生物工艺学全解

合集下载

生物工艺学(名词解释、简答题)

生物工艺学(名词解释、简答题)

1生物工艺学:应用自然科学和工程学原理,依靠生物作用剂的作用将原料加工以提供产品或用以为社会服务的技术2 发酵工程:生物学和工程学的结合,生物方面的各种工程的总称,技术的开发产业化。

3,自然选育:利用微生物在一定的条件下自发变异的原理,通过分离筛选等方法,排除衰变型菌株,从中选择维持原菌落生产水的菌落,并获得纯种4 随机筛选:将人工诱变或自然突变的菌株凭经验进行筛选,以从中挑选出目的菌株的过程5 理性化筛选根据遗传学原理,设计选择性筛子,从将目的菌种筛出来6目的筛选在理性化筛选的基础上,每一次摇瓶筛选都采用不同的技术指导,使变株的选出频率进一步提高以达到筛选的目的7 杂交育种将两个基因型不同的菌株以吻合后使遗传物质重新组合,从中分离和筛选具有新性状的菌株8 原生质体融合: 把两个亲本的细胞壁分别通过酶解作用加以瓦解,使菌体细胞在高渗环境中释放出只有原生质包裹的球状体,两亲本的原生质体在高渗条件下使之融合,由PEG作为助融剂,使期发生细胞融合,使两亲本基因由接触到交换,从而实现基因组合9 简述传统生物技术与现在生物技术的区别:传统生物技术:利用现有生物、宏观水平、传统技术、注重产量的提高;现代生物技术:利用改造的生物、微观水平、以基因工程为代表的新技术、注重产量和质量的提高10 简述发酵工艺的历史和特征、历史:天然发酵时期,对微生物本生与缺乏的认识;纯培养技术的建立,发酵技术的建立是第一个转折期,人为控制微生物的时代;通气搅拌技术的发展发酵工业第转折期,发酵工程的开端,青霉素发酵的开始;代谢控制发酵技术的建立,第三转折期,氨基酸,核苷酸的发酵;发酵原料的转换,糖质原料到非糖质原料;基因工程的运用;,广泛的生物产业,固定代细胞技术,单棵隆抗体。

特征:常压常温下进行反应,反应条件温和,生产材料多价格低,以碳水化合物为主要的原料,不需要精制反应自动调节反应途径高度专一和选择性,对环境污染少,生产过程无害,可以不增加设备而增加产量,投资少见效快。

生物制药工艺学名词解释

生物制药工艺学名词解释

1 Biologics 生物制品:一般指的是用微生物(包括细菌,噬菌体,立克次体病毒等)为生物代谢产物,动物毒素,人或动物的血液或组织等加工而制成的预防,治疗和诊断特定传染病或其他有关疾病的免疫制剂,主要指菌苗,疫苗,毒素,应变原与血液制品等。

2 Electroporation 电穿孔:是指在高压电脉冲的作用下使细胞膜上出现微小的孔洞,外界环境中的DNA穿孔而入,进入细胞,最终进入细胞核内部得的方法。

该方法既适合于贴壁生长的细胞,也适合用于悬浮生长的细胞,既可用于瞬时表达也可用于稳定转染。

3 Microcarrier culture 微载体培养:微载体培养是使细胞贴附在微小颗粒载体上,它创造了相当大的贴附面积,供细胞贴附生长、增殖。

载体体积很小,比重较轻,在轻度搅拌下即可使细胞自由悬浮于培养基内,充分发挥悬浮培养的优点。

4 Conventional filtration 常规过滤:是指料液流动方向和过滤介质垂直的过滤方式。

常规过滤时,固体颗粒易被填塞在过滤介质上,形成滤饼。

料液必须穿过滤饼和过滤介质的微孔。

恒压下,随着滤饼厚度的增加,滤液不断减慢。

5 SCF 超临界流体:是指处于超临界温度(TC)和超临界压力(PC)以上的特殊流体。

当气体物质处于其临界温度和临界压力以上时,不会凝缩为液体,只是密度增大,因此,超临界流体相既不同于一般的液相,也有别于一般的气相,具有许多特殊的物理化学性质。

6 Adsorption method 吸附法:指利用吸附作用,将样品中的生物活性物质或杂质吸附于适当的吸附剂上,利用吸附剂对活性物质和杂质间吸附能力的差异,使目的物和其他物质分离,达到浓缩和提纯目的的方法。

7 Compound affinity 复合亲和力:即吸附剂的亲和结合过程,既涉及离子效应的应用,又有疏水作用,且这两种弱的作用还彼此增强,其结果使亲和力大大增强。

8 Thymus hormones 胸腺激素:胸腺是一个激素分泌器官,对免疫功能有多方面的影响。

生物制药工艺学名词解释

生物制药工艺学名词解释

生物制药工艺学名词解释:第一章:1. 药品:一定剂型和规格的药物并赋予一定的形式(如包装),而且经过有关部门的批准,有明确的作用用途。

药物:能影响机体生理、生化和病理过程,用以预防、诊断、治疗疾病和计划生育的化学物质。

2. 生物药物Biopharmaceuticals:以生物体、生物组织或其成份为原料综合应用生物学、物理化学与现代药学的原理与方法加工制成的药物。

3. 生物活性Biological activity,Bioactivity:对活组织如疫苗有影响的特性。

4. 酶工程enzyme engineering:酶学与工程学互相渗透结合,发展形成的生物技术,它是从应用目的出发,研究酶和应用酶的特异催化功能,并通过工程化过程将相应原料转化成所需产物的技术。

5. 固定化酶immobilized enzyme:是指借助于物理和化学的方法把酶束缚在一定空间内并具有催化活性的酶制剂。

6. 组合生物合成combinatorial biosynthesis(组合生物学combinatorial biology):应用基因重组技术重新组合微生物药物的基因簇,产生一些非天然的化合物。

7. 药物基因组学:一门研究个人的基因遗传如何影响身体对药物反应的科学。

8. 凝聚作用coagulation:指在电解质作用下,胶粒粒子的扩散双电子层排斥电位降低,破坏了胶体系统的分散状态,使胶体粒子发生聚集的过程。

9. 萃取extraction:将物质从基质中分离出来的过程。

一般指有机溶剂将物质从水相转移到有机相的过程。

10. 反萃取stripping/back extraction:将萃取液与反萃取剂相接触,使某种被萃入有机相的溶质转入水相的过程。

11. 萃取因素/萃取比:萃取溶质进入萃取相的总量与该溶质在萃余相中总量之比。

12. 分离因素separation factor:在同一萃取体系内两种溶质在同样条件下分配系数的比值。

13. 双相萃取技术two-aqueous phase extraction:利用不同的高分子溶液相互混合可产两相或多相系统,静置平衡后,分成互不相溶的两个水相,利用物质在互不相溶的两水相间分配系数的差异来进行萃取的方法。

生物工艺学知识点

生物工艺学知识点

生物工艺学知识点第一章绪论1、生物工艺学biotechnology:又称为生物技术,它是应用自然科学及工程学原理,依靠生物作用剂biologicalagents的作用将物料进行加工以提供产品或社会服务的技术;特点:多学科和多技术的结合、生物作用剂生物催化剂的参与、应用大量高、精、尖设备;;2、生物催化剂是游离的或固定化的细胞或酶的总称;生物催化剂特点:优点:①常温、常压下反应②反应速率大③催化作用专一④价格低廉缺点:稳定性差控制条件严格易变异细胞生物反应过程实质是利用生物催化剂以从事生物技术产品的生产过程processengineering;3、生物技术研究的主要内容:基因工程DNA重组技术,geneengineering、细胞工程cellengineering、酶工程enzymeengineering、发酵工程fermentationengineering、蛋白质工程proteinengineering、第二章菌种的来源1、工业生产常用的微生物细菌、酵母菌、霉菌、放线菌、担子菌、藻类;2、分离微生物新种的过程大体可分为采样、增殖、纯化和性能测定;含微生物材料的预处理方法:物理方法加热;化学方法pH;诱饵法;诱饵技术:将固体基质加到待检的土壤或水中,待其菌落长成后再铺平板;分离的效率影响因素:1培养基的养分;2pH;3加入的选择性抑制剂;3、高产培养基成分的选择准则:制备一系列的培养基,其中有各种类型的养分成为生长限制因素C、N、P、O;使用一聚合或复合形式的生长限制养分;避免使用容易同化的碳葡萄糖或氮NH4+,它们可能引起分解代谢物阻遏;确定含有所需的辅因子Co2+,Mg2+,Mn2+,Fe2+加入缓冲溶液以减小pH变化;4、代谢控制发酵MetabolicControlfermentation:用人工诱变的方法,有意识地改变微生物的代谢途径,最大限度地积累产物,这种发酵形象地称为代谢控制发酵,最早在氨基酸发酵中得到成功应用;5、菌种的衰退表观现象有哪些目的产物的产量下降营养物质代谢和生长繁殖能力下降发酵周期延长抗不良环境的性能减弱6、菌种的衰退的原因菌种保藏不当提供不了当的条件或不利的条件经诱变得到的新菌株发生回复突变7、菌种的复壮方法:纯种分离通过寄主体进行复壮淘汰已衰退的个体8、菌种的保藏的原理根据菌种的生理生化特点,人工创造条件,使孢子或菌体的生长代谢活动尽量降低,以减少其变异;一般可通过保持培养基营养成分在最低水平,缺氧状态,干燥和低温,使菌种处于“休眠”状态,抑制其繁殖能力;9、菌种的保藏方法:A斜面冰箱保藏法B沙土管保藏法C石蜡油封存法D真空冷冻干燥保藏法E液氮超低温保藏法第三章菌种选育1、常用菌种选育方法1自然选育:是指在生产过程中,不经过人工处理,利用菌种的自发突变spontaneousmutation而进行菌种筛选的过程;特点:自发突变的频率较低,变异程度不大;所以该法培育新菌种的过程十分缓慢; 2诱变育种:是利用物理或化学诱变剂处理均匀分散的微生物细胞群,促进其突变率大幅度提高,然后采用简便、快速和高效的筛选方法,从中挑选少数符合育种目的的突变株,以供生产实践或科学研究使用;诱变育种的理论基础是基因突变;常用诱变剂:物理诱变剂、化学诱变剂碱基类似物、与碱基反应的物质、在DNA分子中插入或缺失一个或几个碱基物质、生物诱变剂3分子育种DNA重组、基因工程:用人为的方法将所需的某一供体生物的遗传物质DNA分子提取出来,在离体条件下切割后,把它与作为载体的DNA分子连接起来,然后导入某一受体细胞中,让外来的遗传物质在其中进行正常的复制和表达,从而获得新物种的一种崭新的育种技术;4杂交育种Hybridization:常规杂交育种Hybridization:一般是指人为利用真核微生物的有性生殖或准性生殖或原核微生物的接合、F因子转移、转导和转化等过程,促使两个具有不同遗传性状的菌株发生基因重组,以获得性能优良的生产菌株;原生质体融合技术:通过人工方法,使遗传性状不同的两个细胞的原生质体发生融合,并产生重组子的过程,亦称为“细胞融合”cellfusion;原生质体融合的基本过程:原生质体形成、原生质体融合、原生质体的再生;3、工程菌的不稳定性表现质粒的不稳定质粒的丢失、重组质粒的DNA片段脱落、表达产物的不稳定第三章微生物的代谢调节1、微生物代谢调节方式代谢流向的调控分为代谢物的合成和代谢物的降解;通过快速启动蛋白质的合成和有关的代谢途径,平衡各代谢物流和反应速率来适应外界环境的变化;代谢速度的调控分为酶量粗调酶合成的诱导和酶合成的阻遏和酶活细调酶活性的激活、酶活性的抑制反馈阻遏是转录水平的调节,产生效应慢;影响催化一系列反应的多个酶反馈抑制是酶活性水平调节,产生效应快;只对是一系列反应中的第一个酶起作用底物对酶的影响称为前馈;产物对酶的影响称为反馈;2、微生物初级代谢调节包括酶活调节、酶合成调节、遗传控制1酶活性的调节细调:一定数量的酶,通过其分子构象或分子结构的改变来调节其催化反应的速率;酶活调节的影响因素包括:底物和产物的性质和浓度、压力、pH、离子强度、辅助因子以及其他酶的存在等等;特点是反应快速;酶活性的调节包括:酶活性的激活和酶活性的抑制反馈抑制2酶合成的调节:通过调节酶合成的量来控制微生物代谢速度的调节机制;这类调节在基因转录水平上进行,对代谢活动的调节是间接的、缓慢的3酶合成的阻遏:在某代谢途径中,当末端产物过量时,微生物的调节体系就会阻止代谢途径中包括关键酶在内的一系列酶的合成,从而彻底地控制代谢,减少末端产物生成,这种现象称为酶合成的阻遏;末端代谢产物阻遏:由于某代谢途径末端产物的过量积累而引起酶合成的反馈阻遏;分解代谢物阻遏:当细胞内同时存在两种可利用底物碳源或氮源时,利用快的底物会阻遏与利用慢的底物有关的酶合成;这种阻遏并不是由于快速利用底物直接作用的结果,而是由这种底物分解过程中产生的中间代谢物引起的,所以称为分解代谢物阻遏过去被称为葡萄糖效应;3、改变细胞膜通透性的方法A限制培养基中生物素浓度在1~5mg/L,控制细胞膜中脂质的合成;B加入青霉素,抑制细胞壁肽聚糖合成中肽链的交联;C加入表面活性剂如吐温80或阳离子表面活性剂如聚氧化乙酰硬脂酰胺,将脂类从细胞壁中溶解出来,使细胞壁疏松,通透性增加;D控制Mn2+、Zn2+的浓度,干扰细胞膜或细胞壁的形成;E可以通过诱变育种的方法,筛选细胞透性突变株;5、人工控制微生物代谢的两种手段:1生物合成途径的遗传控制2发酵条件的控制6.谷氨酸棒杆菌生物素缺陷型生产谷氨酸的调控第四章微生物次级代谢与调节1、次级代谢产物:某些微生物在生命循环的某一个阶段产生的物质,它们一般是在菌生长终止后合成的;其生物合成至少有一部分是与核内和核外的遗传物质有关,同时也与这类遗传信息产生的酶所控制的代谢途径有关;微生物产生的次级代谢物有抗生素、毒素、色素和生物碱等;2、初级与次级代谢途径相互连接次级代谢物通常是由初级代谢中间体经修饰后形成的修饰初级代谢中间体的三种生化过程生物氧化与还原、生物甲基化、生物卤化3、前体:指加入到发酵培养基中的某些化合物,它能被微生物直接结合到产物分子中去,而自身的结构无多大变化有些还具有促进产物合成的作用;中间体是指养分或基质进入一途径后被转化为一种或多种不同的物质,他们均被进一步代谢,最终获得该途径的终产物;4、次级代谢物生物合成的原理①一旦前体被合成,在适当条件下它们便流向次级代谢物生物合成的专用途径;②在某些情况下单体结构单位被聚合,形成聚合物;这些特有的生物合成中间体产物需做后几步的结构修饰,修饰的程度取决于产生菌的生理条件;有些复杂抗生素是由几个来自不同生物合成途径组成的;第五章发酵培养基1、培养基通常指人工配制的供微生物生长、繁殖、代谢和合成所需产物的营养物质和原料,同时,培养基也为微生物等提供除营养外的其它生长所必需的环境条件2、发酵培养基的要求①培养基能够满足产物最经济地合成②发酵后所形成的副产物尽可能的少③培养基的原料应因地制宜,价格低廉;且性能稳定,资源丰富,便于采购运输,适合大规模储藏,能保证生产上的供应;④所用培养基应能满足总体工艺的要求,如不应影响通气、提取、纯化及废物处理等;3、工业上常用的碳源:葡萄糖、乳糖、淀粉、蔗糖工业上常用的氮源:无机氮源:氨水,铵盐,硝酸盐等;有机氮源:玉米浆、豆饼粉、花生饼粉、棉籽粉、鱼粉、酵母浸出液等;生理酸性物质,如硫酸铵;生理碱性物质,如硝酸钠;提供生长因子的农副产品原料:1玉米浆2麸皮水解液3糖蜜4酵母:可用酵母膏、酵母浸出液或直接用酵母粉;产物促进剂是指那些非细胞生长所必需的营养物,又非前体,但加入后却能提高产量的添加剂;4、发酵培养基的设计和优化方法正交试验设计、均匀设计、响应面分析正交试验设计:利用正交表来安排与分析多因素试验的一种设计方法;它是由试验因素的全部水平组合中,挑选部分有代表性的水平组合进行试验,通过对这部分试验结果的分析,了解全面试验的情况,找出最优的水平组合;正交实验数据分析,见教材P112-114例题,表4-16,同时确定因素的主次顺序、各因素的优水平、各因素水平的最优组合;小数点后保留一位;第六章发酵培养基灭菌和空气净化在发酵工业生产中,为了保证纯种培养,在生产菌种接种培养前,要对培养基、空气系统、消泡剂、流加物料、设备、管道等进行灭菌,还要对生产环境进行消毒,防止杂菌和噬菌体的大量繁殖;1.微生物热阻:微生物在某一特定条件下主要是温度和加热方式下的致死时间;2.对数残留定律中各符号的意义;3.理论灭菌时间的计算间歇实罐灭菌时间的计算连续灭菌的灭菌时间计算:4.灭菌温度的选择:随着温度升高,灭菌速率常数增加的倍数大于培养基中营养成分的分解速率常数的增加倍数;即当灭菌温度升高时,微生物杀灭速度提高,培养基营养成分破坏的速度减慢;5.影响培养基灭菌的因素:所污染杂菌的种类、数量、灭菌温度和时间,培养基成分、pH值、培养基中颗粒、泡沫等对培养基灭菌也有影响;6.无菌空气:指通过除菌处理使空气中含菌量降低至一个极低的百分数,从而能控制发酵污染至极小机会;此种空气称为“无菌空气”;7.介质过滤除菌是使空气通过经高温灭菌的介质过滤层,将空气中的微生物等颗粒阻截在介质层中,而达到除菌的目的;是大多数发酵厂广泛采用的方法;按除菌机制可分为:绝对表面过滤和深层介质过滤;介质过滤除菌的机理:空气流通过这种介质过滤层时,借助惯性碰撞、拦截滞流、静电吸附、扩散等作用,将其尘埃和微生物截留在介质层内,达到过滤除菌目的;第七章种子的扩大培养1、种子扩大培养:指将保存在砂土管、冷冻干燥管中处于休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养而获得一定数量和质量的纯种过程;这些纯种培养物称为种子2、种子扩大培养的目的与要求1种子扩培的目的①接种量的需要②菌种的驯化③缩短发酵时间、保证生产水平2种子的要求①菌种细胞的生长活力强,移种至发酵罐后能迅速生长,延迟期短②生理性状稳定③菌体总量及浓度能满足大容量发酵罐的要求④无杂菌污染⑤保持稳定的生产能力;3、种子罐级数:是指制备种子需逐级扩大培养的次数,取决于菌种生长特性、孢子发芽及菌体繁殖速度、所采用发酵罐的容积;种子罐级数受发酵规模、菌体生长特性、接种量的影响;级数大,难控制、易染菌、易变异,管理困难,一般2~4级;4、种子制备分两个阶段:实验室种子制备阶段生产车间种子制备阶段5、种龄:是指种子罐中培养的菌丝体开始移入下一级种子罐或发酵罐时的培养时间;接种量:是指移入的种子液体积和接种后培养液体积的比例;通常接种量:细菌1-5%,酵母菌5-10%,霉菌7-15%,有时20-25%青霉素生产的种子制备过程:安瓿管→斜面孢子→大米孢子→一级种子→二级种子→发酵第八章发酵工艺控制1、微生物发酵的生产水平取决于生产菌种本身的性能和合适的环境条件;2、发酵过程的代谢变化从产物形成来说,代谢变化就是反映发酵中的菌体生长、发酵参数的变化培养基和培养条件和产物形成速率这三者之间的关系;在分批培养过程中根据产物生成是否与菌体生长同步的关系,将微生物产物形成动力学分为①生长关联型和②非生长关联型;3、发酵方式1补料-分批发酵:指分批培养过程中,间歇或连续地补加新鲜培养基的培养方法;优点在于使发酵系统中维持很低的基质浓度;低基质浓度的优点:①可以除去快速利用碳源的阻遏效应,并维持适当的菌体浓度,使不至于加剧供氧的矛盾;②克服养分的不足,避免发酵过早结束;2半连续发酵:是指在补料-分批发酵的基础上,间歇地放掉部分发酵液的培养方法;优点:①可以除去快速利用碳源的阻遏效应,并维持适当的菌体浓度,使不至于加剧供氧的矛盾;②克服养分的不足,避免发酵过早结束;③缓解有害代谢产物的积累;3连续发酵:指培养基料液连续输入发酵罐,并同时放出含有产品的发酵液的培养方法;在这样的环境中培养,菌的生长就受到所提供基质的限制,培养液中的菌体浓度能保持一定的稳定状态;与传统的分批发酵相比,连续培养有以下优点:①维持低基质浓度:可以除去快速利用碳源的阻遏效应,并维持适当的菌体浓度,使不至于加剧供氧的矛盾;②避免培养基积累有毒代谢物;③可以提高设备利用率和单位时间的产量,节省发酵罐的非生产时间;④便于自动控制;4、发酵控制参数按性质分类:物理参数、化学参数、生物参数按检测手段分类:①直接参数:⑴在线检测参数⑵离线检测参数②间接参数5、发酵热发酵热就是发酵过程中释放出来的净热量;Q发酵=Q生物+Q搅拌-Q蒸发-Q显-Q辐射生物热biologicalheat是菌体生长过程中直接释放到体外的热能,使发酵液温度升高;搅拌热agitationheat是搅拌器引起的液体之间和液体与设备之间的摩擦所产生的热量;6、发酵过程pH值的一般变化规律1生长阶段:菌体产生蛋白酶水解培养基中的蛋白质,生成铵离子,使pH上升至碱性;随着菌体量增多,铵离子的消耗也增多,另外糖利用过程中有机酸的积累使pH 值下降;2生产阶段:这个阶段pH值趋于稳定;3自溶阶段:随着养分的耗尽,菌体蛋白酶的活跃,培养液中氨基氮增加,致使pH又上升,此时菌体趋于自溶而代谢活动终止;7、引起发酵液pH值异常波动的因素pH值的变化决定于所用的菌种、培养基的成分和培养条件pH下降:①培养基中碳、氮比例不当;碳源过多,特别是葡萄糖过量,或者中间补糖过多加上溶氧不足,致使有机酸大量积累而pH下降;②消泡剂加得过多;③生理酸性物质的存在,铵被利用,pH下降;pH上升:①培养基中碳、氮比例不当;氮源过多,氨基氮释放,使pH上升;②生理碱性物质存在;③中间补料氨水或尿素等碱性物质加入过多;8、临界氧浓度criticalvalueofdissolvedoxygenconcentration:指不影响菌的呼吸所允许的最低氧浓度;如对产物形成而言便称为产物合成的临界氧浓度;呼吸强度又称氧比消耗速率,是指单位质量的干菌体在单位时间内所吸取的氧量,以QO2表示,单位为mmolO2/g干菌体·h;耗氧速率又称摄氧率,是指单位体积培养液在单位时间内的吸氧量,以r表示,单位为mmolO2/L·h;9、引起溶氧异常下降,可能有下列几种原因:①污染好气性杂菌,大量的溶氧被消耗掉,可能使溶氧在较短时间内下降到零附近,如果杂菌本身耗氧能力不强,溶氧变化就可能不明显;②菌体代谢发生异常现象,需氧要求增加,使溶氧下降;③某些设备或工艺控制发生故障或变化,也可能引起溶氧下降,如搅拌功率消耗变小或搅拌速度变慢,影响供氧能力,使溶氧降低;10、泡沫的形成及其对发酵的影响在大多数微生物发酵过程中,通气、搅拌以及代谢气体的逸出,再加上培养基中糖、蛋白质、代谢物等表面活性剂的存在,培养液中就形成了泡沫;形成的泡沫有两种类型:一种是发酵液液面上的泡沫,气相所占的比例特别大,与液体有较明显的界限,如发酵前期的泡沫;另一种是发酵液中的泡沫,又称流态泡沫fluidfoam,分散在发酵液中,比较稳定,与液体之间无明显的界限大量的泡沫引起的负作用:发酵罐的装料系数减少、氧传递系统减小;增加了菌群的非均一性;造成大量逃液,增加染菌机会;严重时通气搅拌无法进行,菌体呼吸受到阻碍,导致代谢异常或菌体自溶;消泡剂的添加将给提取工序带来困难;泡沫的消除调整培养基中的成分如少加或缓加易起泡的原料或改变某些物理化学参数如pH 值、温度、通气和搅拌或者改变发酵工艺如采用分次投料来控制,以减少泡沫形成的机会;采用菌种选育的方法,筛选不产生流态泡沫的菌种,来消除起泡的内在因素;采用机械消泡或消泡剂来消除已形成的泡沫;常用的消泡剂有4大类:天然油脂类、脂肪酸和酯类、聚醚类、硅酮类11、造成染菌的主要原因设备渗漏空气带菌种子带菌灭菌不彻底技术管理不善第十章下游加工过程概论1、下游技术工程downstreamprocessing:对于由生物界自然产生的或由微生物菌体发酵的、动植物细胞组织培养的、酶反应等各种生物工业生产过程获得的生物原料,经提取分离、加工并精制目的成分,最终使其成为产品的技术;2.发酵液的特点1含水多,产物含量低;2含菌体蛋白;3溶有原来培养基成分;4相当多的副产物和色素;5易被杂菌污染或使产物进一步分解;6易起泡,粘性物质多;3、整个下游加工过程应遵循下列四个原则1时间短;2温度低,选择在生物物质的温度范围内;3pH适中;4严格清洗消毒包括厂房、设备及管路,注意死角;4、一般下游加工过程可分为4个阶段1培养液发酵液的预处理和固液分离;2初步纯化提取;3高度纯化精制;4成品加工;5、下游加工过程的一般流程第十二章发酵液的预处理和固液分离方法1、改善发酵液过滤特性的物理化学方法:调酸等电点、热处理、电解质处理、添加凝聚剂、添加表面活性物质、添加反应剂、冷冻-解冻及添加助滤剂等;2、凝聚——指在电解质作用下,由于胶粒之间双电层电排斥作用降低,电位下降,而使胶体体系不稳定的现象;常用的凝聚剂电解质有:硫酸铝Al2SO4318H2O明矾;氯化铝AlCl36H2O;三氯化铁FeCl3;硫酸亚铁FeSO4·7H2O;石灰;ZnSO4;MgCO3絮凝——指在某些高分子絮凝剂存在下,基于桥架作用,使胶粒形成较大絮凝团的过程;工业上使用的絮凝剂可分为三类:1有机高分子聚合物,如聚丙烯酰胺类衍生物、聚苯乙烯类衍生物;2无机高分子聚合物,如聚合铝盐、聚合铁盐等;3天然有机高分子絮凝剂,如聚糖类胶粘物、海藻酸钠、明胶、骨胶、壳多糖、脱乙酰壳多糖等;目前最常见的高分子聚合物絮凝剂有机合成的聚丙烯酰胺polyacrylamide类衍生物3、杂蛋白的去除方法有沉淀法、变性法、吸附法4、固液分离的方法:重力沉降、浮选、旋液分离、介质过滤、离心;5、根据过滤机理,过滤操作可分为澄清过滤和滤饼过滤;第十三章细胞破碎1、细胞破碎的阻力:细菌破碎的主要阻力:肽聚糖的网状结构,网状结构越致密,破碎的难度越大,革兰氏阴性细菌网状结构不及革兰氏阳性细菌的坚固;酵母细胞壁破碎的阻力:主要决定于壁结构交联的紧密程度和它的厚度;霉菌细胞壁中含有几丁质或纤维素的纤维状结构,其强度比细菌和酵母菌的细胞壁有所提高;2、常用破碎方法机械法:珠磨法固体剪切作用、高压匀浆法液体剪切作用、超声破碎法液体剪切作用、X-press法固体剪切作用;非机械法:酶溶法酶分解作用、化学渗透法改变细胞膜的渗透性、渗透压法渗透压剧烈改变、冻结融化法反复冻结-融化、干燥法改变细胞膜渗透性3、破碎率的测定方法1直接测定法2目的产物测定法3导电率测定法第十四章沉淀法Precipitation1、固相析出技术:通过加入某种试剂或改变溶液条件,使生化产物溶解度降低,以固体形式沉淀和晶体从溶液中沉降析出的分离纯化技术;结晶法:在固相析出过程中,析出物为晶体称为结晶法;沉淀法:在固相析出过程中,析出物为无定形固体称为沉淀法;常用的沉淀法:盐析法、有机溶剂沉淀法和等电点沉淀法等;2、盐析Saltinducedprecipitation:在高浓度的中性盐存在下,蛋白质酶等生物大分子物质在水溶液中的溶解度降低,产生沉淀的过程;原因如下:1无机离子与蛋白质表面电荷中和,形成离子对,部分中和了蛋白质的电性,使蛋白质分子之间的排斥力减弱,从而能够相互靠拢;2中性盐的亲水性大,使蛋白质脱去水化膜,疏水区暴露,由于疏水区的相互作用导致沉淀;Ks盐析法:在一定pH和温度下,改变体系离子强度进行盐析的方法;β盐析法:在一定离子强度下,改变pH和温度进行盐析;常用的盐析用盐:硫酸铵、硫酸钠,磷酸盐,柠檬酸盐;3、有机溶剂沉淀:在含有溶质的水溶液中加入一定量亲水的有机溶剂,降低溶质的溶解度,使其沉淀析出;原理:1降低了溶质的介电常数,使溶质之间的静电引力增加,从而出现聚集现象,导致沉淀;2有机溶剂的水合作用,降低了自由水的浓度,降低了亲水溶质表面水化层的厚度,降低了亲水性,导致脱水凝聚;常用的有机溶剂沉析剂:乙醇:沉析作用强,挥发性适中,无毒常用于蛋白质、核酸、多糖等生物大分子的沉析;丙酮:沉析作用更强,用量省,但毒性大,应用范围不广;4、等电点沉淀:调节体系pH值,使两性电解质的溶解度下降,析出的操作称为等电点沉淀;原理:蛋白质是两性电解质,当溶液pH值处于等电点时,分子表面净电荷为0,双电层和水化膜结构被破坏,由于分子间引力,形成蛋白质聚集体,进而产生沉淀;第十五章膜过滤法1、膜过滤法指以压力为推动力,依靠膜的选择性,将液体中的组分进行分离的方法;基本原理是筛孔分离过程;在压差的推动下,原料液中的溶剂和小的溶质粒子从高压的料液侧透过膜到低压侧,所得到的液体一般称为滤出液或透过液,而大的粒子组分被膜截留;包括微滤MF、超滤UF、纳滤NF和反渗透RO四种过程;在工业上用得最广的膜材料是醋酸纤维素和聚砜;浓差极化:当溶剂透过膜,而溶质留在膜上,使膜面浓度增大,并高于主体中浓度,这种浓度差导致溶质自膜面反扩散至主体中,这种现象称为浓差极化;在超滤中,为减少浓差极化,通常采用错流操作;膜的污染:膜在使用中,尽管操作条件保持不变,但通量仍逐渐降低的现象;污染原因:膜与料液中某一溶质的相互作用;吸附在膜上的溶质和其它溶质的相互作用;。

了解生物学中的生物工艺技术

了解生物学中的生物工艺技术

了解生物学中的生物工艺技术生物工艺技术是一门综合性强、前沿性强的学科,它将生物学、化学、物理学和工程学等多个学科紧密结合起来,旨在利用生物体或其组成部分来进行生物制品的研发、生产和应用。

生物工艺技术在医药、农业、环境保护等领域具有广阔的应用前景,对于人类社会的可持续发展具有重要意义。

一、生物工艺技术的定义和概念生物工艺技术是指通过生物体、细胞、细胞器、酶等生物材料,运用现代生物学、化学、工程学等知识与技术手段,实现对生物制品的生产和应用的一门综合性学科。

它是人们利用生物体或其组成部分,在人工条件下进行研究和开发的过程。

生物工艺技术的研究领域包括基因工程技术、发酵技术、细胞工程技术、酶工程技术等。

二、生物工艺技术在医药领域的应用1. 基因工程技术在药物研发中的应用基因工程技术是生物工艺技术中的一个重要分支,它能够修改生物体的基因组,实现对目标物质的高效表达和产生。

在药物研发中,基因工程技术可以应用于蛋白质药物的生产,例如重组人胰岛素的生产。

2. 细胞工程技术在药物制备中的应用细胞工程技术是利用生物体的细胞进行生产的技术手段,它在药物制备中有着广泛的应用。

例如,利用细胞工程技术可以大规模培养植物细胞,从而获得生长激素、抗生素等药物。

3. 发酵技术在药物制造中的应用发酵技术是以微生物为基础,通过控制生物发酵过程来产生目标物质的技术。

在药物制造中,发酵技术可以应用于抗生素、生长因子等药物的生产。

三、生物工艺技术在农业领域的应用1. 转基因作物的研发和应用转基因技术是通过基因工程手段,将外源基因导入植物或动物细胞中,从而赋予其新的性状或功能。

在农业领域,转基因技术可以应用于抗虫、抗草、抗病等性状的改良,提高作物的产量和质量。

2. 细胞培养技术在植物育种中的应用细胞培养技术是利用植物组织或细胞的无性繁殖能力,通过体外培养方法进行大规模繁殖的技术。

在植物育种中,细胞培养技术可以应用于快速繁殖、基因保护和遗传改良等方面。

(完整版)生物制药工艺学名词解释

(完整版)生物制药工艺学名词解释

生物制药工艺学名词解释:第一章:1. 药品:一定剂型和规格的药物并赋予一定的形式(如包装),而且经过有关部门的批准,有明确的作用用途。

药物:能影响机体生理、生化和病理过程,用以预防、诊断、治疗疾病和计划生育的化学物质。

2. 生物药物Biopharmaceuticals:以生物体、生物组织或其成份为原料综合应用生物学、物理化学与现代药学的原理与方法加工制成的药物.3. 生物活性Biological activity,Bioactivity:对活组织如疫苗有影响的特性。

4。

酶工程enzyme engineering:酶学与工程学互相渗透结合,发展形成的生物技术,它是从应用目的出发,研究酶和应用酶的特异催化功能,并通过工程化过程将相应原料转化成所需产物的技术。

5。

固定化酶immobilized enzyme:是指借助于物理和化学的方法把酶束缚在一定空间内并具有催化活性的酶制剂.6。

组合生物合成combinatorial biosynthesis(组合生物学combinatorial biology):应用基因重组技术重新组合微生物药物的基因簇,产生一些非天然的化合物。

7. 药物基因组学:一门研究个人的基因遗传如何影响身体对药物反应的科学。

8。

凝聚作用coagulation:指在电解质作用下,胶粒粒子的扩散双电子层排斥电位降低,破坏了胶体系统的分散状态,使胶体粒子发生聚集的过程.9. 萃取extraction:将物质从基质中分离出来的过程。

一般指有机溶剂将物质从水相转移到有机相的过程.10. 反萃取stripping/back extraction:将萃取液与反萃取剂相接触,使某种被萃入有机相的溶质转入水相的过程。

11. 萃取因素/萃取比:萃取溶质进入萃取相的总量与该溶质在萃余相中总量之比。

12. 分离因素separation factor:在同一萃取体系内两种溶质在同样条件下分配系数的比值。

13. 双相萃取技术two—aqueous phase extraction:利用不同的高分子溶液相互混合可产两相或多相系统,静置平衡后,分成互不相溶的两个水相,利用物质在互不相溶的两水相间分配系数的差异来进行萃取的方法。

生物工艺学例题

生物工艺学例题

例题:某发酵罐,内装培养基40m3,在121℃下进行分批灭菌,设每毫升培养基中含耐热的芽孢为107个,不考虑升温阶段的灭菌作用,求理论灭菌时间?(已知A=1.34×1036s-1,△E=2.844×105J/mol)解:根据阿累尼乌斯方程根据对数残留定律例题:某发酵罐,内装培养基40m3,在121℃下进行分批灭菌,设每毫升培养基中含耐热的芽孢为107个,采用连续灭菌,灭菌温度为131℃,此温度下的灭菌速度常数为0.25s-1,求灭菌保温时间?解:1.0281.055.1127.3614845lg -∆-==-=+-=⇒s k T k RTE e A k min 246.144210101040ln 0281.01ln 13760==⨯⨯==-s N N k t t m in 7.2105.210ln 25.01ln 11170105.210104010101136370=⨯==-⨯=⨯⨯==--s C C C C k t s例:葡萄糖为基质进行面包酵母(S.cerevisiae)培养,培养的反应式可用下式表 达,求计量关系中的系数a,b,c,d.解:例: 乙醇为基质,好氧培养酵母,反应方程式为呼吸商RQ=0.6。

求各系数a,b,c,d,eO eH dCO O N CH c bNH aO OH H C 225.015.075.13252)(++→++223106326126)(3dCO O cH NO H bC aNH O O H C ++→++面包酵母22310632612612.332.4)(48.048.0312.332.448.0:23326:210312:66:][CO O H NO H C NH O O H C d c b a b a N dc b O cb a H db C ++→++=====++=⨯++=++=面包酵母系式为所以上述反应的计量关以上方程联立求解,得根据元素平衡式有:解O H CO O N CH NH O OH H C e d c b a a d RQ c b N e d c a O e c b H d c C 225.015.075.13252634.2436.1)(564.0085.0394.2634.2436.1,564.0,085.0,394.2)5(~)1()5(6.0,6.0)4(15.0:)3(25.021:)2(275.136:)1(2:++→++========++=++=++=所以,反应式为,式联立求解用即已知有【解】根据元素平衡式。

生物制药工艺学整理

生物制药工艺学整理

1.生物制药:以生物材料为原料或用生物技术、方法制造的药物。

2.杂交育种:将两个基因型不同的菌株经过吻合或接合,使遗传物质重新组合,从中分离和筛选出具有新性状的过程。

3.葡萄糖效应:培养基中的葡糖糖的浓度过高,会加快菌体的代谢,使培养基中的溶解的氧不能满足有氧呼吸的需要,使葡萄糖的代谢进入不完全氧化途径,产生酸性代谢产物,使pH降低,遏止某些产物的生物合成酶,这种现象叫做葡萄糖效应。

4.浓差极化:当溶剂透过膜而溶质留在膜上时,它使得膜面上的溶质浓度增大高于主体中溶质浓度,这种现象称为浓差极化。

5.亲和色谱:利用生物大分子于某些对应的专一分子特意识别和可逆结合的特性而建立起来的一种分离生物大分子的色谱方法。

6.次级代谢产物:与微生物的生长繁殖无关的代谢产物,包括:抗生素、色素、生物碱等。

7初级代谢产物主要包括氨基酸,蛋白质,核酸核苷酸,维生素脂肪酸等特点:(1)他们是生物生长繁殖的必须物质(2)是各微生物所共有的产物(3)菌体对初级代谢活动有严格的调控系统一般不能累积多余的初级代谢产物。

8次级代产物的特点:1特定菌种产生的代谢产物2菌体特定生长阶段的产物3多组分的混合物。

9初级代谢产物与次级代谢产物的关系(1)初级代谢产物是次级代谢产物的前体或起始物。

(2初级代谢产物的调控影响次级代谢产物的生物合成10菌种选育的目的:提高发酵的产量。

改进菌种的性能。

产生新的发酵物。

去除多余的组分。

11.诱变育种:利用物理或化学诱变剂,处理均匀分散的微生物细胞群体,促进其突变率大幅度提高,然后采用简便高效的方法,从中选出具有优良性状的突变菌株。

12诱变剂分类物理诱变剂(紫外线UV),化学诱变剂(NTG),生物诱变剂。

13自然选育的一般过程:生产菌种斜面,制备单孢子悬浮液,涂布分离平板,单菌落接种,斜面种子培养,摇瓶发酵,高产菌珠初选,菌种保藏,接种,斜面种子培养,摇瓶种子培养,摇瓶发酵,高产菌珠复选,高产菌种珠验证,放大实验,进一步选育或保障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物工艺学全解第一章绪论1、生物工艺学包含的四大块内容:原料预处理和培养基的制备、菌种的选育及代谢调节、生物反应过程的工艺控制、下游加工。

2、生物催化剂是游离的或固定化的细胞或酶的总称。

生物催化剂特点:优点:①常温、常压下反应②反应速率大③催化作用专一④价格低廉缺点:稳定性差控制条件严格易变异(细胞)生物反应过程实质是利用生物催化剂以从事生物技术产品的生产过程(process engineering)。

3、生物技术研究的主要内容:基因工程(DNA重组技术,gene engineering) 、细胞工程(cell engineering)、酶工程(enzyme engineering)、发酵工程(fermentation engineering)、蛋白质工程(protein engineering)、第二章菌种的来源1、分离微生物新种的过程大体可分为采样、增殖、纯化和性能测定。

2、代谢控制发酵(Metabolic Control fermentation):用人工诱变的方法,有意识地改变微生物的代谢途径,最大限度地积累产物,这种发酵形象地称为代谢控制发酵,最早在氨基酸发酵中得到成功应用。

3、菌种的保藏方法:A 斜面冰箱保藏法B 沙土管保藏法C 石蜡油封存法D 真空冷冻干燥保藏法E 液氮超低温保藏法4. 生物工程专业相关的主要数据库有哪些?维普中文科技期刊数据库、中国期刊全文数据库、万方系列数据库、science online、springer link等。

第三章菌种选育1、 常用菌种选育方法(1)自然选育:是指在生产过程中,不经过人工处理,利用菌种的自发突变(spontaneous mutation)而进行菌种筛选的过程。

特点:自发突变的频率较低,变异程度不大。

所以该法培育新菌种的过程十分缓慢。

应用:自然选育在工业生产中可以达到纯化菌种,防止菌种衰退,稳定生产,提高产量的目的。

(2)诱变育种:是利用物理或化学诱变剂处理均匀分散的微生物细胞群,促进其突变率大幅度提高,然后采用简便、快速和高效的筛选方法,从中挑选少数符合育种目的的突变株,以供生产实践或科学研究使用。

诱变育种的理论基础是基因突变。

2、诱变育种的典型流程 8出发菌株(砂土管或冷冻管)原种特性考察斜面单孢子悬液诱变处理摇瓶培养24h 菌悬液稀释涂平板处理前后计数并统计存活率观察单菌落形态挑选单菌落传种斜面摇瓶初筛与对照组比较挑出高产斜面保藏菌株传种斜面摇瓶复筛挑出高产菌株(稳定性和特性)培养基优化小试中试与对照组比较诱变育种的典型流程3、抗噬菌体菌株的检出方法:平板点滴法、单层琼脂法、双层琼脂法。

第三章 微生物的代谢调节1、微生物初级代谢调节包括酶活调节、酶合成调节、遗传控制2、改变细胞膜通透性的方法A限制培养基中生物素浓度在1~5mg/L,控制细胞膜中脂质的合成;B 加入青霉素,抑制细胞壁肽聚糖合成中肽链的交联;C 加入表面活性剂如吐温80或阳离子表面活性剂(如聚氧化乙酰硬脂酰胺),将脂类从细胞壁中溶解出来,使细胞壁疏松,通透性增加;D 控制Mn2+、Zn2+的浓度,干扰细胞膜或细胞壁的形成;E 可以通过诱变育种的方法,筛选细胞透性突变株。

3、生物素对谷氨酸合成的影响(1)生物素是丙酮酸羧化酶的辅酶,生物素在低于亚适浓度之前,增加生物素有利于丙酮酸的羧化产生草酰乙酸,进而有利于谷氨酸的合成;(2)生物素是催化脂肪酸生物合成的初始酶乙酰辅酶A羧化酶的辅酶,该酶催化乙酰辅酶A羧化生成丙二酸单酰辅酶A,再经一系列转化合成脂肪酸,而脂肪酸又是构成细胞膜磷脂的主要成分,因此生物素可间接地影响细胞膜的透性。

第四章微生物次级代谢与调节1、微生物产生的次级代谢物有抗生素、毒素、色素和生物碱等。

修饰初级代谢中间体的三种生化过程生物氧化与还原、生物甲基化、生物卤化2、次级代谢物生物合成的原理①一旦前体被合成,在适当条件下它们便流向次级代谢物生物合成的专用途径。

②在某些情况下单体结构单位被聚合,形成聚合物。

这些特有的生物合成中间体产物需做后几步的结构修饰,修饰的程度取决于产生菌的生理条件。

有些复杂抗生素是由几个来自不同生物合成途径组成的。

第五章发酵培养基1、提供生长因子的农副产品原料:1)玉米浆2)麸皮水解液3)糖蜜4) 酵母:可用酵母膏、酵母浸出液或直接用酵母粉。

2、产物促进剂是指那些非细胞生长所必需的营养物,又非前体,但加入后却能提高产量的添加剂。

3、发酵培养基的设计和优化方法正交试验设计、均匀设计、响应面分析正交试验设计:利用正交表来安排与分析多因素试验的一种设计方法。

它是由试验因素的全部水平组合中,挑选部分有代表性的水平组合进行试验,通过对这部分试验结果的分析,了解全面试验的情况,找出最优的水平组合。

正交实验数据分析,见教材P112-114例题,表4-16,同时确定因素的主次顺序、各因素的优水平、各因素水平的最优组合。

小数点后保留一位。

4、完整响应面分析方法实验设计通常包括:(1)Plackett —Burman 实验设计 ,(2)最陡爬坡实验,(3)中心组合实验设计三个过程。

第六章 发酵培养基灭菌和空气净化1. 理论灭菌时间的计算3.1间歇实罐灭菌时间的计算 3.2连续灭菌的灭菌时间计算:tc c k 0lg 303.2=θ2、高温瞬时灭菌法可以减少培养基营养成分的破坏的原理:随着温度升高,灭菌速率常数增加的倍数大于培养基中营养成分的分解速率常数的增加倍数。

即当灭菌温度升高时,微生物杀灭速度增加较快,而培养基营养成分破坏的速度增加较慢。

因此,采用较高的温度,较短的灭菌时间,可以减少培养基营养成分的破坏。

001 2.303ln lg t t N N t t k N k N ==或第七章种子的扩大培养1、种子罐级数:是指制备种子需逐级扩大培养的次数,取决于菌种生长特性、孢子发芽及菌体繁殖速度、所采用发酵罐的容积。

种子罐级数受发酵规模、菌体生长特性、接种量的影响。

级数大,难控制、易染菌、易变异,管理困难,一般2~4级。

2、种子制备分两个阶段:实验室种子制备阶段生产车间种子制备阶段好氧微生物菌种扩培常用设备:超净工作台、震荡培养箱、种子罐等。

接种量:是指移入的种子液体积和接种后培养液体积的比例。

通常接种量:细菌1-5%,酵母菌5-10%,霉菌7-15%,有时20-25%第八章发酵工艺控制1、发酵方式(1)补料-分批发酵:指分批培养过程中,间歇或连续地补加新鲜培养基的培养方法。

优点在于使发酵系统中维持很低的基质浓度。

低基质浓度的优点:①可以除去快速利用碳源的阻遏效应,并维持适当的菌体浓度,使不至于加剧供氧的矛盾;②克服养分的不足,避免发酵过早结束。

2、发酵控制参数按性质分类:物理参数、化学参数、生物参数按检测手段分类:①直接参数:⑴在线检测参数⑵离线检测参数②间接参数3、生物热(biological heat)是菌体生长过程中直接释放到体外的热能,使发酵液温度升高。

4、 pH值对发酵的影响(1)影响酶的活性,当pH值抑制菌体中某些酶的活性时,会阻碍菌体的新陈代谢;(2)影响微生物细胞膜所带电荷的状态,改变细胞膜的通透性,影响微生物对营养物的吸收和代谢产物的排泄;影响培养基中某些组分的解离,进而微生物对这些成分的吸收;(3)pH值不同,往往引起菌体代谢过程的不同,使代谢产物的质量和比例发生改变。

5、临界氧浓度(critical value of dissolved oxygen concentration) :指不影响菌的呼吸所允许的最低氧浓度。

如对产物形成而言便称为产物合成的临界氧浓度。

6、引起溶氧异常下降,可能有下列几种原因:①污染好气性杂菌,大量的溶氧被消耗掉,可能使溶氧在较短时间内下降到零附近,如果杂菌本身耗氧能力不强,溶氧变化就可能不明显;②菌体代谢发生异常现象,需氧要求增加,使溶氧下降;③某些设备或工艺控制发生故障或变化,也可能引起溶氧下降,如搅拌功率消耗变小或搅拌速度变慢,影响供氧能力,使溶氧降低。

7、常用的消泡剂有4大类:天然油脂类、脂肪酸和酯类、聚醚类、硅酮类8、造成染菌的主要原因设备渗漏空气带菌种子带菌灭菌不彻底技术管理不善第九章生物反应动力学1、 Monod方程的参数求解:2、连续培养动力学稀释率:单位时间内加入的培养基体积占发酵罐内培养基体积的分率3、细胞的物料平衡单级连续培养的细胞物料平衡方程如下:根据单级连续培养的细胞物料平衡方程,按照比生长速率μ和稀释率Dµm SK S+Sµ=的大小关系,讨论培养罐内细胞浓度和营养物质浓度的变化情况。

4、限制性基质的物料平衡): 发生洗出时的稀释率。

临界稀释率(DC第十章下游加工过程概论1、整个下游加工过程应遵循下列四个原则1) 时间短;2) 温度低, (选择在生物物质的温度范围内);3) pH适中;4)严格清洗消毒(包括厂房、设备及管路,注意死角)。

2、一般下游加工过程可分为4个阶段1)培养液(发酵液)的预处理和固液分离;2)初步纯化(提取);3)高度纯化(精制);4)成品加工。

第十三章细胞破碎1、Ks盐析法:在一定pH和温度下,改变体系离子强度进行盐析的方法;β盐析法:在一定离子强度下,改变pH和温度进行盐析;常用的盐析用盐:硫酸铵、硫酸钠,磷酸盐,柠檬酸盐。

第十五章膜过滤法1、膜过滤法。

包括微滤(MF)、超滤(UF)、纳滤(NF)和反渗透(RO)四种过程。

市售的超滤器大致有四种型式:管式、中空纤维式、螺旋卷绕式和平板式。

2、将下列表示相同意义的词连线separation factor 分离因子membrane separation膜分离ion-exchange 离子交换Biotechnology生物技术Metabolic Control fermentation 代谢控制发酵Downstream Processing 下游工程Chromatographic Resolution色谱分离Biocatalyst,生物催化剂Orthogonal experimental design 正交实验设计response surface analysis响应面分析方法Inducible enzyme 诱导酶末端代谢产物阻遏(End-product repression)分解代谢产物阻遏(Catabolite repression)代谢工程(metabolic engineering)临界氧浓度(critical value of dissolved oxygen concentration)补料分批培养(feed-batch culture, FBC)细胞破碎 Cell Disruption高压匀浆法(High-pressure homogenization盐析(Salt induced precipitation)微滤(Microfiltration,MF)超滤 (ultrafiltration,UF )反渗透(Reverse osmosis,RO)纳滤(nanofiltration,NF)正相色谱(Normal Phase Chromatography,NPC),反相色谱(Reversed Phase Chromatography,RPC),第十六章溶剂萃取和浸取1、常用聚合物双水相系统:聚乙二醇-葡聚糖、聚乙二醇-无机盐系统第十七章离子交换法1、离子交换原理及分类离子交换树脂是一种不溶于酸、碱和有机溶剂的固态高分子材料。

相关文档
最新文档