(A∩B) =________.
0.3 [因为P(A∪B)= P(A)+P(B)-P(A∩B), 所以P(A∩B)=P(A)+P(B)-P(A∪B)=0.4+0.6-0.7=0.3.]
()
(2)若P(A)+P(B)=1,则事件A与B为对立事件.
()
(3)某班统计同学们的数学测试成绩,事件“所有同学的成绩都
在60分以上”的对立事件为“所有同学的成绩都在60分以下”.
[答案] (1)× (2)× (3)×
()
2.甲、乙两名乒乓球运动员在一场比赛中甲获胜的概率
是0.2,若不出现平局,那么乙获胜的概率为( )
[解] 记“射击一次,命中k环”为事件Ak(k=7,8,9,10). (1)因为A9与A10互斥,所以P(A9∪A10)=P(A9)+P(A10)=0.28+ 0.32=0.60. (2)记“至少命中8环”为事件B,则B=A8+A9+A10,又A8, A9,A10两两互斥, 所以P(B)=P(A8)+P(A9)+P(A10)=0.18+0.28+0.32=0.78.
小学数学十二年级认识简单的概率与统计
小学数学十二年级认识简单的概率与统计在小学数学的课程中,概率与统计是一项非常重要的内容。
通过学习概率与统计,学生们可以培养出一种科学的、基于数据的思维方式,帮助他们更好地理解和分析世界。
在小学十二年级中,学生将会开始接触一些简单的概率与统计知识,并开始学习如何应用这些知识。
第一部分:概率在数学中,概率是用来描述事件发生的可能性的一种方法。
对于小学生来说,我们可以通过简单的实例来介绍概率的概念。
比如,我们可以讨论掷骰子的例子,假设一个骰子有六个面,每个面上的数字分别为1到6。
那么,掷骰子时,每个数字出现的可能性是相等的,即1的概率是1/6,2的概率是1/6,依此类推。
除了掷骰子,我们还可以通过其他简单的情景来引导学生理解概率。
比如,抽奖问题。
假设有一个抽奖箱里面有5个红色球和5个蓝色球,那么抽到红色球的概率是多少呢?很显然,红色球有5个,总共有10个球,所以红色球的概率就是5/10,即1/2。
通过这些例子,学生可以初步理解概率的概念,并学会计算简单事件的概率。
第二部分:统计统计是概率的一个重要应用方向,通过统计,我们可以收集、整理和分析数据,从而得出有关事物的一些结论。
在小学的统计学习中,我们可以通过简单的调查让学生了解如何来收集和处理数据。
比如,我们可以设计一个简单的问题,让学生调查班级中每个人的身高,收集数据后,可以用表格的形式整理数据,并画出柱状图来表示不同身高的人数。
通过观察这些数据,学生可以了解到班级中身高的分布情况,并得出一些结论。
另外,我们还可以通过一些实际的例子来让学生理解统计的应用。
比如,我们可以讨论一下超市中不同产品的销售情况,通过整理销售数据,我们可以得出哪些产品是最受欢迎的,哪些是不受欢迎的,从而帮助店家做出更好的经营决策。
通过概率和统计的学习,学生们可以培养出一种用数据思考问题的习惯,并学会如何用逻辑和推理来解决问题。
这对他们的综合能力的提升将起到积极的作用。
结论小学数学十二年级的概率与统计知识对学生的发展具有重要的意义。
(江苏专用)2020版高考数学复习第十章算法、统计与概率10.2抽样方法教案
§10.2 抽样方法考情考向分析 在抽样方法的考查中,系统抽样,分层抽样是考查的重点,题型主要以填空题为主,属于中低档题.1.简单随机抽样(1)定义:一般地,从个体数为N 的总体中逐个不放回地取出n 个个体作为样本(n <N ),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样. (2)最常用的简单随机抽样方法有两种——抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. (1)采用随机的方式将总体中的N 个个体编号;(2)将编号按间隔k 分段,当N n 是整数时,取k =N n ;当N n不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时取k =N ′n,并将剩下的总体重新编号; (3)在第一段中用简单随机抽样确定起始的个体编号l ;(4)按照一定的规则抽取样本,通常将编号为l ,l +k ,l +2k ,…,l +(n -1)k 的个体抽出. 3.分层抽样(1)定义:一般地,当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几个部分,然后按各个部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样,所分成的各个部分称为“层”. (2)分层抽样的应用范围:当总体由差异明显的几个部分组成时,往往选用分层抽样的方法.概念方法微思考三种抽样方法有什么共同点和联系?提示 (1)抽样过程中每个个体被抽取的机会均等.(2)系统抽样中在起始部分抽样时采用简单随机抽样;分层抽样中各层抽样时采用简单随机抽样或系统抽样.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)简单随机抽样是一种不放回抽样.( √)(2)抽签法中,先抽的人抽中的可能性大.( ×)(3)系统抽样在第1段抽样时采用简单随机抽样.( √)(4)要从1002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( ×)(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( ×)题组二教材改编2.[P52习题T1]某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是________.答案分层抽样法解析从全体学生中抽取100名宜用分层抽样法,按男、女学生所占的比例抽取.3.[P52习题T4]某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_____名学生.答案15解析从高二年级中抽取的学生数与抽取学生总数的比为310,所以应从高二年级抽取学生人数为50×310=15.4.[P52习题T2]某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号,29号,42号学生在样本中,那么样本中还有一个学生的学号是________.答案16解析从被抽中的3名学生的学号中可以看出学号间距为13,所以样本中还有一个学生的学号是16.题组三易错自纠5.在一个容量为N的总体中抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则________.答案p1=p2=p3解析由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等.6.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件. 答案 1800解析 分层抽样中各层的抽样比相同.样本中甲设备生产的产品有50件,则乙设备生产的产品有30件.在4800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品的总数为1800件.题型一 简单随机抽样1.某班级有男生20人,女生30人,从中抽取10人作为样本,其中一次抽样结果是:抽到了4名男生,6名女生,则下列命题正确的是________.(填序号) ①这次抽样中可能采用的是简单随机抽样; ②这次抽样一定没有采用系统抽样;③这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率; ④这次抽样中每个女生被抽到的概率小于每个男生被抽到的概率. 答案 ①解析 利用排除法求解.这次抽样可能采用的是简单随机抽样,①正确;这次抽样可能采用系统抽样,男生编号为1~20,女生编号为21~50,间隔为5,依次抽取1号,6号,…,46号便可,②错误;这次抽样中每个女生被抽到的概率等于每个男生被抽到的概率,③和④均错误.2.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.答案 01解析 由题意知前5个个体的编号为08,02,14,07,01.3.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为________.答案514解析 由题意知9n -1=13,得n =28,所以整个抽样过程中每个个体被抽到的概率为1028=514. 思维升华应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.题型二 系统抽样例1(1)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________. 答案 4解析 由题意知,将1~35号分成7组,每组5名运动员,成绩落在区间[139,151]内的运动员共有4组,故由系统抽样法知,共抽取4名.(2)某单位有840名职工,现采用系统抽样的方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________. 答案 12解析 由84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12. 引申探究1.若本例(2)中条件不变,若号码“5”被抽到,那么号码“55”________被抽到.(填“能”或“不能”) 答案 不能解析 若55被抽到,则55=5+20n ,n =2.5,n 不是整数.故不能被抽到.2.若本例(2)中条件不变,若在编号为[481,720]中抽取8人,则样本容量为________. 答案 28解析 因为在编号[481,720]中共有720-480=240(人),又在[481,720]中抽取8人, 所以抽样比应为240∶8=30∶1,又因为单位职工共有840人,所以应抽取的样本容量为84030=28.思维升华(1)系统抽样适用的条件是总体容量较大,样本容量也较大.(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定. 跟踪训练1将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,则三个营区被抽中的人数依次为________. 答案 25,17,8解析 由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300,得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17;第Ⅲ营区被抽中的人数为50-25-17=8.题型三 分层抽样命题点1 求总体或样本容量例2(1)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n =________. 答案 13解析 ∵360=n120+80+60,∴n =13.(2)(2018·江苏省南京金陵中学模拟)某校共有教师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为50人,那么n 的值为________. 答案 120解析 因为共有教师200人,男学生1200人,女学生1000人, 所以女学生占的比例为10002400=512,女学生中抽取的人数为50人, 所以n ×512=50,所以n =120.命题点2 求某层入样的个体数例3(1)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师的人数为________.答案 180解析 由题意,得抽样比为3201600=15, ∴该样本中的老年教师的人数为900×15=180.(2)我国古代数学专著《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣________人. 答案 108解析 由题意可知,这是一个分层抽样的问题,其中北乡可抽取的人数为300×81008100+7488+6912=300×810022500=108.思维升华分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.跟踪训练2 (1)某校为了了解学生学习的情况,采用分层抽样的方法从高一1 000人,高二1 200人,高三n 人中抽取81人进行问卷调查,已知高二被抽取的人数为30,那么n =________. 答案 1040解析 分层抽样是按比例抽样的,所以81×12001000+1200+n=30,解得n =1040.(2)(2018·如东模拟)下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如下表所示:现要在所有参与调查的人中用分层抽样的方法抽取n 人做进一步的调研,若在“不喜欢戏剧的男性青年观众”的人中抽取了8人,则n 的值为________. 答案 30解析 参与调查的总人数为150,由8∶n =40∶150, 得n =30.1.(2018·盐城调研)某单位有老年人20人,中年人120人,青年人100人,现用分层抽样的方法从所有人中抽取一个容量为n 的样本,已知从青年人中抽取的人数为10,则n =________. 答案 24解析 由分层抽样可得10n=10020+120+100=1024,故n =24.2.打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌后,开始按次序搬牌,对任何一家来说,都是从52张总体中抽取一个13张的样本,则这种抽样方法是________. 答案 系统抽样解析 符合系统抽样的特点.3.用简单随机抽样的方法从含有10个个体的总体中抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是________. 答案110,110解析 在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为110.4.将参加英语口语测试的1000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个样本编号为________. 答案 695解析 由题意可知,第一组随机抽取的编号为015,分段间隔数k =N n =100050=20,由题意知抽出的这些号码是以15为首项,20为公差的等差数列,则抽取的第35个样本编号为15+(35-1)×20=695.5.某工厂的一、二、三车间在某月份共生产了3600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 成等差数列,则二车间生产的产品数为________.答案 1200解析 因为a ,b ,c 成等差数列,所以2b =a +c ,所以从二车间抽取的产品数占抽取产品总数的13,根据分层抽样的性质可知,二车间生产的产品数占产品总数的13,所以二车间生产的产品数为3600×13=1200.6.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为________. 答案 10解析 由系统抽样的特点知,抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n 项,显然有729=459+(n -1)×30,解得n =10.所以做问卷B 的有10人. 7.某电视台为了调查“爸爸去哪儿”节目的收视率,现用分层抽样的方法从4300人中抽取一个样本,这4300人中青年人1600人,且中年人人数是老年人人数的2倍,现根据年龄采用分层抽样的方法进行调查,在抽取的样本中青年人有320人,则抽取的样本中老年人的人数为________. 答案 180解析 设老年人有x 人,从中抽取y 人,则1 600+3x =4 300,得x =900,即老年人有900人,则9001600=y320,得y =180.8.某中学教务处采用系统抽样方法,从学校高三年级全体1000名学生中抽50名学生做学习状况问卷调查.现将1000名学生从1到1000进行编号,求得间隔数k =20,即分50组每组20人.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应抽取的号码是_____. 答案 157解析 根据系统抽样的特点可知,抽取出的编号成首项为17,公差为20的等差数列,所以第8组应抽取的号码是17+(8-1)×20=157.9.(2017·江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件. 答案 18解析 ∵样本容量总体个数=60200+400+300+100=350,∴应从丙种型号的产品中抽取350×300=18(件).10.某高中在校学生有2000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山的比赛活动.每人都参与而且只能参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取的人数为________. 答案 36解析 根据题意可知,样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.11.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.答案 37 20解析 将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件得,200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人,则40200=x100,解得x =20.12.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________. 答案 76解析 由题意知,m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.13.某市教育主管部门为了全面了解2018届高三学生的学习情况,决定对该市参加2018年高三第一次全省统一考试(后称统考)的32所学校进行抽样调查.将参加统考的32所学校进行编号,依次为1到32,现用系统抽样法抽取8所学校进行调查,若抽到的最大编号为31,则最小编号是________. 答案 3解析 根据系统抽样的特点可知,总体分成8组,组距为328=4,若抽到的最大编号为31,则最小编号是3.14.某校共有学生2 000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为________.答案 16解析 由题意,知二年级女生有380人,那么三年级的学生人数应该是2000-373-377-380-370=500,即总体中各个年级的人数比为3∶3∶2,故在分层抽样中应在三年级抽取的学生人数为64×28=16.15.某公司员工对户外运动分别持“喜欢”、“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多13人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人中有6人对户外运动持“喜欢”态度,有2人对户外运动持“不喜欢”态度,有3人对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的有________人.答案 78解析 设持“喜欢”、“不喜欢”、“一般”态度的人数分别为6x,2x,3x ,由题意可得3x -2x =13,x =13,∴持“喜欢”态度的有6x =78(人).16.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数减少1人,则在采用系统抽样时,需要在总体中先剔除2个个体,求n . 解 总体容量为6+12+18=36.当样本容量为n 时,由题意知,系统抽样的间隔为36n ;分层抽样的比例是n 36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n 2, 所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n -1)时,总体容量剔除以后是34人,系统抽样的间隔为34n -1,因为34n -1必须是整数,所以n 只能取18,即样本容量n =18.。
2019年高考数学(文科)一轮分层演练:第10章概率、统计和统计案例第1讲(含答案解析)
[学生用书P273(单独成册)]一、选择题1.设事件A ,B ,已知P (A )=15,P (B )=13,P (A ∪B )=815,则A ,B 之间的关系一定为( )A .两个任意事件B .互斥事件C .非互斥事件D .对立事件解析:选B .因为P (A )+P (B )=15+13=815=P (A ∪B ),所以A ,B 之间的关系一定为互斥事件.故选B .2.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为( )A .0.95B .0.97C .0.92D .0.08解析:选C .记抽检的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而所求概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92.3.从3个红球、2个白球中随机取出2个球,则取出的2个球不全是红球的概率是( ) A .110B .310C .710D .35解析:选C .“取出的2个球全是红球”记为事件A ,则P (A )=310.因为“取出的2个球不全是红球”为事件A 的对立事件,所以其概率为P (A )=1-P (A )=1-310=710.4.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为9元,被随机分配为1.49元,1.31元,2.19 元,3.40元,0.61元,共5份,供甲、乙等5人抢,每人只能抢一次, 则甲、乙二人抢到的金额之和不低于4元的概率是( )A .12B .25C .34D .56解析:选B .设事件A 为“甲、乙二人抢到的金额之和不低于4元”,甲、乙两人抢到红包的所有结果为{1.49,1.31},{1.49,2.19},{1.49,3.40},{1.49,0.61},{1.31,2.19},{1.31,3.40},{1.31,0.61},{2.19,3.40},{2.19,0.61},{3.40,0.61},共10种情况.其中事件A 的结果一共有4种情况,根据古典概型概率计算公式,得P (A )=410=25,即甲、乙二人抢到的金额之和不低于4元的概率是25.故选B .5.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为( ) A .15B .25C .16D .18解析:选B .如图,在正六边形ABCDEF 的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF ,BCDE ,ABCF ,CDEF ,ABCD ,ADEF ,共6种情况,故构成的四边形是梯形的概率P =615=25.6.已知集合M ={1,2,3,4},N ={(a ,b )|a ∈M ,b ∈M },A 是集合N 中任意一点,O 为坐标原点,则直线OA 与y =x 2+1有交点的概率是( )A .12B .13C .14D .18解析:选C .易知过点(0,0)与y =x 2+1相切的直线为y =2x (斜率小于0的无需考虑),集合N 中共有16个元素,其中使OA 斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,由古典概型知概率为416=14.二、填空题7.某城市2017年的空气质量状况如下表所示:轻微污染,则该城市2017年空气质量达到良或优的概率为________.解析:由题意可知2017年空气质量达到良或优的概率为P =110+16+13=35.答案:358.口袋内装有一些除颜色不同之外其他均相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,若红球有21个,则黑球有________个.解析:摸到黑球的概率为1-0.42-0.28=0.3.设黑球有n 个,则0.4221=0.3n ,故n =15.答案:159.从2名男生和2名女生中,任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生,星期日安排一名女生的概率为________.解析:将2名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动有A 1A 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,B 1B 2,B 1A 1,B 2A 1,B 1A 2,B 2A 2,B 2B 1,A 2A 1共12种情况,而星期六安排一名男生,星期日安排一名女生共有A 1B 1,A 1B 2,A 2B 1,A 2B 2这4种情况,则其发生的概率为412=13.答案:1310.现有7名数理化成绩优秀者,分别用A 1,A 2,A 3,B 1,B 2,C 1,C 2表示,其中A 1,A 2,A 3的数学成绩优秀,B 1,B 2的物理成绩优秀,C 1,C 2的化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛,则A 1和B 1不全被选中的概率为________.解析:从这7人中选出数学、物理、化学成绩优秀者各1名,所有可能的结果组成的12个基本事件为:(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2).设“A 1和B 1不全被选中”为事件N ,则其对立事件N -表示“A 1和B 1全被选中”,由于N -={(A 1,B 1,C 1),(A 1,B 1,C 2)},所以P (N -)=212=16,由对立事件的概率计算公式得P (N )=1-P (N -)=1-16=56.答案:56三、解答题11.如图,从A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如下:所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 选择L 1的人数 6 12 18 12 12 选择L 2的人数416164(1)试估计(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解:(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人), 所以用频率估计相应的概率为44÷100=0.44. (2)选择L 1的有60人,选择L 2的有40人,故由调查结果得频率为(3)设A 1,A 2121,B 2L 1和L 2时,在50分钟内赶到火车站.由(2)知P (A 1)=0.1+0.2+0.3=0.6,P (A 2)=0.1+0.4=0.5,因为P (A 1)>P (A 2),所以甲应选择L 1 . 同理,P (B 1)=0.1+0.2+0.3+0.2=0.8, P (B 2)=0.1+0.4+0.4=0.9, 因为P (B 1)<P (B 2),所以乙应选择L 2.12.根据我国颁布的《环境空气质量指数(AQI)技术规定》:空气质量指数划分为0~50、51~100、101~150、151~200、201~300和大于300六级,对应空气质量指数的六个级别,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显.专家建议:当空气质量指数小于等于150时,可以进行户外运动;空气质量指数为151及以上时,不适合进行旅游等户外活动,下表是济南市2017年10月上旬的空气质量指数情况:(1)(2)一外地游客在10月上旬来济南旅游,想连续游玩两天,求适合连续旅游两天的概率. 解:(1)该试验的基本事件空间Ω={1,2,3,4,5,6,7,8,9,10},基本事件总数n =10. 设事件A 为“市民不适合进行户外活动”,则A ={3,4,9,10},包含基本事件数m =4.所以P (A )=410=25, 即10月上旬市民不适合进行户外活动的概率为25.(2)该试验的基本事件空间Ω={(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10)},基本事件总数n =9,设事件B 为“适合连续旅游两天的日期”,则B ={(1,2),(5,6),(6,7),(7,8)},包含基本事件数m =4, 所以P (B )=49,所以适合连续旅游两天的概率为49.1.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“”表示未购买.(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解:(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.2.以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法,目前,国内青蒿人工种植发展迅速,调查表明,人工种植的青蒿的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x ,y ,z ,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x +y +z 评定人工种植的青蒿的长势等级:若ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级.为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10个青蒿人工种植地,得到如下结果:(2)从长势等级为一级的青蒿人工种植地中随机抽取2个,求这2个人工种植地的综合指标ω均为4的概率.解:(1)计算10个青蒿人工种植地的综合指标,可得下表:编号A1A2A3A4A5A6A7A8A9A10综合指标1446245353由上表可知,长势等级为三级的种植地只有A1一个,其频率为110,用样本的频率估计总体的频率,可估计这些种植地中长势等级为三级的个数约为180×110=18.(2)由(1)可知,长势等级是一级的青蒿人工种植地有A2,A3,A4,A6,A7,A9,共6个,从中随机抽取2个,所有的可能结果为(A2,A3),(A2,A4),(A2,A6),(A2,A7),(A2,A9),(A3,A4),(A3,A6),(A3,A7),(A3,A9),(A4,A6),(A4,A7),(A4,A9),(A6,A7),(A6,A9),(A7,A9),共计15个,综合指标ω=4的有A2,A3,A6,共3个,则符合题意的可能结果为(A2,A3),(A2,A6),(A3,A6),共3个,故所求概率P=315=1 5.。
中职数学(基础模块上册 语文版)教学分析:第十单元 概率与统计初步
第十单元概率与统计初步一教学要求1.掌握分类计数原理和分步计数原理.2.理解随机事件,频率和概率的概念.3.理解概率的简单性质.4.了解直方图与频率分布的概念.5.了解总体与样本的概念.6.了解样本的抽样方法.7.理解均值标准差的概念;会用样本均值、标准差估计总体均值、标准差.8.了解相关关系及一元线性回归分析.9.培养学生的计算工具使用技能,数据处理技能和分析与解决问题能力.二教材分析和教学建议(一)编写思路1.由浅入深,强调基础概率与统计这部分知识,对于中职的学生来讲,无论是在概念、公式的含义上,还是在解题的思路上,都有一定难度,由于他们的数学基础水平低,学习起来困难会多一些.但是概率统计作为应用知识的一部分,更是一种重要的思想方法,一种思维方式,是他们应该学习和了解的.因此,本单元概率与统计初步在编写中,遵照大纲精神,选择了概率统计中最基础最重要的知识,由浅入深,多讲实例,淡化理论,强调理解与应用.在概率部分,只介绍了随机事件和频率的概念;给出了概率的统计定义和概率的简单性质;在统计方面,则在复习初中学过的简单统计知识的基础上,只介绍了样本的概念与抽样方法,用样本估计总体的方法.2.多讲实例,淡化理论为了降低难度,便于学生理解与掌握,教材中的概念大多是通过实例引入的,对于一些公式,则略去了推导与证明,只是作了一些必要的说明,如互斥事件的概率加法公式,相互独立事件的乘法公式等.在这里,教材都通过例题讲解了公式的使用方法,强调了对公式的直接应用.3.加强计算器及计算机相关软件的使用本单元中,样本的抽取,总体的频率分布,均值与标准差,用样本估计总体的均值与标准差,回归分析等部分由于涉及的一些计算比较复杂,都需要使用计算器或计算机相关软件,从而培养学生的计算工具的使用技能,数据表格处理技能及分析,解决问题能力.教材在各相应部分安排了应用计算器和计算机相关软件解题的内容.4.重点与难点本单元的重点概念是:随机事件,频率,概率,总体,个体,样本,频率分布,均值,标准差等.重要方法是:简单随机抽样的方法,用样本估计总体的方法,回归分析的方法.重要思想是:随机思想、统计思想.本单元的难点是:概率的概念,样本对总体的估计,回归分析,用概率统计知识解决实际问题.(二)课时分配本单元教学约需16课时,分配如下(仅供参考):10.1计数原理约2课时10.2随机事件与概率约2课时10.3概率的简单性质约2课时10.4直方图与频率分布约2课时10.5总体与样本约1课时10.6抽样方法约1课时10.7均值与标准差约2课时10.8用样本估计总体约1课时10.9一元性回归约1课时归纳与总结约2课时(三)内容分析与教学建议10.1计数原理1.教材通过对两个具体实例进行分析,引进了分类计数的加法原理和分类计数的乘法原理.实际上这两个原理本身就是人们通过大量实践经验归纳抽象出来的,因此称为“基本原理”.在本单元中,它们是概率统计计算的依据.2.教学时,在给出原理之前,一定要使学生获得必要的感性认识,对引例要讲得清晰明确.(1)叙述和讲解例题时,要准确使用分类及分步等术语;(2)将分类及分步的具体内容列举出来;(3)讲过加法原理之后,在讲乘法原理的引例的时候,一定要和加法原理的引例加以比较,突出它们的区别;(4)让学生直接参与基本原理的引入,除了解答教材中提出的问题外,还可以让学生自己举出一些类似实例,以使学生由被动接受变为主动思考,然后由师生一起归纳出基本原理.3.两个原理都讨论“做一件事”,确定“完成这件事所有的不同方法的种数”但这里所指的“做一件事”是一个比较抽象的概念,它不同于学生在小学、初中解应用题时遇到的“做一件工作”、“完成一项工程”等,其含义比这要广泛得多,讲解例题时,要着重说明该题的“做一件事”究竟指的是什么.例如:(1)从甲地到乙地;(2)从甲地经乙地到丙地;(3)从三个班中任选一名三好学生;(4)从三个班中各选一名三好学生;(5)由5个数字组成没有重复数字的两位偶数.这些都是原理中所说的“做一件事”.明确了什么叫“做一件事”,才能去分析完成这件事可以采取什么方法,是分类还是分步,从而确定该题是使用分类计数的加法原理还是分类计数的乘法原理.4.教材明确指出了两个基本原理的区别,这在教学中要结合实例加以阐述和强调,同时要注意:(1)“做一件事,完成它可以有n类方式”,这里是对完成这件事的所有方式的一个分类.分类时,首先要根据问题的特点确定一个分类的标准,然后在这个确定的标准下进行分类.标准不同,分类的结果就不同.其次,分类应满足一个基本要求:完成这件事的任何一种方法必属于某一类,并且分别属于不同类的两种方法都是不同的方法,只有满足这些条件,才能正确使用分类计数的加法原理.(2)“做一件事,完成它需要分成n个步骤”,这里是指完成这件事的任何一种方法,都要分成n步执行.和分类计数的加法原理一样,分步时,首先要根据问题的特点确定一个分步的标准,然后在这个确定的标准下进行分步.标准不同,分成的步骤数也可以不同.一个合理的分步还必须满足两个要求:第一,完成这件事必须而且只需连续完成这n步.这就是说,分别选自这n个步骤的n个方法,对应了完成这件事的一种做法;第二,做每一个步骤时,选用的方法和做上一个步骤时选用的方法是无关的,并且每一个步骤的完成方法种数正好是完成这个步骤所有方法的种数.只有满足这些条件,才能正确使用分步计数的乘法原理.5.例题的教学,要紧密联系基本原理,有意识地培养学生从两个基本原理出发思考问题的习惯.简单的问题,可以单独使用分类计数的加法原理或分类计数的乘法原理,有些问题常常同时要用到两个基本原理或可以分别用两个原理去做.稍复杂一些的问题,在具体“分类”和“分步”时,学生常常感到困难,因此需要多多练习,不断积累经验,逐步做到恰当分类,合理分步.10.2随机事件与概率1.本节内容包括随机现象,随机试验,随机事件,频率等基本概念及概率的统计定义.2.通过观察几个例子,教材接连给出了随机现象,随机试验,随机事件这三个概念,它们之间虽然没有概念的种属关系,但彼此是有关联的,都是在前一个概念的基础上,定义后面的概念,接下来与事件有关的概念也是这样给的,这种给出的形式密度虽显稍大,但是学生并不难理解,反而会感到前后关联,容易接受.为了便于学生理清层次,可给出下面的链式:现象→随机现象→随机试验→随机事件(含必然事件和不可能事件)→基本事件→复合事件.为了使学生更好地理解这些概念,教师可根据实际,多举一些例子.其中搞清基本事件的个数是个难点,教学中应注意培养学生这方面的能力.3.研究随机现象的规律性是通过随机试验进行的.关于随机试验,有如下严格的定义:(1)试验在相同条件下,可以重复进行;(2)每次试验的结果不止一个,而且所有可能结果事先都是明确的;(3)每次试验在其最终结果揭晓前,无法预言会发生哪一个结果.4.随机事件在一次试验中是否发生,不能事先确定,但是在大量重复试验的情况下,它的发生会呈现出一定的规律性,怎样观察和发现这种规律性呢?这种规律性是通过什么体现出来呢?通过观察事件在大量重复试验中所发生的频率,可以发现这种规律.频率是这样一个量,即该事件发生的次数与试验总次数的比值,频率随试验次数的不同而不同.这一点通过教材中的例子可以清楚地反映出来.5.频率具有稳定性.这种稳定性把随机事件发生的可能性大小客观地反映出来,利用这种稳定性,教材给出了概率的统计定义.可以认为概率是频率在理论上的期望值.例如,对一批零件进行抽查计算,得出这批零件合格品的概率是98%,那么,如果将这批零件全部装箱,其中每箱装1000个,那么可以估计平均每箱含有合格品980个,这是箱中含有合格品数的理论上的期望值.但在实际情况中,每箱的合格品数可能略多于980个也可能略少于980个.6.对于必然事件,因为每次试验中它一定发生,试验重复进行n次,它也发生n次,因此它的频率总是1;对于不可能事件,因为每次试验中它一定不发生,试验重复进行n次,它发生的次数应是0,因此它的频率总是0.7.概率的统计定义实质是给出了概率的近似值,用抛掷硬币这个传统,经典的试验,说明一个事件的频率稳定在它的概率左右,是多数教科书的编者所采取的方法,这个试验简单,做起来方便,不需要什么成本,任何人随时随地都可以做,所以教学中教师也不妨让学生做一做,亲自试验体验一下.8.事件的频率和事件的概率是两个不同的概念,随机事件的频率与试验次数有关的一个相对数量,是随着试验的不同而不同.而事件的概率反映的是随机事件的某种本质属性,是与试验次数无关而客观存在的一个确定的数.频率是概率的表现形式,概率决定着频率的变化趋势,概率才是随机现象的本质属性.9.本节教学内容的重点是随机事件等有关概念和概率的统计定义,频率的计算,概率的确定.难点是搞清基本事件的个数,确定某事件的概率及分析概率问题的思想方法,解题思路.概率问题的思考方法,学生接受起来比较困难,为此,应加强概念教学,加强对容易混淆的概念的区别与比较,来加深学生对有关概念的理解.10.3概率的简单性质1.本节内容包括概率的四个简单性质:(1)必然事件的概率等于1,不可能事件的概率等于0;(2)对于任何事件A,有0≤P(A)≤1;(3)如果A,B是互斥事件,那么P(A+B)=P(A)+P(B);(4)如果A,B是相互独立事件,那么P(A·B)=P(A)·P(B).2.由于必然事件的频率总是1,所以它的概率等于1,由于不可能事件的频率总是0,所以它的概率等于0;根据,0≤W(A)≤1,不难得到0≤P(A)≤1,这里的事件A显然是随机事件、必然事件、不可能事件三者的统称.3.性质(3)是互斥事件的概率加法公式.互斥事件是指在一次随机试验中,不可能同时发生的两个事件,在众多事件中,辨认、识别互斥事件,举出互斥事件和非互斥事件的例子,是使学生理解并掌握这一概念的方法.教师可以学生熟悉的实例,让学生多做一些这样的练习.所谓“A+B”事件,是指在同一试验中,A或B中有一个发生它就发生的事件.教材中提到的“A或B中至少有一个发生”的事件就是指“A+B”事件.实际上,对于“A+B”事件,不论A与B是不是互斥事件,总是存在的.互斥事件的概率加法公式,教材是直接给出的,没有加以证明,教材主要是要求学生能理解其含义,掌握其使用条件,会用来计算即可.例1是互斥事件的概率加法公式的直接应用.4.对立事件是互斥事件的一部分,即其中必有一个发生的两个互斥事件叫做对立事件.这就告诉我们,对立事件首先是互斥事件,但互斥事件不都是对立事件,只有那些必有一个发生的两个互斥事件才叫做对立事件.教材给出了对立事件计算公式的一个简单证明,只需学生了解即可,例2是对立事件计算公式的直接应用.5.教材借助于实例给出了相互独立事件的描述性定义,要确切地表示它,需要涉及条件概率的概念,但是本教材没有出现条件概率的概念,因此,为了让学生能正确理解两个事件的相互独立关系,可以让学生自己举一些相互独立事件的例子,共同分析相互独立的两个事件中“一个事件的发生与否对另一个事件发生的概率没有影响”这一特征.同时要将“相互独立”与“互斥”两个概念加以区别,让他们在对比中理解和掌握相互独立这一概念.6.如果事件A与B是相互独立的,那么事件A与B,A与B,A与B也相互独立.这一性质很重要,例4,例5就应用了这个性质,从而使计算得到了简化.讲解时应加以强调,以引起学生重视.7.本节教材重点是互斥、对立及相互独立事件的概念及有关计算,难点是三种事件关系的区别.10.4直方图与频率分布1.本节的内容是直方图与频率分布及学习用样本频率分布来估计总体频率分布的方法、步骤.2.在获取了样本资料以后,要对样本数据进行整理.先根据样本资料列频率分布表,再画频率分布直方图,这是由样本估计总体分布的基本方法.这从理论上讲并不难,只是具体操作起来比较麻烦,教学中应结合例题把列频率分布表和画频率分布直方图的步骤、要领讲清,要让学生自己动手,通过实际操作掌握方法,要让学生知道,对样本数据的整理是统计工作的基本功,尽管麻烦但很重要,因此要多加练习,培养自己认真细致的实战作风,从而提高计算能力,提高工作能力.3.频率分布表可以清楚地反映样本数据的分布规律,列这个表需要四个步骤,即:(1)计算极差;(2)决定组距与组数;(3)确定各组分点;(4)列频率分布表.前三步是对数据的整理,决定组距与组数需要根据具体情况灵活处理,第四步列频率分布表时,需要依次计算各个频率,计算量大些,要仔细耐心,算完之后可以将所有的频率相加看是否得1,以进行检验.完成这四步之后,可以利用其结果,画频率分布直方图.4.频率分布直方图可以将频率分布表中反映出来的规律直观形象地表示出来.画频率分布直方图之前需要建立一个坐标系,横轴表示数据,将各组数据的分点标在横轴上;纵轴表示频率与组距的比值.各个小长方形的面积等于相应各组的频率,这样频率分布直方图就以图形的面积形式反映了数据落在各个小组内的频率大小.在频率分布直方图中,由于各小长方形的面积等于相应各组的频率,而各组频率的和等于1,因此各小长方形的面积的和等于1.5.利用Excel表格做直方图,培养学生数据处理能力是大纲明确提出的要求,为了便于学生掌握,教材给出了具体步骤,可让学生按照步骤来操作.6.本节教学的重点是频率分布表,频率分布直方图的绘制;难点是样本数据的整理.10.5总体与样本1.本节的内容是复习总体与样本的概念.2.关于总体与个体,不是笼统地指总体与个体本身,而是指总体与个体的某一数量指标,例如:灯泡的使用寿命,玉米的产量,学生的身高等.因此总体可以看做是某些数据的集合.3.样本是总体这个集合的一个子集.它由总体中的一部分个体组成,这部分个体的数量叫做样本的容量.4.本节教学的重点是掌握总体与样本的概念,理解二者之间的关系.10.6抽样方法1.本节的内容是样本抽取的三种方法:简单随机抽样法,系统抽样法,分层抽样法.2.在讲解每一种抽样方法时,应结合具体问题进行演示与讲解,首先要讲清简单随机抽样,系统抽样,分层抽样三种抽样方法的原理与步骤,并通过对具体问题的解决让学生进3. 统计的基本思想方法是用样本估计总体,即用局部推断整体,这就要求样本应具有良好的代表性,而这完全取决于抽样方法的客观合理性.可见,抽样是选取样本的基础,样本的选取是否恰当,对于研究总体是十分关键的.因此在教学中,要提高对抽样方法重要性的认识.4.本节只讲了具体的抽取方法,关于如何确定样本容量的内容,由于大纲没有涉及,所以本教材也没有做定量的介绍,样本容量的大小,一般取决于下面几个因素:(1)总体中每个个体的差异较大,样本容量就要大些;(2)抽样调查的力量大(人员多,财力强,时间长等),则应要求较小的误差,反之则可允许较大的误差,而误差的大小决定或影响着样本容量的大小;(3)对抽样调查结果愿意承担较小的风险,则应加大样本容量,反之则可适当减少样本容量;(4)在其他条件相似的条件下,不同的抽样方法也可影响到样本容量的大小.5.还应该提出的是,完全随机的样本,在现实中是很少的,因为每一次抽取总是要直接或间接地通过人的判断来执行.也就是说,随机抽样只是一种理想的情况,况且在实际问题中,有时考虑到一些具体因素(例如抽样的代价),也可能有意识的不采用随机抽样的方法.由样本推断总体必然会有误差,但是这种误差是我们可以掌握的,我们可以通过概率论和数理统计的理论和方法,对这些误差进行估计和适当的控制.6.本节教学的重点和难点是对三种抽样方法的掌握.10.7 均值与标准差1.本节的内容是均值与标准差的意义及计算方法.2.上一节给出了用样本频率分布来估计总体频率分布的方法,可以使我们对总体的统计规律有一个直观,完整的了解,但在很多情况下,我们并不需要知道总体的分布状况,而只需要知道它的某些特征就够了,例如,在测量某零件的长度时,由于种种偶然因素的影响,零件长度的测量值每次测量不尽相同,是一个随机变量,一般我们只关心这一零件的平均测量长度及测量结果的精确度,即要求知道测量长度的平均值与离散程度.又如,对一个射手的射击技术的评定,除了根据他多次射击的平均命中环数之外,还要看他各次射击命中的环数与平均命中环数的偏差(也就是射击的散布程度)大不大,偏差越大,表明射击命中点越分散,射击的技术越不稳定.由这些例子可以看出,我们引进一些用来表示平均值和衡量离散程度的量,这些量能够刻画随机变量的主要性质,我们称之为随机变量的数字特征,其中最重要的是均值与标准差.数字特征及其运算在概率统计中起着重要作用,利用它们可以使许多问题的解决大大简化.3.对于均值的计算,教材给出了两种情况及两个计算公式,它们是:x =1n (x 1+x 2+…+x n )=1n ∑i =1n x i ; x =x 1·f 1n +x 2·f 2n +…+x k ·f k n =∑i =1k x i ·f i n. 教学中,要让学生能根据不同情况选择不同的公式.4.对于标准差的概念,本节只是明确了它的意义,即“它可以用来衡量一组数据的波动大小,标准差越大,说明这组数据波动越大”.因此本节主要强调标准差的计算及两组标准差大小的比较.5.本节教学的重点和难点是均值与标准差的计算.10.8 用样本估计总体1.本节内容是对总体均值与标准差的估计.2.用样本的均值x 估计总体均值和用样本的标准差估计总体标准差都属于无偏估计. 所谓“无偏估计”就是使估计量符合下面三个标准:(1)无偏性.设θ^(x 1,x 2,…,x n )是总体中某参数θ的估计量,若E (θ^)=θ,则称θ^是θ的无偏估计量.我们用x =1n ∑i =1n x i 去估计总体均值E (x )=m ,因为 E (x )=E ⎝ ⎛⎭⎪⎪⎫1n ∑i =1n x i =1n ∑i =1n E (x i )=1n ·n ·m =m . 所以估计量x 是满足无偏性的.同样用样本标准差S 去估计总体标准差也具有无偏性.(2)有效性.设θ^1与θ^2都是θ的无偏估计量,若D (θ^1)<D (θ^2),则称θ1比θ2更有效.用x 和S 来估计总体的均值和标准差比其他估计量更有效.(3)一致性.我们希望,当n 越来越大,n →∞时,估计量θ^对θ的估计越精确,越一致.如果P (||θ^ (n)-θ<ε=1,则称θ^(n )是θ的一致估计量,可以证明,样本均值x 是总体均值的一致估计量,S 也是总体标准差的一致估计量.关于无偏估计的概念不必告诉学生.3.计算均值与标准差可以利用计算器和计算软件,这样可以使繁杂的计算变得简单.4.本节教学内容的重点和难点是对总体均值与标准差的无偏估计. 10.9 一元线性回归1.本节内容是一元线性回归方程的建立.2.变量之间的关系,有一种是确定性关系,如正方形的面积S 与边长x 之间的关系S =x 2就是确定性关系; 圆的周长C 与圆的半径r 之间的关系C =2πr 也是确定性关系.变量之间除了具有确定性关系之外,还存在一种非确定性关系——相关关系.例如施肥量与亩产量之间虽然不能确定出准确的函数关系式,但它们之间却具有相关性;又如,高中毕业生毕业考试成绩与高考成绩,虽然不具有确定性关系,即二者之间不可能建立精确的函数表达式,但它们的关系也非常密切,一般来说,毕业成绩好的学生高考成绩也比较好.具有相关关系的变量之间,存在着一定的统计规律性,线性回归就是研究这种规律的手段之一.3.观察散点图是求回归直线方程前非常重要的步骤.如果所有的散点大体上散布在某一条直线附近,就可以认为y 对x 的回归函数类型为直线型.通过观察散点图,可以画出不止一条直线,那么,其中哪一条直线最能代表变量y 与x 的关系呢?为了不涉及更多的线性相关的知识,可以认为在整体上与这几个点最接近的一条直线,就是所求的直线,并设为y ^=a +bx ,此处应提醒学生这个解析式不同于一次函数解析式的表示方法.4.再由y ^=a +bx 得到y ^=a ^+b ^x 时,教材没有给出a ^,b ^的求解过程,只是说“利用微积分的知识可以算得,当a ^,b ^为下列值时,所得回归直线最好” ,然后就是结论:a ^=y -b ^x ,b ^=S xy S xx, 其中,x =1n ∑i =1n x i ,y =1n ∑i =1n y i , S xy =∑i =1nx i y i -n xy ,S xy =∑i =1n x 2i -n x 2.这里,只要求学生会用这些公式计算,求出a ^,b ^即可.对于这些较复杂的计算,还是训练学生使用计算器和计算软件计算为好.5.教学中应告诉学生,回归方程y ^=a ^+b ^x 与具有函数关系的直线方程y =a +bx 不同.满足函数关系y =a +bx 的任意一点(x i ,y i )一定落在直线y =a +bx 上,而有相关关系的两个变量的任一观测点(x i ,y i )都不能保证严格地落在直线y ^=a ^+b ^x 上.6. 本节教学内容的重点是一元线性回归方程的建立,难点是方程系数a ^,b ^的计算.(四)复习建议1.学完全单元之后,学生需要对全章知识要点有一个清楚的了解,教材以填空题的形式对全单元内容作了归纳与总结,目的是让学生参加归纳与总结的过程,以达到复习的效果.2.本单元从知识结构上分为三部分:计数原理、概率与统计.计数原理部分分别介绍了分类计数的加法原理和分步计数的乘法原理;概率部分在介绍了随机事件,随机试验,基本事件,频率等基本概念之后给出了概率的统计定义,并安排了概率的简单性质等内容;统计部分在复习了总体,个体,样本等概念之后,介绍了抽取样本的三种方法,在用样本推断总体方面,给出了用样本频率分布推断总体频率分布的频率分布直方图,用样本均值推断总体均值,用样本标准差推断总体标准差的估计,最后简单介绍了相关关系及回归分析.3.在本单元的复习中,应结合专业,加强实践,做到理论能联系实际.例如:关于抽取样本的内容比较繁琐,实际操作上有许多程序,写下来颇费纸张,这部分复习时,就应以实践为主,可以找一个学生熟悉的例子,用适当的方法搞一次抽样调查,在实践中,教师和学生共同总结这部分内容.4.在本单元的复习中,应加强计算器和计算软件的使用教学,在“归纳与总结”中,特意安排了一个计算器和计算软件使用的例题,目的是希望教师能在复习中集中指导 一下计算器和计算软件的使用,提高学生使用计算工具和数据处理的能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10讲统计与概率知识点1 数据的收集、整理与描述1. 普查和抽样调查普查:为一特定目的而对所有考查对象所做的调查叫普查.好处:调查结果准确;缺点:花费多,工作量大,全面调查只在样本很少的情况下适合采用;抽样调查:为一特定目的而对部分考查对象所做的调查叫做抽样调查.好处:耗费的人力,物力,财力少,工作量小;缺点:调查结果不如普查精确,受样本容量大小及其代表性影响较大;2.总体、个体、样本、样本容量总体:所考察对象的全体;个体:组成总体的每一个考察对象;样本:从总体重所抽取的一部分个体叫做总体的一个样本;样本容量:样本中的个体数目;3.常见的统计图有:扇形统计图、条形统计图和折线统计图.扇形统计图用圆中各扇形的面积描述各统计项目占总体的百分比;条形统计图用宽度相同的“条形”的高度描述各统计项目的数据;折线统计图用折线描述数据的变化过程和趋势.扇形统计图中,扇形的圆心角=该统计项目占总体的百分比×360°.4.在选择制作统计图时,需要根据了解的情况而定:若要清楚地表示出各统计项目在总体重所占的百分比,则选择扇形统计图;若要清楚地反映数据的变化过程和趋势,则选择折线统计图;若要清楚地表示出每个统计项目的具体数据,则选择条形统计图.5.频数:某个对象出现的次数称为该对象的频数,各频数之和为试验的总次数.6.频率:频数与总次数的比值称为频率.7.频数分布表(1)在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表.(2)列频数分布表的步骤:①计算极差,即计算最大值与最小值的差.②决定组距与组数(一般100以内的数据分成5~12组).③决定分点,常使分点比数据多一位小数,并且把第一组的起点稍微减小一些.④列频数分布表.组数的决定方法:设数据总数目为n,一般地,当n≤50时,分为5~8组;当50≤n≤100时,则分为8~12组.分点的决定方法:若数据为整数,则分点数据减去0.5;若数据是保留小数点后的一位数,则分点数据减去0.05.8.频数分布直方图画出频数分布表以后,构造一个坐标系,用横轴表示各组数据,纵轴表示频数,以该组内的频数为高,组距为宽,画一个长方形,每组两端的数据也可以用中位数来代替.各小组的频数之和等于数据总数.【典例】1.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.【方法总结】牢固掌握统计的基础知识,善于从统计图表中获取相关信息,并能够分析相关的数据是解此类问题的关键.根据总体等于各部分之和即可求出a,m的值,根据公式人均利润=总利润÷人数即可得出结果;用方程思想解决调配类型的问题,找准等量关系(调配后各部分的利润之和=调配后的总利润),列出方程求出调配人数即可.【随堂练习】1.2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A. 1月份销量为2.2万辆B. 从2月到3月的月销量增长最快C. 4月份销量比3月份增加了1万辆D. 1~4月新能源乘用车销量逐月增加2.下列调查中,调查方式选择最合理的是()A. 调查“乌金塘水库”的水质情况,采用抽样调查B. 调查一批飞机零件的合格情况,采用抽样调查C. 检验一批进口罐装饮料的防腐剂含量,采用全面调查D. 企业招聘人员,对应聘人员进行面试,采用抽样调查3.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A. 最喜欢篮球的人数最多B. 最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C. 全班共有50名学生D. 最喜欢田径的人数占总人数的10%4.如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A. 6.7%B. 13.3%C. 26.7%D. 53.3%5.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A. 本次抽样调查的样本容量是5000B. 扇形图中的m为10%C. 样本中选择公共交通出行的有2500人D. 若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人6. 2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数字科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项,错误的是()A. 抽取的学生人数为50人B. “非常了解”的人数占抽取的学生人数的12%C. a=72°D. 全校“不了解”的人数估计有428人7.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A. 甲超市的利润逐月减少B. 乙超市的利润在1月至4月间逐月增加C. 8月份两家超市利润相同D. 乙超市在9月份的利润必超过甲超市知识点2 数据的分析1.数据的集中趋势(1)算术平均数:把一组数据的总和除以这组数据的个数所得的商.公式:使用:当所给数据,,…,中各个数据的重要程度相同时,一般使用该公式计算平均数.(2)加权平均数:若n个数,,…,的权分别是,,…,,则叫做这n个数的加权平均数.使用:当所给数据,,…,中各个数据的重要程度(权)不同时,一般选用加权平均数计算平均数.权的意义:权就是权重,即数据的重要程度.常见的权:1)数值、2)百分数、3)比值、4)频数等。
(3)组中值:数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数,统计中常用各组的组中值代表各组的实际数据.(4)中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半.(5)众数:一组数据中出现次数最多的数据就是这组数据的众数.特点:可以是一个也可以是多个.用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量.(6)平均数、中位数、众数的区别:平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义.2.数据的波动(1)极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差.(2)方差:各个数据与平均数之差的平方的平均数,记作.用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是:意义:方差()越大,数据的波动性越大,方差越小,数据的波动性越小.结论:①当一组数据同时加上一个数a时,其平均数、中位数、众数也增加a,而其方差不变;②当一组数据扩大k倍时,其平均数、中位数和众数也扩大k倍,其方差扩大倍.【典例】1.在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:(1)若欲从中表扬2人,请你从平均数的角度考虑,哪两人将被表扬?(2)为了体现学科差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数.请你从折合平均数的角度考虑,哪两人将被表扬?2.我校准备挑选一名跳高运动员参加江东区中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛,他们的成绩(单位:cm)如下:甲:170 165 168 169 172 173 168 167乙:160 173 172 161 162 171 170 175(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪名运动员的成绩更为稳定?为什么?(3)若预测,跳过165cm就很可能获得冠军.该校为了获得冠军,可能选哪位运动员参赛?若预测跳过170cm才能得冠军呢?【方法总结】不同的统计目的会选用不同的统计方式,当统计目的是衡量整体水平时,宜选取算数平均数;当统计需要考虑不同项目的权重时,则要用到加权平均数;当统计目的具有选拔性质时,则要结合平均数与方差综合考虑.【随堂练习】1.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A. 50,50B. 50,30C. 80,50D. 30,502.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下:现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权重比由3:5:2变成5:3:2,成绩变化情况是()A. 小明增加最多B. 小亮增加最多C. 小丽增加最多D. 三人的成绩都增加3.某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽去10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:﹣10,+5,0,+5,0,0,﹣5,0,+5,+10.则这10听罐头质量的平均数及众数为()A. 454,454B. 455,454C. 454,459D. 455,05.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A. 队员1 B. 队员2 C. 队员3 D. 队员46.如果一组数据x1,x2,x3,……,x n的平均数是,方差是s2,把这组数据中每个数都减去同一个非零常数k,得到一组新数:x1﹣k,x2﹣k,x3﹣k,……,x n﹣k;则这组新数据的平均数和方差分别为()A. 和s2﹣kB. 和s2﹣kC. 和s2D. 和s27.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩.根据统计图中的信息可得,下列结论正确的是()A. 甲队员成绩的平均数比乙队员的大B. 甲队员成绩的方差比乙队员的大C. 甲队员成绩的中位数比乙队员的大D. 乙队员成绩的方差比甲队员的大8.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A. 甲、乙都可以B. 甲C. 乙D. 无法确定知识点3 概率的计算1.随机事件(1)确定事件事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.(2)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.2.概率的意义(1)一般地,在大量重复实验中,如果事件A发生的频率m、n会稳定在某个常数p 附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.(2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.(3)概率取值范围:0≤p≤1.(4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.(4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.3.概率的公式(1)随机事件A的概率P(A)=事件A可能出现的结果数/所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.4.列举法和树状法(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,像树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.(5)当有两个元素时,可用树形图列举,也可以列表列举.5.游戏公平性(1)判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.(2)概率=所求情况数/总情况数.6. 利用频率估计概率(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.【典例】1.动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为.(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到A佩奇,弟弟抽到B乔治的概率.2.盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀,重复进行这样的试验得到以下数据:(1)填空:a=______,b=______;(2)在图中,画出摸到黑棋的折线统计图;(3)随机摸一次,估计摸到黑棋的概率.(精确到0.01)【方法总结】了解图表法和树形图法的区别和联系以及解题过程中各自的优势是快速选取方法并提高解概率问题正确率的关键.在遇到选取卡片等问题是需要关注是否放回的限制条件,不同的限制计算的结果会截然不同.只有当样本数据足够多且频率在某一个数据附近波动时,频率的值才能近似看成该事件发生的概率.【随堂练习】1.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是()A. 抛一枚硬币,出现正面朝上B. 掷一个正六面体的骰子,出现3点朝上C. 一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D. 从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球2.一个不透明的盒子里有9个黄球和若干个红球,红球和黄球除颜色外其他完全相同,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中红球的个数为()A. 11B. 15C. 19D. 213.下表记录了一名球员在罚球线上投篮的结果,这么球员投篮一次,投中的概率约是()A. 0.7B. 0.6C. 0.5D. 0.44.某射击运动员在同一条件下的射击成绩记录如下:则该运动员“射中9环以上”的概率约为(结果保留一位小数)()A. 0.7B. 0.75C. 0.8D. 0.95.点P的坐标是(m,n),从﹣5,﹣3,0,4,7这五个数中任取一个数作为m的值,再从余下的四个数中任取一个数作为n的值,则点P(m,n)在平面直角坐标系中第二象限内的概率是()A. B. C. D.6.布袋中有除颜色外完全相同的5个红球,2个黄球,3个白球,从布袋中同时随机摸出两个球都是红球的概率为()A. B. C. D.7.在某校运动会4×400m接力赛中,甲乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲乙两名同学恰好抽中相邻赛道的概率为()A. B. C. D.8.不透明的袋子里装有2个红球和1个白球,这些球除了颜色外都相同.从中任意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色相同的概率是()A. B. C. D.9.一个盒子里有完全相同的三个小球,球上分别标有数字﹣2,1,4.随机摸出一个小球(不放回),其数字为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是()A. B. C. D.综合运用1.“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解析以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是_______度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在_______等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?2.某同学上学期的数学历次测验成绩如下表所示:(1)该同学上学期5次测验成绩的众数为________,中位数为________;(2)该同学上学期数学平时成绩的平均数为________;(3)该同学上学期的总成绩是将平时测验的平均成绩、期中测验成绩、期末测验成绩按照2:3:5的比例计算所得,求该同学上学期数学学科的总评成绩(结果保留整数).3.我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示计算出a、b、c的值;(2)结合两队成绩的平均数和中位数进行考虑,哪个队的决赛成绩较好?(3)计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.4.某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节人目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:(1)本次问卷调查共调查了______名观众;图②中最喜爱“新闻节目”的人数占调查总人数的百分比为______;(2)补全图①中的条形统计图;(3)现有最喜爱“新闻节目”(记为A),“体育节目”(记为B),“综艺节目(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.5.某批彩色弹力球的质量检验结果如下表:(1)请在图中完成这批彩色弹力球“优等品”频率的折线统计图(2)这批彩色弹力球“优等品”概率的估计值大约是多少?(精确到0.01)(3)从这批彩色弹力球中选择5个黄球、13个黑球、22个红球,它们除了颜色外都相同,将它们放入一个不透明的袋子中,求从袋子中摸出一个球是黄球的概率.(4)现从第(3)问所说的袋子中取出若干个黑球,并放入相同数量的黄球,搅拌均匀,使从袋子中摸出一个黄球的概率为,求取出了多少个黑球?。