华杯赛总决赛小学组数学第二试试题(无答案)
“华杯赛”决赛赛前训练模拟题小学组决赛卷-小学数学五年级下册-竞赛试题及答案-人教课标版---

“华杯赛”决赛赛前训练模拟题小学组决赛卷小学数学五年级下册竞赛试题及答案人教课标版一、填空题1、计算:=。
2、一次数学竞赛满分是100分, 某班前六名同学的平均得分是95.5分, 排第六名同学的得分是89分, 每人得分是互不相同的整数, 那么排名第三的同学最少得___________分。
3、在下面的等式中, 相同的字母表示同一数字, 不同字母表示不同的数字:若abcd-dcba=□997, 那么□中应填。
4、在梯形ABCD中, 上底长5厘米, 下底长10厘米, 平方厘米, 则梯形ABCD的面积是平方厘米。
5、已知:10△3=14, 8△7=2, △, 根据这几个算式找规律, 如果△=1, 那么x=。
6、图中共有个三角形。
7、相同的正方块码放在桌面上, 从正面看, 如图4;从侧面看, 如图5, 则正方块最多有个, 最少有个.8、有一种饮料的瓶身如下图所示, 容积是3升。
现在它里面装了一些饮料, 正放时饮料高度为20厘米, 倒放时空于部分的高度为5厘米。
那么瓶内现有饮料升。
二、解答题9、如图, 两个正方形边长分别是5厘米和4厘米, 图中阴影部分为重叠部分。
则两个正方形的空白部分的面积相差多少平方厘米?10、水桶中装有水, 水中插有A、B、C三根竹杆, 露出水面的部分依次是总长的, , 。
三根竹杆长度总和为98厘米, 求水深。
11、养猪专业户王大伯说:“如果卖掉75头猪, 那么饲料可维持20天, 如果买进100头猪, 那么饲料只能维持15天。
”问:王大伯一共养了多少头猪?12、A、B两地之间是山路, 相距60千米, 其中一部分是上坡路, 其余是下坡路, 某人骑电动车从A地到B地, 再沿原路返回, 去时用了4.5小时, 返回时用了3.5小时。
已知下坡路每小时行20千米, 那么上坡路每小时行多少千米?参考答案一、填空题1、解原式=====32、解:要想排名第三的同学得分尽量低, 则其它几人的得分就要尽量的高, 故第一名应为100分, 第二名应为99分, 因此第三、四、五名的总分为:95.5×6-100-99-89=285(分)故第三、四、五名的平均分为285÷3=95(分), 因此第三名至少要得96分。
华杯赛试题及答案

华杯赛试题及答案1. 选择题1)以下哪个不属于华杯赛的参赛项目?A. 数学竞赛B. 语言表达C. 程序设计D. 跳高比赛2)华杯赛是哪个国家的赛事?A. 中国B. 美国C. 日本D. 英国3)以下哪个城市曾举办过华杯赛?A. 北京B. 上海C. 广州D. 香港4)华杯赛是以什么形式进行的?A. 线下比赛B. 线上比赛C. 线下与线上结合D. 每个参赛者可以自行选择5)华杯赛设立了哪些奖项?A. 一等奖、二等奖、三等奖B. 冠军奖杯、亚军奖杯、季军奖杯C. 最佳表现奖、创新奖、团队合作奖D. 所有参赛者都会获得奖励2. 填空题1)华杯赛是每年________举办一次。
2)参赛者需要先进行________报名,通过审核后方可参加比赛。
3)华杯赛的目的是________学生综合能力的培养。
4)参赛者需要在规定的时间内完成________项目的考核。
5)华杯赛的题目涵盖了多个学科,要求参赛者具备________知识。
3. 简答题请简要回答以下问题:1)你为什么想参加华杯赛?2)你认为参加华杯赛对你的个人发展有何帮助?3)你的学习方法和备考策略是什么?4)在华杯赛中,你最想获得哪个奖项,并为之付出什么努力?答案:1. 选择题1)D2)A3)B4)C5)C2. 填空题1)一次2)在线上3)促进4)指定5)跨学科3. 简答题1)参加华杯赛可以锻炼自己的能力,提高学科知识水平,同时还能通过与其他优秀学生交流,拓宽视野。
2)参加华杯赛可以提升个人的学术竞争力和综合素质,对今后的升学和就业都有积极的影响。
3)我的学习方法是注重理论与实践相结合,善于总结归纳,通过解题训练提高自己的应试能力;备考策略是提前规划时间,有针对性地复习重点知识,并进行模拟考试。
4)我最想获得的奖项是最佳表现奖,我会通过充分准备,认真完成每个项目的考核,展现出自己的才能和潜力,努力争取取得好成绩。
华杯赛试题及答案到此结束。
请注意按照华杯赛的要求认真准备,祝你取得优异的成绩!。
三年级华杯赛试题及答案

三年级华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪一项是华杯赛的全称?A. 华罗庚数学竞赛B. 华罗庚数学奥林匹克C. 华罗庚数学邀请赛D. 华罗庚数学挑战赛答案:C2. 华杯赛的参赛对象通常是什么年级的学生?A. 一年级B. 二年级C. 三年级D. 四年级答案:C3. 华杯赛的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A4. 华杯赛的试题难度通常如何?A. 非常简单B. 相对容易C. 适中D. 非常困难答案:C二、填空题(每题5分,共20分)1. 华杯赛的试题通常包括_______和_______两部分。
答案:选择题、填空题2. 参加华杯赛的学生需要具备一定的_______能力。
答案:数学3. 华杯赛的试题设计旨在考察学生的_______和_______。
答案:逻辑思维、解决问题4. 华杯赛的获奖者通常能够获得_______和_______。
答案:荣誉证书、奖品三、解答题(每题10分,共20分)1. 请解释华杯赛对于培养学生数学兴趣的重要性。
答案:华杯赛通过竞赛的形式激发学生对数学的兴趣,让学生在解决问题的过程中体验到数学的乐趣,从而提高他们的学习动力和数学素养。
2. 描述一下华杯赛的评分标准。
答案:华杯赛的评分标准通常依据学生解答问题的正确性、解题思路的清晰度以及解题过程的规范性来综合评定。
每道题目都有明确的得分点,评委会根据学生的答题情况给予相应的分数。
四、综合题(每题15分,共30分)1. 假设你是一名三年级的学生,你将如何准备华杯赛?答案:首先,我会定期复习数学课本中的知识点,确保基础知识的牢固。
其次,我会参加一些数学辅导班或兴趣小组,以提高解题技巧。
此外,我还会做一些历年的华杯赛试题,以熟悉题型和考试节奏。
最后,我会保持良好的心态,积极面对比赛。
2. 如果你在华杯赛中遇到了难题,你会如何应对?答案:面对难题,我会先冷静下来,仔细阅读题目,尝试从不同角度理解问题。
三年级华杯赛试题及答案

三年级华杯赛试题及答案【试题一】题目:小明有36个苹果,他决定将苹果平均分给6个小朋友。
请问每个小朋友可以得到多少个苹果?【答案】每个小朋友可以得到6个苹果。
因为36个苹果除以6个小朋友等于6个苹果。
【试题二】题目:一个长方形的长是15厘米,宽是10厘米。
请问这个长方形的周长是多少厘米?【答案】这个长方形的周长是50厘米。
根据周长的计算公式:周长= 2 × (长 + 宽),所以周长= 2 × (15 + 10) = 2 × 25 = 50厘米。
【试题三】题目:小华有5张邮票,小刚有7张邮票。
如果小华和小刚交换了2张邮票,那么现在小华有多少张邮票?【答案】现在小华有6张邮票。
小华原本有5张邮票,交换了2张给小刚,所以剩下3张,然后从小刚那里得到了2张,所以现在总共有3 + 2 = 6张邮票。
【试题四】题目:一个班级有24名学生,如果每4名学生组成一个小组,那么可以组成多少个小组?【答案】可以组成6个小组。
因为24名学生除以每组4名学生等于6组。
【试题五】题目:一个数加上12等于36,这个数是多少?【答案】这个数是24。
因为36减去12等于24。
【试题六】题目:小丽有3个红气球,2个蓝气球,如果她又买了5个黄气球,那么她总共有多少个气球?【答案】小丽总共有10个气球。
3个红气球加上2个蓝气球等于5个气球,再加上5个黄气球,总共是5 + 5 = 10个气球。
【试题七】题目:如果一个数的3倍是18,那么这个数是多少?【答案】这个数是6。
因为18除以3等于6。
【试题八】题目:小强有40元钱,他买了一个价值15元的玩具,还剩多少钱?【答案】小强还剩25元钱。
40元减去15元等于25元。
【试题九】题目:一个班级里有22个男生和18个女生,这个班级总共有多少人?【答案】这个班级总共有40人。
22个男生加上18个女生等于40人。
【试题十】题目:如果一个数减去7等于23,那么这个数是多少?【答案】这个数是30。
第十五届华杯赛决赛试题A(小学组)、答案及详细分析解答

第十五届华罗庚金杯少年数学邀请赛决赛试题A(小学组)一、填空题(每小题10分,共80分)1.在10个盒子中放乒乓球,每个盒子中的球的个数不能少于11,不能是13,也不能是5的倍数,且彼此不同,那么至少需要个乒乓球。
2.有五种价格分别为2元、5元、8元、11元、14元的礼品以及五种价格分别为1元、3元、5元、7元、9元的包装盒。
一个礼品配一个包装盒,共有种不同价格。
3.汽车A从甲站出发开往乙站,同时汽车B、C从乙站出发与A相向而行开往甲站,途中A与B相遇20分钟后再与C相遇。
已知A、B、C的速度分别是每小时90km, 80km, 60km,那么甲乙两站的路程是km。
4.将和这6个分数的平均值从小到大排列,则这个平均值排在第位。
5.将一个数的各位数字相加得到新的一个数称为一次操作,经连续若干次这样的操作后可以变为6的数称为“好数”,那么不超过2012的“好数”的个数为,这些“好数”的最大公约数是。
6.右图所示的立体图形由9个棱长为1的立方块搭成,这个立体图形的表面积为。
7.数字卡片“3”、“4”、“5”各10张,任意选出8张使它们的数字和是33,则最多有张是卡片“3”。
8.若将算式的值化为小数,则小数点后第1个数字是。
二、解答下列各题(每题10分,共40分,要求写出简要过程)9.右图中有5个由4个1×1的小正方格组成的不同形状的硬纸板。
问能用这5个硬纸板拼成右图中4×5的长方形吗?如果能,请画出一种拼法;如果不能,请简述理由。
10.长度为L的一条木棍,分别用红、蓝、黑线将它等分为8,12和18段,在各划分线处将木棍锯开,问一共可以得到多少段?其中最短的一段的长是多少?11.足球队A,B,C,D,E进行单循环赛(每两队赛一场),每场比赛胜队得3分,负队得0分,平局两队各得1分。
若A,B,C,D队总分分别是1,4,7,8,请问:E队至多得几分?至少得几分?12.华罗庚爷爷出生于1910年11月12日。
小学六年级数学第十三届华杯赛决赛考试试卷及答案

第十三届华杯赛决赛试卷一、填空(每题10分,共80分)1、计算:416024340143214016940146+⨯+⨯+⨯+⨯= 。
2、林林倒满一杯纯牛奶,第一次喝了31,然后加入豆浆,将杯子斟满并搅拌均匀,第二次,林又喝了31,继续用豆浆将杯子斟满并搅拌均匀,重复上述过程,那么第四次后,林林共喝了一杯纯牛奶总量的 (用分数表示)。
3、下图是小明用一些半径为1厘米、2厘米、4厘米和8厘米的圆、半圆、圆弧和一个正方形组成的一个鼠头图案,图中阴影部分的总面积为 平方厘米。
4、悉尼与北京的时差是3小时,例如:悉尼时间12:00时,北京时间是9:00,某日,当悉尼时间9:15时,小马和小杨分别乘机从悉尼和北京同时出发去对方所在地,小马于北京时间19:33分到达北京。
小马和小杨路途上时间之比为7:6,那么小杨到达悉尼时,当地时间是 。
5、将六个自然数14,20,33,117,143,175分组,如果要求每组中的任意两个数都到质,则至少需要将这些数分成 组。
6、对于大于零的分数,有如下4个结论: (1)两个真分数的和是真分数; (2)两个真分数的积是真分数;(3)一个真分数与一个假分数的和是一个假分数; (4)一个真分数与一个假分数的积是一个假分数。
其中正确结论的编号是 。
7、记A =21+43+87+1615+…+10241023,那么比A 小的最大自然数是 。
8、黑板上写着1至2008共2008自然数,小明每次擦去两个奇偶性相同的数,再写上它们的平均数,最后黑板上只剩下一个自然数,这个数可能的最大值和最小值的差是 。
二、解答案下列各题(每题10分,共40分,要求写出简要过程)9、10、请将四个4用四则运算符号、括号组成五个算式,使它们的结果分别等于5、6、7、8、9。
11、图2中,ABCD 和CGEF 是两个正方形,AG 和CF 相交于H ,已知CH 等于CF 的三分之一,三角形CHG 的面积等于6平方厘米,求五边形ABGEF 的面积。
华杯赛历届试题及答案

华杯赛历届试题及答案华杯赛,全称“华罗庚数学金杯赛”,是一项面向中学生的数学竞赛,旨在激发学生对数学的兴趣,提高他们的数学素养。
以下是历届华杯赛的部分试题及答案,供参考:一、选择题1. 下列哪个数是最小的正整数?- A. 0- B. 1- C. 2- D. 3答案:B2. 如果一个数除以3的余数是2,除以5的余数是1,那么这个数除以15的余数是多少?- A. 3- B. 4- C. 5- D. 6答案:A二、填空题1. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是________ 立方厘米。
答案:2402. 计算下列数列的第10项:1, 1, 2, 3, 5, 8, 13, 21, 34, ...答案:55三、解答题1. 一个水池有注水口和排水口,单开注水口每小时可注水20吨,单开排水口每小时可排水10吨。
如果同时打开注水口和排水口,水池每小时净增水量是多少吨?如果池中原有水100吨,需要多少时间才能将水排空?答案:同时打开注水口和排水口时,水池每小时净增水量是20吨- 10吨 = 10吨。
要将100吨水排空,需要的时间为100吨÷ 10吨/小时 = 10小时。
2. 一个班级有48名学生,其中1/3是男生,剩下是女生。
问这个班级有多少名女生?答案:班级中有48名学生,其中1/3是男生,即48 * (1/3) = 16名男生。
剩下的学生是女生,所以女生人数为48 - 16 = 32名。
四、证明题1. 证明对于任意的正整数n,n的立方与n的和不小于n的平方与n 的两倍之和。
答案:设n为任意正整数。
我们需要证明n^3 + n ≥ n^2 + 2n。
展开立方项,得到n^3 + n - n^2 - 2n = n(n^2 - n - 1) = n(n - (1 + √5)/2)(n - (1 - √5)/2)。
由于n是正整数,(n - (1 +√5)/2)和(n - (1 - √5)/2)都是负数或零,因此整个表达式是非负的,即n^3 + n ≥ n^2 + 2n。
第17届“华杯赛”网上决赛试题以及答案(小中组)

3. 鸡兔同笼, 共有头 51 个, 兔的总脚数比鸡的总脚数的 3 倍多 4 只, 那么笼中 共有兔子 只.
4. 抽屉里有若干个玻璃球, 小军每次操作都取出抽屉中球数的一半再放回一个 球. 如此操作了 2012 次后, 抽屉里还剩有 2 个球. 那么原来抽屉里有 个球. 5. 下图是由 1 平方分米的正方形瓷砖铺砌的墙面的残片. 图中由格点 A, B, C, D 为顶点的四边形 ABCD 的面积等于 平方分米.
6. 一只小虫沿右图中的线路从 A 爬到 B. 规定: 图中标 示箭头的边只能沿箭头方向行进, 而且每条边在同一 路线中至多通过一次. 那么小虫从 A 到 B 的不同路线 有 条.
1
第十七届华罗庚金杯少年数学邀请赛决赛网络版试卷(小学中年级组)
7. 有一些自然数, 它们中的每一个与 7 相乘, 其积的末尾四位数都为 2012, 那 么在这些自然数中, 最小的数是 .
8. 将棱长为 1 米的正方体木块分割成棱长为 1 厘米的小正方体积木, 设想孙悟 空施展神力将所有的小积木一个接一个地叠放起来, 成为一根长方体 “神棒”, 直指蓝天. 已知珠穆朗玛峰的海拔高度为 8844 米, 则“神棒”的高度超过珠 穆朗玛峰的海拔高度 米.
二、回答下列各题(每题 10 分, 共 40 分, 写出答案即可)
第十七届华罗庚金杯少年数学邀请赛决赛网络版试卷(小学中年级组)
第十届华罗庚金杯少年数学邀请赛
决赛网络版试卷(小学中年级组)
一、填空题(每题 10 分, 共 80 分)
1. 计算: 28× 7× 25+12× 7× 25+7× 11× 3+44= .
2. 字母 A, B, C 分别代表 1~9 中不同的数字. 在使得右图的加法算 式成立的所有情形中, 三个字母 A, B, C 都不可能取到的数字的 乘积是 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识改变命运百度提升自我
本文为自本人珍藏版权所有仅供参考
第九届华杯赛总决赛小学组第二试试题
1.一正方形苗圃,栽种桃树和李树,一圈一圈地相间种植,即最外一圈种的是桃树,往内
一圈种的是李树,然后是桃树,…,最内一圈种了4棵桃树。
已知树苗的行距和列距都相等,桃树比李树多40棵。
问:桃树和李树一共有多少棵?
2.如下图,在以AB为直径的半圆上取一点C,分别以AC和BC为直径在ΔABC外作半圆AEC 和BFC,当C点在什么位置时图中两个弯月形(阴影部分)AEC和BFC的面积和最大?
3.甲乙两家医院同时接受同样数量的病人,每个病人患x病或y病中的一种,
经过几天治疗,甲医院治好的病人多于乙医院治好的病人。
问:经过这几天治疗,是否可能甲医院对x病的治愈率和对y病的治愈率均低于乙医院的?举例说明。
(x病的治愈率=(x病治好人数/患x病人数)×100%)
4.完成某项工程,甲单独工作需要18小时,乙需要24小时,丙需要30小时。
现甲,乙,丙按如下顺序工作:甲,乙,丙,乙,丙,甲,丙,甲,乙,…,每人工作一小时换班,问:
当工程完成时甲,乙,丙各干了多少小时?
5.求同时满足下列三个条件的自然数a,b:
(1) a>b; (2)ab
a+b
=169; (3)a+b是平方数。
6.如图,正方形跑道ABCD。
甲,乙,丙三人同时从A点出发同向跑步,他们的速度分别为
每秒5米,4米,3米。
若干时间后,甲首先看到乙和丙都与自己在正方形的同一条边上,
且他们在自己的前方。
从此时刻算起,又经过21秒,甲乙丙三人处在跑道的同一位置上,这是出发后三人第一次处在同一位置。
请计算出正方形周长的所有可能值。
用心爱心专心 1。