无锡市某校2020高一升高二数学综合卷(五)含答案

合集下载

2023-2024学年江苏省无锡市锡东高级中学高三(下)段考数学试卷(5月份)+答案解析

2023-2024学年江苏省无锡市锡东高级中学高三(下)段考数学试卷(5月份)+答案解析

2023-2024学年江苏省无锡市锡东高级中学高三(下)段考数学试卷(5月份)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合,,则()A. B. C. D.2.已知,则()A. B. C. D.3.已知等比数列的前3项和为168,,则()A.14B.12C.6D.34.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比从1000提升至8000,则C大约增加了A. B. C. D.5.在平行四边形ABCD中,,若,则()A. B. C. D.6.为庆祝中国共产党第二十次全国代表大会胜利闭幕,某高中举行“献礼二十大”活动,高三年级派出甲、乙、丙、丁、戊5名学生代表参加,活动结束后5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有种.A.40B.24C.20D.127.在中,,的角平分线AD交BC于点D,的面积是面积的3倍,则()A. B. C. D.8.已如A,B,C是半径为1的球O的球面上的三个点,且,,则三棱锥的体积为()A. B. C. D.二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得2分,有选错的得0分。

9.已知函数,则()A.是偶函数,也是周期函数B.的最大值为C.的图像关于直线对称D.在上单调递增10.已知点,,点P 为圆C :上的动点,则()A.面积的最小值为B.AP 的最小值为C.的最大值为D.的最大值为11.定义:设是的导函数,是函数的导数,若方程有实数解,则称点为函数的“拐点”.经过探究发现:任何一个三次函数都有“拐点”且“拐点”就是三次函数图像的对称中心,已知函数的对称中心为,则下列说法中正确的有() A.,B.函数既有极大值又有极小值C.函数有三个零点D.过可以作两条直线与图像相切三、填空题:本题共3小题,每小题5分,共15分。

2020年江苏省无锡市善卷中学高二数学理测试题含解析

2020年江苏省无锡市善卷中学高二数学理测试题含解析

2020年江苏省无锡市善卷中学高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知方程(x2﹣2x+m)(x2﹣2x+n)=0的四个根组成一个首项为的等差数列,则|m﹣n|等于( )A.1 B.C.D.参考答案:C【考点】等差数列的性质;一元二次不等式的解法.【专题】计算题.【分析】设4个根分别为x1、x2、x3、x4,进而可知x1+x2和x3+x4的值,进而根据等差数列的性质,当m+n=p+q时,a m+a n=a p+a q.设x1为第一项,x2必为第4项,可得数列,进而求得m和n,则答案可得.【解答】解:设4个根分别为x1、x2、x3、x4,则x1+x2=2,x3+x4=2,由等差数列的性质,当m+n=p+q时,a m+a n=a p+a q.设x1为第一项,x2必为第4项,可得数列为,,,,∴m=,n=.∴|m﹣n|=.故选C【点评】本题主要考查了等差数列的性质.解题的关键是运用了等差数列当m+n=p+q时,a m+a n=a p+a q 的性质.2. 已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n为数列{a n}的前n项和,则的最小值为()A.4 B.3 C.2﹣2 D.2参考答案:A【考点】85:等差数列的前n项和.【分析】a1,a3,a13成等比数列,a1=1,可得:a32=a1a13,即(1+2d)2=1+12d,d≠0,解得d.可得a n,S n.代入利用分离常数法化简后,利用基本不等式求出式子的最小值.【解答】解:∵a1,a3,a13成等比数列,a1=1,∴a32=a1a13,∴(1+2d)2=1+12d,d≠0,解得d=2.∴a n=1+2(n﹣1)=2n﹣1.S n=n+×2=n2.∴===n+1+﹣2≥2﹣2=4,当且仅当n+1=时取等号,此时n=2,且取到最小值4,故选:A.3. 在△ABC中,设a,b,c分别是角A,B,C所对边的边长,且直线bx+ycos A+cos B=0与ax+ycos B+cos A=0平行,则△ABC一定是()A.锐角三角形 B.等腰三角形C.直角三角形 D.等腰或直角三角形参考答案:C4. 用秦九韶算法求n 次多项式的值,当时,求需要算乘方、乘法、加法的次数分别为()A. B.n,2n,n C.0,n,n D. 0,2n,n参考答案:C略5. 有一个几何体的三视图及其尺寸如下(单位:cm),则该几何体的表面积及体积分别为A. 24cm 2,12cm3B. 15cm 2,12cm3C. 24cm 2,36cm3D.以上都不正确参考答案:A6. 下列推理合理的是()A. 若函数y=f(x)是增函数,则f'(x)>0B. 因为a>b(a,b∈R),则a+2i>b+2i(i是虚数单位)C. A是三角形ABC的内角,若cos A>0,则此三角形为锐角三角形D.α,β是锐角△ABC的两个内角,则sinα>cosβ参考答案:D【分析】根据导函数、虚数、三角函数的相关知识一一进行判断可得答案.【详解】解:对于A,根据导函数的概念可知,若f(x)是增函数,则f'(x)≥0,故错误;对于B,虚数无法比较大小,故错误;对于C,若A是△ABC的内角,且cosA>0,则A为锐角,但△ABC不一定为锐角三角形,故错误.对于D,若α,β是锐角△ABC的两个内角,∴α+β,∴sinα>sin(β)=cosβ,故正确;故选:D.【点睛】本题主要考查命题真假的判定与应用,涉及的知识有函数、虚数、三角函数、诱导公式等,需灵活运用所学知识进行判定.7. 现釆用随机模拟的方法估计该运动员射击次,至少击中次的概率:先由计算器给出到之间取整数值的随机数,指定、表示没有击中目标,、、、、、、、表示击中目标,以个随机数为一组,代表射击次的结果,经随机模拟产生了组随机数:根据以上数据估计该射击运动员射击次至少击中次的概率为、、、、参考答案:D8. 设函数的导数,则数列的前n项和A. B. C. D.参考答案:C9. 若曲线在点处的切线与直线平行,则a=()A. 3B. 4C. 5D. 6参考答案:C【分析】对函数求导,由切线与直线平行,得出导数在的导数值为,于此可得出实数的值。

江苏省无锡市综合高级中学2020-2021学年高一数学文期末试卷含解析

江苏省无锡市综合高级中学2020-2021学年高一数学文期末试卷含解析

江苏省无锡市综合高级中学2020-2021学年高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 如图,将边长为1的正方形ABCD沿对角线AC折成大小等于的二面角分别为的中点,若,则线段MN长度的取值范围为()A. B.C. D.参考答案:A【分析】连接和,由二面角的定义得出,由结合为的中点,可知是的角平分线且,由的范围可得出的范围,于是得出的取值范围。

【详解】连接,可得,即有为二面角的平面角,且,在等腰中,,且,,则,故答案为:,故选:A。

【点睛】本题考查线段长度的取值范围,考查二面角的定义以及锐角三角函数的定义,解题的关键在于充分研究图形的几何特征,将所求线段与角建立关系,借助三角函数来求解,考查推理能力与计算能力,属于中等题。

2. 已知函数f(x)=A cos(ωx+φ)(A>0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG是边长为2的等边三角形,则f(1)的值为 ()A.- B.- C. D.-参考答案:D3. 已知正六边形的边长为1,则的最大值是()A. 1B.C.D. 2参考答案:B【分析】依题意得,分别计算出当时的值,比较即可得出答案.【详解】解:如图,当时,的值相应是,故最大值为.【点睛】本题考查正多边形的性质、余弦定理和向量数量积的运算等知识.4. 某程序框图如图所示,该程序运行后输出的的值是 ( )A. B. C.D.参考答案:A5. 设函数的最小正周期是T,将其图象向左平移后,得到的图象如图所示,则函数的单增区间是()A. B.C. D.参考答案:A由已知图象知,的最小正周期是所以解得.由得到,单增区间是或:因为所以将的图象向左平移后,所对应的解析式为.由图象知,所以.由得到,单增区间是点晴:本题考查的是三角函数的图像和性质.已知函数的图象求解析式;(1);(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.确定解析式后,再根据可得单增区间是.6. 计算= ( )A. B. C. D.参考答案:A7. 已知正方形ABCD的边长为2,E是BC的中点,则·等于() A.-6 B.6 C.8 D.-8参考答案:B略8. 如图,在三棱锥S﹣ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是()A.相交B.平行C.异面D.以上都有可能参考答案:B【考点】LO:空间中直线与直线之间的位置关系.【分析】根据三角形的重心定理,可得SG1=SM且SG2=SN,因此△SMN中,由比例线段证出G1G2∥MN.在△ABC中利用中位线定理证出MN∥BC,可得直线G1G2与BC的位置关系是平行.【解答】解:∵△SAB中,G1为的重心,∴点G1在△SAB中线SM上,且满足SG1=SM同理可得:△SAC中,点G2在中线SN上,且满足SG2=SN∴△SMN中,,可得G1G2∥MN∵MN是△ABC的中位线,∴MN∥BC因此可得G1G2∥BC,即直线G1G2与BC的位置关系是平行故选:B【点评】本题给出三棱锥两个侧面的重心的连线,判定它与底面相对棱的位置关系,着重考查了三角形重心的性质、比例线段的性质和三角形中位线定理等知识,属于基础题.9. 若关于x的方程有两个不相等的实根,则实数的取值范围是 ( )A. B. C.D.参考答案:B10. 若函数y=Asin(ωx+φ)(A>0,ω>0,)在一个周期内的图象如图所示,M、N分别是这段图象的最高点和最低点,且,则A?ω=()A.B.C.D.参考答案:C【考点】y=Asin(ωx+φ)中参数的物理意义;三角函数的周期性及其求法;三角函数的最值.【专题】压轴题;图表型.【分析】根据图象求出函数的周期,再求出ω的值,根据周期设出M和N的坐标,利用向量的坐标运算求出A的值,即求出A?ω的值.【解答】解:由图得,T=4×=π,则?=2,设M(,A),则N(,﹣A),∵,A>0,∴×﹣A×A=0,解得A=,∴A?ω=.故选C.【点评】本题考查了由函数图象求出函数解析式中的系数,根据A、ω的意义和三角函数的性质进行求解,考查了读图能力.二、填空题:本大题共7小题,每小题4分,共28分11. 设数集,,且都是集合的子集,如果把叫做集合的“长度”,那么集合的长度的最小值是.参考答案:略12. 在集合上定义两种运算和如下:那么_____________.参考答案:【知识点】集合的运算解:由题知:a c=c,所以故答案为:13. 函数的值域为▲ .参考答案:14. 高一年级某班的部分同学参加环保公益活动---收集废旧电池,其中甲组同学平均每人收集17个,已组同学平均每人收集20个,丙组同学平均每人收集21个.若这三个小组共收集了233个废旧电池,则这三个小组共有个学生参考答案:解析:设甲、已、丙三个组的人数分别为.则有,故233=,同理,均为整数,则或,检验的方可.15. 在平面直角坐标系中,若圆的圆心在第一象限,圆与轴相交于、两点,且与直线相切,则圆的标准方程为.参考答案:16. 设数列则是这个数列的第项。

江苏省无锡市六校2020-2021学年高一下学期5月联合调研考试数学试题 Word版含答案

江苏省无锡市六校2020-2021学年高一下学期5月联合调研考试数学试题 Word版含答案

江苏省无锡市六校联考2020—2021学年高一下学期调研考试数学试卷2021.5(试卷分值:150分,考试时间:120分钟)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数512ii= -()A.2i-B.12i-C.2i-+D.12i-+2.若1sin3α=,则cos2α=()A.89B.79- C.79D.89-3.在ABC中,1,4,30a b C===︒,则这个三角形的面积是()A.14B.13C.12D.14.已知向量且则A. 3B.C.D.5.已知,是平面,m,n是直线,下列命题中不正确的是A. 若,,则B. 若,,则C. 若,,则D. 若,,则6.某全日制大学共有学生人,其中专科生有人,本科生有人,研究生有人,现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科生、本科生与研究生这三类学生中分别抽取A. 65人,150人,65人B. 30人,150人,100人C. 93人,94人,93人D. 80人,120人,80人7.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的等腰三角形,其中,则原平面图形的面积为A. 1B.C.D. 2第7题图第8题图8.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度为15︒的看台的某一列的正前方,在这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30︒,第一排和最后一排的距离为56米(如图所示),旗杆底部与第一排在同一水平面上.则旗杆的高度为()A.15米B.103米C.20米D.203米βmβ⊥二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.已知复数21z i=-+,则下列结论正确的是( ) A .||2z = B .20z > C .z 的共轭复数为1i + D .z 的虚部为1-10.下列等式成立的是( ) A.223cos 15sin 152-= B.2sin cos 884ππ= C.13sin40cos40sin7022+= D.tan1523=-11.如图,已知正方体ABCD —A 1B 1C 1D 1的棱长为2,则下列四个结论正确的是( ) A .直线A 1C 1与AD 1为异面直线 B .A 1C 1∥平面ACD 1C .正方体的外接球的表面积为12πD .三棱锥D 1—ADC 的体积为8312.在ABC 中,下列说法正确的是( ) A .若A B >,则sin sin A B > B .若2C π>,则222sin sin sin C A B >+C .若sin cos A B <,则ABC 为钝角三角形D .存在ABC 满足cos cos 0A B +≤三、填空题:本题共4小题,每小题5分,共20分.13.已知tan α,tan β是方程23340x x ++=的两根,且α、,22ππβ⎛⎫∈-⎪⎝⎭,则()tan αβ+等于__________.14.将一钢球放入底面半径为的圆柱形玻璃容器中,水面升高了,则钢球的半径是________cm .15.若z C ∈,且1z =,则34z i --的最小值为___________16.赵爽是我国古代数学家,大约在公元222年,赵爽在为《周髀算经》作序时,介绍了“勾股圆方图”,亦称为“赵爽弦图”.可类似地构造如图所示的图形,由三个全等的三角形与中间的一个小等边三角形拼成一个大的等边三角形,设2DF FA =,若AB =DF 的长为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)若定义一种运算:(,)c a b ac bd d ⎡⎤=+⎢⎥⎣⎦.已知z 为复数,且(1,)94i 2z z ⎡⎤=-⎢⎥⎣⎦(1)求复数z ;(2)设t 为实数,若02z t i =+,且0z z为纯虚数,求t 的值.18.(本小题满分12分) 已知向量,,,且,.求与 若,,求向量,的夹角的大小.19.(本小题满分12分)已知cos α5=,sin (α﹣β)10=,且α、β∈(0,2π).求:(Ⅰ)cos (2α﹣β)的值; (Ⅰ)β的值.20.(本小题满分12分)如图,在三棱柱中,平面平面,侧面是矩形,点E ,F 分别为BC ,的中点. 求证:; 平面.21.(本小题满分12分)已知在锐角ABC 中,角,,A B C 的对边分别为,,,a b c ABC 的面积为S ,若2224,6S b c a b =+-=.(1)求A ;(2)若__________,求ABC 的面积S 的大小.(在Ⅰ22cos cos20B B +=,Ⅰcos cos 31b A a B +=+,这两个条件中任选一个,补充在横线上)22.(本小题满分12分) 已知O 为坐标原点,,. 求的最小正周期;将图象上各点的纵坐标不变,横坐标扩大为原来的两倍,再将所得图象向左平移个单位后,所得图象对应的函数为,且,求的值.江苏省无锡市六校联考2020—2021学年高一下学期调研考试数学试卷2021.5(试卷分值:150分,考试时间:120分钟)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数512ii=-( ) A .2i - B .12i - C .2i -+ D .12i -+ 答案:C2.若1sin3α=,则cos2α=()A.89B.79- C.79D.89-答案:C3.在ABC中,1,4,30a b C===︒,则这个三角形的面积是()A.14B.13C.12D.1答案:D4.已知向量且则A. 3B.C.D.答案:B5.已知,是平面,m,n是直线,下列命题中不正确的是A. 若,,则B. 若,,则C. 若,,则D. 若,,则答案:A6.某全日制大学共有学生人,其中专科生有人,本科生有人,研究生有人,现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科生、本科生与研究生这三类学生中分别抽取A. 65人,150人,65人B. 30人,150人,100人C. 93人,94人,93人D. 80人,120人,80人答案:A7.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的等腰三角形,其中,则原平面图形的面积为A. 1B.C.D. 2第7题图第8题图答案:Aβmβ⊥8.(非常好)某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度为15︒的看台的某一列的正前方,在这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30︒,第一排和最后一排的距离为56米(如图所示),旗杆底部与第一排在同一水平面上.则旗杆的高度为( ) A.15米 B.103米 C.20米 D.203米答案:A二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.(基本题)已知复数21z i=-+,则下列结论正确的是( ) A .||2z = B .20z > C .z 的共轭复数为1i + D .z 的虚部为1- 答案:AD10.(好题)下列等式成立的是( ) A.223cos 15sin 15-= B.2sin cos 884ππ= C.13sin40cos40sin702+= D.tan1523=- 答案:ABD 11.(好题)如图,已知正方体ABCD —A 1B 1C 1D 1的棱长为2,则下列四个结论正确的是( ) A .直线A 1C 1与AD 1为异面直线 B .A 1C 1∥平面ACD 1C .正方体的外接球的表面积为12πD .三棱锥D 1—ADC 的体积为83答案:ABC12.(非常好)在ABC 中,下列说法正确的是( ) A .若A B >,则sin sin A B > B .若2C π>,则222sin sin sin C A B >+★★C .若sin cos A B <,则ABC 为钝角三角形 ★★D .存在ABC 满足cos cos 0A B +≤ 答案:ABC点评:C 选项对角A 进行讨论,因为角B 为锐角. 三、填空题:本题共4小题,每小题5分,共20分.13.(好题)已知tan α,tan β是方程23340x x ++=的两根,且α、,22ππβ⎛⎫∈-⎪⎝⎭,则()tan αβ+等于__________.答案:314.(好题)将一钢球放入底面半径为的圆柱形玻璃容器中,水面升高了,则钢球的半径是________cm .【答案】315.(非常好)若z C ∈,且1z =,则34z i --的最小值为___________答案:416.(非常好)赵爽是我国古代数学家,大约在公元222年,赵爽在为《周髀算经》作序时,介绍了“勾股圆方图”,亦称为“赵爽弦图”.可类似地构造如图所示的图形,由三个全等的三角形与中间的一个小等边三角形拼成一个大的等边三角形,设2DF FA =,若AB =则DF 的长为__________.答案:4 点评:建模.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(非常好)(本小题满分10分)若定义一种运算:(,)c a b ac bd d ⎡⎤=+⎢⎥⎣⎦.已知z 为复数,且(1,)94i 2z z ⎡⎤=-⎢⎥⎣⎦(1)求复数z ;(2)设t 为实数,若02z t i =+,且0z z 为纯虚数,求t 的值. 答案:(1)34i z =- ……5分 (2)83……10分18.(好题)(本小题满分12分) 已知向量,,,且,.求与 若,,求向量,的夹角的大小.【答案】解:由,得,解得.……2分 由,得,解得.……4分 所以,.……6分 因为,,所以,……8分,.……10分所以,,又因为夹角的范围为,所以向量,的夹角为.……12分(没有写范围扣2分) 点评:注意书写的规范性和完整性[0,]π19.(好题)(本小题满分12分) 已知cos α55=,sin (α﹣β)1010=,且α、β∈(0,2π).求:(Ⅰ)cos (2α﹣β)的值; (Ⅰ)β的值. 【详解】(∈)∈02παβ⎛⎫∈ ⎪⎝⎭,,,∈α﹣β∈(2π-,2π),∈5cos α=,()10sin αβ-=, ∈sin α2251sin α=-=,cos (α﹣β)()23101cos αβ=-+=,……3分 ∈cos (2α﹣β)=cos[(α﹣β)+α]=cos (α﹣β)cosα﹣sin (α﹣β)sinα310510252=⨯-⨯=,……6分 (∈)由(∈)得,cosβ=cos[α﹣(α﹣β)]=cosα cos (α﹣β)+ sinα sin (α﹣β)5310251022=⨯+⨯=,……9分又∈02πβ⎛⎫∈ ⎪⎝⎭,,∈β4π=.……12分 20.(好题)(本小题满分12分)如图,在三棱柱中,平面平面,侧面是矩形,点E ,F 分别为BC ,的中点. 求证:; 平面.【答案】解:因为侧面是矩形,所以, 因为平面平面, 平面平面,平面,所以平面,因为平面,所以BC .……6分(少条件要扣分)取的中点G ,连接FG ,CG ,在中,F ,G 分别是,的中点,所以,且, 在矩形中,E 是BC 的中点,所以,且,所以,且,所以四边形EFGC 为平行四边形, 所以,又因为平面,平面, 所以EF 平面.……12分21.(好题)(本小题满分12分)已知在锐角ABC 中,角,,A B C 的对边分别为,,,a b c ABC 的面积为S,若2224,S b c a b =+-(1)求A ;(2)若__________,求ABC 的面积S 的大小.(在Ⅰ22cos cos20B B +=,Ⅰcos cos 1b A a B +=,这两个条件中任选一个,补充在横线上)答案:(1)因为2224S b c a =+-,所以22214sin 2bc A b c a ⋅=+-, 由余弦定理得,2222cos b c a bc A +-=,所以2sin 2cos bc A bc A =,所以sin cos A A =,又ΔABC 是锐角三角形,故tan 1A =,因为02A π<<,所以4A π=.……5分(没有写范围扣2分)(2)若选①,因为22cos cos20B B +=,所以21cos 4B =,所以1cos 2B =± 因为02B π<<,所以3B π=.……7分由正弦定理sin sin a b A B=,得sin sin 43a π=,所以2a =.……9分所以113sin 2sin 22432S ab C πππ+⎛⎫==⋅--= ⎪⎝⎭.……12分 若选②,因为cos cos 1b A a B +=,由余弦定理得222222122b c a a c b b a bc ac+-+-+=,解得1c =, (9)分)11sin 1sin 224S bc A π==⋅=.……12分22.(好题)(本小题满分12分) 已知O 为坐标原点,,. 求的最小正周期;将图象上各点的纵坐标不变,横坐标扩大为原来的两倍,再将所得图象向左平移个单位后,所得图象对应的函数为,且,求的值. 【答案】解:由题意得.……4分 所以函数的最小正周期为.……5分 由题意得,……7分又,即, 因为所以所以,……9分 所以,……11分 所以.……12分()sin()3g x x π=+。

江苏省无锡市普通高中 2020 年春学期高二基础性调研测试高二数学(word版含答案)

江苏省无锡市普通高中 2020 年春学期高二基础性调研测试高二数学(word版含答案)

无锡市普通高中2020年春学期高二基础性调研测试高二数学(本试卷满分150分,考试时间120分钟)一.选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.命题“∀x> 2,都有230x ->”的否定是 A.∃x> 2,使得230x -> B.∀x> 2,都有230x -≤ C.∃x>2, 使得230x -≤D.∀x≤2,都有230x ->2.双曲线221x y -=的焦点到其渐近线的距离为()2.A B.1.2CD.23.若a<b<0,则下列不等关系中,不一定成立的是()22.A a b >11.B a b>11.C a b b>-1133.D a b <4.已知抛物线22(0)y px p =>上的点M(2, m)到其焦点的距离为3,则该抛物线的准线方程为() A.x=-2B.x=-1C.x= 1D.x=25. 如图,在三棱柱111ABC A B C -中,M 为11A C 的中点,若1,,,AB AC AA ===u u u r u u u r u u u r a b c 则BM u u u u r可表示为( )11.22A -+a b c111.222B -+a b c 1.2C --+a b c1.2D -++a b c6.不等式22||0x x -<的解集为().{|02}A x x <<B.{x|-2<x<0或0<x<2} .{|20}C x x -<<D. {x|-2<x<2}7.已知向量a =(-1,0,1),b =(1,1,-1),且a +k b 与b 互相垂直,则k=() A.12.3B C.-12.3D -8.下列直线中与双曲线C: 22184x y -=有两个不同交点的是() A.y=x.0B x -+=.C y =D.y=x-39.在数列{}n a 中,11,a =且1(21)(21)n n n a n a +-=+,则数列1{}n n a a +⋅的前10项和等于()9.19A18.19B10.21C20.21D 10.如图所示,正方形一边上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形, 如此继续下去,得到一个树形图形,称其为“勾股树”.若某勾股树共有1023个正方形,且最小的正方形的边长为1,16则最大的正方形的边长为()9.19A18.19B10.21C20.21D 11.设12,F F 是椭圆221164x y +=的左、右焦点,过1F 的直线交椭圆于A ,B 两点,则22AF BF +的最大值为( ) A.14B.13C.12D.1012. 设等差数列{}n a 的前n 项和为,n S 下列条件:217;n a n =-①160;S =②160S >③且170,S <使得8||||.n a a ≥其中对任意正整数n 都成立的是() A.①②B.①③C.②③D.①②③二.填空题:本题共4小题,每小题5分,共20分.13.若向量a =(7,λ,8),b =(1,-1,2),c =(2,3,1), 且a ,b ,c 共面,则λ=_____ 14.在等比数列{}n a 中,若35764,a a a ⋅⋅=则19a a +的最小值为____ 15.下列函数中,最小值为2的有_____(填写所有满足条件的函数的序号)246;y x x =-+①22;x x y -=+②221log ;log y x x=+③1sin (0).sin y x x xπ=+<<④ 16.点A 是抛物线21:2(0)C y px p =>与双曲线22222:1(0,0)x y C a b a b-=>>的一条渐近线的交点.若点A 到抛物线1C 的准线的距离为3,2p 则双曲线2C 的离心率等于____ 四.解答题:本大题共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤. 17. (本题满分10分)已知函数2()1,f x x ax b =-++不等式f(x)<0的解集为(-1,3).(1)求实数a,b 的值;(2)若关于x 的不等式2()50f x k -+≥对∀x ∈R 恒成立,求实数k 的取值范围.18. (本小题满分12分)已知数列{}n a 的前n 项和为,n S 且满足1.n n a S =- (1)求数列{}n a 的通项公式;(2)设2(),n n b n n a =+求数列{}n b 的最大项.19. (本小题满分12分)如图,在直四棱柱1111ABCD A B C D -中,∠ABC=∠BAD=90°AD=AA 1=4,AB= BC=2,M 是1A C 的中点,点N 在线段AD 上.(1) 当AN= 1时,求异面直线MN 和1A B 所成角的余弦值; (2)当AN 为何值时,直线MN 与平面1A BC 所成角的正弦值为45?20. (本小题满分12分)已知等差数列{}n a 满足247102,21.a a a a =++=数列{}n b 是递减的等比数列,11,b a =且353b 是2b 和4b 的等差中项.(1) 求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和.n S21. (本小题满分12分)现有一块长方形钢板ABCD (如图),其中AB=4米,AD= 6米,运输途中不慎将四边形AEPF 部分损坏,经测量AE= 1.5米,AF =3米,tan ∠AEP=4,∠AFP= 45°.现过点P 沿直线MN 将破损部分切去(M,N 分别在AB,AD 上),设DN=t 米..(1)请将切去的△AMN 的面积表示为t 的函数f (t );(2)当DN 的长度为多少时,切去的△AMN 面积最小?并求出最小面积。

江苏省无锡市普通高中2020-2021学年高二上学期期末数学试题(解析版)

江苏省无锡市普通高中2020-2021学年高二上学期期末数学试题(解析版)
8.若椭圆 上的点 到右准线的距离为 ,过点 的直线 与 交于两点 ,且 ,则 的斜率为( )
A. B. C. D.
【答案】B
【解析】【分析】点代入椭圆方程,点到准线距离和 ,解得 ,由 ,得 ,联立直线与椭圆方程得到 ,联立消去 即可求出
【详解】解:由题意可得 ,解得 ,
所以椭圆 ,
设 : ,设 ,因为 ,所以
3.若 , 都是正整数,则 成立的充要条件是( )
A. B.
C. 且 D. , 至少有一个为
【答案】D
【解析】【分析】根据 得到 ,由 , 都是正整数,求出 , ,即可根据充分条件与必要条件的概念,得出结果.
【详解】由 得 ,则 ,即 ,
又 , 都是正整数,所以 ,
因此 ,故 或 ,即 , 至少有一个为 ;
对于选项D:若 则 ,故选项D正确.故选:CD
10.如图,已知 为正方体,E,F分别是BC, 的中点,则( )
A. B.
C.向量 与向量 的夹角是 D.异面直线 与 所成的角为
【答案】ABD
【解析】【分析】在正方体 中,以点 为坐标原点,分别以 、 、 方向为 轴、 轴、 轴正方向,建立空间直角坐标系,设正方体棱长为 ,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断,即可得出结果.
【详解】在正方体 中,以点 为坐标原点,分别以 、 、 方向为 轴、 轴、 轴正方向,建立如图所示的空间直角坐标系,
设正方体棱长为 ,则 , , , , , ,
所以 , ,
因此 ;故A正确;
又 , ,
所以 , ,因此 ,即B正确;
因为 , ,
所以 ,
因此向量 与向量 的夹角是 ;故C错;
因为E,F分别是BC, 的中点,所以 , ,

2020-2021学年高二数学05 数列(单选题)12月理(解析Word版)

2020-2021学年高二数学05 数列(单选题)12月理(解析Word版)

专题05 数 列(单选题)1.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S = A .31 B .32 C .63D .64【试题来源】甘肃省张掖市第二中学2020-2021学年高二第一学期期中考试(文) 【答案】C【分析】根据等比数列前n 项和的性质列方程,解方程求得6S .【解析】因为n S 为等比数列{}n a 的前n 项和,所以2S ,42S S -,64S S -成等比数列, 所以()()242264S S S S S -=-,即()()62153315-=-S ,解得663S =.故选C . 2.等差数列{}n a 中,22a =,公差2d =,则10S = A .200 B .100 C .90D .80【试题来源】广东省东莞市第四高级中学2020-2021学年高二上学期期中 【答案】C【解析】依题意120a a d =-=,所以101104545290S a d =+=⨯=.故选C . 3.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a = A .7 B .10 C .13D .16【试题来源】山东省济宁市2020-2021学年高三第一学期学分认定 【答案】C【解析】设等差数列{}n a 的公差为d ,141,16a S ==,41464616S a d d ∴=+=+=,2d ∴=,71613a a d ∴=+=.故选C .4.等差数列{}n a 中,已知14739a a a ++=,则4a = A .13 B .14 C .15D .16【试题来源】广西南宁市第十中学2020-2021学年高二上学期段考【答案】A【解析】由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得413a =,故选A .5.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S = A .10- B .8 C .12D .14【试题来源】福建省莆田第二十五中学2020-2021学年高二上学期期中考试 【答案】D【分析】利用等差数列下标性质求得4a ,再利用求和公式求解即可 【解析】147446=32a a a a a ++=∴=,则()177477142a a S a +===,故选D . 6.在数列{}n a 中,21n n a n +=+,则{}n a A .是常数列 B .不是单调数列 C .是递增数列D .是递减数列【试题来源】河南省焦作市2020-2021学年高二(上)期中(理) 【答案】D【分析】由21111n n a n n +==+++,利用反比例函数的性质判断即可. 【解析】在数列{}n a 中,21111n n a n n +==+++, 由反比例函数的性质得{}n a 是*n N ∈时单调递减数列,故选D . 7.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S = A .45 B .50 C .60D .80【试题来源】江西省临川二中、临川二中实验学校2020届高三第二次模拟考试(文) 【答案】C【分析】利用等差数列性质当m n p q +=+ 时m n p q a a a a +=+及前n 项和公式得解. 【解析】{}n a 是等差数列,3944a a a +=+,4844a a a ∴+=+,84a =,1158158()15215156022a a a S a +⨯⨯====,故选C .8.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为 A .8 B .13 C .26D .162【试题来源】安徽省马鞍山市和县第二中学2020-2021学年高一上学期期中联考(理) 【答案】B【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【解析】因为()351041072244a a a a a a ++=+==,所以71a =, 又()1131371313131132a a S a +===⨯=,故选B .【名师点睛】等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.9.已知函数()()837,8,8x a x x f x a x -⎧--≤=⎨>⎩,若数列{}n a 满足()()*n a f n n N =∈,且{}n a 是递增数列,则实数a 的取值范围是 A .()1,3B .17,39⎡⎫⎪⎢⎣⎭C .17,39⎛⎫⎪⎝⎭D .[)2,3【试题来源】湖北省随州市2020-2021学年高二上学期9月联考 【答案】C【分析】由题意可得分段函数()f x 在每一段都是单调递增且98a a >,即可得解.【解析】因为函数()()837,8,8x a x x f x a x -⎧--≤=⎨>⎩,()()*n a f n n N =∈,且{}n a 是递增数列,则()98301837a a a a -⎧->⎪>⎨⎪>--⎩,解得1739a <<.故选C . 【名师点睛】在处理函数与数列的综合问题时,要注意数列是一类特殊的函数,它的图象是一群孤立的点.10.已知等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,则n n S =aA .14n -B .41n -C .12n -D .21n -【试题来源】河南省洛阳市第一高级中学2020-2021学年高三上学期10月月考(文) 【答案】D【解析】因为等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,所以2413514522q a a a a =++==,因此()()111111111221112n nn n n n n n na q Sq q a a q q q ---⎛⎫- ⎪--⎝⎭====--⎛⎫ ⎪⎝⎭.故选D .11.设公差为d 的等差数列{}n a 的前n 项和n S ,若4228S S =+,则d = A .1 B .2 C .3D .4【试题来源】浙江省温州市2020-2021学年高三上学期11月高考适应性测试(一模) 【答案】B【分析】由4228S S =+,直接利用等差数列的前n 项和公式求解. 【解析】因为4228S S =+,所以()()14124282a a a a +=++, 所以()()11112328a a d a a d ++=+++,即48d =,解得2d =,故选B .12.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =A .1B .8【试题来源】吉林省乾安县第七中学2020-2021学年高二上学期第二次质量检测(理) 【答案】B【解析】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==, 所以33810371178b b b b b b b ===.故选B .13.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231n n a nb n =+,则2121S T 的值为A .1315 B .2335C .1117D .49【试题来源】甘肃省会宁县第一中学2020-2021学年高二上学期期中考试(理) 【答案】C 【解析】2121S T =12112121()21()22a ab b ++÷=121121a a b b ++=1111a b =2113111⨯⨯+=1117.故选C .14.设等差数列{}n a 的前n 项和为n S ,公差1d =,且6210S S ,则34a a +=A .2B .3C .4D .5【试题来源】江苏省苏州市相城区陆慕高级中学2020-2021学年高二上学期期中 【答案】B【分析】根据等差数列的性质,由题中条件,可直接得出结果. 【解析】因为n S 为等差数列{}n a 的前n 项和,公差1d =,6210S S ,所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=.故选B .15.在等差数列{}n a 中,3914a a +=,23a =,则10a =C .6D .3【试题来源】安徽省马鞍山市和县第二中学2019-2020学年高一下学期期中(文) 【答案】A【分析】利用等差数列的通项公式求解1,a d ,代入即可得出结论.【解析】由3914a a +=,23a =,又{}n a 为等差数列,得39121014a a a d +=+=,213a a d =+=,解得12,1a d ==,则101+92911a a d ==+=;故选A .16.数列{}n a 为等差数列,11a =,34a =,则通项公式是 A .32n - B .322n - C .3122n -D .3122n +【试题来源】内蒙古呼和浩特市第十六中学2020-2021学年高二上学期期中考试(文) 【答案】C【分析】根据题中条件,求出等差数列的公差,进而可得其通项公式. 【解析】因为数列{}n a 为等差数列,11a =,34a =,则公差为31322a a d -==, 因此通项公式为()33111222n a n n =+-=-.故选C . 17.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于 A .160 B .180 C .200D .220【试题来源】江苏省苏州市2020-2021学年高三上学期期中 【答案】B【分析】把已知的两式相加得到12018a a +=,再求20S 得解. 【解析】由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=.所以2012020()10181802S a a =+=⨯=.故选B . 18.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a = A .29B .38【试题来源】甘肃省永昌县第一中学2020-2021学年高三上学期第一次月考数学理试题 【答案】A【分析】根据等差中项的性质,求出414a =,再求10a ; 【解析】因为{}n a 为等差数列,所以264228a a a +==, 所以414a =.由59410a a a a +=+43=,得1029a =,故选A . 19.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a = A .11 B .12 C .23D .24【试题来源】河南省焦作市2020-2021学年高二(上)期中(理) 【答案】C 【解析】32153S a ==,25a ∴=,12a =,∴公差213d a a =-=,81727323a a d ∴=+=+⨯=,故选C .20.若数列{}n a 的通项公式为2(2)n a n n =-,其中*n N ∈,则5a = A .25 B .50 C .75D .100【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (理) 【答案】C 【解析】2(2)n a n n =-,525375a ∴=⨯=,故选C .21.已知数列{}n a 满足121n n n a a a +-=,132a =,则2021a = A .20202019 B .20212020 C .20222021D .20232022【试题来源】甘肃省永昌县第一中学2020-2021学年高三上学期第一次月考数学理试题 【答案】D【分析】根据题意可得112n n a a +=-,先求132a =,211423a a =-=,321524a a =-=,431625a a =-=,…,所以猜测21n n a n +=+,经验证即可得解. 【解析】因为121n n n a a a +-=,所以112n na a +=-, 因为132a =,所以211423a a =-=,321524a a =-=,431625a a =-=,…, 所以猜测21n n a n +=+,代入124231211121n n n n n n n a a a n n n n +++++-=-⨯==++++, 所以21n n a n +=+满足题意,所以202120232022a =,故选D .【名师点睛】本题考查了通过数列的递推关系求通项公式,考查了利用规律对通项公式的猜想和验算,属于中档题.解本类问题有两个关键点:(1)当数列无法直接得出通项公式时,可观察前几项的规律;(2)通过前几项的规律进行猜想;(3)最后验算,必须带入原等式进行验算. 22.数列1111,,,57911--,…的通项公式可能是n a = A .1(1)32n n --+B .(1)32nn -+C .1(1)23n n --+D .(1)23nn -+【试题来源】甘肃省庆阳市宁县第二中学2020-2021学年高二上学期期中 【答案】D【解析】因为数列1111,,,, (57911)--可写成()()()()2342322311111,1,1,12,..24.333-⨯-⨯-⨯+⨯+⨯+⨯+-⨯, 所以其通项公式为(1)(1)23213nnn a n n -=-=++⨯.故选D . 23.若数列{a n }的通项公式为a n =n (n -2),其中n ∈N *,则a 6= A .8B .15C .24D .35【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (文) 【答案】C【解析】代入通项公式得,66424a =⨯=,故选C . 24.数列{}n a 的通项公式为2π1sin2n n a n =+,前n 项和为n S ,则100S = A .50 B .-2400 C .4900-D .9900-【试题来源】河南省焦作市2020—2021学年高三年级第一次模拟考试(理) 【答案】C 【分析】由πsin2n y =的周期为4,可得22222210010013579799S =+-+-+⋅⋅⋅+-,利用并项求和可得解.【解析】2111a =+,21a =,2313a =-,41a =,…,考虑到πsin2n y =的周期为4, 所以()222222100100135797991002135799S =+-+-+⋅⋅⋅+-=-⨯++++⋅⋅⋅+(199)50100249002+⨯=-⨯=-.故选C .25.谈祥柏先生是我国著名的数学科普作家,在他的《好玩的数学》一书中,有一篇文章《五分钟挑出埃及分数》,文章告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).则下列埃及分数113⨯,135⨯,157⨯,…,120192021⨯的和是A .20202021 B .10102021C .10092019D .20182019【试题来源】江苏省南通市平潮高级中学2020-2021学年高二上学期期中 【答案】B【解析】因为()1111222n n n n ⎛⎫=- ⎪++⎝⎭111113355720192021∴++++⨯⨯⨯⨯11111111123355720192021⎛⎫=-+-+-+⋯+- ⎪⎝⎭11122021⎛⎫=- ⎪⎝⎭10102021=,故选B . 26.已知数列{}n a 的前n 项和n S 满足()12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项的和为A .89B .910C .1011D .1112【试题来源】黑龙江省哈尔滨市第三中学2020-2021学年高三上学期期中考试(文) 【答案】C【分析】首先根据()12n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案.【解析】当1n =时,111a S ==,当2n ≥时,()()11122n n n n n n n a S S n -+-=-=-=. 检验111a S ==,所以n a n =.设()1111111n n n b a a n n n n +===-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭….故选C . 27.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为 A .2± B .2 C .3±D .3【试题来源】江苏省无锡市锡山高级中学2020-2021学年高二上学期期中 【答案】D【解析】4个数成等比数列,则3813q =,故3q =.故选D .28.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于若第六个单音的频率为f ,则A .第四个单音的频率为1122f - B .第三个单音的频率为142f - C .第五个单音的频率为162fD .第八个单音的频率为1122f【试题来源】湖北省宜昌市秭归县第一中学2020-2021学年高二上学期期中 【答案】B【分析】根据题意得该单音构成公比为再根据等比数列通项公式依次求第三、四、五、八项即可得答案.【解析】根据题意得该单音构成公比为f ,141422f f -==.661122f f -==.所以第五个单音的频率为1122f =.所以第八个单音的频率为1262f f =,故选B .29.在等比数列{}n a 中,11a =,427a =,则352a a += A .45 B .54 C .99D .81【试题来源】河南省焦作市2020—2021学年高三年级第一次模拟考试(理) 【答案】C【解析】设数列{}n a 的公比为q ,因为341a a q =,所以3q =,所以24352299a a q q +=+=.故选C .30.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于 A .40 B .81 C .121D .242【试题来源】安徽省马鞍山市和县第二中学2020-2021学年高一上学期期中联考(理) 【答案】C【分析】根据已知条件先计算出等比数列的首项和公比,然后根据等比数列的前n 项和公式求解出5S 的结果.【解析】因为12234,12a a a a +=+=,所以23123a a q a a +==+,所以1134a a +=,所以11a =,所以()5515113121113a q S q--===--,故选C .31的等比中项是A .-1B .1CD .【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (理) 【答案】D【解析】23111()()()2222-==±,12与12的等比中项是2±. 故选D .32.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a = A .2 B .4 C .8D .16【试题来源】黑龙江省哈尔滨市第三中学2020-2021学年高三上学期期中考试(文) 【答案】C【分析】根据等比数列的通项公式将53134a a a =+化为用基本量1,a q 来表示,解出q ,然后再由前4项和为30求出1a ,再根据通项公式即可求出3a . 【解析】设正数的等比数列{}n a 的公比为()0q q >,因为53134a a a =+,所以4211134a q a q a =+,则42340q q --=,解得24q =或21q =-(舍),所以2q,又等比数列{}n a 的前4项和为30,所以23111130a a q a q a q +++=,解得12a =,所以2318a a q ==.故选C . 33.等比数列{}n a 的各项均为正数,且101010113a a =.则313232020log log log a a a +++=A .3B .505C .1010D .2020【试题来源】黑龙江省哈尔滨市第三中学2020-2021学年高三上学期期中考试(理)【答案】C【解析】由120202201932018101010113a a a a a a a a =====,所以313232020log log log a a a +++()10103101010113log log 31010a a ===.故选C .34.已知等比数列{}n a 中,n S 是其前n 项和,且5312a a a +=,则42S S = A .76B .32 C .2132D .14【试题来源】四川省内江市第六中学2020-2021学年高三上学期第三次月考(文) 【答案】B【分析】由5312a a a +=,解得q ,然后由414242212(1)111(1)11a q S q q q a q S qq---===+---求解. 【解析】在等比数列{}n a 中,5312a a a +=,所以421112a q a q a +=,即42210q q +-=,解得212q =,所以414242212(1)1311(1)121a q S q q q a q S q q---===+=---,故选B . 35.记等比数列{}n a 的前n 项和为n S ,已知5=10S ,1050S =,则15=S A .180 B .160 C .210D .250【试题来源】云南省玉溪第一中学2020-2021学年高二上学期期中考试(理) 【答案】C【分析】首先根据题意得到5S ,105S S -,1510S S -构成等比数列,再利用等比中项的性质即可得到答案.【解析】因为{}n a 为等比数列,所以5S ,105S S -,1510S S -构成等比数列. 所以()()2155010=1050S --,解得15210S =.故选C .36.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=A .15B .10C .5D .3【试题来源】甘肃省庆阳市宁县第二中学2020-2021学年高二上学期期中 【答案】A【解析】因为478a a ⋅=, 则()()52212221021210110log log log log ...log a a a a a a a a ⋅⋅⋅=+⋅++=()2475log 15a a =⋅=.故选A .37.已知数列{}n a 的前n 项和为n S ,且21(1*)n n S a n n N =-≥∈,,则数列{}n na 前5项和为 A .126 B .127 C .128D .129【试题来源】江苏省苏州市星海中学2020-2021学年高二上学期期中 【答案】D【分析】利用已知n S 和n a 的关系,求{}n a 的通项公式,即可求解. 【解析】当1n =时,11121S a a =-=,解得11a = 当2n ≥时,1122n n n n n a S S a a --=-=- ,即12n n a a -=, 所以{}n a 是首项为1,公比为2的等比数列,12n na ,所以{}n na 前5项和为012341222324252129⨯+⨯+⨯+⨯+⨯=,故选D . 【名师点睛】本题考查已知n S 和n a 的关系,求{}n a 的通项公式,分三步: 当1n =时,11S a =,当2n ≥时,1n n n a S S -=-,检验1a 是否满足()12n n n a S S n -=-≥,即可得{}n a 的通项公式.38.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大212,则该数列的项数是 A .8 B .4 C .12D .16【试题来源】安徽省蚌埠市第三中学2019-2020学年高一下学期5月月考 【答案】A【分析】设项数为2n ,由题意可得()21212n d -⋅=,及6S S nd -==奇偶可求解. 【解析】设等差数列{}n a 的项数为2n ,末项比首项大212,()212121;2n a a n d ∴-=-⋅=①24S =奇,30S =偶,30246S S nd ∴-=-==奇偶②.由①②,可得32d =,4n =,即项数是8,故选A .39.已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1=2,且a 1,a 3,a 4成等比数列,则S n 取最大值时n 的值为 A .4 B .5 C .4或5D .5或6【试题来源】湖南省五市十校2020-2021学年高二上学期第一次联考 【答案】C【分析】由等比数列的性质及等差数列的通项公式可得公差12d =-,再由等差数列的前n 项和公式即可得解.【解析】设等差数列{}n a 的公差为,0d d ≠,134,,a a a 成等比数列,2314a a a ∴=即2(22)2(23)d d +=+,则12d =-,()()211119812244216n n n n n S a n d n n --⎛⎫∴=+=-=--+ ⎪⎝⎭,所以当4n =或5时,n S 取得最大值.故选C .40.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于 A .1 B .2 C .3D .4【试题来源】江苏省苏州市吴中区2020-2021学年高二上学期期中 【答案】C【分析】利用等差数列的下标和性质以及基本量运算,可求出1a . 【解析】设等差数列{}n a 的公差为d ,则3856522a a a a a +=+=+,解得652d a a =-=,212112228S a a a d a =+=+=+=,解得13a =,故选C .41.若数列{}n a 满足121()2n n a a n N *++=∈,且11a =,则2021a = A .1010 B .1011 C .2020D .2021【试题来源】四川省遂宁市2021届高三零诊考试(理) 【答案】B【解析】由121()2n n a a n N *++=∈,则11()2n n a a n N *+=+∈,即112n n a a +-=,所以数列{}n a 是以1为首项,12为公差的等差数列,所以()()11111122n n a a n d n +=+-=+-⨯=,所以2021a =2021110112+=.故选B . 42.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S = A .7 B .12 C .14D .21【试题来源】广东省东莞市第四高级中学2020-2021学年高二上学期期中 【答案】C【分析】判断出{}n a 是等差数列,然后结合等差数列的性质求得7S .【解析】因为212n n n a a a ++=-,所以211n n n n a a a a +++-=-,所以数列{}n a 为等差数列. 因为534a a =-,所以354a a +=,所以173577()7()1422a a a a S ++===.故选C . 43.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于 A .8 B .10 C .12D .14【试题来源】北京市第三中学2021届高三上学期期中考试 【答案】C【解析】{a n }为等差数列,S 3=12,即1232312a a a a ++==,解得24a =.由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=.故选C .44.已知{}n a 是正项等比数列且1a ,312a ,22a 成等差数列,则91078a a a a +=+ A1 B1 C.3-D.3+【试题来源】福建省莆田第二十五中学2020-2021学年高二上学期期中考试 【答案】D【分析】根据1a ,312a ,22a 成等差数列可得3121222a a a ⨯=+,转化为关于1a 和q 的方程,求出q 的值,将91078a a a a ++化简即可求解.【解析】因为{}n a 是正项等比数列且1a ,312a ,22a 成等差数列, 所以3121222a a a ⨯=+,即21112a q a a q =+,所以2210q q --=,解得1q =1q =,2229107878783a a a q a q q a a a a ++===+++D . 45.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项D .无最大项,无最小项【试题来源】北京市铁路第二中学2021届高三上学期期中考试 【答案】B【解析】设等比数列{}n a 为q ,则等比数列的公比414141328a qa -===,所以12q =, 则其通项公式为116113222n n n n a a q ---⎛⎫=⋅=⨯= ⎪⎝⎭,所以()()5611542212622222nn +n n n n n T a aa ---==⨯==,令()11t n n =-,所以当5n =或6时,t 有最大值,无最小值,所以n T 有最大项,无最小项.故选B .46.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为 A .825两 B .845两 C .865两 D .885两 【试题来源】吉林省通榆县第一中学2020-2021学年高三上学期期中考试(文) 【答案】C【分析】设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,8106100a S =⎧⎨=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得长兄可分得银子的数目1a .【解析】设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得 设数列{}n a 的公差为d ,其前n 项和为n S ,则由题意得8106100a S =⎧⎨=⎩,即1176109101002a d a d +=⎧⎪⎨⨯+=⎪⎩,解得186585a d ⎧=⎪⎪⎨⎪=-⎪⎩. 所以长兄分得865两银子.故选C . 【名师点睛】本题的关键点是能够读懂题意10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和前n 项和公式. 47.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S = A .16 B .-16 C .4D .-4【试题来源】吉林省通榆县第一中学2020-2021学年高三上学期期中考试(文)【答案】A 【解析】由()()18458884816222a a a a S +⨯+⨯⨯====.故选A .48.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a = A .1n - B .n C .21n -D .2n【试题来源】贵州省遵义市2020~2021学年度高二上学期数学期中联合考试 【答案】B【解析】因为3518a S +=,633a a =+,所以11161218523a d a d a d +=⎧⎨+=++⎩,所以111a d =⎧⎨=⎩,所以()111n a n n =+-⨯=,故选B .49.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为A .34000米B .36000米C .38000米D .40000米【试题来源】江苏省无锡市锡山高级中学2020-2021学年高二上学期期中 【答案】B【解析】根据题意:小李同学每天跑步距离为等差数列,设为n a ,则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故143600a =,则()()11521411151********n S a a a a =+⨯=+⨯=.故选B . 50.在等差数列{a n }中,a 3+a 7=4,则必有 A .a 5=4 B .a 6=4 C .a 5=2D .a 6=2【试题来源】湖北省宜昌市秭归县第一中学2020-2021学年高二上学期期中 【答案】C【解析】因为a 3+a 7=2a 5=4,所以a 5=2.故选C .51.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是 A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列D .S 2,S 4+S 2,S 6+S 4必成等差数列【试题来源】湖北省宜昌市秭归县第一中学2020-2021学年高二上学期期中 【答案】D【分析】根据等差数列的性质,可判定A 、B 正确;当首项与公差均为0时,可判定C 正确;当首项为1与公差1时,可判定D 错误.【解析】由题意,数列{}n a 为等差数列,n S 为前n 项和,根据等差数列的性质,可得而51051510,,S S S S S --,和24264,,S S S S S --构成等差数列,所以,所以A ,B 正确;当首项与公差均为0时,5101510,,S S S S +是等差数列,所以C 正确;当首项为1与公差1时,此时2426102,31,86S S S S S =+=+=,此时24264,,S S S S S ++不构成等差数列,所以D 错误.故选D .52.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为 A .24- B .3- C .3D .8【试题来源】甘肃省张掖市第二中学2020-2021学年高二第一学期期中考试(文) 【答案】A【分析】根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和.【解析】设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2326a a a =,即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)661(2)2422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A . 53.已知数列{}n a 满足11a =,+121nn n a a a =+,则数列{}1n n a a +的前n 项和n T =A .21nn - B .21nn + C .221nn + D .42nn +【试题来源】吉林省长春市长春外国语学校2020-2021学年高三上学期期中考试 【答案】B【分析】利用倒数法求出数列{}n a 的通项公式,进而利用裂项相消法可求得n T . 【解析】已知数列{}n a 满足11a =,+121nn n a a a =+,在等式+121n n n a a a =+两边同时取倒数得112112n n n n a a a a ++==+,1112n na a +∴-=, 所以,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,且首项为111a ,公差为2,则()112121n n n a =+-=-,121n a n ∴=-,()()11111212122121n n a a n n n n +⎛⎫∴==- ⎪-+-+⎝⎭,因此,1111111111111112323525722121221n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21nn =+.故选B . 【名师点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.54.已知等差数列{}n a 的前n 项和为n S ,且2n S n =.定义数列{}m b 如下:()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,则13519b b b b ++++=A .25B .50C .75D .100【试题来源】河南省商丘市虞城高级中学2020~2021学年高三11月质量检测(理) 【答案】B【分析】根据2n S n =先求出21n a n =-;由题意,得出21m k =-,得出()()11212m m m mk m b m m +===++,即21212k k b --=,根据等差数列的性质,即可得出结果. 【解析】由2n S n =,可得()1212n n n a S S n n -=-=-≥,当1n =时,111a S ==满足21n a n =-,所以21n a n =-,n ∈+N ; 由n a m ≥,得21n m -≥,解得12m n +≥.当21m k =-,(*k N ∈)时,1m m b k m+=, 即()()11212m m m mk m b m m +===++,即21212k k b --=, 从而()()13519111351951195022b b b b +++⋅⋅⋅+=+++⋅⋅⋅+=⨯⨯+=.故选B . 【名师点睛】求解本题的关键,在于根据()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,求出21m k =-,得出21212k k b --=,根据等差数列的性质求解. 55.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为 A .32 B .33 C .34D .35【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (理) 【答案】D【分析】设年纪最小者年龄为n ,年纪最大者为m ,由他们年龄依次相差一岁得出(1)(2)(28)1520n n n n m ++++++++=,结合等差数列的求和公式得出111429m n =-,再由[]90,100m ∈求出n 的值.【解析】根据题意可知,这30个老人年龄之和为1520,设年纪最小者年龄为n ,年纪最大者为m ,[]90,100m ∈, 则有(1)(2)(28)294061520n n n n m n m ++++++++=++=,则有291114n m +=,则111429m n =-,所以90111429100m ≤-≤, 解得34.96635.31n ≤≤,因为年龄为整数,所以35n =.故选D .56.设等差数列{}n a 的前n 项和为n S ,10a <且11101921a a =,则当n S 取最小值时,n 的值为 A .21 B .20 C .19D .19或20【试题来源】甘肃省永昌县第一中学2020-2021学年高三上学期第一次月考数学理试题 【答案】B【分析】由题得出1392a d =-,则2202n dS n dn =-,利用二次函数的性质即可求解.【解析】设等差数列{}n a 的公差为d ,由11101921a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392a d =-,10a <,0d ∴>,()211+2022n n n dS na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.故选B .57.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为 A .4S B .5S C . 6SD . 7S【试题来源】云南省玉溪第一中学2020-2021学年高二上学期期中考试(理) 【答案】B【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值.【解析】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S .故选 B . 58.若等差数列{a n }的前n 项和为S n ,且S 2=132,a 8+a 9=272,则S 3=A .35B .78C .98D .127【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (文) 【答案】B【解析】设数列{}n a 的公差为d ,则212891327,22S a a a a =+=+=,两式相减得14d =7,故12d =,代入12132a a +=,得13a =,所以13131211337822S ⨯=⨯+⨯=,故选 B . 59.已知数列{}n a 的前n 项和n S 满足:n m n m S S S ++=,且110a =,那么10a = A .1 B .9 C .10D .55【试题来源】宁夏银川市北方民族大学附属中学2020-2021学年度(上)高二10月月考 (理) 【答案】C【分析】首先赋值令1m =,利用n a 与n S 的关系求通项公式. 【解析】令1m =,则11n n S S S ++=, 则11110n n S S S a +-===,所以110n a +=, 所以数列{}n a 是常数列,则1010a =.故选C .60.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,则此数列的第20项与21项的和为A .380B .410C .420D .462【试题来源】湖北省随州市2019-2020学年高二下学期期末 【答案】C【分析】由前10项,可得奇数项和偶数项的通项公式,再求2021a a +.【解析】由数列的前10项可知,数列的偶数项的通项公式222n a n =,220210200a ∴=⨯=, 奇数项的通项公式()2121n a n n -=-,21211121011220a a ⨯-∴==⨯⨯=,2021200220420a a ∴+=+=.故选C .61.已知在数列{}n a 中,112,1n n na a a n +==+,则2020a 的值为 A .12020 B .12019C .11010D .11009【试题来源】江苏省苏州市相城区陆慕高级中学2020-2021学年高二上学期期中 【答案】C 【解析】11n n na a n +=+,即11n n a n a n +=+,12321123211232121232n n n n n n n a a a a a n n n a a a a a a a n n n --------∴=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⨯--2n=, 20202120201010a ∴==.故选C . 62.数列{}n a 满足1111,(2)2n n n a a a n a --==≥+,则5a 的值为A .18 B .17 C .131D .16【试题来源】安徽省马鞍山市和县第二中学2019-2020学年高一下学期期中(文) 【答案】C【解析】因为1111,(2)2n n n a a a n a --==≥+,所以211123a ==+,31131723a ==+,411711527a ==+,51115131215a ==+,故选C . 63.定义12nn p p p +++为n 个正数12,,,n p p p 的“均倒数”,若已知数列{}n a 的前n 项的“均倒数”为12n,又2n n a b =,则1223910111b b b b b b +++= A .817B .1021C .1123D .919【试题来源】安徽省马鞍山市和县第二中学2019-2020学年高一下学期期中(文) 【答案】D【解析】设数列{}n a 的前n 项和为n S ,由题意可得12n n S n=,则:22n S n =, 当1n =时,112a S ==,当2n ≥时,142n n n a S S n -=-=-, 且14122a =⨯-=,据此可得 42n a n =-,故212nn a b n ==-,()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, 据此有1223910111111111112189191933517192b b b b b b ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++-=⨯= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选D .64.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]= A .45 B .46 C .47D .48【试题来源】湖北省宜昌市秭归县第一中学2020-2021学年高二上学期期中 【答案】C【分析】利用数列的递推式,得到a n +1=3a n -2,进而得到a n =3n -1+1,然后代入[lg(a 100-1)]可求解.【解析】当n ≥2时,S n =3S n -1-2n +4,则a n +1=3a n -2,于是a n +1-1=3(a n -1),当n =1时,S 2=3S 1-2+2=6,所以a 2=S 2-S 1=4.此时a 2-1=3(a 1-1),则数列{a n -1}是首项为1,公比为3的等比数列.所以a n -1=3n -1,即a n =3n -1+1,则a 100=399+1,则lg(a 100-1)=99lg3≈99×0.477=47.223,故[lg(a 100-1)]=47.故选C .65.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为 A .23B .13C .2-D .3-【试题来源】河南省焦作市2020-2021学年高二(上)期中(理)【答案】B【解析】因为111n n n n a a a a ++-=+,且113a =,所以111n n na a a ++=-,21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯,4n n a a +∴=. 123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=.故选B .【名师点睛】已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.66.已知数列{}n a 的前n 项和221n S n n =+-,则13525a a a a ++++=A .350B .351C .674D .675【试题来源】安徽省马鞍山市和县第二中学2020-2021学年高一上学期期中联考(理) 【答案】A【分析】先利用公式11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,再利用通项公式求出13525a a a a ++++的值.【解析】当1n =时,21112112a S ==+⨯-=;当2n ≥时,()()()22121121121n n n a S S n n n n n -⎡⎤=-=+---+--=+⎣⎦.12a =不适合上式,2,121,2n n a n n =⎧∴=⎨+≥⎩.因此,()()3251352512127512235022a a a a a a ⨯+⨯+++++=+=+=;故选A .【名师点睛】利用前n 项和n S 求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,但需要验证1a 是否满足()2n a n ≥.67.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.下图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,⋅⋅⋅构成的数列{}n a 的第n 项,则15a 的值为A .210B .150C .120D .118【试题来源】内蒙古呼和浩特市2021届高三质量普查调研考试(理) 【答案】C【分析】通过观察可得()11n n a a n n N *+=++∈,通过累加法可得211,22n a n n n N *=+∈,从而可求出15a .【解析】由题意知,()11n n a a n n N *+=++∈,即()11n n a a n n N *+-=+∈,所以2132123...1n n a a a a a a n +-=⎧⎪-=⎪⎨⎪⎪-=+⎩ ,则()21111323..12222n n n a a n n n n +--=++++=+=+,即2211131312222n a a n n n n +=++=++,当2n ≥时,()()2213111112222n a n n n n =-+-+=+,当1n =时,111122a =+=,所以211,22n a n n n N *=+∈,则21511151512022a =⨯+⨯=.故选C .68.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(1)32f x f x f -=-=,数列{}n a 满足11a =,且21n nS a n n=-,(n S 为{}n a 的前n 项和,*)n N ∈,则56()()f a f a += A .1 B .3 C .-3D .0【试题来源】云南省玉溪第一中学2020-2021学年高二上学期期中考试(理) 【答案】C【分析】判断出()f x 的周期,求得{}n a 的通项公式,由此求得56()()f a f a +.【解析】依题意定义在R 上的函数()f x 是奇函数,且满足3()()2f x f x -=,所以()333332222f x f x f x fx ⎛⎫⎛⎫⎛⎫⎛⎫+=---=--=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()32f x f x f x ⎛⎫=---=--= ⎪⎝⎭,所以()f x 是周期为3的周期函数.由21n n S a n n=-得2n n S a n =-①, 当1n =时,11a =,当2n ≥时,()1121n n S a n --=--②, ①-②得11221,21n n n n n a a a a a --=--=+(2n ≥),所以21324354213,217,2115,2131a a a a a a a a =+==+==+==+=,652163a a =+=.所以56()()f a f a +=()()()()()()()316331013211013f f f f f f f +=⨯++⨯=+=--=-,故选C .69.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n n n S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 【试题来源】河南省焦作市2020-2021学年高二(上)期中(理) 【答案】D【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【解析】(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅,又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确; 因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错.故选D .【名师点睛】由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力.70.已知1()()32g x f x =+-是R 上的奇函数,1(0)()n a f f n=++1()(1)n f f n-++,n *∈N ,则数列{}n a 的通项公式为A .1n a n =+B .31n a n =+C .33n a n =+D .223n a n n =-+【试题来源】江苏省扬州中学2020-2021学年高二上学期期中 【答案】C【分析】由()132F x f x ⎛⎫=+- ⎪⎝⎭在R 上为奇函数,知11622f x f x ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,令12t x =-,则112x t +=-,得到()()16f t f t +-=.由此能够求出数列{}n a 的通项公式. 【解析】由题已知()132F x f x ⎛⎫=+- ⎪⎝⎭是R 上的奇函数,故()()F x F x -=-, 代入得()11622f x f x x R ⎛⎫⎛⎫-++=∈ ⎪ ⎪⎝⎭⎝⎭, 所以函数()f x 关于点132⎛⎫⎪⎝⎭,对称, 令12t x =-,则112x t +=-,得到()()16f t f t +-=, 因为()()1101n n a f f f f n n -⎛⎫⎛⎫=++++⎪ ⎪⎝⎭⎝⎭,()()1110n n a f f f f n n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,。

2020年江苏省无锡市华星高级中学高二数学理测试题含解析

2020年江苏省无锡市华星高级中学高二数学理测试题含解析

2020年江苏省无锡市华星高级中学高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在等差数列{a n}中,若, 是数列{}的前项和,则的值为()A.48B.54C.60D.66参考答案:B2. 设函数,其中n为正整数,则集合中元素个数是k*s*5*u ()A. 0个B.1个C.2个D.4个参考答案:C略3. 在一个2×2列联系表中,由其数据计算得x=13.01,则两个变量间有关系的可能性为()A.99%B.95%C.90%D.无关系参考答案:A略4. 设函数f(x)在定义域内可导,y=f(x)的图象如图1所示,则导函数y=f ¢(x)的图象可能为()参考答案:D略5. (理)在等差数列{a n}中,已知a5=3,a9=6,则a13=A.9 B.12 C.15 D.18参考答案:A6. 某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总费用与总存储费用之和最小,则x=()A.10 B.20 C.40 D.80参考答案:B考点:基本不等式在最值问题中的应用.专题:不等式.分析:根据已知条件便可得,一年的总费用和总存储费用之和为,当x=20时取“=“,这便求出了使一年的总费用和总存储费用之和最小时的x值了.解答:解:由已知条件知,一年的总费用与总存储费用之和为;当,即x=20时取“=“;即要使一年的总费用与总存储费用之和最小,则x=20.故选B.点评:考查对基本不等式:a+b,a>0,b>0,的运用,注意等号成立的条件7. 已知方程,它们所表示的曲线可能是()参考答案:B8. 已知正方体棱长为,则正方体内切球表面积为()(A)(B)(C)(D)参考答案:D9. 为虚数单位,复数的实部和虚部之和为(A)0 (B)1 (C)2 (D)3参考答案:B10. 不等式的解集为,函数的定义域为,则为()A. B.C.D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 从1、2、3、4、5、6六个数中选出两位奇数和两位偶数组成无重复数字的四位数,要求两位偶数相邻,则共有个这样的四位数(以数字作答).参考答案:10812. 已知函数f(x)=x(x+1)(x+2)…(x+100),则f'(0)=.参考答案:100!【考点】导数的运算.【分析】根据题意,将f(x)的变形可得f(x)=x[(x+1)(x+2)…(x+100)],对其求导可得f′(x)=1?[(x+1)(x+2)…(x+100)]+x[(x+1)(x+2)…(x+100)]′,将x=0代入计算可得答案.【解答】解:根据题意,f(x)=x(x+1)(x+2)…(x+100)=x[(x+1)(x+2)…(x+100)],其导数f′(x)=(x)′[(x+1)(x+2)…(x+100)]+x[(x+1)(x+2)…(x+100)]′=1?[(x+1)(x+2)…(x+100)]+x[(x+1)(x+2)…(x+100)]′则f′(0)=1×2×3×4×…×100+0=100!;故答案为:100!.13. 将编号为1,2,3,4,5的5个小球,放入三个不同的盒子,其中两个盒子各有2个球,另一个盒子有1个球,则不同的放球方案有▲种(用数字作答)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档