重水堆
世界重水堆发展历程

世界重水堆发展历程
重水堆发展历程:
重水堆是一种利用重水(D2O)作为中子减速剂和冷却剂的核反应堆。
以下是重水堆发展的历程:
1. 1943年,挪威科学家尤里·鲍姆勒-布朗和奥尔巴里·利斯勒在挪威完成了第一台重水堆,被称为VEMORK堆。
该堆用于生产重水以供应纳粹德国的核武器项目。
2. 1952年,加拿大建成了世界上第一台商业化的重水堆,该堆被称为NRX。
NRX堆也成为了后来CANDU堆的基础。
3. 1957年,英国建成了麦格马斯堆,这是世界上第一台具有持续超临界运行的重水堆。
4. 1962年,加拿大建成了Gentilly-1堆,这是世界上第一台大规模商业化重水堆,也是CANDU堆的首个商业化项目。
5. 1968年,加拿大和印度达成了协议,印度购买了CIRUS重水堆技术,并建造了CIRUS堆,这是印度的第一台重水堆。
6. 1972年,印度成功建成了卡卢加重水堆,这是印度自主研发的第一台重水堆。
卡卢加堆是印度后来成功进行核试验的基础。
7. 1983年,阿根廷建成了艾奥斯堆,这是世界上首个核电厂
规模的重水堆。
8. 2011年,中国建成了六盘山堆,这是中国第一台重水堆。
六盘山堆是中国CANDU堆项目的一部分。
9. 目前,重水堆在世界范围内得到了广泛应用。
除了加拿大和中国,印度、巴基斯坦、韩国、阿根廷等国家也拥有重水堆技术,并建造了多台重水堆用于发电或其他应用。
重水堆作为一种可持续发展的核能技术,对于世界能源结构的转型具有重要意义。
C重水核电站

1.2.3 重水堆节约核燃料重水堆是指用重水(D 2O)作慢化剂的反应堆。
重水堆虽然都用重水作慢化剂,但在它几十年的发展中,已派生出不少次级的类型。
按结构分,重水堆可以分为压力管式和压力壳式。
采用压力管式时,冷却剂可以与慢化剂相同也可不同。
压力管式重水堆又分为立式和卧式两种。
立式时,压力管是垂直的,可采用加压重水、沸腾轻水、气体或有机物冷却;卧式时,压力管水平放置,不宜用沸腾轻水冷却。
压力壳式重水堆只有立式,冷却剂与慢化剂相同,可以是加压重水或沸腾重水,燃料元件垂直放置,与压水堆或沸水堆类似。
在这些不同类型的重水堆中,加拿大发展起来的以天然铀为核燃料、重水慢化、加压重水冷却的卧式、压力管式重水堆现在已经成熟。
这种堆目前在核电站中比例不大,但有一些突出的特点。
重水堆燃料元件的芯块也与压水堆类似,是烧结的二氧化铀的短圆柱形陶瓷块,这种芯块也是放在密封的外径约为十几毫米、长约500毫米的锆合金包壳管内,构成棒状元件。
由19到43根数目不等的燃料元件棒组成长约500毫米、外径为100毫米左右的燃料棒束组件。
图1.2.11表示压力管卧式重水堆的燃料棒束组件结构。
反应堆的堆芯是由几百根装有燃料棒束组件的压力管排列而成。
重水堆压力管水平放置,管内有12束燃料组件,构成水平方向尺度达6米的活性区。
作为冷却剂的重水在压力管内流动以冷却燃料元件。
象压水堆一样,为了防止重水过热沸腾,必须使压力管内的重水保持较高的压力。
压力管是承受高压重水冲刷的重要部件,是重水堆设计制造的关键设备。
作为慢化剂的重水装在庞大的反应堆容器(称为排管容器)内。
为了防止热量从冷却剂重水传出到慢化剂重水中,在压力管外设置一条同心的管子,称为排管,压力管与外套的排管之间充入气体作为绝热层,以保持压力管内冷却剂的高温,避免热量散失;同时保持慢化剂处于要求的低温低压状态。
同心的压力管和排管贯穿于充满重水图1.2.11 压力管卧式重水堆燃料棒束组件结构图 图1.2.12 压力管式天然铀重水堆示意图慢化剂的反应堆排管容器中,排管容器则不承受多大的压力。
07 第六章 重水反应堆CANDU(PHWR)

Xi’an Jiaotong University
冷却剂和慢化剂的绝热
作为冷却剂的重水在管内 流动带走热量。作为慢化 剂的重水在反应堆排管容 器中,为了防止热量传到 慢化剂重水中,在压力管 外设置一同心容器管,两 管之间充以二氧化碳作隔 热层,以保持慢化剂温度 不超过60℃。压力管和容 器管贯穿反应堆排管容器, 两端与法兰固定,与容器 连成一体。
46
学习目的
Xi’an Jiaotong University
➢ 掌握CANDU堆得特点(与PWR比较)和优势,表6-1 ➢ 掌握CANDU核燃料组件结构特点 ➢ 了解CANDU堆的发展演变和ACR的技术特点
47
2010年代 - SCW直接循环模块堆?
皮克灵A,1971-1973
CANDU-9
CANDU原型堆,1962 ZEEP,1945
布鲁斯B,1984-1987
达灵顿,1990-1993
重水堆概述
CANDU的概念: CANada Deuterium Uranium
重水堆的特点: 天然铀作燃料 重水做慢化剂,造价较高
Xi’an Jiaotong University
19
换料方式
Xi’an Jiaotong University
由于重水堆的卧式布置压力管,每根压力管在反应堆容器的两端都设有密 封接头,可以装拆。因此,可以采用遥控装卸料机进行不停堆换料。换料 时,由装卸料机连接压力管的两端密封接头,新燃料组件从压力管一端顶 入,烧过的乏燃料组件侧从同一压力管的另一端被推出。这种换料方式称 为“顶推式双向换料”。
挑战
大量的重水以及泄漏导致高造价,防止重水泄漏的高密封性能设 备也提高了造价 。核燃料燃耗比较浅,1/3压水堆,换料太频繁。
核反应堆的主要类型

目前,在以发电为目的的核能动力领域,世界上应用比较普遍或具有良好发展前景的,主要有压水堆(PWR)、沸水堆(BWR)、重水堆(PHWR)、高温气冷堆(HTGR)和快中子堆(LMFBR)五种堆型。
一、压水堆压水堆(PWR)最初是美国为核潜艇设计的一种热中子堆堆型。
四十多年来,这种堆型得到了很大的发展,经过一系列的重大改进,.己经成为技术上最成熟的一种堆型。
压水堆核电站采用以稍加浓铀作核然料,燃料芯块中铀-235的富集度约3%。
核燃料是高温烧结的圆柱形二氧化铀陶瓷燃料芯块。
柱状燃料芯块被封装在细长的铬合金包壳管中构成燃料元件,这些燃料元件以矩形点阵排列为燃料组件,组件横断面边长约20cm,长约3m。
几百个组件拼装成压水堆的堆芯。
堆芯宏观上为圆柱形。
压水堆的冷却剂是轻水。
轻水不仅价格便宜,而且具有优良的热传输性能。
所以在压水堆中,轻水不仅作为中子的慢化剂.同时也用作冷却剂。
轻水有一个明显的缺点,就是沸点低。
要使热力系统有较高的热能转换效率,根据热力学原理.核反应堆应有高的堆芯出口温度参数:要获得高的温度参数,就必须增加冷却剂的系统压力使其处于液相状态。
所以压水堆是一种使冷却剂处于高压状态的轻水堆。
压水堆冷却剂入口水温一般在290℃左右,出口水温330℃左右,堆内压力15.5MPa大亚湾核电站就是一座压水堆核电站。
高温水从压力容器上部离开反应堆堆芯以后,进入蒸汽发生器,如图1-7所示。
压水堆堆芯和蒸汽发生器总体上像一台大锅炉,核反应堆堆芯内的燃料元件相当于加热炉,而蒸汽发生器相当于生产蒸汽的锅,通过冷却剂回路将锅与炉连接在一起。
冷却剂从蒸汽发生器的管内流过后,经过冷却剂回路循环泵又回到反应堆堆芯。
包括压力容器、蒸汽发生器、主泵、稳压器及有关阀门的整个系统,是冷却剂回路的压力边界。
它们都被安置在安全壳内,称之为核岛。
蒸汽发生器内有很多传热管,冷却剂回路和二回路通过蒸汽发生器传递热量。
传热管外为二回路的水,冷却剂回路的水流过蒸汽发生器传热管内时,将携带的热量传输给二回路内流动的水,从而使二回路的水变成280℃左右的、6-7MPa的高温蒸汽。
重水堆

压力管式,压力壳式
5
CANDU的基本结构特点
6
7
8
燃料组件结构
重水堆的核燃料是天然铀, 制成圆柱状装在外径为 13(20)毫米长约500毫米的 锆合金包壳管内,构成棒 状燃料元件,37根燃料棒 组成一束,棒之间用锆合 金块隔开,端头由锆合金 支承板连接,构成长为半 米,外径为150毫米左右的 燃料棒束。 反应堆堆芯由384根带燃料 棒束的压力管排列而成。 每根压力管内装有12束燃 料棒束。
8 足够充足的应急流量 9 尽可能的减少重水泄漏
14
蒸汽发生器
主要结构材料位 炭钢 一次测: 封头,管板和管束一次测
二次侧:壳体,汽水分离器,管束套筒,管板和管 束二次侧,预热段隔板,管子支承等,
15
主泵
单级、单吸入口、双出口、立式离心泵
支管和集流总管 稳压器
16
CANDU慢化剂系统
慢化作用,失冷事故下的热阱作用 慢化剂系统原理流程图: 串连/并联
控制棒设置在反应堆上部,穿过反应堆排管容器,插入在 慢化剂中。快速停堆时将控制棒快速插入堆内。
反应性的调节还可以通过改变反应堆容器中重水慢化剂的 液位来实现。 紧急停堆时可以将控制棒快速插入堆内,还可打开氦气阀, 将储存在毒物箱内的硝酸钆毒物注入反应堆容器的重水 慢化剂中,还可以打开装在容器底部的大口径排水阀, 把重水慢化剂急速排入贮水箱。
19
20
21
22
23
24
25
26
27
28
29
30
31
32
11
换料方式
由于重水堆的卧式布置压力管,每根压力管在反应堆容器的两端都设 有密封接头,可以装拆。因此,可以采用遥控装卸料机进行不停堆换 料。换料时,由装卸料机连接压力管的两端密封接头,新燃料组件从 压力管一端顶入,烧过的乏燃料组件侧从同一压力管的另一端被推出。 这种换料方式称为“顶推式双向换料”。
重水堆压水堆

重水堆特点和贡献
秦山三期核电站是我国惟一的商用重水堆核电站,有如下特点:
• 采用天然铀作燃料,铀资源利用率高; • 重水堆可大规模生产钴60等同位素; • 重水堆可以直接利用压水堆回收铀,有利于完善核燃料闭式循环体系; • 重水堆在钍资源综合利用方面具有较大的挖掘潜力。 • 提氚(聚变材料)
重水堆优势
堆芯本体
厂房吊车 操作设备 钴调节棒
燃料通道
灵活的燃料选择
高中子经济性
简单而灵活的 燃料设计
不停堆换料
重水堆可烧 : -天然铀 -浓缩铀 -回收铀 -MOX燃料 -钍燃料 -锕系废物
取决于关键技术和 经济因素
完善燃料循环体系
重水堆-压水堆
“互补”运营
快堆
重水 堆
压水堆
重水堆可经济高效利用压水堆回收铀。
29
30
谢 谢!
大容量的慢化剂在严重事故工况下作为非 能动热阱带走衰变热。
反应堆腔室的大量轻水为严重事故提供了 第二道备用非能动热阱。
堆顶喷淋水箱提供非能动冷却。
大规模生产钴60同位素
目前国内钴60年需求为800万居里,可能很快突 破1000万居里。 重水堆具有大批量生产钴60的能力,全世界90% 的钴60都是重水堆上生产的。 国内自主完成了相关技术开发,年产600万居里。 从2009年到现在,秦山三期两台重水堆已辐照 出3000万居里钴60,超过1600万居里已投放到 国内市场。
AP1000:42*7=294个钒探 SR+IR+与压水堆有哪些不同? 参与量:cmΔt,ṁ(hs-hw)
28
3、在线换料过程如何减小换料带来的反应性波动? 4、对于检修部门,日常维护及大修等工作与压水堆有何区别? 5、重水堆为什么没在国内继续推广?目前技术有什么发展?将来是否会出现新 的先进堆芯?(例如降低成本,采用全数字化DCS、满足三代核电标准等) 6、重水堆每年重水泄漏是多少?(1t多点,设计8-10吨)消耗的重水必须从加 拿大采购吗? 7、重水堆在发生严重事故后,事故后果是否会相比压水堆小?其宣称的固有安 全性相比满足三代安全标准的AP1000如何? 8、每年钴60的产量约多少?(600万居里,需求1000万居里,60-80%市场需求 )需要停堆才能取出吗?
重水堆简介
重水堆工程安全特性
1.反应堆停堆系统: CANDU核电厂设有两套完全独 立和全功能的SDS-1和SDS-2停堆 系统,该系统能使反应堆在必要 时停闭。 2.应急堆芯冷却系统(ECCS): 应急堆芯冷却系统向热传输系统 提供轻水,以补偿发生假像的失 水事故时损失的重水冷却剂,并 循环和冷却从反应堆厂房地面上 收集的重水、轻水混合物,将其
重水堆系统的设计特征
重水堆与压水堆在反应堆和燃料方面的主要区别见下表:
重水堆的安全特性
重水堆的结构设计具有一些独特的安全特性,与压水堆一 样,这些安全特性中一部分为重水堆所固有的,另一部分则是 特殊设计的工程安全设施提供的。 重水堆固有的安全特性: 重水堆固有的安全性是由核燃料、反应性调节特性等提供的。 1.燃料 CANDU堆采用天然铀作为核燃料,235-U约占0.7%,较 压水堆低得多,这就大大降低了在堆外或者燃料贮存水池内燃 料处理时发生反应性引入事故的可能性,而且堆芯严重损坏导 致的燃料重新布置所引入的反应性也十分有限。
Thank you !!!
停堆系统
重水堆工程安全特性
送到反应堆集管以保证长期的燃料冷却,以达到向反应堆燃料 通道再注射冷却剂和从燃料排出余热或衰变热的目的。
重水堆工程安全特性
3.安全壳系统: 如果反应堆系统发生 事故,则安全壳系统 的运行可以提供包容 所释放出放射性物质 的密封外壳,以防止 从反应堆溢出的放射 性物质释放到环境中 。其包括:自动喷淋 系统、空气冷却器、 过滤空气排放系统以 及人员和设备闸门。
姓名:王小亮 班级:0902301 学号:1090230113
重水反应堆-PHWR?
概念:用重水作为慢化剂的热中子反 应堆。 可以用重水、普通水、二氧化碳和有 机物作冷却剂。由于重水的热中子吸 收截面很小,可以采用天然铀燃料。 铀燃料的利用率高于轻水堆,烧过的 燃料的235U含量仅为0.13%,乏燃料不 必进行后处理。这种堆可以作为生产 堆、动力堆和研究堆使用。堆内中子 经济性好,可生产氚和发展成为先进 的转化堆。堆内重水装载量大,反应 堆造价较高。
沸水堆重水堆和气冷堆
排管容器 冷却剂10MPa,300℃
7
第1章 反应堆的类型介绍-1.4重水堆
压力管式重水堆(CANDU)介绍-原理
CANDU重水堆的概念设计思路
8
第1章 反应堆的类型介绍-1.4重水堆
压力管式重水堆(CANDU)介绍
CANDU反应堆的压力管将重水冷却剂 和重水慢化剂分开。 压力管内流过高温300 ℃高压10 MPa 重水-冷却剂 压力管外流动低压下的重水-慢化剂
高温气冷堆采用耐高温的涂敷颗粒燃料元件,化学惰性和热工性能良好的 氦气作冷却剂,耐高温的石墨作慢化剂和堆芯结构材料。
燃料球实物图(60 mm) 17
第1章 反应堆的类型介绍-1.5气冷堆和高温气冷堆
燃料球结构
第一层 疏松热解碳:吸收裂变气体,缓冲应力,抵御辐照损伤
;
第二层 致密热解碳:防止裂变产物腐蚀SiC,承受内压; 第三层 碳 化 硅:承受内压,阻挡裂变产物外逸; 第四层 致密热解碳:保护SiC免于机械损伤。
22
沸水堆本体结构
2.沸水堆冷却剂内一般不加硼, 控制 棒是停闭反应堆的主要手段;
3.沸水堆可以利用冷却剂(气水两相) 的流量控制来调节反应堆功率。
4
第1章 反应堆的类型介绍-1.3沸水堆
沸水堆系统流程 与压水堆相比
1.省去了一个回路和蒸汽发生器;
2.压力容器压力低,设备制作工艺较简单;
沸水堆核电站流程示意图
20
第1章 反应堆的类型介绍-1.5气冷堆和高温气冷堆
高温气冷堆小结 1. 堆芯具有很大的负温度系数,单靠改变氦气流量就能在很宽的范围内 调节反应堆的功率; 2. 由于全部一回路系统都装在预应力混凝土反应堆容器内,没有外部 冷却管道,减少了发生冷却剂丧失事故的可能性; 3. 由于堆内没有金属材料,燃料转换比高达0.8~0.85; 4. 冷却剂出口温度高,因此电站的热效率高。
重水堆
重水堆核电站重水堆按其结构型式可分为压力壳式和压力管式两种。
压力壳式的冷却剂只用重水,它的内部结构材料比压力管式少,但中子经济性好,生成新燃料钚-239的净产量比较高。
这种堆一般用天然铀作燃料,结构类似压水堆,但因栅格节距大,压力壳比同样功率的压水堆要大得多,因此单堆功率最大只能做到30 万千瓦。
因为管式重水堆的冷却剂不受限制,可用重水、轻水、气体或有机化合物。
它的尺寸也不受限制,虽然压力管带来了伴生吸收中子损失,但由于堆芯大,可使中子的泄漏损失减小。
此外,这种堆便于实行不停堆装卸和连续换料,可省去补偿燃耗的控制棒。
压力管式重水堆主要包括重水慢化、重水冷却和重水慢化、沸腾轻水冷却两种反应堆。
这两种堆的结构大致相同。
(1) 重水慢化,重水冷却堆核电站这种反应堆的反应堆容器不承受压力。
重水慢化剂充满反应堆容器,有许多容器管贯穿反应堆容器,并与其成为一体。
在容器管中,放有锆合金制的压力管。
用天然二氧化铀制成的芯块,被装到燃料棒的锆合金包壳管中,然后再组成短棒束型燃料元件。
棒束元件就放在压力管中,它借助支承垫可在水平的压力管中来回滑动。
在反应堆的两端,各设置有一座遥控定位的装卸料机,可在反应堆运行期间连续地装卸燃料元件。
这种核电站的发电原理是:既作慢化剂又作冷却剂的重水,在压力管中流动,冷却燃料。
像压水堆那样,为了不使重水沸腾,必须保持在高压(约90大气压)状态下。
这样,流过压力管的高温(约300℃)高压的重水,把裂变产生的热量带出堆芯,在蒸汽发生器内传给二回路的轻水,以产生蒸汽,带动汽轮发电机组发电。
(2)重水慢化、沸腾轻水冷却堆核电站这种堆是英国在坝杜堆(重水慢化、重水冷却堆)的基础上发展起来的。
加拿大所设计的重水慢化重水冷却反应堆的容器和压力管都是水平布置的。
而重水慢化沸腾轻水冷却反应堆都是垂直布置的。
它的燃料管道内流动的轻水冷却剂,在堆芯内上升的过程中,引起沸腾,所产生的蒸汽直接送进汽轮机,并带动发电机。
重水反应堆
light water reactor (LWR) 以水和汽水混合物作为冷却剂和慢化剂的反应堆。
轻水堆就堆内载出核裂变热能的方式可分为压水堆和沸水堆两种,是目前国际上多数核电站所采用的两种堆型。
据统计,1992年运行的413座核电站中,轻水堆核电站约占64.15%,装机容量约占80%,加上正在建设和已经订货的轻水堆核电站将占80%,装机容量将占90%。
轻水反应堆是和平利用核能的一种方式.用轻水作为慢化剂和冷却剂的核反应堆被称为轻水反应堆,包括沸腾水堆和加压水堆轻水也就是一般的水,广泛地被用于反应堆的慢化剂和冷却剂。
与重水相比,轻水有廉价的长处,此外其减速效率也很高沸腾水堆的特点是将水蒸汽不经过热交换器直接送到气轮机,从而防止了热效率的低下,加压水堆则用高压抑制沸腾,对轻水一般加100至160个大气压,从而热交换器把一次冷却系(取出堆芯产生的热)和二次冷却系(发生送往蜗轮机的蒸汽)完全隔离开来。
用重水即氧化氘(D2O)作为慢化剂的核反应堆被称为重水反应堆,或简称为重水堆现在的反应堆几乎都利用热中子,因此慢化剂是反应堆不可缺少的组成部分慢化剂与中子碰撞使中子亦即减少中子的数量的话,便失去了意义。
所以,重水是非常优异的慢化剂,它与石墨并列是最常用的慢化剂。
重水与普通水看起来十分相像,是无臭无味的液体,它们的化学性质也一样,不过某些物理性质却不相同。
普通水的密度为1克/厘米3,而重水的密度为1.056克/厘米3;普通水的沸点为100℃,重水的沸点为101.42℃;普通水的冰点为0℃,重水的冰点为3.8℃。
此外,普通水能够滋养生命,培育万物,而重水则不能使种子发芽。
人和动物若是喝了重水,还会引起死亡。
不过,重水的特殊价值体现在原子能技术应用中。
制造威力巨大的核武器,就需要重水来作为原子核裂变反应中的减速剂,作中子的减速剂,也可作为制重氢的材料,普通水中含量约为0.02%(质量分数)。
重水和普通水一样,也是由氢和氧化合而成的液体化合物,不过,重水分子和普通水分子的氢原子有所不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章:重水堆
一、特点
二、发展简介
三、商用重水堆
1、CANDU6
2、CANDU9
四、先进重水堆-ACR
一、特点-类型
1、压力容器(重水冷却)
(1)压力容器式:
❑德国MZFR(0.85%丰度),58MW(1973-1974)
❑瑞典Agesta,12MW(1964-1974),瑞典Marviken, 132MW(沸腾重水冷却)、1968年中止建设。
❑阿根廷两个,一个在建Atucha2-745MW,一个在运行Atucha1-357MW (1974-今)
(2)压力管式(水平、垂直,冷却剂不受限制)
❑垂直压力管:
❑加拿大*2,英国1,日本1,斯洛伐克1,瑞士(Lucens)1,德国1。
除日本Fugen (ATR,普贤)外,都于1990年前关闭。
❑水平压力管式:CANDU,34座在运行。
2、冷却剂
❑重水CANDU6,瑞典,阿根廷。
❑沸水轻水ATR(日本),SGHWR(英国),CANDU-BLW(加拿大),CANDU-OCR(加拿大)有机物。
3、慢化剂重水
4、燃料
❑天然铀CANDU6等多数堆,
❑富集铀SGHWR(3.9%铀),ATR(2%天然铀+钚)MZFR(0.85%铀), Lucens (0.96%铀) 5、换料方式
❑压力管式在线换料
❑压力壳式停堆换料
一、特点-物理
1、重水慢化
❑比轻水中子吸收截面小,可用天然铀
❑重水工作在低温条件下,有利于慢化
❑燃料烧得透,乏燃料中U235含量低于扩散厂通常的尾料丰度,不值得后处理
❑装料最少(热中子堆)
❑但重水慢化比轻水差,故堆芯大。
2、重水冷却吸收截面小,有利于用天然铀
3、包壳容器管、压力管匀为薄壁、锆合金,尽量减少中子吸收。
(现用性能更好的锆-2.5%铌合金)
3、反应性连续换料,剩余反应性小。
4、产钚量高为压水堆的两倍。
5、燃料增值高釷铀循环核燃料增值接近1。
生产U233,摆脱对U235 的依赖。
但目前天然铀价格低,重视不够。
6、放射性重水经中子辐照产生放射性氚。
慢化剂中氚的含量是冷却剂中的几十倍。
是压水堆的100倍,沸水堆的1000倍。
早期加拿大皮克灵(Pickering)重水堆核电厂维修人员辐射剂量1/3来自氚。
重水泄漏及氚辐射是重水堆的一个弱点。
二、重水堆发展简史
⏹加拿大开始缺乏浓缩铀技术,走天然铀技术路线。
不想建立铀同位素分离厂,又不想依靠美国或其它国家提供富集铀。
⏹发展出一套技术,不断改进。
1962年建成22MW NPD试验堆;1967年建成206MW Douglas point 原型堆,现已发展到700-900MW规模商业和电厂。
⏹1964-68年,瑞典、英国、法、德瑞士分别建成试验堆。
但90年前都关闭。
瑞士69年关闭二、重水堆发展简史©
⏹70年代,捷克、阿根廷、日本ATR(FUGEN普贤)又相继建成研究堆。
捷克77年关闭;阿根廷走重水堆路线,堆继续运行。
⏹ATR-165 是日本80年代的长期发展核能的重要组成部分之一,已运行25年,烧铀+钚(MOX),原定92年在Ohma建600MW的ATR,93年计划取消。
二、重水堆发展简史©
⏹只有CANDU(CANadian, Deuterium Uranium )-加拿大重水铀反应堆一花独秀,技术和建造由AECL (Atomic Energy of Canada Ltd.)负责。
⏹目前除加拿大外(22),韩国月城(4 ),阿根廷(1 ),罗马尼亚(2 ),中国(2 ),印度(2),巴基斯坦(1 )。
⏹发展先进CANDU-ACR 微浓缩铀+轻水冷却。
三、商用重水堆
CANDU6、CANDU9
1、CANDU6
•CANDU 6 的设计符合加拿大核管理当局要求。
•两座在中国秦山III期2002,2003运行。
•高燃料利用率
•在线换料
•低压、低温重水慢化
•采用一系列水平压力管,不是单一压力壳.
⏹水平压力管式,压力管(锆合金,减少中子吸收)
⏹压力管内放有燃料棒束,压力管外套锆合金容器管(减少热损)
⏹排管容器(不锈钢)d=7.6m,l=6m, 重水,常压、70°C;
⏹二回路蒸发器与压水堆相似
⏹由于压力管壁厚限制(中子吸收大)一回路压力10MPa,310 °C(较低),蒸汽参数(4.7MPa,260 °C), 效率28-30%。
⏹重水放射性,泄漏,回收,设备贵。
⏹在线换料有优点,但设备复杂。
⏹运行,控制方便。
⏹两套停堆系统(1)弹簧+重力作用的镉棒(2)硝酸釓重水溶液注入慢化剂。
⏹重水堆应急冷却、预应力混凝土安全壳及喷淋系统、应急电源及应急水源与压水堆相似。
⏹低温重水慢化剂及慢化剂冷却系统有助于事故安全。
•燃料棒束设计简单
•燃料循环灵活
•重要部件标准化
•3个停堆系统:一个正常运行,两个紧急快速停堆
2、CANDU9
•每个机组可独立建设、运行,提高灵活行。
•CANDU 9 继承CANDU 电站的成熟经验
•改进:电站布置,厂址优化
⏹改进CANDU 9 布置更有利于安全分离、及减少人员辐射剂量。
⏹改进软件检查、维修及试验的功能
⏹增加可移动及可更换部件的维修空间。
⏹CANDU 9 厂址面积小-禁区半径仅500米。
⏹厂址用地少:建筑物间设计紧凑,高强度安全壳
⏹加拿大核当局正在审查许可申请。
四、先进重水堆-ACR
⏹ACR-700参考设计概念已经完成,经济性基于2机组电站
⏹建造策略和周期已经确定
⏹在加拿大和美国同时进行执照申请
⏹CNSC和NRC正在合作
⏹加拿大和美国一起工作使ACR-700商业化
⏹计划投运日期,加拿大: 2011年, 美国: 2012年
⏹ACR1000:参考ARCR700 及CANDU900 的最新设计
•ACR-700 (Mwe),ACR-1000.
•许多系统及特性,如蒸气、透平、发动机等与APWRs 相似
•ACR 继承CANDU 验证技术
•轻水冷却,重水慢化
•2%富集度燃料
•首次实现负空泡反应性(CANDU历史上)
❑比投资1,000 $ / kWe, 电价30 $/MWh
❑48-月提交; 36-月建设; 寿命60年
❑可靠性好,负荷率高(90%)
❑减少一半重水量及相关费用
❑SEU 是天然铀燃料的fuel life的三倍,乏燃料也相应减少,乏燃料体积与LWRs 相当
❑技术革新减少成本40%. 包括:(1)紧凑堆芯,同样功率一半体积(2)热效率高,提高透平汽压
ACR 与压水堆比较-相同性
•安全原理/ 概念
•轻水冷却
•退役程序
•乏燃料储存概念
•透平及发电系统
ACR 与压水堆比较-不同性
ACR:压力管重水慢化燃料富集度(-2%) 段棒束低慢化剂中子吸收在线换料模块式建造
压水堆PWR:压力壳轻水慢化燃料富集度(-4%) 长棒束慢化剂中子吸收大停堆换料传统/ 模块式建造。