实数知识点与对应题型
实数题型总结 PPT

B.在2和3之间 D.在4和5之间
规律: 找所求数前后可以开平方的数,以此做比较。
活学活用
(2013.贺州)估计 6 +1的值在( )
A.2到3之间 C.4到5之间
B.3到4之间 D.5到6之间
中考链接
1.(山东东营中考) 81 的平方根是( )
A.±3 B. 3 C. ±9
活学活用
已知:y= x 2 + 2 x +5, 求x+y的值。
题型三
运用整体思想开 (2x+1)²=81
4或-5
(2)25(3x+2)²-36=0
4 15
或
16 15
分别将2x+1,3x+2看成一个整体开平方,最后求得x的值。
题型四
运用平方根的性质求值
手机调至静音
准备好笔记本、演算本、三色笔
实数
学习目标
1
实数知识点总结
2
实数章节题型归纳
平方根
算术平方根的定义、性质:双重非负性
平方根的定义 正数有两个互为相反数的平方根
平方根的性质 0的平方根是0
负数没有平方根
求法:开平方:求一个数a(a≥0)的平方根的运算
实 数
立方根
立方根的定义 立方根的性质
D.9
2.(湖南张家界中考)若 x 1+(y+2)²=0,则(x+y)2014等于( )
A.-1
B. 1
C. 32014
D.-32014
3.(河北中考) a,b是两个连续整数,若a< 7 <b,则a,b分别( )
A.2,3 B. 3,2 C. 3,4 D.6,8
实数知识点与对应题型

实数知识点与对应题型一、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。
(也称为二次方根),也就是说如果x 2=a ,那么x 就叫做a 的平方根。
2、平方根的性质:①一个正数有两个平方根,它们互为相反数;一个正数a 的正的平方根,记作“a ”,又叫做算术平方根,它负的平方根,记作“—a ”,这两个平方根合起来记作“±a ”。
( a 叫被开方数, “”是二次根号,这里“”,亦可写成“2”)②0只有一个平方根,就是0本身。
算术平方根是0。
③负数没有平方根。
3、 开平方:求一个数的平方根的运算叫做开平方,开平方和平方运算互为逆运算。
4、(1) 平方根是它本身的数是零。
(2)算术平方根是它本身的数是0和1。
(3)()()()().0,0,0222<-=≥=≥=a a a a a a a a a(4)一个数的两个平方根之和为0二、立方根:(1——9的立方)1、立方根的定义:如果一个数的立方等于a ,那么这个数就叫做a 的立方根。
(也称为二次方根),也就是说如果x 3=a ,那么x 就叫做a 的立方根。
记作“3a ”。
2、立方根的性质:①任何数都有立方根,并且只有一个立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0. ②互为相反数的数的立方根也互为相反数,即3a -=3a - ③a a a ==3333)(3、开立方:求一个数的立方根的运算叫做开立方,开立方与立方运算为互逆运算,开立方的运算结果是立方根。
4、立方根是它本身的数是1,0,-1。
5、平方根和立方根的区别:(1)被开方数的取值范围不同:在±a 中,a ≥0,在a 3中,a 可以为任意数值。
(2)正数的平方根有两个,而它的立方根只有一个;负数没有平方根,而它有一个立方根。
6、立方根和平方根:不同点:(1)任何数都有立方根,正数和0有平方根,负数没有平方根;即被开方数的取值范围不同:±a 中的被开方数a 是非负数;3a 中的被开方数可以是任何数.(2)正数有两个平方根,任何数都有惟一的立方根;(3)立方根等于本身的数有0、1、—1,平方根等于本身的数只有0.共同点:0的立方根和平方根都是0.三、实数:1、定义:有理数和无理数统称为实数无理数:无限不循环小数称(包括所有开方开不尽的数,∏)。
部编数学七年级下册专题04《实数》解答题重点题型分类(解析版)含答案

专题04《实数》解答题重点题型分类专题简介:本份资料专攻《实数》中“化简求值题型”、“利用平方根与立方根的性质解方程题型”、“计算解答题型”、“数轴比较大小题型”、“整数部分与小数部分题型”、“创新题型”重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。
考点1:化简求值题型方法点拨:1.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应(数形结合)。
2.数的相反数是-;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.3.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.4.绝对值、平方、算术平方根的双重非负性的应用。
1.若0,0a ab <<,化简a b a --【答案】【分析】由0,0a ab <<判断b >0,再判断绝对值里的数的正负,由绝对值的定义去掉绝对值,再计算即可.【详解】解:∵0,0a ab <<,∴b >0,∴0,0a b b a --<->∴a b a --((a b b a =-----a b b a =-+++=【点睛】本题考查二次根式的化简,正确的对含绝对值号的代数式的化简是解题的关键.分类的标准应按正实数,负实数,零分类考虑.掌握好分类标准,不断加强分类讨论的意识.2.先化简后求值:()()()()222232x y y x y x y x y -----+-,其中x ,y满足30x y +=.【答案】xy -,1-【分析】直接利用整式的混合运算法则以及绝对值、算术平方根的性质得出x ,y 的值,进a a而计算得出答案.【详解】解:原式2222244432x xy y x y xy y =-+-++-xy =-,30x y +=Q ,\3402350x y x y +-=ìí--=î,解得:313x y =ìïí=ïî,\原式1313=-´=-.【点睛】本题主要考查了整式的混合运算,绝对值的非负性,算术平方根,解题的关键是正确掌握相关运算法则.3.先化简,再求值:[(3x +y )(3x ﹣y )﹣2x (y +2x )+(y ﹣2x )2]÷(﹣3x ),其中x 、y满足1y =.【答案】﹣3x +2y ,﹣26【分析】原式中括号利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:原式=(9x 2﹣y 2﹣2xy ﹣4x 2+y 2﹣4xy +4x 2)÷(﹣3x )=(9x 2﹣6xy )÷(﹣3x )=﹣3x +2y ,∵1y =,∴x ﹣8≥0且8﹣x ≥0,解得:x =8,∴11y ==-,∴原式=﹣3×8+2×(﹣1)=﹣24﹣2=﹣26.【点睛】此题考查了整式的混合运算﹣化简求值,以及非负数的性质,熟练掌握相关运算法则是解本题的关键.4.已知多项式A =x 2+2xy ﹣3y 2,B =2x 2﹣3xy +y 2,先化简3A +2B ;再求当x ,y 为有理数且满足x 2y +2y =﹣+17时,3A +2B 的值.【答案】2277,63x y -【分析】根据多项式的加减运算进行化简,进而根据x ,y 为有理数求得,x y 的值,代入求解即可.【详解】Q A =x 2+2xy ﹣3y 2,B =2x 2﹣3xy +y 2,\()()222232323223A B x xy y x xy y +=+-++-2222369462x xy y x xy y =+-+-+2277x y =-()227x y =-Q x 2+2y =﹣,x ,y 为有理数,22x y \+==-,4,5y x \=-=±2225169x y \-=-=\原式7963=´=【点睛】本题考查了整式的加减化简求值,实数的性质,求得,x y 的值是解题的关键.5.(1)化简:a 2+(5a 2﹣2a )﹣2(a 2﹣3a );(2)先化简,再求值:14(﹣4x 2+2x ﹣8y )﹣(﹣x ﹣2y ),其中x =23,y =2018.【答案】(1)244a a +;(2)232x x -+,59【分析】(1)去括号后合并同类项即可;(2)利用乘法分配律化简,进而合并同类项,再把已知数据代入得出答案.【详解】解:(1)a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),2225226a a a a a =+--+ ,244a a =+ ;(2)14(﹣4x 2+2x ﹣8y )﹣(﹣x ﹣2y ),()()21114282444x x y x y =´-+´+´-++ ,21222x x y x y =-+-++ ,232x x =-+ ,当x =23,y =2018时,原式2232323æö=-+´ç÷èø ,419=-+ ,59= .【点睛】此题主要考查了整式的化简求值和实数运算,正确掌握整式的混合运算法则是解题关键.6.已知数a a【答案】2【分析】直接利用数轴得出a 的取值范围,进而化简得出答案.【详解】解:由数轴得:0.50a -<<,a =121a a a-+++=2.【点睛】本题主要考查了实数的运算与数轴,算术平方根的非负性,化简绝对值等知识点,正确化简各式是解本题的关键.7.实数a 、b 、c 在数轴上的对应点位置如图所示,化简:【答案】3b【详解】解:原式=|-c |+|a -b |+a +b -|b -c |,=c +(-a +b )+a +b -(-b +c ),=c -a +b +a +b +b -c ,=3b .【点睛】此题主要考查了实数的运算,关键是掌握绝对值的性质和二次根式的性质.8.若一个正数的两个平方根分别为1a -,27a +,请先化简再求值:()()222123a a a a -+--+.【答案】25a +,9【分析】根据正数的两个平方根互为相反数可求得a 的值,再对原式去括号合并同类项化简后,代入a 的值求解即可.【详解】解:∵一个正数的两个平方根分别为1a -,27a +,∴(a -1)+(2a +7)=0,解得a =-2.()()222123a a a a -+--+2222223a a a a =-+-++25a =+,当a =-2时,原式()2259=-+=.【点睛】本题主要考查了平方根的性质,整式的加减求值.利用正数的两个平方根互为相反数列等式求值是解题的关键.9.我们可以把根号外的数移到根号内,从而达到化简的目的.例如:(1)请仿照上例化简.①②;(2)请化简【答案】(1);②2)【分析】(1)①根据题意仿照求解即可;②根据题意仿照求解即可;(2)先根据被开方数的非负性判断a 的正负,然后根据题意求解即可.【详解】解:(1)①;②===(2)∵∴10a -³,∴0a <∴==【点睛】本题主要考查了实数的运算,解题的关键在于能够熟练掌握相关知识进行求解.10.数形结合是一种重要的数学方法,如在化简a 时,当a 在数轴上位于原点的右侧时,a a =;当a 在数轴上位于原点时,0a =;当a 在数轴上位于原点的左侧时,a a =-.当a ,b ,c 三个数在数轴上的位置如图所示,试用这种方法解决下列问题,(1)当1a =时,求aa =______,当2b =-时,求bb =______.(2)请根据a ,b ,c 三个数在数轴上的位置,求abca b c ++的值.(3)请根据a ,b ,c 三个数在数轴上的位置,化简:a c c a b b c ++++--.【答案】(1)1;1- ;(2)1-;(3)c -.【分析】(1)当1a =时,点a 在原点右边,由题意可知,此时a a =,代入a a 即可求值;当2b =- 时,点b 在原点左边,由题意可知,此时b b =-,代入bb 即可求值;(2)由图中获取a b c 、、三点的位置信息后,结合题意即可求原式的值;(3)由图获取a b c 、、的正、负信息和三个数绝对值的大小后,就可确定原式中绝对值符号里面式子的值的符号,就可化简原式.【详解】解:(1)当1a =时,111a a ==;当2b =-时,212b b ==--,故答案是:1,-1;(2)由数轴可得:0b < ,0c < ,0a > ,∴abca b c ++=1111a b c a b c--++=--=-;(3)由数轴可知:0b c a <<<且c a b <<,∴000a c a b b c +>+<-<,,,∴a c c a b b c++++--()[()][()]a c c a b b c =++-+-+---a c c ab b c=+---+-c =-.【点睛】本题考查了数轴,解决本题的关键是熟记正数的绝对值是它本身,负数的绝对值是它的相反数.在解第3小问这类题时,需注意以下两点:(1)根据在数轴上表示的数中,左边的总小于右边的,确定好所涉及数的大小关系及每个数的正、负信息(涉及异号两数相加的还要获取它们绝对值的大小关系);(2)根据有理数加、减法法则确定好需化简式子中绝对值符号里的式子的正、负,然后再根据绝对值的代数意义将绝对值符号去掉.考点2:利用平方根与立方根的性质解方程题型方法点拨:解方程时应把平方部分看成一个整体,先根据等式基本性质把方程化为平方部分等什么。
实数计算中的规律性问题(5种题型)-2023年新七年级数学核心知识点与常见题型(浙教版)(解析版)

重难点:实数计算中的规律性问题(5种题型)探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法,通常将数字与序号建立数量关系或者与前后数字进行简单运算,从而得出通项公式.【考点剖析】一.数轴(共1小题)1.(2022秋•杭州期中)如图所示,圆的周长为4个单位长度,在圆的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴上的数字1所对应的点重合,若将圆沿着数轴向左滚动,那么数轴上的﹣2022所对应的点将与圆周上字母()所对应的点重合.A.A B.B C.C D.D【分析】根据圆的周长得到,4个数字一个周期,然后从0开始,即出发的位置是点B,然后用2022除以4看余数即可.【解答】解:∵圆的周长为4个单位长度,∴4个数字为一个循环,点B与数字0对应,∴2022÷4=505……2,即从B开始在转2次,∴﹣2022对应的字母是D.故选:D.【点评】本题考查数轴,能够注意到点B对应的是数字0是解答本题的关键.二.有理数的混合运算(共3小题)2.(2022春•海淀区校级期末)符号“f”表示一种运算,它对一些数的运算如下:,,,,…利用以上运算的规律,写出f(n)=(n为正整数),计算f(1)•f(2)•f(3)•…•f(100)=.【分析】根据f(1)、f(2)、f(3)、f(4)的运算方法,写出f(n)的表达式;再根据f(n)的表达式,代入f(1)•f(2)•f(3)•…•f(100),计算即可.【解答】解:(1)∵,,,,…∴f(n)=1﹣.f(1)•f(2)•f(3)•…•f(100)=(1﹣)(1﹣)(1﹣)•(1﹣)=××ו•×=.故答案为:1﹣;.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.理解新运算,进而写出f(n)的表达式是解题的关键.3.(2022秋•拱墅区月考)观察下列运算过程:22=2×2=4,;,=;…(1)根据以上运算过程和结果,我们发现:22=;()2=;(2)仿照(1)中的规律,判断()3与()﹣3的大小关系;(3)求(﹣)﹣4×()4÷()﹣3的值.【分析】(1)观察计算过程即可得出结论;(2)利用题干中的方法解答即可得出结论;(3)利用以上的解题规律进行运算即可.【解答】解:(1)∵22=2×2=4,,∴;∵,=, ∴, 故答案为:;;(2)()3=()﹣3,理由:∵==,==, ∴()3=()﹣3.(3)原式=×÷23=×=16×=2.【点评】本题主要考查了有理数的混合运算,本题是阅读型题目,利用题干中的方法和解答中发现的规律解答是解题的关键.4.(2021秋•台州期末)规定:若有理数a ,b 满足a ﹣b =ab ,则a 叫做b 的“差积数”.例如:1﹣=1×,那么1是的“差积数”;﹣1≠×1,可知不是1的“差积数”.请根据上述规定解答下列问题:(1)填表: ﹣(2)一个有理数的“差积数”等于这个数,求这个有理数; (3)若m 为正整数,记m +1,m +2,m +3,…,m +2022这2022个数的“差积数”的积为A ,试猜想A 的值(用含有m 的式子表示),并给出合理的猜想过程.【分析】(1)根据定义分别求出各自对应的“差积数”:(2)可设这个有理数为x ,再由定义求出即可:(3)先解出前几项对应的差积数,观察找规律,总结一般结论再代入求值即可.【解答】解:(1)设3的积差数为x ,y 的积差数为﹣2,由题意可列:x﹣3=3x,﹣2﹣y=﹣2y,解得:x=﹣,y=2,故答案为:﹣:;2.(2)设这个有理数为a,由题意可列:a﹣a=a2,解得:a=0,答:这个有理数为0.(3)设m+1的差积数为b,由题意可列:b﹣(m+1)=(m+1)b,解得:b=,∴m+1的差积数是,同理:m+2的积差数是,则A===1+.【点评】认真读题,理解差积数的含义,培养学生的阅读理解能力和知识迁移能力.,最后一问考查了学生由特殊到一般的数学思想.三.算术平方根(共2小题)5.(2022秋•鄞州区校级期中)(1a+b=,则代数式(a+b)2的值为.(2)如下是按规律排列的一列单项式:x,﹣x2,x3,﹣x4,x5,…则第10个单项式是.【分析】(1)将a+b的值整体代入所求的代数式运算即可;(2)通过观察可得第n个单项式是(﹣1)n+1••xn,由此求解即可.【解答】解:(1)∵a+b=,∴(a+b)2=()2=3,故答案为:3;(2)∵x,﹣x2,x3,﹣x4,x5,…,∴第n个单项式是(﹣1)n+1••xn,∴第10个单项式是﹣x10,故答案为:﹣x10.【点评】本题考查数字的变化规律,整式的运算,熟练掌握整体代入思想求代数式的值,根据所给的单项式,探索出单项式的各项系数和指数的规律是解题的关键.6.(2023春•城区校级期中)观察下列一组算式的特征,并探索规律:①;②;③;④.根据以上算式的规律,解答下列问题:(1)13+23+33+43+53=()2=;(2)=;(用含n的代数式表示)(3)简便计算:113+123+133+…+193+203.【分析】(1)根据代数式所呈现的规律可得答案;(2)得出=1+2+3+…(n﹣1)+n,再利用求和公式求出结果即可;(3)将原式化为(1【解答】解:(1)∵=1+2+3+4+5=15,∴13+23+33+43+53=(1+2+3+4+5)2=225,故答案为:1+2+3+4+5,225;(2)由(1)可得,=1+2+3+…(n﹣1)+n=,故答案为:;(3)由(2)得,113+123+133+…+193+203=13+23+33+…+193+203﹣(13+23+33+…+93+103)==44100﹣3025=41075.【点评】本题考查算术平方根,列代数式,数字变化类,理解算术平方根的意义,发现数字变化类所呈现的规律是解决问题的关键.四.规律型:数字的变化类(共19小题)7.(2022秋•北仑区期中)如图,在这个数运算程序中,若开始输入的正整数n为奇数,都计算3n+1;若n 为偶数,都除以2.若n=21时,经过1次上述运算输出的数是64;经过2次上述运算输出的数是32;经过3次上述运算输出的数是16;…;经过2022次上述运算输出的数是()A.1B.2C.3D.4【分析】分别求出部分输出结果,发现第1次输出结果到第4次输出结果只出现一次,从第5次输出结果开始,每3次结果循环一次,则经过2022次上述运算输出的数与第6次输出的结果相同,由此可求解.【解答】解:当n=21时,经过1次运算输出的数是64,经过2次运算输出的数是32,经过3次运算输出的数是16,经过4次运算输出的数是8,经过5次运算输出的数是4,经过6次运算输出的数是2,经过7次运算输出的数是1,经过8次运算输出的数是4,经过9次运算输出的数是2,……∴第1次输出结果到第4次输出结果只出现一次,从第5次输出结果开始,每3次结果循环一次,∵(2022﹣4)÷3=672…2,∴经过2022次上述运算输出的数与第6次输出的结果相同,故选:B.【点评】本题考查数字的变化规律,通过运算找到输出结果的循环规律是解题的关键.8.(2022秋•莲都区期中)对一组数(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x﹣y),且规定P n(x,y)=P1(P n﹣1(x,y))(n为大于1的整数),如P1(1,2)=(3,﹣1),P2(1,2)=P1(P1(1,2))=P1(3,﹣1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,﹣2),则P2022(1,﹣1)=()A.(0,21011)B.(21011,﹣21011)C.(0,﹣21011)D.(21011,21011)【分析】根据操作方法依次求出前几次变换的结果,然后根据规律解答.【解答】解:P1(1,﹣1)=(0,2),P2(1,﹣1)=P1(P1(1,﹣1))=P1(0,﹣2)=(2,﹣2),P3(1,﹣1)=P1(P2(1,﹣1))=P1(2,﹣2)=(0,4)=(0,22),P4(1,﹣1)=P1(P3(1,﹣1))=P1(0,4)=(4,﹣4)=(22,﹣22),P5(1,﹣1)=P1(P4(1,﹣1))=P1(22,﹣22)=(0,23),…,P2022(1,﹣1)=(21011,﹣21011).故选:B.【点评】本题考查了点的坐标,读懂题目信息,理解操作方法并观察出点的纵坐标的指数的变化规律是解题的关键.9.(2022秋•海曙区校级期中)将正偶数按下表排成5列:根据上面排列规律,则2022应在____________行,___________列.()A.506;3B.506;2C.253;2D.253;4【分析】通过观察发现,每8个偶数的位置循环一次,再由1011÷8=126……3,可知2022在第4列,行数位于126×2+1=253行,由此即可求解.【解答】解:由图可知,每8个偶数的位置循环一次,∵2到2022共有1011个偶数,∴1011÷8=126……3,∴2022与6的列数相同,∴2022在第4列,∵126×2=252,∴2022在第253行,故选:D.【点评】本题考查数字的变化规律,通过观察所给的数的排列规律,探索出数的位置的循环规律是解题的关键.10.(2022秋•开化县校级月考)如图所示的运算程序中,若开始输入的x值为5,则第1次输出的结果为8,第2次输出的结果为4,……,第2022次输出的结果为()A.1B.2C.4D.8【分析】通过计算发现,从第二次开始每三次运算结果循环一次,则可得第2022次输出的结果与第2次输出的结果相同,由此求解即可.【解答】解:第1次输出的结果为8,第2次输出的结果为4,第3次输出的结果为2,第4次输出的结果为1,第5次输出的结果为4,……∴从第二次开始每三次运算结果循环一次,∵(2022﹣1)÷3=673……2,∴第2022次输出的结果为2,故选:B.【点评】本题考查数字的变化规律,通过计算探索出运算结果的循环规律是解题的关键.11.(2022秋•慈溪市月考)如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上,则数轴上表示2021的点与正方形上的数字对应的是()A.0B.2C.4D.6【分析】求出2021与﹣1的距离是2022个单位,再去确定2022是正方形旋转252圈余6个单位长度,则可知2021与6对应.【解答】解:∵正方形的周长为8个单位,∴正方形的边长为2个单位,由旋转可知,正方形旋转一周是8个单位长度,∵2021与﹣1的距离是2022个单位,又∵2022÷8=252……6,∴正方形旋转252圈余6个单位长度,∴2021与6对应,故选:D.【点评】本题考查数字的变化规律,通过计算确定2021与﹣1的距离与正方形周长的关系是解题的关键.12.(2021秋•北仑区期末)观察下列各式:﹣2x,4x2,﹣8x3,16x4,﹣32x5,…,则第n个式子是()A.﹣2n﹣1x n B.(﹣2)n x n C.﹣2n x n D.(﹣2)n﹣1x n【分析】通过观察可知系数为﹣2的n次方,x的次数为自然数,由此可得第n个式子为(﹣2)nxn.【解答】解:∵﹣2x,4x2,﹣8x3,16x4,﹣32x5,…,∴第n个式子为(﹣2)nxn,故选:B.【点评】本题考查数字的变化规律,根据所给单项式,探索出式子的一般规律是解题的关键.13.(2021秋•嘉兴期末)已知一列数a1,a2,a3,…,满足a m•a n=a m+n(m,n为正整数).例如:a1•a2=a1+2=a3,a2•a2=a2+2=a4.若a1<0,a2=4,则a2021的值是()A.4042B.﹣22020C.22021D.﹣22021【分析】分别求出a1=﹣2,a2=4,a3=﹣8,a4=16,…,可得一般规律an=(﹣2)n,即可求a2021=﹣22021.【解答】解:∵a2=4,∴a1•a2=a1+2=a3=4a1,a2•a2=a2+2=a4=16,∵a1•a3=a1+3=a4,∴4a12=16,∴a1=±2,∵a1<0,∴a1=﹣2,∴a3=﹣8,a4=16,…,∴an=(﹣2)n,∴a2021=﹣22021,故选:D.【点评】本题考查数字的变化规律,根据所给的条件,通过计算,探索出数的一般规律是解题的关键.14.(2022秋•浦江县月考)求1+2+22+23+…+22018的值,可令S=1+2+22+23+…+22018,则2S=2+22+23+…+22019,因此2S﹣S=22019﹣1.仿照以上推理,计算出1+5+52+53+…+52018的值为()A.52019﹣1B.52018﹣1C.D.【分析】直接根据已知条件中的示例,设所求式子为S,在所求式子中都乘以5得到一个新的式子,然后两个式子相减,从而求出所求问题.【解答】解:设S=1+5+52+53+•+52018,则5S=5+52+53+54+•+52019.∴5S﹣S=52019﹣1,∴S=.故选:D.【点评】本题主要考查同底数幂的运算及技巧性求复杂数式的值的方法,解题的关键是根据所求问题灵活运用各种运算规律.15.(2022秋•东阳市期中)正整数按如图的规律排列,请写出:(1)第3行,第6列的数字是;(2)正整数2022在第行,第列.【分析】(1)根据所给的数,确定第六列的第一个数是26,再求解即可;(2)通过观察发现每行的第一个数n2,确定第45行的第一个数是2025,再求解即可.【解答】解:(1)由图可知,第六列的第一个数是26,∴第3行,第6列的数字是28,故答案为:28;(2)每行的第一个数n2,∴第45行的第一个数是2025,∵2025﹣2022=3,∴2022在第45行第4列,故答案为:45,4.【点评】本题考查数字的变化规律,通过观察所给的数,探索出每行第一个数的规律是解题的关键.16.(2022秋•西湖区校级期中)观察下面算式,探索规律并解答问题:1+3=4,1+3+5=9,1+3+5+7=16,1+3+5+7+9=25.(1)计算,1+3+5+7+9+…+(2n﹣1)=;(2)请用上述规律计算:79+81+83+85++197+199=.【分析】(1)通过观察所给的等式,可得1+3+5+7+9+…+(2n﹣1)=n2;(2)由(1)的规律,将等式变形为(1+3+5+……+77+79+81+83+85++197+199)﹣(1+3+5+……+77)再求解即可.【解答】解:(1)1+3+5+7+9+…+(2n﹣1)=()2=n2,故答案为:n2;(2)79+81+83+85++197+199=(1+3+5+......+77+79+81+83+85++197+199)﹣(1+3+5+ (77)=1002﹣392=8479,故答案为:8479.【点评】本题考查数字的变化规律,通过观察所给的等式,探索出等式结果的一般规律,并能灵活应用该规律计算是解题的关键.17.(2022秋•义乌市校级期中)小明同学利用计算机设计了一个程序,输入和输出的情况如下表.他发现从第三个输出项起的每一项都与这一项的前面两个输出项有关.按此规律,当输入9时,输出结果为,从1开始一直输入到2022后,输出项的系数与次数均为奇数的项共有个.【分析】通过观察输出结果,得到当输入的数是3n+1时,输出项的系数与次数均为奇数,再由2022÷3=674,即可求解.【解答】解:输入1,得到a,项的系数与次数均为奇数,输入2,得到3b2,项的系数与次数不都为奇数,输入3,得到4ab2,项的系数与次数不都为奇数,输入4,得到7ab4,项的系数与次数均为奇数,输入5,得到11a2b6,项的系数与次数不都为奇数,输入6,得到18a3b10,项的系数与次数不都为奇数,输入7,得29a5b16,项的系数与次数均为奇数,……∴当输入的数是3n+1时,输出项的系数与次数均为奇数,∵2022÷3=674,∴从1开始一直输入到2022后,输出项的系数与次数均为奇数的项共有674个,故答案为:674.【点评】本题考查数字的变化规律,通过观察所给的输出结果,探索出输出项的系数与次数均为奇数时,输入数的规律是解题的关键.18.(2022秋•鄞州区校级期中)按上面数表的规律,得下面的三角形数表:(1)上表中,第九行有个算式,第九行最中间的算式是.(2)把下表中的数从小到大排成一列数:3,5,6,9,10,12,…则第15个数是.【分析】(1)通过观察可得第九行有9个算式,每一行的每个算式的第一个数的排列是20,21,22,…,2n﹣1,第二个数都是2n,由此求解即可;(2)先确定第15个数所在的位置,再根据(1)的规律进行求解即可.【解答】解:(1)第一行1个算式,第二行2个算式,第三行3个算式,第四行4个算式,……,∴第九行有9个算式,∵每一行的每个算式的第一个数的排列是20,21,22,…,2n﹣1,第二个数都是2n,∴第九行最中间的算式是24+29,故答案为:9,24+29;(2)∵3,5,6,9,10,12,…,∴第15个数是第五行第5个数,∴第15个数是24+25=48,故答案为:48.【点评】本题考查数字的变化规律,通过观察所给的算式的排列,探索出每一行数的排列规律是解题的关键.19.(2022秋•余杭区校级月考)已知一列数:1,﹣2,3,﹣4,5,﹣6,7,…,将这列数排成下列形式:第1行1第2行﹣2,3第3行﹣4,5,﹣6第4行7,﹣8,9,﹣10第5行11,﹣12,13,﹣14,15…按照上述规律排下去,那么第10行从右边数第5个数为.【分析】通过观察可得第n行有n个数,求出前9行45个数,可知第10行的第一个数是﹣46,再求解即可.【解答】解:第一行1个数,第二行2个数,第三行3个数,……,∴第n行有n个数,∴前9行有×9=45个数,∴第10行的第一个数是﹣46,∴第10行从右边数第5个数为51,故答案为:51.【点评】本题考查数字的变化规律,通过观察数的排列规律,探索出每行数的个数的规律是解题的关键.20.(2021秋•缙云县期末)如图,某学校图书馆把WIFI密码做成了数学题.小红在图书馆看书时,思索了一会儿,输入密码,顺利地连接到了“图书馆”的网络,那么她输入的密码是.【分析】通过观察发现:第一个两位数是5×8=40,第二个两位数是6×8=48,第三个两位数是40+48=88,由此可求密码.【解答】解:∵5*2⊕6=301242,2*6⊕9=185472,8*3⊕4=321244,∵5×6=30,2×6=12,(5+2)×6=42,2×9=18,6×9=54,(6+2)×9=72,8×4=32,3×4=12,(8+3)×4=44,∴5*6⊕8=404888,故答案为:404888.【点评】本题考查数字的变化规律,能够根据所给的式子,探索出数字之间的联系是解题的关键.21.(2021秋•临海市月考)计算:(﹣1)+2+(﹣3)+4+…+(﹣2017)+2018+(﹣2019)+2020=.【分析】根据数的特点,每两个一组进行运算即可.【解答】解:(﹣1)+2+(﹣3)+4+…+(﹣2017)+2018+(﹣2019)+2020=[(﹣1)+2]+[(﹣3)+4]+…+[(﹣2017)+2018]+[(﹣2019)+2020]=1+1+…+1=1010,故答案为:1010.【点评】本题考查数字的变化规律,根据所给数的特点,分组进行求解是解题的关键.22.(2022秋•拱墅区校级月考)如图,将一列有理数按如下规律排列,请回答下列问题:(1)在A,B,C三个数中,其中表示负数的是;(2)若A,B,C,D,E均表示对应的有理数,A+B+C+D的值是;(3)数﹣2020对应A,B,C,D,E中的什么位置?并说明理由.【分析】(1)通过观察发现,A点表示的数与1的正负性相同,B点表示的数与﹣2的正负性相同,C点表示的数与3的正负性相同,由此求解即可;(2)由(1)可求A+B+C+D的值是﹣2;(3)通过观察发现,每6个数是一组循环,由此求解即可.【解答】解:(1)A点表示的数与1的正负性相同,B点表示的数与﹣2的正负性相同,C点表示的数与3的正负性相同,∴B表示负数,故答案为:B;(2)由(1)知,D点表示的数与﹣4的正负性相同,∵1+(﹣2)+3+(﹣4)=﹣2<0,∴A+B+C+D的值是﹣2,故答案为:﹣2;(3)由图可知,每6个数是一组循环,∵2020÷6=336……4,∴﹣2020与D点的位置相对应.【点评】本题考查数字的变化规律,通过观察探索出数字的循环规律是解题的关键.23.(2022秋•义乌市校级月考)观察下面的等式:﹣1=﹣|﹣+2|+44﹣1=﹣|﹣1+2|+42﹣1=﹣|1+2|+4﹣1=﹣|+2|+4﹣1﹣1=﹣|4+2|+4…回答下列问题:(1)填空:﹣1=﹣|6+2|+4;(2)已知:0﹣1=﹣|x+2|+4,则x的值是;(3)设满足上面特征的等式最左边的数为y,求y的最大值,并直接写出此时的等式.【分析】(1)找出各式的规律,利用规律解答即可;(2)利用(1)中的规律解答即可;(3)利用(1)中的规律列出不等式,从而求得最大值,利用(1)中的规律写出当时即可.【解答】解:∵﹣1=﹣|3﹣+2|+4=﹣|﹣+2|+4,4﹣1=﹣|3﹣4+2|+4=﹣|﹣1+2|+4,2﹣1=﹣|3﹣2+2|=﹣|1+2|+4,﹣1=﹣|3﹣+2|+4=﹣|+2|+4,﹣1﹣1=﹣|3﹣(﹣1)+2|+4,•∴a﹣1=﹣|3﹣a+2|+4,∴6=3﹣(﹣3),∴﹣3﹣1=﹣|3﹣(﹣3)+2|+4=﹣|6+2|+4,故答案为:﹣3;(2)∵0﹣1=﹣|3﹣0+2|+4=﹣|x+2|+4,∴x=3,故答案为:3;(3)∵y﹣1=﹣|3﹣y+2|+4,∴|5﹣y|=5﹣y,∴5﹣y≥0,∴y≤5,∴y的最大值为5,此时的等式为:5﹣1=﹣|﹣2+2|+4.【点评】本题主要考查了有理数的加减混合运算,绝对值,本题是规律型题目,依据各式的特征找出规律是解题的关键.24.(2021秋•临海市期末)观察下面三行数;﹣2,4,﹣8,16,﹣32,64,…;①0,6,﹣6,18,﹣30,66,…;②﹣1,2,﹣4,8,﹣16,32,…;③(1)第①行第8个数为;第②行第8个数为:第③行第8个数为.(2)是否存在这样一列数,使三个数的和为322?若存在,请写出这3个数;若不存在,请说明理由.【分析】(1)①后一个数是前一个数的﹣2倍,②的数的规律是在①每个对应数加2,③后一个数是前一个数的﹣2倍,由此可求解;(2)通过观察可得规律:①的第n个数是(﹣2)n,②的第n个数是(﹣2)n+2,③的第n个数是(﹣1)n2n﹣1,再由(﹣2)n+(﹣2)n+2+(﹣1)n×2n﹣1=322,求n即可.【解答】解:(1)﹣2,4,﹣8,16,﹣32,64,…,∴第8个数是256,②的第8个数是256+2=258,③的第8个数是128,故答案为:256,258,128;(2)不存在一列数,使三个数的和为322,理由如下:①的第n个数是(﹣2)n,②的第n个数是(﹣2)n+2,③的第n个数是(﹣1)n2n﹣1,由题意得,(﹣2)n+(﹣2)n+2+(﹣1)n×2n﹣1=322,∴n为偶数,∴4×2n﹣1+2n﹣1=5×2n﹣1=320,∴2n﹣1=64,∴n=7,∴不存在一列数,使三个数的和为322.【点评】本题考点数字的变化规律,通过观察所给的式子,找到式子中各数间的规律是解题的关键.25.(2021秋•海曙区月考)a是不为1的有理数,我们把称为a的差倒数.如:3的差倒数是=,﹣1的差倒数是=.已知a1=2,a2是a1的差倒数,a3是a2的差倒数,依此类推.(1)分别求出a2、a3、a4的值.(2)计算a1+a2+a3的值.(3)请直接写出a1+a2+a3+…+a2021的值.【分析】(1)由定义直接求解即可;(2)根据(1)中所求的值进行运算即可;(3)由(1)可知,每三次运算结果循环出现,则a1+a2+a3+…+a2021=673×+2﹣1=.【解答】解:(1)∵a1=2,∴a2==﹣1,a3==,a4==2;(2)a1+a2+a3=2+(﹣1)+=;(3)由(1)可知,每三次运算结果循环出现,∵2021÷3=673……2,∴a1+a2+a3+…+a2021=673×+2﹣1=.【点评】本题考查数字的变化规律,通过计算找到运算结果的循环规律是解题的关键.五.二次根式的性质与化简(共1小题)26.(2021秋•诸暨市期中)探索规律:先观察下列等式,再回答问题:①;②;③.(1)根据上面三个等式提供的信息,请你猜想=.(2)请按照上面各等式反映的规律,试写出第n个等式:.(3)计算:.【分析】(1)直接利用已知运算规律得出,最终结果的分母与后两项分母的关系,进而得出运算结果;(2)直接利用已知运算规律得出,最终结果的分母与后两项分母的关系,进而得出运算结果;(3)利用(2)中运算规律,进而化简得出答案.【解答】解:(1)=1;(2)=1+;(3)原式=1+1+1+…+1=1×99+1﹣+﹣+﹣+…+﹣=99+1﹣=99.故答案为:(1)1;(2)=1+.【点评】此题主要考查了二次根式的性质与化简以及数字变化规律,正确发现数字之间变化规律是解题关键.。
实数(6个知识点+7类热点题型讲练+习题巩固)(原卷版)七年级数学下册

第03讲实数课程标准学习目标①无理数的概念及其常见的形式②实数的概念及其分类③实数与数轴④实数的性质⑤实数的大小比较⑥实数的运算1.掌握无理数的概念及其三种形式,能够准确的判断无理数。
2.掌握无理数的概念及其分类,能够准确的进行分类。
3.掌握实数与数轴的关系,能够熟练的应用。
4.掌握实数的相关性质,并能够熟练的应用。
5.掌握实数的大小比较方法,能够准确的判定实数的大小关系。
6.掌握实数的运算法则,并能够熟练的进行计算。
知识点01无理数的概念及其形式1.无理数的概念:无限不循环小数叫做无理数。
2.无理数的三种形式:①含有,且被开方数开方。
②π以及化简后含有π的数。
③具有特定结构的数。
如0.1010010001...【即学即练1】1.下列各数:,,0,,﹣3.14,,2.101101110…(每两个0之间依次多一个1),其中是无理数的个数是()A.3个B.4个C.5个D.6个知识点02实数的概念及其分类1.实数的概念:与统称为实数。
2.实数的分类:①按定义分类:②按性质分类:【即学即练1】2.把下列各数填入相应的横线内:0.,0,﹣9,﹣6.8,2﹣π,,,80%,,0.7373373337…(两个“7”之间依次多一个“3”),.无理数:{…};整数:{…};分数:{…};实数:{…}.知识点03实数与数轴1.实数与数轴的关系:实数与数轴上的点是关系。
数轴上每一个点都只能表示1个实数,每一个实数都只能找数轴上找一个点来表示它。
【即学即练1】3.在数轴上对应的点可能是()A.点M B.点N C.点O D.点P知识点04实数的相关概念及其性质1.相反数:只有的两个数互为相反数。
实数a 的相反数是。
若a 与b 互为相反数,则=+b a 。
2.绝对值:实数a 到原点的距离用来表示。
()()()⎪⎩⎪⎨⎧-==0000><a a a a a a ;①任意实数的绝对值都是一个,即|a |0;②互为相反数的两个数绝对值。
八上实数全章节题型分类知识点+例题+练习分类全面

三.开平方开平方的概念:求一个非负数的平方根的运算,叫做开平方.开平方与平方是互逆运算,可以通过平方运算来求一个数的平方根或算术平方根,以及检验一个数是不是另一个数的平方根或算术平方根.开平方运算的性质:1.当被开方数扩大(或缩小)二倍,它的算术平方根相应地扩大(或缩小)n倍(「:).2.平方根和算术平方根与被开方数之间的关系:(1)若二丁,则,'=-;;好叫.吟。
)(2)不管.;为何值,总有一八,;注意二者之间的区别及联系.题模一平方根例 1.1.1、士3 是 9 的()A、平方根B、相反数C、绝对值D、算术平方根例1.1.2、仪的平方根是()A、2B、±2C、22D、土 <2例1.1.3、若2a-1和a-5是一个正数m的两个平方根,则a=, m=.练习:1.的平方根为()C、二三D、二述2.若二二二,:=、户,则()A 、8 C 、8 或-2 3.4耳的平方根为()C 、二二例1.2.5、若也工T 有意义,则x 的取值范围是练习:1 . J8T 的算术平方根是B 、二三 D 、2 或-B 、2D 、二尤4.已知一个正数的平方根是3x-2和5x+6, 题模二算术平方根例1.2.1、4的算术平方根是( )A 、2 C 、±2例1.2.2、29的算术平方根是 例1.2.3、下列说法正确的是( )A 、4的算术平方根是2 C 、V 同的平方根是2例1.2.4、一个自然数的算术平方根为a , A 、a+1则这个数是. B 、-2 D 、五B 、0和1的相反数都是它本身D -—、-是分数则和这个自然数相邻的下一个自然数是( )B 、a 2+1 D 、知识点二:立方根知识精讲一•立方根立方根的定义及表示方法:如果一个数的立方等于「那么这个数叫做•;的立方根;若;:=•、则;就叫做・;的立方根,一个数•、的立方根可用符号表“石”,其中“3”叫做根指数,不能省略.立方根的特点:1.任意一个数都有立方根;2.正数立方根是正值;3.负数的立方根是负值;4.0的立方根是0二.开立方开立方的概念:求一个数的立方根的运算.开立方与立方是互逆运算,可以通过立方运算来求一个数的立方根,以及检验一个数是不是另一个数的立方根.开立方运算的性质:1.当被开方数(大于0)扩大(或缩小)::倍,它的立方根相应地扩大(或缩小):倍.易错点:1.平方根“F”其实省略了根指数“二”,即:H也可以表示为F,而立方根“盗” 的根指数“3”不能省略.2.立方根等于本身的数有“二[”和“0” .3.两个数互为相反数,则它们的立方根也互为相反数.题模一立方根例2.1.1、27的立方根是.q -例2.1.2、7的立方根是.64例2.1.3、一五的立方根是. 例2.1.4、9的立方根是. 例2.1.5、下列说法正确的是( )A 、16的算术平方根是-4B 、25的平方根是5C 、1的立方根是二1D 、-27的立方根是-3练习:1 .如果一个实数的平方根与它的立方根相等,则这个数是() A 、0 B 、正整数 C 、0 和 1D 、12 .下列说法正确的是()题模二开立方例2.2.1、求符合下列各条件中的x 的值. x* -1 = 0 -x 1 -1 = 0(1) -(2)-例2.2.2、已知343的立方根是7,那么343000的立方根是A 、如果一个数的立方根是这个数的本身,那么 这个数一定是零 B 、 一个数的立方根不是正数就是负数 C 、负数没有立方根D 、一个数的立方根与这个数同号,零的立方根 是零例2.2.3、已知与互为相反数,求.例2.2.4、已知“:是4的算术平方根,丁三是8的立方根,求;「「的平方根练习:1.下列各式中,正确的是()A、二忑=二二C、石一D、-# = 32.正确的个数是()①]”二一"②止〜与③0=二;④==-二A、B、C、D、3.若,则k的取值范围为(A、士B、C、< =-D、二为任意数4.求符合下列各条件中的x的值.(2)「3 —(1) J一一二5.如果,求―的值知识点三:实数知识精讲一.无理数无理数的概念:无理数是无限不循环小数;常见的无理数有:无限不循环小数(例如.), 开方开不尽的数.二.实数的概念及分类:实数的概念:有理数和无理数统称为实数.实数的性质:£1.有理数都可以写成有限小数或循环小数的形式,都可以表示成分数-二的形式;2.任何两个有理数的和、差、积、商还是有理数;3.两个无理数的和、差、积、商不一定是无理数.实数的分类■:正整数-整数。
(完整版)八年级数学上册第二章实数知识点总结+练习

第二章:实数【无理数】1.定义:无限不循环小数的小数叫做无理数;注:它必须满足“无限”以及“不循环”这两个条件。
2.常见无理数的几种类型:(1)特殊意义的数,如:圆周率以及含有的一些数,如:2-,3等;ππππ(2)特殊结构的数(看似循环而实则不循环):如:2.010 010 001 000 01…(两个1之间依次多1个0)等。
(3)无理数与有理数的和差结果都是无理数。
如:2-是无理数π(4)无理数乘或除以一个不 为0的有理数结果是无理数。
如2,π(5)开方开不尽的数,如:等;应当要注意的是:带根号的数不一定是无理数,39,5,2如:等;无理数也不一定带根号,如:)9π3.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
例:(1)下列各数:①3.141、②0.33333……、③、④π、⑤、⑥、⑦0.3030003000003…75-252.±32-…(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___。
(填序号)(2)有五个数:0.125125…,0.1010010001…,-,,其中无理数有 ( )个π432【算术平方根】:1.定义:如果一个正数x 的平方等于a ,即,那么,这个正数x 就叫做a 的算术平方根,a x =2记为:“”,读作,“根号a”,其中,a 称为被开方数。
例如32=9,那么9的算术平方根a 是3,即。
39=特别规地,0的算术平方根是0,即,负数没有算术平方根00=2.算术平方根具有双重非负性:(1)若 有意义,则被开方数a 是非负数。
(2)算术平方根a 本身是非负数。
3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:;而平方根具有两a个互为相反数的值,表示为:。
人教版初一数学第六章实数重点题型及知识点

人教版初一数学第六章实数重点题型及知识点单选题1、已知a,b分别是6﹣√5的整数部分和小数部分,则( )A.a=2,b=3−√5B.a=3,b=3−√5C.a=4,b=2−√5D.a=6,b=3−√5答案:B解析:先求出√5范围,再两边都乘以﹣1,再两边都加上6,即可求出a、b.∵2<√5<3,∴﹣3<﹣√5<﹣2,∴3<6﹣√5<4,∴a=3,b=6﹣√5﹣3=3﹣√5;故选B.小提示:本题考查了估算无理数的大小和有理数的混合运算的应用,关键是根据学生的计算能力进行解答.2、下列四个数中,最小的数是()A.1B.﹣√3C.2D.−23答案:B解析:正数大于0,负数小于0,正数大于负数,两个负数比较大小,绝对值大的反而小.|,解:∵|-√3|>|−23∴﹣√3<−2<1<2,3∴最小的数是﹣√3.故选:B.小提示:本题考查了实数的大小比较,熟练掌握实数的大小比较方法是解答本题的关键.3、下列命题是真命题的是()A.如果一个数的平方等于这个数本身,那么这个数一定是0B.如果一个数的平方根等于这个数本身,那么这个数一定是0C.如果一个数的算术平方根等于这个数本身,那么这个数定是0D.如果一个数的立方根等于这个数本身,那么这个数定是0答案:B解析:根据平方、平方根、算术平方根、立方根的定义,思考特殊值,即可求出答案.解:A、如果一个数的平方等于这个数本身,那么这个数一定是0或1,故A是假命题;B、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;C、如果一个数的算术平方根等于这个数本身,那么这个数一定是0或1,故C是假命题;D、如果一个数的立方根等于这个数本身,那么这个数是0、1、-1,故D是假命题.故选:B.小提示:此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.4、已知a,b分别是6﹣√5的整数部分和小数部分,则( )A.a=2,b=3−√5B.a=3,b=3−√5C.a=4,b=2−√5D.a=6,b=3−√5答案:B解析:先求出√5范围,再两边都乘以﹣1,再两边都加上6,即可求出a、b.∵2<√5<3,∴﹣3<﹣√5<﹣2,∴3<6﹣√5<4,∴a=3,b=6﹣√5﹣3=3﹣√5;故选B.小提示:本题考查了估算无理数的大小和有理数的混合运算的应用,关键是根据学生的计算能力进行解答.5、下列等式正确的是()A.√49144=±712B.−√−2783=−32C.√−9=−3D.√(−8)23=4答案:D解析:原式各项利用立方根及算术平方根定义计算即可得到结果.A、原式=712,错误;B 、原式=-(-32)=32,错误;C 、原式没有意义,错误;D 、原式=√643=4,正确,故选D .小提示:此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.6、在下列语句中:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数.其中正确的是( )A .②③B .②③④C .①②④D .②④答案:C解析:根据相反数、非负数、实数的大小比较、无限小数等方面逐一进行分析即可得.①因为实数包括有理数和无理数,无理数的相反数不可能是有理数,故①正确;②一个数的绝对值一定≥0,故②正确;③数的大小,和它是有理数还是无理数无关,故③错误;④无限循环小数是有理数,故④正确,故选C .小提示:本题考查了实数的概念,从无理数的概念出发,区分无理数和有理数容易混淆的地方,熟练掌握是解题的关键.7、在下列各数中是无理数的有( )−0.111⋯,√4,√5,3π,3.1415926,2.010101⋯(相邻两个0之间有1个1),76.01020304050607⋯,√23.A.3个B.4个C.5个D.6个答案:B解析:根据无理数是无限不循小数,可得答案.3是无理数,解:√5,3π,76.01020304050607⋯,√2故选:B.小提示:本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.8、下列说法:①数轴上的任意一点都表示一个有理数;②若a、b互为相反数,则a+b=0;③多项式xy2−xy+24是四次三项式;④几个有理数相乘,如果负因数有奇数个,则积为负数,其中正确的有()A.0个B.1个C.2个D.3个答案:C解析:数轴上的点可以表示无理数,所以①错误;若a,b互为相反数则a+b=0,则②正确;24是常数项,所以③错误;根据有理数的乘法法则可判断④正确.数轴上的点既可以表示有理数,也可以表示无理数,所以①错误;若a,b互为相反数则a+b=0,则②正确;24是常数项,xy2−xy+24是三次三项式,故③错误;根据有理数的乘法法则可判断④正确.故正确的有②④,共2个故选C小提示:本题考查了实数与数轴、相反数、多项式、有理数的乘法,熟记概念是解题的关键.填空题3=4,那么(a-67)3的值是______9、如果√a+4答案:-343解析:利用立方根的定义及已知等式求出a的值,代入所求式子计算即可求出值.3=4,∵√a+4∴a+4=43,即a+4=64,∴a=60,则(a-67)3=(60-67)3=(-7)3=-343,故答案为-343.小提示:本题考查了立方根,熟练掌握立方根的定义是解本题的关键.3.10、计算:|1−√3|+√9−√8答案:√3解析:分别绝对值运算、算术平方根运算、立方根运算、合并同类项进行求解即可.解:原式=√3−1+3−2=√3.小提示:本题考查实数的混合运算,熟练掌握运算法则是解答的关键.11、比较大小:10_______√120(填“>”、“<”或“=”).答案:<解析:先把10化成√100,再比较被开方数的大小,即可得出答案.10=√100,∵100<120,∴√100<√120,∴10<√120.所以答案是:<.小提示:本题主要考查了实数的大小的比较,用到了把有理数利用平方的性质变为用根号表示的数的方法,熟练掌握此方法是解题的关键.12、请写一个比−√6小的无理数....答:____.答案:−√7(答案不唯一)解析:根据无理数的定义填空即可.解:比−√6小的无理数如:−√7(答案不唯一),故答案为−√7(答案不唯一).小提示:本题考查了无理数的定义及比较无理数大小,比较基础.13、将下列各数填入相应的括号里:−|−0.7|,−(−9),−512,0,8,−2,π2,23,−1.121121112…,−0.1·5·.整数集合{ …};负分数集合{ …};无理数集合{ …}.答案:见解析.解析:先化简,后根据整数包括正整数,0,负整数;负分数,无理数的定义去判断解答即可.∵-|-0.7|=-0.7,是负分数,-(-9)=9,是整数,−512是负分数,0是整数,8是整数,-2是整数,π2是无理数,23是正分数,−1.121121112…是无限不循环小数,是无理数,−0.1·5·是无限循环小数,是有理数,是负分数,∴整数集合{ -(-9),0,8, -2 …};负分数集合{ -|-0.7|, −512, −0.1·5· …}; 无理数集合{ π2 , −1.121121112……}.所以答案是:-(-9),0,8, -2 ;-|-0.7|, −512 , −0.1·5·;π2 , −1.121121112…….小提示:本题考查了有理数,无理数,熟练掌握各数的定义,特征,并合理化简判断是解题的关键.解答题14、当运动中的汽车撞击到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某种型号的汽车的撞击影响可以用公式I =2v 2来表示,其中v(千米/分)表示汽车的速度.假设某种型号的车在一次撞击试验中测得撞击影响为51.请你求一下该车撞击时的车速是多少.(精确到0.1千米/分)答案:5.0解析:由I=2v 2,这种型号的汽车在一次撞车实验中测得撞击影响为51,即可得v 2=512,继而求得答案. 由题意知2v 2=51,v 2=512,所以v =√512≈5.0(千米/分)∴该车撞击时的车速是5.0千米/分小提示:此题考查了算术平方根的应用.注意理解题意是解此题的关键.15、计算:(1)7−|−2|+√−273(2)5×(34−12)÷(−12)2答案:(1)2;(2)5解析:(1)先计算绝对值及开立方,再计算加减法;(2)先计算括号中的减法及乘方,再按顺序计算乘除法.解:(1)7−|−2|+√−273=7-2-3=2;(2)5×(34−12)÷(−12)2=5×14÷14=5.小提示:此题考查实数的混合运算,掌握运算法则及运算顺序是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数知识点与对应题型一、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。
(也称为二次方根),也就是说如果x 2=a ,那么x 就叫做a 的平方根。
2、平方根的性质:①一个正数有两个平方根,它们互为相反数;一个正数a 的正的平方根,记作“a ”,又叫做算术平方根,它负的平方根,记作“—a ”,这两个平方根合起来记作“±a ”。
( a 叫被开方数, “”是二次根号,这里“”,亦可写成“2”)②0只有一个平方根,就是0本身。
算术平方根是0。
③负数没有平方根。
3、 开平方:求一个数的平方根的运算叫做开平方,开平方和平方运算互为逆运算。
4、(1) 平方根是它本身的数是零。
(2)算术平方根是它本身的数是0和1。
(3)()()()().0,0,0222<-=≥=≥=a a a a a a a a a(4)一个数的两个平方根之和为0二、立方根:(1——9的立方)1、立方根的定义:如果一个数的立方等于a ,那么这个数就叫做a 的立方根。
(也称为二次方根),也就是说如果x 3=a ,那么x 就叫做a 的立方根。
记作“3a ”。
2、立方根的性质:①任何数都有立方根,并且只有一个立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0. ②互为相反数的数的立方根也互为相反数,即3a -=3a - ③a a a ==3333)(3、开立方:求一个数的立方根的运算叫做开立方,开立方与立方运算为互逆运算,开立方的运算结果是立方根。
4、立方根是它本身的数是1,0,-1。
5、平方根和立方根的区别:(1)被开方数的取值范围不同:在±a 中,a ≥0,在a 3中,a 可以为任意数值。
(2)正数的平方根有两个,而它的立方根只有一个;负数没有平方根,而它有一个立方根。
6、立方根和平方根:不同点:(1)任何数都有立方根,正数和0有平方根,负数没有平方根;即被开方数的取值范围不同:±a 中的被开方数a 是非负数;3a 中的被开方数可以是任何数.(2)正数有两个平方根,任何数都有惟一的立方根;(3)立方根等于本身的数有0、1、—1,平方根等于本身的数只有0.共同点:0的立方根和平方根都是0.三、实数:1、定义:有理数和无理数统称为实数注意:分数都是有理数,因为任何一个分数都可以化为有限小数或无限循环小数的形式2、实数的分类:实数有理数正有理数零负有理数有限小数或无限循环小数无理数正无理数负无理数无限不循环小数⎧⎨⎪⎩⎪⎫⎬⎪⎪⎭⎪⎪⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪实数的性质:①实数的相反数、倒数、绝对值的意义与在有理数范围内的意义是一样的。
②实数同有理数一样,可用数轴上的点表示,且实数和数轴上的点一一对应。
③两个实数可以按有理数比较大小的法则比较大小。
④实数可以按有理数的运算法则和运算律进行运算。
3、近似数:由于实际中常常不需要用精确的数描述一个量,甚至在更多情况下不可能得到精确的数,用以描述所研究的量,这样的数就叫近似数。
取近似值的方法——四舍五入法4、有效数字:对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数都称为这个近似数的有效数字5、科学记数法:把一个数记为做科学记数法。
是整数)的形式,就叫其中n ,10a 1(10a n <≤⨯ 6、实数和数轴:每一个实数都可以用数轴上的点来表示;反过来,数轴上每一个点都表示一个实数。
实数与数轴上的点是一一对应的。
一、平方根:(一)文字类题目:一个数的平方等于它本身,这个数是 ;一个数的平方根等于它本身,这个数是 ;一个数的算术平方根等于它本身,这个数是一个数的立方根等于它本身,这个数是 ;一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.(二). 定义:1.(1) 81 的平方根是9±的数学表达式是( )A. 981=B. 981=±C. 981±=D. 981±=±81的平方根是( )实数表示 ,= 。
16的数是 ,将16开平方得 ,因此平方与 互为逆运算。
4的平方根是 ;149的平方根是 。
的平方根是0.81。
(2)数有平方根吗?若有,求出它们的平方根;若没有,请说明理由。
(1)-64; (2)(-4)2; (3)-52 (4)81(3)若3a +1没有算术平方根,则a 的取值范围是若3x-6总有平方根,则x 的取值范围是 。
若式子x -31的平方根只有一个,则x 的值是 。
(4)已知411+=-+-y x x ,那么x -y =已知a 为实数,那么2a -等于( )A. aB. –aC. -1D. 0(5)若04)3(2=-+-y x ,则x +y = 已知04922=-+-b a ,那么a +b =已知x 、y 满足:0)532(322=--+--y x y x ,那么x -8y 的立方根为(6)代数式b a +--3的最大值是 ,这时a 、b 之间的关系是(7)若10=m ,则m = ;若43=m ,则m 的平方根是(8)若3=x ,则x= ,()32=-x ,则x= (9)下列个数中:()()()623252860100-----,,,,,没有平方根的有 个 2. 已知△ABC 的三边分别是a 、b 、c ,且满足04412=+-+-b b a ,求c 的取值范围。
已知a 、b 为实数,且0262=-++b a ,解关于x 的方程:(a +2)x +2b =a -1。
已知42a -49=0,求a 1039-的值。
3. 列方程求值:(1)2x =196; (2)52x -10=0; (3)36(x -3)2-25=04. (1)已知一个正数的平方根是2x -1和3-x ,求这个数(2()2x y -的平方根。
5. 估算:(1)比较大小: ①5与52 ②215-与43(2)a 、b 为两个连续的整数,且b a <<7,则b a +=满足-2<x<3的整数是 ;实数 的绝对值是37-。
(3)若m =440-,则估计m 的值所在的范围是( )A.21<<mB. 32<<mC. 43<<mD. 54<<m6. 计算:(1)()=+-3232(2)、下列计算正确的是( ) A 、451691= B 、212214= C 、05.025.0= D 、525=-- 7. 平方根的性质:=01.0 ;()=25 ;241⎪⎪⎭⎫ ⎝⎛= ;216= ;()=-216 ;()25-= 。
二、立方根1. 定义:(1)如果a 是x 的立方根,那么下列说法正确的是( )A. –a 也是x 的立方根B. –a 是-x 的立方根C. a 是-x 的立方根D. –a 和a 都是-x 的立方根 (2)下列各式:2.08.01.01.01.0001.0393333=-=-==;④;③;②①,其中错误的有 个 2. 根据定义求值:(1)求值:327102- (2)31258--(2)方程:()133-=-x 2161253-=x3. 估算:(1)估计68的立方根大小在( )A. 2与3之间B.3与4之间C.4与5之间D.5与6之间(2)通过估算3420的整数部分为( )A. 6B. 7C. 8D. 9(3)3100估算到个位=4. 平方根与立方根相结合:(1)若2x+1的平方根是5±,那么5x+4的立方根是(2)已知8=x ,求381x -的值。
(3)已知m 满足3312=-m ,k 、n 满足()079132=++-n k ,求k n m 32-的值三、实数:1. 实数的定义:1.判断下列说法是否正确,为什么?(1)无限小数是无理数;(2)有理数都是是有限小数;(3)无理数都是无限小数;(4)带根号的数都是无理数(5)任何实数的偶次幂都是正实数;(6)在实数范围内,若y x =,则x =y 。
(7)0是最小的实数;(8)0是绝对值最小的实数;(9)数轴上的点与有理数是一一对应的(10)数轴上的点与实数是一一对应的2.下列说法正确的是 ( )A.不存在最小的实数B.有理数是有限小数C.无限小数都是无理数D.带根号的数都是无理数3.下列说法正确的是( )4. 把下列各数填入相应的集合内:---⋅-π,,,,,,,,,,314317320031825362131716... 213、38-、0、27、3π、5.0、3.14159、-0.020020002 0.12121121112…… (1)有理数集合{ }(2)无理数集合{ }(3)正实数集合{ }(4)负实数集合{ }2. 有效数字、科学记数法、近似数:注意:2000有4个有效数字,精确到个位3102⨯有1个有效数字,精确到千位1. 有几个有效数字,保留几个有效数字:用四舍五入法,按要求取近似值:.①地球上七大洲的面积约为149480000(保留2个有效数字)②25.8万(保留2个有效数字)③小明身高1.595m (保留3个有效数字)④0.0608,0.0608002.精确到哪一位:由四舍五入法得到的近似数,分别精确到哪一位?各有几个有效数字?①小明身高1.59m ;②地球的半径约为6.4×103;③组成云的小水滴很小,最大的直径约为0.2mm ;④某种电子显微镜的分辨率为1.4×10-8;⑤70万⑥9.03万⑦1.8亿⑧51040.6⨯⑨0.0900803.精确到0.1,0.01等:①精确到个位(或精确到1)是π精确到十分位(或精确到0.1)是π精确到百分位(或精确到0.01)是π精确到千分位(或精确到0.001)是小亮用天平称得罐头的质量为2.026kg ,按下列要求取近似数,并指出每个近似数的有效数:①精确到0.01kg; ②精确到0.1kg; ③精确到1kg.②某人一天饮水1890ml (精确到1000ml )③的眼睛可以看见的红光的波长为0.000077cm (精确到0.00001)4.科学记数法:(1)用科学记数法表示91800000,正确的是( )A 、918×510B 、91.8×610C 、9.18×510D 、9.18×710 (2)一个数用科学记数法记为6×410,这个数原来怎么记?它是几位整数? 一个数用科学记数法记为6.09×410,这个数原来怎么记?它是几位整数?一个数用科学记数法记为6.00009×410,这个数原来怎么记?它有几位整数?5.今年全国的消费额为29458.4亿元,小明认为这个数字精确到0.1亿元,而小亮认为这个数字精确到1000万元,你认为谁的说法对?为什么?小亮,数位只存在个、十、百、千、万、十万等,不存在0.1万之类的。