2009年第14届华杯赛小学组决赛试题及详解word
“华杯赛”决赛赛前训练模拟题小学组决赛卷-小学数学五年级下册-竞赛试题及答案-人教课标版---

“华杯赛”决赛赛前训练模拟题小学组决赛卷小学数学五年级下册竞赛试题及答案人教课标版一、填空题1、计算:=。
2、一次数学竞赛满分是100分, 某班前六名同学的平均得分是95.5分, 排第六名同学的得分是89分, 每人得分是互不相同的整数, 那么排名第三的同学最少得___________分。
3、在下面的等式中, 相同的字母表示同一数字, 不同字母表示不同的数字:若abcd-dcba=□997, 那么□中应填。
4、在梯形ABCD中, 上底长5厘米, 下底长10厘米, 平方厘米, 则梯形ABCD的面积是平方厘米。
5、已知:10△3=14, 8△7=2, △, 根据这几个算式找规律, 如果△=1, 那么x=。
6、图中共有个三角形。
7、相同的正方块码放在桌面上, 从正面看, 如图4;从侧面看, 如图5, 则正方块最多有个, 最少有个.8、有一种饮料的瓶身如下图所示, 容积是3升。
现在它里面装了一些饮料, 正放时饮料高度为20厘米, 倒放时空于部分的高度为5厘米。
那么瓶内现有饮料升。
二、解答题9、如图, 两个正方形边长分别是5厘米和4厘米, 图中阴影部分为重叠部分。
则两个正方形的空白部分的面积相差多少平方厘米?10、水桶中装有水, 水中插有A、B、C三根竹杆, 露出水面的部分依次是总长的, , 。
三根竹杆长度总和为98厘米, 求水深。
11、养猪专业户王大伯说:“如果卖掉75头猪, 那么饲料可维持20天, 如果买进100头猪, 那么饲料只能维持15天。
”问:王大伯一共养了多少头猪?12、A、B两地之间是山路, 相距60千米, 其中一部分是上坡路, 其余是下坡路, 某人骑电动车从A地到B地, 再沿原路返回, 去时用了4.5小时, 返回时用了3.5小时。
已知下坡路每小时行20千米, 那么上坡路每小时行多少千米?参考答案一、填空题1、解原式=====32、解:要想排名第三的同学得分尽量低, 则其它几人的得分就要尽量的高, 故第一名应为100分, 第二名应为99分, 因此第三、四、五名的总分为:95.5×6-100-99-89=285(分)故第三、四、五名的平均分为285÷3=95(分), 因此第三名至少要得96分。
历届华杯赛初赛小高真题库

初赛试卷(小学高年级组)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754CD BA5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是( ). (A )8615(B )2016(C )4023(D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.(A )1(B )2(C )3(D )4二、填空题 (每小题 10 分, 共40分)7. 若15322.254553923444741A ⎛⎫-⨯÷+=⎪ ⎪ ⎪+ ⎪⎝⎭,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有 ________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE 和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________.第二十届华罗庚金杯少年数学邀请赛这句话里有( )个数大于1,有( )个数大于2,有( )个数大于3,有( )个数大于4. 罗华庚金 杯决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________.2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y 为整数),余下部分的体积为120,求x 和y .yx515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1: MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛 初赛试题C (小学高年级组) (时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn=+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,( )得到的糖水最甜.(A )甲 (B )乙 (C )丙 (D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟. (A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532⨯⨯=A , 其中α、β、γ 是自然数. 如果A的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五次方, 那么 γβα++ 的最小值是( ).再加入50克含糖率20%的糖水.再加入20克糖和30克水.再加入100克糖与水的比是2:3的糖水.(A)10 (B)17 (C)23 (D)315.今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有()个三角形.(A)9 (B)10 (C)11 (D)126.从1~11这11个整数中任意取出6个数, 则下列结论正确的有()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.(A)3 (B)2 (C)1 (D)0二、填空题(每小题10 分, 满分40分)7.有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书..8.每天, 小明上学都要经过一段平路AB、一段上坡路BC和一段下坡路CD (如右图). 已知AB:BC:CD =1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是.9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式43421Λ43421Λ个个2016201699999999⨯的结果中含有( )个数字0.(A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米.(A )532 (B )542(C )3 (D )513 3. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是( ).(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有( )种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角, CE CB =, 则2AE 等于( ).(A )84 (B )80(C )75 (D )646. 从自然数1,2,32015,2016L ,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于( ). (A )109 (B )110 (C )111 (D )112 二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有 对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 32=, M 是AB 的中点, 且2=OM , 那么PM 长为 .9. 设q 是一个平方数. 如果2-q 和2+q 都是质数, 就称q 为P 型平方数. 例如, 9就是一个P 型平方数.那么小于1000的最大P 型平方数是 .10. 有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出 个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A (小学高年级组)一、选择题1、计算:19+⨯+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。
小学华杯赛试题及答案

小学华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是华杯赛的全称?A. 华罗庚数学竞赛B. 华罗庚杯数学竞赛C. 华杯数学竞赛D. 华罗庚数学邀请赛答案:B2. 华杯赛的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A3. 华杯赛的参赛对象通常是:A. 小学生B. 初中生C. 高中生D. 大学生答案:A4. 华杯赛的试题类型包括:A. 选择题B. 填空题C. 计算题D. 所有以上答案:D二、填空题(每题5分,共20分)1. 华杯赛的试题通常由_________组成。
答案:选择题、填空题、解答题2. 华杯赛的举办地点通常在_________。
答案:学校或指定的考试中心3. 华杯赛的参赛者需要具备_________。
答案:数学竞赛的基本知识和解题技巧4. 华杯赛的获奖者通常会获得_________。
答案:证书和奖品三、解答题(每题10分,共60分)1. 已知一个数列的前三项为1,2,4,求第四项的值。
答案:82. 一个长方形的长是宽的两倍,如果宽增加3厘米,长减少2厘米,面积不变,求原来长方形的长和宽。
答案:设原来长方形的宽为x厘米,则长为2x厘米。
根据题意得方程:x(2x-2) = (x+3)(2x-2-3),解得x=6,所以原来长方形的长为12厘米,宽为6厘米。
3. 甲乙两人同时从A地出发,甲的速度是乙的1.5倍,如果甲到达B地后立即返回,与乙在C地相遇,求甲乙两人的速度比。
答案:设乙的速度为v,则甲的速度为1.5v。
设A、B两地之间的距离为d,则甲从A到B再返回C的总距离为2d,乙从A到C的距离为d。
由于甲乙两人相遇,所以他们所用的时间相同,即2d/1.5v = d/v,解得v = 2d/3,所以甲乙两人的速度比为1.5:1。
4. 一个水池有甲乙两个进水管,甲管单独注满水池需要4小时,乙管单独注满水池需要6小时。
如果两管同时开启,需要多少时间才能注满水池?答案:设水池的容量为1,甲管的注水速度为1/4,乙管的注水速度为1/6。
小学华杯赛试题及答案

小学华杯赛试题及答案【篇一:各届华杯赛真题集锦-含答案哦!】届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (31)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (33)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (39)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (41)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (47)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (49)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (57)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (66)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (73)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (75)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (82)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (84)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则a、b、c处填的数各是多少? 4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?【篇二:六年级华杯赛奥数竞赛模拟题(30套)】=txt>一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+?+170)-(41+42+?+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?小学奥数模拟试卷.2 姓名得分一、填空题:1.用简便方法计算下列各题:(3)100+99-98-97+?+4+3-2-1=______.2.上右面算式中a代表_____,b代表_____,c代表_____,d代表_____(a、b、c、d各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟_____岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗_____面,黄旗_____面.6.如图中,能看到的方砖有______块,看不到的方砖有______块. 7.上右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考____次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,??这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若p点在岸上,则a点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点b,他脱鞋的次数与穿鞋的次数和是奇数,那么b点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,1 5 6 7 8 9 10 11 12 13 14 152025 2627 28 29 3035 40 41 42 43 44 4546 47 48 49 50 55 56 57 58 59 603.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.小学奥数模拟试卷.3 姓名得分一、填空题:2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,?,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5. 2.如图,把四边形abcd的各边延长,使得ab=ba′,bc=cb′cd=dc′,daad′,得到一个大的四边形a′b′c′d′,若四边形abcd的面积是1,求四边形a′b′c′d′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?小学奥数模拟试卷.4 姓名得分【篇三:2015小高华杯赛答案及解析】=txt>决赛试题b(小学高年级组)一、填空题(每小题10份,共80分)1. 计算:57.6?81845?28.8?5?14.4?80?1212?________.【难度】★【考点】计算:提取公因数【答案】121【解析】原式?57.6?818415?28.8?5?14.4?80?12228.8165?28.8?1845?14.4?80?121228.82005?14.4?80?121228.84014.4240121212122. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.【难度】★★【考点】应用题:分数应用题【答案】13【解析】甲=总数的三分之一=20,乙=总数的四分之一=15,丙=总数的五分之一=12,所以丁?60?20?15?12?13(棵)3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.【难度】★★【考点】行程:时钟问题【答案】106【解析】4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.【难度】★★【考点】数论:余数、最小公倍数【答案】122【解析】这个三位数减去2得到3、4、5、6的公倍数,取三位数120,所以最小值为122.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.【难度】★★★★【考点】计数:组合计数【答案】7【解析】用a1,a2,a3,a4,a5,a6,a7这7个点代表七个国家,用虚线连接表示敌国关系,用实线连接表示友国关系.则每个国家连出2条虚线,4条实线.共7?2?2?7条虚线,其余为实线.首先说明这7个点必然由7条虚线依次连接为一个闭合回路.a2必与两个点连接虚线,不妨记为a1,a3,而a3必然再与一个点连接虚线,记为a4;a4虚线连接a5,否则剩下3个点互为敌国关系;a5虚线连接a6,否则剩下两个点无法由2条虚线连接;a6虚线连接a7,最后a7只能虚线连接a1.最终连线图如下.只要选出的三个点没有任何两个相邻则满足条件.有135,136,146,246,247,257,357,这7种.(为了直观我们用1,2,3,4,5,6,7分别代表a1,a2,a3,a4,a5,a6,a7)6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.【难度】★★★【考点】数论:位值原理【答案】9421,1249【解析】设其中最小的四位数为abcd,一共可组成4?3?2?1?24个不同的四位数,由于每个数字在每位上均出现6次,则24个数和为6??a?b?c?d??1111?106656,则四个数字之和为16,所以最大和最小的可能为,9421和1249、8521和1258、8431和1348、7621和1267、7531和1357、7432和2347、6541和1456、6532和2356.7. 见右图,三角形abc的面积为1,do:ob?1:3,eo:oa?4:5,则三角形doe的面积为________.【难度】★★★★【考点】几何:等积变形【答案】11135【解析】ye12xab设三角形doe的面积为4x,由比例关系不难得出图中另三块的面积分别为5x,12x,15x,再设三角形dce的面积为y,则有ceyy?4x?5 be?4x?12x?x12x?15x,得y?14411x,则三角形doe的面积为4?114?5?12?15?135.118. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.【难度】★★★★★【考点】组合:分类讨论数论综合【答案】4【解析】设三个数的个位分别为a,b,c⑴如果a,b,c都相等,则只能都为0;⑵如果a,b,c中有两个相等,①a,a,c且a?c,必有c?a?10?a,则c?10,与c为数字矛盾;②a,a,c且a?c,则有c?a?a,a?a?10?c,则a?5,c?0;⑶如果a,b,c都不相等,设a?b?c,则c?b?10?a,c?a?10?b,则c?10,与c为数字矛盾;综上三个数的个位分别为0,0,0或0,5,5;⑴如果都为0,则乘积末尾3位为000;⑵如果为0,5,5①如果个位为0的数,末尾3位都为0,则乘积末尾3位为000;②如果个位为0的数,末尾2位都为0,则乘积末尾3位为500或000;③如果个位为0的数,末尾1位为0设末尾两位为c0,设另外两个末尾2位为a5,b5,则a5?b5?100ab?50?a?b??25,若?a?b?为奇数,则乘积末尾3位为75;若?a?b?为偶数则乘积为25,在乘上c0,无论c为多少,末尾三位只有000,250,500,750这4种.综上,积的末尾3位有000,500,250,750这4种可能.二、解答下列各题(每题10分,共40分,要求写出简要过程) 9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.【难度】★★★★【考点】数论:完全平方数【答案】不能【解析】原数的数字和为1?2?3??9?1?0?1?1?48,为3的倍数,而交换数字位置不会改变数字和,所以无论怎么调整得到的数一定为3的倍数;而一个平方数如果为3的倍数,则一定为9的倍数,而48不是9的倍数,所以无法通过交换数字位置得到一个完全平方数.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为y,5,x的长方体(x,y为整数),余下部分的体积为120,求x和y.x4y15【难度】★★★【考点】几何:长方体正方体【答案】x?3,y?12。
第十至十四届小学华赛初赛试卷

第十四届华罗庚金杯少年数学邀请赛初赛试卷(小学组)试题及答案一、选择题。
每小题10分,满分60分。
以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英语字母写在每题的圆括号内)1.下面的表情图片中,没有对称轴的个数为()(A) 3 (B)4 (C)5 (D)62.开学前6天,小明还没做寒假数学作业,而小强已完成了60道题。
开学时,两人都完成了数学作业,在这6天中,小明做的题的数目是小张的3倍,他平均每天做了()道题。
(A)6 (B)9 (C)12 (D)153.按照中国篮球职业联赛组委会的规定,各队队员的号码可以选择的范围是0~55号,但选择两位数的号码时,每位数字均不能超过5,那么,可供每支球队选择的号码共有()个。
(A)34 (B)35 (C)40 (D)564.在19,197,2009这三个数中,质数的个数是()。
(A)0 (B)1 (C)2 (D)35.下面有四个算式:其中正确的算式是()(A)①和②(B)②和④(C)②和③(D)①和④6.A、B、C、D、E五个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小朋友:A→C,B→E,C→A,D→B,E→D,开始时A、B拿着福娃,C、D、E拿着福牛,传递完5轮时,拿着福娃的小朋友是()。
(A)C与D(B)A与D (C)C与E (D)A与B二、填空题(每小题10分,满分40分)7.下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字,团团×圆圆=大熊猫,则“大熊猫”代表的三位数是___________。
8.从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样可以得到4个数:4、6、5和4,则原来给定的4个整数的和为___________。
9.如下图所示,AB是半圆的直径,O是圆心,弧AC=弧CD=弧DB,M是弧CD的中点,H是弦CD的中点,若N是OB上一点,半圆的面积等于12平方厘米,则图中阴影部分的面积是___________平方厘米。
历届华杯赛决赛试题剖析--第一讲(第十四届)

41 ? 37
已知 123nn>2的和个位数字为 3,十位数字为 0,则 n 的最小值为 _______; 答案: (37) 考点:余数问题; 8.
n(n 1) 03 (mod100) n(n 1) 06 (mod100) ,连续两个数的积的末位为 2 3 的可以是 23,也可以是 78。当为 23 时,n 最小为 42 ;当为 78 时,n 最小 为 37。综上所述,得到 n 最小为 37。
六年级火箭班培训材料
真题尝试 的面积为 感悟心得
4 25 ; 25 9 15 15 25 16
14. 在图所示的乘法算式中,汉字代表 1 至 9 这 9 个数字,不同的汉字代表不同 的汉字。若“祝”字和“贺”字分别代表数字“4”和“8” ,求出“华杯赛” 所表示的整数。
答案: (159) 考点:数字谜问题; 解:首先考虑两位数乘以三位数得到的积为四位数,那么首位的乘积加上进位后 也不能向前进位;再者 48 乘以 21 也要进位,故三位数的首位为 1;第三,三位数 的末位可以是 2、6、7、9,试填十位上的数字,得到 481597632;
六年级火箭班培训材料
历届华杯赛决赛试题剖析
第十四届华罗庚金杯少年数学邀请赛决赛试题(小学组)
真题尝试 一、填空题(每小题 10 分,共 80 分) 1. 计算: 感悟心得
2008 2007 2009 2009 2008 2010 _______; 2008 2009 1 2009 201,换元法; a (a 1) (a 1) a 2 a 1 2 1 ,故原式2; 解:一般地 a (a 1) 1 a a 1 如图 1 所示,在边长为 1 的小正方形组成的 44 方格中, 共有 25 个格点,在以格点为顶点的直角三角形中,两条 直角边长分别是 1 和 3 的直角三角形共有_______个; 答案: (64) 图1 考点:计数问题; 解:每个 13 的长方形中有 4 个这样的直角三角形,转化为在 44 的方格中有多 少个 13 的长方形,共有 242=16 个,根据乘法原理得到 16464 个; 2. 将七位数“1357924”重复写 287 次组成一个 2009 位数“13579241357924” 删去这个中所有位于奇数位(从左往右数)上的数字组成一个新数,再删去 新数中所有位于奇数位上的数字,按上述方法一直删下去直到剩下一个数字 为止,则最后剩下的数字是______; 答案: (3) 考点:操作问题; 解:对于一排数,每次删除奇数位上的数字,如果开始有 2n 个数,那么最后剩下 一个数就是 2n, 考虑先删去几个数, 使得剩下 2n 个数, 可得需要删去 20091024985 个, 删去 985 个数, 接下来的就是最后剩下第一个数, 它在开始时是第 29851970, 根据数的排列周期,这个数相当于循环节中的第 3(197072833)个,也就是 3。当然也可以记住公式:a 个数,按题目要求删去数,最后剩下的一个数在第 3. 其中 2n 是小于 a 最大的 2 的次数数; (经得起被 2 连续整除的数才能 2 a 2n 位, 留下来,这种方法可以推广到被 3 整除等)。 l E B 如图 2 所示,在由七个同样的小正方形组成的图形中, A 直线 l 将原图形分为面积相等的两部分,l 与 AB 的交 点为 E,与 CD 的交点为 F,若线段 DF 与线段 AE 的 D C F 长度之和为 91 厘米,那么小正方形的边长是______厘 图2 米; 答案: (26) 考点:面积的分割;标准的能表示,就能计算的思想、解:设每个小正方形的边长 4.
【VIP专享】14届中环杯决赛四年级详解

90
60
12. 【答案】 8
【解答】容易知道,198 2911。为了使得排成的五位数是 9 的倍数,数字和必须为 9 的
倍数。由于 0 1 2 6 6 15并不是 9 的倍数,所以肯定需要将一些卡片旋转。由于只有
6
旋转后会发生变化,尝试一下
0 0
1 1
2 2
69 99
18 ,发现这样的五张卡片必须为
B
E
5
D
A5 C
②如下图,经过这两条时,根据乘法原理,我们只要计算 F G 的可能性,再乘以 H B 的可能性,最后答案就是 C52 C21 10 2 20 (种);
B
G 5H
A5 F
③如下图,经过这两条时,根据乘法原理,我们只要计算 A I 的可能性,再乘以 J K 的可能性,再乘以 L B 的可能性,最后答案就是 C32 C21 C21 3 2 2 12 (种)。
R
R
R
G
B
G
B
G
B
B
G
R
G
B
R
7. 【答案】 60
【解答首先,这五个数的平均数为 24 27 55 64 x 34 x ,所以 x 肯定是 5 的倍数。
5
5
根据题意, 55 不可能是中间的数,中间的数只能是 x 或 27 。接下来分类讨论:
(1)如果中间的数是 27 ,也就意味着 x 27 ,所以 34 34 x 40 。在这个范围内的质数
B
K 5L
J
5
I
A
④但是要注意,同时经过三条红线段的方法被计算了三次,要全部减去(否则末尾有三个 零了)。如下图,同时经过三条红线的走法为: M N 的可能性,再乘以 O P 的可能 性,再乘以 Q B 的可能性,为 C21 C21 C21 2 2 2 8 (种)。
第十四届华罗庚杯小学组试题

第十四届华罗庚金杯少年数学邀请赛初赛试卷(小学组)(时间:2009年3月14日 10:00~11:00)一、 选择题(每小题10分,满分60分. 以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1. 下面的表情图片中,没有对称轴的个数为( ) (A ) 3 (B) 4 (C) 5 (D) 62. 开学前6天,小明还没做寒假数学作业,而小强已完成了60道题,开学时,两人都完成了数学作业. 在这6天中,小明做的题的数目是小强的3倍,他平均每天做( ) 道题.(A ) 6 (B) 9 (C) 12 (D) 153. 按照中国篮球职业联赛组委会的规定,各队队员的号码可以选择的范围是0~55号,但选择两位数的号码时,每位数字均不能超过5. 那么,可供每支球队选择的号码共( )个 .(A ) 34 (B) 35 (C) 40 (D) 564. 在19、197、2009这三个数中,质数的个数是( ).(A ) 0 (B) 1 (C) 2 (D) 35. 下面有四个算式:①0.6+0.;337.0331....=②0.625=85;③145+23=21453++=168=21;④373×451=1452;其中正确的算式是( ). (A )①和② (B) ②和④ (C ) ②和③ (D) ①和④6. A 、B 、C 、D 、E 五个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小朋友:A->C,B->E,C->A,D->B,E->D.开始A 、B 拿着福娃,C 、D 、E 拿着福牛,传递完5轮时,拿着福娃的小朋友是( ).(A )C 与D (B) A 与D (C) C 与E (D) A 与B二、填空题(每小题10分,满分40分)7. 下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字,团团×圆圆=大熊猫 则“大熊猫”代表的三位数是______.8. 从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样可以得到 4个数:4、6、531和432,则原来给定的4个整数的和为______.9. 如下图所示,AB 是半圆的直径,O 是圆心, ,M 是的 中点,H 是弦CD 的中点,若N 是OB 上一点,半圆的面积等于12平方厘米, 则图中阴影部分的面积是______平方厘米.10. 在大于2009的自然数中,被57除后,商与余数相等的数共有______个.第十四届华杯赛初赛试题答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年第14届华杯赛小学组决赛试题及详解一、填空题(每小题10分,共80分) 1. 计算:200820072009200920082010200820091200920101+⨯+⨯+⨯-⨯-=_______;2. 如图1所示,在边长为1的小正方形组成的4⨯4方格中,共有25个格点,在以格点为顶点的直角三角形中,两条直角边长分别是1和3的直角三角形共有_______个;3. 将七位数“1357924”重复写287次组成一个2009位数“13579241357924⋯”删去这个中所有位于奇数位(从左往右数)上的数字组成一个新数,再删去新数中所有位于奇数位上的数字,按上述方法一直删下去直到剩下一个数字为止,则最后剩下的数字是______;4. 如图2所示,在由七个同样的小正方形组成的图形中,直线l 将原图形分为面积相等的两部分,l 与AB 的交点为E ,与CD 的交点为F ,若线段DF 与线段AE 的长度之和为91厘米,那么小正方形的边长是______厘米;5. 某班学生要栽一批树苗,若每个人分配k 棵树苗,则剩下38棵;若每个学生分配9棵树苗,则还差3棵,那么这个班共有_______名学生;图1AD B CEF l 图26. 已知三个合数A 、B 、C 两两互质,且1101128A B C ⨯⨯=⨯,那么A B C ++的最大值为_______;7. 方格中的图形符号“◇”、“○”、“▽”、“☆”代表填入方格内的数,相同的符号表示相同的数。
如图3所示,若第一列,第三列,第二行,第四行的四个数的和分别为36,50,41,37,则第三行的四个数的和是_______;8. 已知1+2+3+⋯+n (n >2)的和个位数字为3,十位数字为0,则n 的最小值为_______;二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 六个分数111111,,,,,23571113的和在哪两个连续自然数之间?10. 2009年的元旦时星期四,问:在2009年,哪几个月的第一天也是星期四?哪几个月有5个星期日?图3◇ ◇ ◇ ◇ ◇ ◇ ▽ ▽ ○ ○ ○ ○ ○ ☆☆ ☆ 36 50 41?3711. 已知a 、b 、c 是三个自然数,且a 与b 的最小公倍数是60,a 与c 的最小公倍数是270,求b 与c 的最小公倍数。
12. 在51个连续的奇数1、3、5、⋯、101中选取k 个数,使得它们的和为1949,那么k 的最大值是_______;13. 如图4所示,在梯形ABCD 中,A B ∥CD ,对角线AC 、BC 相交于点O 。
已知AB =5,CD =3,且梯形ABCD 的面积为4,求三角形OAB 的面积。
14. 在图所示的乘法算式中,汉字代表1至9这9个数字,不同的汉字代表不同的汉字。
若“祝”字和“贺”字分别代表数字“4”和“8”,求出“华杯赛”所表示的整数。
D 图4 A B CO ⨯祝贺华杯赛=第十四届2009年第14届华杯赛小学组决赛试题及详解一、填空题(每小题10分,共80分)1.计算:200820072009200920082010 200820091200920101+⨯+⨯+⨯-⨯-=_______;答案:(2)考点:分数的计算,换元法;解:一般地22(1)(1)11(1)11a a a a aa a a a+-⨯++-==⨯+-+-,故原式=2;2.如图1所示,在边长为1的小正方形组成的4⨯4方格中,共有25个格点,在以格点为顶点的直角三角形中,两条直角边长分别是1和3的直角三角形共有_______个;答案:(64)考点:计数问题;解:每个1⨯3的长方形中有4个这样的直角三角形,转化为在4⨯4的方格中有多少个1⨯3的长方形,共有2⨯4⨯2=16个,根据乘法原理得到16⨯4=64个;3.将七位数“1357924”重复写287次组成一个2009位数“13579241357924⋯”删去这个中所有位于奇数位(从左往右数)上的数字组成一个新数,再删去新数中所有位于奇数位上的数字,按上述方法一直删下去直到剩下一个数字为止,则最后剩下的数字是______;答案:(3)考点:操作问题;解:对于一排数,每次删除奇数位上的数字,如果开始有2n个数,那么最后剩下一个数就是2n,考虑先删去几个数,使得剩下2n个数,可得需要删去2009-1024=985个,删去985个数,接下来的就是最后剩下第一个数,它在开始时是第2⨯985=1970,根据数的排列周期,这个数相当于循环节中的第3(1970÷7=283⋯3)个,也就是3。
当然也可以记住公式:a个数,按题目要求删去数,最后剩下的一个数在第()22na-位,其中2n是小于a最大的2的次数数;4.如图2所示,在由七个同样的小正方形组成的图形中,直线l将原图形分为面积相等的两部分,l与AB的交点为E,与CD的交点为F,若线段DF与线段AE的长度之和为91厘米,那么小正方形的边长是______厘米;答案:(26)考点:面积的分割;解:设每个小正方形的边长为a,那么由梯形AEFD的面积得到27191,26 22aa a=⨯⨯=;5.某班学生要栽一批树苗,若每个人分配k棵树苗,则剩下38棵;若每个学生分配9棵树苗,则还差3棵,那么这个班共有_______名学生;答案:(41)考点:盈亏问题;解:首先k是小于9的自然数,由盈亏问题,人数为(38+3)÷(9-k)=419k-名,根据整除性,41是质数,约数只有1、41,那么k=8,人数为414198=-名;图1ADBCEFl图26. 已知三个合数A 、B 、C 两两互质,且1101128A B C ⨯⨯=⨯,那么A B C ++的最大值为_______; 答案:(1626)考点:质数与合数;解:2221101128271113A B C ⨯⨯=⨯=⨯⨯⨯,为使得三个合数的和最大,只需一个数尽可能大,其它两个数尽可能小,得到4+49+1573=1626;7. 方格中的图形符号“◇”、“○”、“▽”、“☆”代表填入方格内的数,相同的符号表示相同的数。
如图3所示,若第一列,第三列,第二行,第四行的四个数的和分别为36,50,41,37,则第三行的四个数的和是_______;答案:(33)考点:数阵图问题;解:如图设未知数,则:8336123373411322505a ab b ac bd c b c d =⎧+=⎧=⎪⎪+=⎨⎨+==⎪⎪+==⎩⎩那么22812533a b d ++=⨯++=; 8. 已知1+2+3+⋯+n (n >2)的和个位数字为3,十位数字为0,则n 的最小值为_______; 答案:(37)考点:余数问题;解:(1)03(mod100)(1)06(mod100)2n n n n +≡+≡,连续两个数的积的末位为3的可以是2⨯3,也可以是7⨯8。
当为2⨯3时,n 最小为42;当为7⨯8时,n 最小为37。
综上所述,得到n 最小为37。
二、解答下列各题(每题10分,共40分,要求写出简要过程) 9. 六个分数111111,,,,,23571113的和在哪两个连续自然数之间?答案:(1~2) 考点:分数估算;解:311111111111111111131113236131313235711132356555=+++++<+++++<+++++=,所以在1~2之间;10. 2009年的元旦时星期四,问:在2009年,哪几个月的第一天也是星期四?哪几个月有5个星期日? 答案:(10;3、5、8、11) 考点:日历问题; 解:(略)11. 已知a 、b 、c 是三个自然数,且a 与b 的最小公倍数是60,a 与c 的最小公倍数是270,求b 与c 的最小公倍数。
答案:(41)考点:最大公约数与最小公倍数; 解:[,]60,[,]270a b ac ==,那么2360235,270235=⨯⨯=⨯⨯,a 可以是30的任意一个约数,那么图3 ◇ ◇ ◇ ◇ ◇ ◇ ▽ ▽ ○ ○ ○ ○ ○ ☆ ☆ ☆ 3650 41?37a a a a a a c cb b b b ○ ☆d d 3650 41 ? 37[,][12,54]108b c ==或[,][60,270]540b c ==;12. 在51个连续的奇数1、3、5、⋯、101中选取k 个数,使得它们的和为1949,那么k 的最大值是_______; 答案:(43)考点:整数的分拆;解:由于1+3+5+⋯+87=1936,相差1949-1936=13,不管把哪些数加上偶数,总的所加的和为偶数,不是奇数13,所以44个奇数相加不可能成立,43个可以是:3+5+7+⋯+83+85+101=1949;13. 如图4所示,在梯形ABCD 中,A B ∥CD ,对角线AC 、BC 相交于点O 。
已知AB =5,CD =3,且梯形ABCD 的面积为4,求三角形OAB 的面积。
答案:(25/16) 考点:面积的计算;解:如图,根据梯形中的蝴蝶定理得到三角形OAB 的面积为42525915152516⨯=+++;14. 在图所示的乘法算式中,汉字代表1至9这9个数字,不同的汉字代表不同的汉字。
若“祝”字和“贺”字分别代表数字“4”和“8”,求出“华杯赛”所表示的整数。
答案:(159)考点:数字谜问题;解:首先考虑两位数乘以三位数得到的积为四位数,那么首位的乘积加上进位后也不能向前进位;再者48乘以21也要进位,故三位数的首位为1;第三,三位数的末位可以是2、6、7、9,试填十位上的数字,得到48⨯159=7632;D 图4A BC OD 3 ABCO 515 15 9 25⨯祝贺华杯赛=第十四届。