2020-2021学年广西桂林市灌阳县八年级(上)期中数学试卷
2020-2021学年八年级上册期中数学试题卷含答案共三套

2020-2021学年八年级(上)期中数学试卷一、选择题(每题3分,共30分)1.下列标志中,可以看作是轴对称图形的是()A.B.C.D.2.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.3,3,6 B.1,5,5 C.1,2,3 D.8,3,43.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是()A.7 B.6 C.5 D.44.已知一个等腰三角形的两边长a、b满足方程组,则此等腰三角形的周长为()A.5 B.4 C.3 D.5或45.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形6.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个7.如图,已知AB∥CD,OA、OC分别平分∠BAC和∠ACD,OE⊥AC于点E,且OE=2,则AB、CD之间的距离为()A.2 B.4 C.6 D.88.如图,在△ABC中,已知点D,E,F分别为BC,AD,AE的中点,且S△ABC=12cm2,则阴影部分面积S=()cm2.A.1 B.2 C.3 D.49.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A=()A.60°B.80°C.70°D.50°10.如图所示,在矩形纸片ABCD中,E,G为AB边上两点,且AE=EG=GB;F,H为CD边上两点,且DF=FH=HC.沿虚线EF折叠,使点A落在点G上,点D落在点H上;然后再沿虚线GH折叠,使B落在点E上,点C落在点F上.叠完后,剪一个直径在EF上的半圆,再展开,则展开后的图形为()A.B.C.D.二、填空题(每题3分,共30分)11.点P(3,2)关于x轴对称的点的坐标为.12.一个多边形的内角和是它的外角和的4倍,这个多边形是边形.13.若等腰三角形的一个角为50°,则它的顶角为.14.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.15.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO:S△BCO:S△CAO等于.16.若直角三角形的一锐角为30°,而斜边与较短边之和为24.那么斜边的长为.17.已知P(m﹣4,3m﹣7)关于y轴的对称点在第一象限,则m的整数解为.18.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是.19.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是.20.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF =CF.其中正确的是(填序号)三.解答题(共50分)21.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.22.如图,△ABC和△AED中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD、CE,求证:BD=EC.23.如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠BAE=∠CAE,求证:∠ABE=∠ACE.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC 于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE ∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.参考答案与试题解析一.选择题(共10小题)1.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念,可得答案.【解答】解:A、是中心对称图形,故A错误;B、是中心对称图形,故B正确;C、是轴对称图形,故C正确;D、是中心对称图形,故D错误;故选:C.2.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.3,3,6 B.1,5,5 C.1,2,3 D.8,3,4【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行判断即可.【解答】解:A、3+3=6,不能构成三角形;B、1+5>5,能够组成三角形;C、1+2=3,不能构成三角形;D、3+4<8,不能构成三角形.故选:B.3.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是()A.7 B.6 C.5 D.4【分析】先求出△ABD的面积,再得出△ADC的面积,最后根据角平分线上的点到角的两边的距离相等可得AC边上的高,从而得解.【解答】解:∵DE=3,AB=6,∴△ABD的面积为,∵S△ABC=15,∴△ADC的面积=15﹣9=6,∵AD平分∠BAC,DE⊥AB于E,∴AC边上的高=DE=3,∴AC=6×2÷3=4,故选:D.4.已知一个等腰三角形的两边长a、b满足方程组,则此等腰三角形的周长为()A.5 B.4 C.3 D.5或4【分析】先解二元一次方程组,然后讨论腰长的大小,再根据三角形三边关系即可得出答案.【解答】解:解方程组得,所以等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为5.所以,这个等腰三角形的周长为5.故选:A.5.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形【分析】首先求得外角的度数,然后利用360除以外角的度数即可求解.【解答】解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选:C.6.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.7.如图,已知AB∥CD,OA、OC分别平分∠BAC和∠ACD,OE⊥AC于点E,且OE=2,则AB、CD之间的距离为()A.2 B.4 C.6 D.8【分析】要求二者的距离,首先要作出二者的距离,作OF⊥AB,OG⊥CD,根据角平分线的性质可得,OE=OF=OG,即可求得AB与CD之间的距离.【解答】解:作OF⊥AB,延长FO与CD交于G点,∵AB∥CD,∴FG垂直CD,∴FG就是AB与CD之间的距离.∵∠ACD平分线的交点,OE⊥AC交AC于E,∴OE=OF=OG,∴AB与CD之间的距离等于2OE=4.故选:B.8.如图,在△ABC中,已知点D,E,F分别为BC,AD,AE的中点,且S△ABC=12cm2,则阴影部分面积S=()cm2.A.1 B.2 C.3 D.4【分析】根据三角形面积公式由点D为BC的中点得到S△ABD=S△ADC=S△ABC=6,同理得到S△EBD=S△EDC=S△ABD=3,则S△BEC=6,然后再由点F为EC的中点得到S△BEF=S△BEC =3.【解答】解:∵点D为BC的中点,∴S△ABD=S△ADC=S△ABC=6,∵点E为AD的中点,∴S△EBD=S△EDC=S△ABD=3,∴S△EBC=S△EBD+S△EDC=6,∵点F为EC的中点,∴S△BEF=S△BEC=3,即阴影部分的面积为3cm2.故选:C.9.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A=()A.60°B.80°C.70°D.50°【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,故选:A.10.如图所示,在矩形纸片ABCD中,E,G为AB边上两点,且AE=EG=GB;F,H为CD边上两点,且DF=FH=HC.沿虚线EF折叠,使点A落在点G上,点D落在点H上;然后再沿虚线GH折叠,使B落在点E上,点C落在点F上.叠完后,剪一个直径在EF上的半圆,再展开,则展开后的图形为()A.B.C.D.【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.【解答】解:∵在矩形纸片ABCD中,E,G为AB边上两点,且AE=EG=GB;F,H为CD 边上两点,且DF=FH=HC,∴四边形AEFD,EGHF,GBCH是三个全等的矩形.现在把矩形ABCD三等分,标上字母;严格按上面方法操作,剪一个直径在EF上的半圆,展开后实际是从矩形ABCD的一条三等分线EF处剪去一个圆,从一边BC上剪去半个圆.故选:B.二.填空题(共10小题)11.点P(3,2)关于x轴对称的点的坐标为(3,﹣2).【分析】坐标平面内两个点关于x轴对称,则横坐标不变,纵坐标互为相反数.【解答】解:根据轴对称的性质,得点P(3,2)关于y轴对称的点的坐标为(3,﹣2).故答案为:(3,﹣2).12.一个多边形的内角和是它的外角和的4倍,这个多边形是十边形.【分析】一个多边形的内角和是它的外角和的4倍,而外角和是360°,则内角和是4×360°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形有n条边.由题意得:(n﹣2)×180°=360°×4,解得n=10.则这个多边形是十边形.故答案为:十.13.若等腰三角形的一个角为50°,则它的顶角为80°或50°.【分析】已知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.【解答】解:当该角为顶角时,顶角为50°;当该角为底角时,顶角为80°.故其顶角为50°或80°.故填50°或80°.14.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=70°.【分析】先根据三角形内角和定理计算出∠BAC+∠BCA=180°﹣∠B=140°,则利用邻补角定义计算出∠DAC+∠FCA=180°﹣∠BAC+180°﹣∠BCA=220°,再根据角平分线定义得到∠EAC=∠DAC,∠ECA=∠FCA,所以∠EAC+∠ECA=(∠DAC+∠FCA)=110°,然后再利用三角形内角和计算∠AEC的度数.【解答】解:∵∠B=40°,∴∠BAC+∠BCA=180°﹣40°=140°,∴∠DAC+∠FCA=180°﹣∠BAC+180°﹣∠BCA=360°﹣140°=220°,∵AE和CE分别平分∠DAC和∠FCA,∴∠EAC=∠DAC,∠ECA=∠FCA,∴∠EAC+∠ECA=(∠DAC+∠FCA)=110°,∴∠AEC=180°﹣(∠EAC+∠ECA)=180°﹣110°=70°.故答案为:70°.15.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO:S△BCO:S△CAO等于2:3:4 .【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵O是三角形三条角平分线的交点,∴OD=OE=OF,∵AB=20,BC=30,AC=40,∴S△ABO:S△BCO:S△CAO=2:3:4.故答案为:2:3:4.16.若直角三角形的一锐角为30°,而斜边与较短边之和为24.那么斜边的长为16 .【分析】设直角三角形的30°角对的边为a,斜边为2a,由题意知3a=18,则a=6.【解答】解:设直角三角形的30°角对的边为a,斜边为2a,由题意知,3a=24,∴a=8,2a=16cm,故答案为 16.17.已知P(m﹣4,3m﹣7)关于y轴的对称点在第一象限,则m的整数解为 3 .【分析】先判断出点M在第二象限,再根据第二象限内点的横坐标是负数,纵坐标是正数列不等式组求解,然后选择即可.【解答】解:∵点P(m﹣4,3m﹣7)关于y轴的对称点在第一象限,∴点P在第二象限,∴,解得:<m<4,∴m的整数解为3,故答案为:3.18.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是1<AD<7 .【分析】延长AD至E,使DE=AD,连接CE.根据SAS证明△ABD≌△ECD,得CE=AB,再根据三角形的三边关系即可求解.【解答】解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<14,故1<AD<7.故答案为:1<AD<7.19.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是30°.【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵PN+PM+MN的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°.故答案为:30°.20.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF =CF.其中正确的是①②③(填序号)【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【解答】解:∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB,∵BF是∠ABC的平分线,CF是∠ACB的平分线,∴∠FBC=∠DFB,∠FCE=∠FCB,∵∠DBF=∠DFB,∠EFC=∠ECF,∴△DFB,△FEC都是等腰三角形.∴DF=DB,FE=EC,即有DE=DF+FE=DB+EC,∴△ADE的周长AD+AE+DE=AD+AE+DB+EC=AB+AC.综上所述,命题①②③正确.故答案为①②③.三.解答题(共4小题)21.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.【分析】(1)根据顶点A,C的坐标分别为(﹣4,5),(﹣1,3)建立坐标系即可;(2)作出各点关于y轴的对称点,再顺次连接即可;(3)根据点B′在坐标系中的位置写出其坐标即可.【解答】解:(1)如图所示;(2)如图所示;(3)由图可知,B′(2,1).22.如图,△ABC和△AED中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD、CE,求证:BD=EC.【分析】根据角与角之间的等量关系求出∠BAD=∠EAC,根据SAS证△BAD≌△EAC,根据全等三角形的性质即可得出结论.【解答】证明:∵∠DAE=∠BAC,∴∠DAE﹣∠BAE=∠EAC﹣∠BAE,∴∠BAD=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴BD=EC.23.如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠BAE=∠CAE,求证:∠ABE=∠ACE.【分析】过点E作EM⊥AB于M,EN⊥AC于N,由角平分线的性质可得EM=EN,由“HL”可证Rt△BME≌Rt△CNE,可得∠ABE=∠ACE.【解答】解:过点E作EM⊥AB于M,EN⊥AC于N∵∠BAE=∠CAE,EM⊥AB,EN⊥AC∴EM=EN,且BE=CE∴Rt△BME≌Rt△CNE(HL)∴∠ABE=∠ACE24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE ∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.【分析】(1)△ABC,△OBC,△EBO,△CFO,△AEF一共5个等腰三角形,同时可证△BEO ≌△CFO,可得EF=EO+FO=BE+CF;(2)由EF∥BC,可得∠2=∠3,又∠1=∠2,∴∠1=∠3,所以△BEO为等腰三角形,在△CFO中,同理可证;(3)由于OE∥BC,可得∠5=∠6,又∠4=∠5,∴∠4=∠6,∴△BEO是等腰三角形,在△CFO中,同理可证△CFO是等腰三角形,【解答】解:(1)图中有5个等腰三角形,EF=BE+CF,∵△BEO≌△CFO,且这两个三角形均为等腰三角形,可得EF=EO+FO=BE+CF;(2)还有两个等腰三角形,为△BEO、△CFO,如下图所示:∵EF∥BC,∴∠2=∠3,又∵∠1=∠2,∴∠1=∠3,∴△BEO为等腰三角形,在△CFO中,同理可证.∴EF=BE+CF存在.(3)有等腰三角形:△BEO、△CFO,此时EF=BE﹣CF,∵如下图所示:OE∥BC,∴∠5=∠6,又∠4=∠5,∴∠4=∠6,∴△BEO是等腰三角形,在△CFO中,同理可证△CFO是等腰三角形,∵BE=EO,OF=FC,∴BE=EF+FO=EF+CF,∴EF=BE﹣CF2020-2021八年级数学上册期中模拟试题时间:90分钟满分:150分一、选择题(每题3分,共24分)1.下列图案中,属于轴对称图形的是()A. B. C. D.2.如图,∠BAD=∠BCD=90∘,AB=CB,据此可以证明△BAD≌△BCD,证明的依据是( )A. AASB. ASAC. SASD. HL第2题图第3题图第5题图第6题图3.如图,BC⊥AC,ED⊥AB,BD=BC,AE=5,DE=2,则AC的长为()A.5B.6C.7D.84.到三角形三个顶点的距离都相等的点是这个三角形的( )A. 三条高的交点B. 三条边的垂直平分线的交点C. 三条中线的交点D. 三条角平分线的交点5.如图所示,求黑色部分(长方形)的面积为()A.24B. 30C. 48D. 186.如图,在△ABC中,AB=5,AC=4,BC=3,分别以点A,点B为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,作直线MN交AB于点O,连接CO,则CO的长是( )A. 1.5B. 2C. 2.4D. 2.57.已知∠AOB=30°,点P在∠AOB的内部,点P1与点P关于OB对称,点P2与点P关于OA 对称,则△P1OP2是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形8.如图是5×5的正方形网络,以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A. 2个B. 4个C. 6个D. 8个二、填空题(每题4分,共40分)9.如图,若△ABC≌△ADE,且∠B=60°,则∠DAE=_______________10.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添加的条件是________(添加一个即可)11.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为________12.如图,△ABC中,∠BAC的角平分线交BC于D,过D作AC的垂线DE交AC于E,DE=5,则D到AB的距离是______.第9题图第10题图第11题图第12题图13.若15,25,X三数构成勾股数,则X=______________14.等腰三角形有一个外角是135°,这个等腰三角形的底角是__________.15.如图,AB⊥AC,点D在BC的延长线上,且AB=AC=CD,则∠ADB=______∘.第15题图第16题图第17题图第18题图16.如图,是一扇高为2m,宽为1.5m的门框,李师傅有3块薄木板,尺寸如下:①号木板长3m,宽2.7m;②号木板长2.8m,宽2.8m;③号木板长4m,宽2.4m.可以从这扇门通过的木板是_______________17.如图,已知AM⊥MN,BN⊥MN,垂足分别为M,N,点C是MN上使AC+BC的值最小的点,若AM=3,BN=5,MN=15,则AC+BC=___________18.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P 旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的序号为______________.三、解答题(共86分)19.(8分)利用网格线作图:在BC上找一点P,使点P到AB和AC的距离相等。
广西壮族自治区桂林市八年级上学期数学期中考试试卷

八年级上学期数学期中考试试卷一、单选题1.下列各式中,分式的个数有()① ② ③ ④ ⑤A. 1个B. 2个C. 3个D. 4个2.下列运算正确的是()A. (π﹣3)0=1B. =±3C. 2﹣1=﹣2D. (﹣a2)3=a63.函数中,自变量x的取值范围是().A. x≠B. x≠1C. x>D. x≥4.下列各式中,变形不正确的是( )A. B. C. D.5.下列运算正确的是( )A. B. C. D.6.将分式方程化为整式方程,正确的是()A. x﹣2=3B. x+2=3C. x﹣2=3(x﹣2)D. x+2=3(x﹣2)7.如图,DE是△ABC中AC边的垂直平分线,若BC=8,AB=10,则△EBC的周长是()A. 13B. 16C. 18D. 208.分式方程﹣=10的解是()A. 3B. 2C. 0D. 49.如果等腰三角形的两边长分别为2和5,则它的周长为( )A. 9B. 7C. 12D. 9或1210.到△ABC的三个顶点距离相等的点是△ABC的()A. 三边中线的交点B. 三条角平分线的交点C. 三边上高的交点D. 三边垂直平分线的交点11.如图,在△ABC中,∠B=55°,∠C=30°,MN是AC的垂直平分线,交BC于点D,连接AD,则∠BAD的度数为( )A. 65°B. 60°C. 55°D. 45°12.如图所示,在Rt△ABC中,∠ACB=90°,∠B=15°,AB边的垂直平分线交AB于点E,交BC于点D,且BD=13 cm,则AC的长是( )A. 13 cmB. 6.5 cmC. 30 cmD. 6 cm二、填空题13.若分式无意义,则x的值等于 .14.函数y= 中,自变量x的取值范围是.15.计算:.16.如图,AC⊥BC于C,DE⊥AC于E,AD⊥AB于A,若BC=AE=4,DE=7,则EC= .17.△ABC中,∠A=32°,∠B=76°,则与∠C相邻的外角是________°.18.等腰三角形一边长是10cm,一边长是6cm,则它的周长是 cm.三、解答题19.计算:20.解方程:.21.在△ABC中,AD是它的角平分线,且BD=CD,DE,DF分别垂直AB,AC,垂足为E,F,求证:EB=FC.22.如图在△ABC中,AB=AC,直线DE垂直平分AB,若∠A=40°,则(1).求∠DBC的度数,(2).若AB=12,BC=7,求△BCD的周长23.如图,在Rt△ABC中,∠B=90,分别以点A、C为圆心,大于长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE.(1).求∠ADE;(简单写出推导过程)(2).当AB=3,AC=5时,求△ABE的周长.24.杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.第一批杨梅每件进价多少元?25.如图,在△ABC中,AD是BC边上的高,AE是∠BAC平分线.(1)若∠B=38°,∠C=70°,求∠DAE的度数;(2)若∠B>∠C,试探求∠DAE、∠B、∠C之间的数量关系.26.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC,D为斜边AC延长线上一点,过D点作BC的垂线交其延长线于点E,在AB的延长线上取一点F,使得BF=CE,连接EF.(1)若AB=2,BF=3,求AD的长度;(2)G为AC中点,连接GF,求证:∠AFG+∠BEF=∠GFE.答案解析部分一、单选题1.【答案】 B【解析】【解答】解:① 分母中不含有字母,不是分式;② 分母中含有字母,是分式;③ 分母中不含有字母,不是分式;④ 分母中含有字母,是分式;⑤ 分母中不含有字母,不是分式.故答案为:B.【分析】根据分母中含有字母的式子是分式,逐项进行判断,即可得出答案.2.【答案】A【解析】【解答】解:解:A、(π﹣3)0=1,故A正确;B、=3,故B错误;C、2﹣1= ,故C错误;D、(﹣a2)3=-a6,故D错误.故选:A.【分析】根据零指数幂、算术平方根、负整数指数幂、积的乘方的计算法则计算,对各选项分析判断后利用排除法求解.3.【答案】A【解析】【解答】解:由题意得,, .故选A.4.【答案】B【解析】【解答】解:A. ∵,故A正确;B. ∵,故B不正确;C. ∵,故C正确;D. ∵,故D正确;故选B.5.【答案】C【解析】【解答】解:A. ∵,故A不正确;B. ∵,故B不正确;C. ∵,故C正确;D. ∵,故D不正确;故选C.6.【答案】D【解析】【解答】解:去分母得:x+2=3(x-2),故选D.7.【答案】C【解析】【解答】解:∵DE是△ABC中AC边的垂直平分线,∴EA=EC,∴△EBC的周长=BC+BE+EC=BC+BE+EA=BC+BA=18.故答案为:C.【分析】利用线段垂直平分线的性质,可得EA=EC,因此可证明△EBC的周长=BC+BA。
2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期期中考试试卷八年级数学一、选择题(本大题共10小题,每小题2分,共20分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的A .B .C .D .2.在平面直角坐标系中,点P (1,﹣2)的位置在A .第一象限B .第二象限C .第三象限D .第四象限3.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为A .6B .8C .10D .8或104.今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为( ) A .2.2×104B .22000C .2.1×104D .225.如图,在数轴上表示实数7+1的点可能是A .PB .QC .RD .S6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即∠A ′OA )是 A .80° B .60° C .40° D .20°7.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是 A .AD =BDB .AE =ACC .ED +EB =DBD .AE +CB =AB8.由下列条件不能判定△ABC 为直角三角形的是A .a =,b =,c =B .∠A +∠B =∠C C .∠A :∠B :∠C =1:3:2D .(b +c )(b ﹣c )=a 29.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于A .6B .8C .9D .1810.如图,在四边形ABCD 中,AB =AC =BD ,AC 与BD 相交于H ,且AC ⊥BD .①ABPQ RS(第5题)ABCA 'B 'O(第6题)(第7题)∥CD ;②△ABD ≌△BAC ;③AB 2+CD 2=AD 2+CB 2;④∠ACB +∠BDA =135°.其中真命题的个数是A .1B .2C .3D .4二、填空题(本大题共8小题,每空2分,共16分) 11.81的算术平方根是 ▲ .12.在平面直角坐标系中,点P (-1,2)关于x 轴的对称点的坐标为 ▲ . 13.如图,在R t △ABC 中,CD 是斜边AB 上的中线,若AB =20,则CD = ▲ . 14.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则线段AE = ▲ .15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A 所代表的正方形的边长是 ▲ .16.如图,在△ABC 中,AB =AC ,∠B =66°,D ,E 分别为AB ,BC 上一点,AF ∥DE ,若∠BDE =30°,则∠F AC 的度数为 ▲ .17.如图,数轴上点A 、点B 表示的数分别中1和5,若点A 是线段BC 的中点,则点C 所表示的数是 ▲ .18.已知:如图,ΔABC 中,∠A =45°,AB =6,AC =24,点D 、E 、F 分别是三边AB 、BC 、CA 上的点,则ΔDEF 周长的最小值是 ▲ .AB CD E(第14题)AB CD(第13题)(第15题)ABCDH(第10题)(第9题)A BCF DE(第16题)(第17题)(第18题)FEDCBA三、解答题(本大题共9题,共64分) 19.(8分)(1)计算:()234272-+-; (2)已知:4x 2=20,求x 的值.20.(4分)如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C .CDBA21.(6分)如图,在△ABC 中,AD ⊥BC ,AB =10,BD =8,∠ACD =45°. (1)求线段AD 的长;(2)求△ABC 的周长.22.(6分)已知点A (1,2a -1),点B (-a ,a -3) . ①若点A 在第一、三象限角平分线上,求a 值.②若点B 到x 轴的距离是到y 轴距离的2倍,求点B 所在的象限.23.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB ,在图③中已画出点A .按下列要求画图:(1)在图①中,以格点为顶点,AB 为一边画一个等腰三角形ABC ; (2)在图②中,以格点为顶点,AB 为一边画一个正方形;(3)在图③中,以点A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积= .24.(8分)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.25.(8分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.26.(8分)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)27.(8分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.2020~2021学年度第一学期期中考试八年级数学试题一、选择题(共10小题,每小题3分,共30分) 1.下列图形中不是轴对称图形的是( )2.在平面直角坐标系中,点P (-3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.三角形中最大的内角不能小于( ) A .30°B .45°C .60°D .90°4.下列关于两个三角形全等的说法: ① 三个角对应相等的两个三角形全等 ② 三条边对应相等的两个三角形全等③ 有两边和它们的夹角对应相等的两个三角形全等 ④ 有两边和其中一边上的高对应相等的两个三角形全等 正确的说法个数是( ) A .1个 B .2个 C .3个 D .4个 5.在平面直角坐标系中,点P (2,-3)关于x 轴的对称点是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(-3,2) 6.如图所示,∠A =28°,∠BFC =92°,∠B =∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别是D 、E ,AD 、CE 交于点H .已知EH =EB =3,AE =5,则CH 的长是( ) A .1B .2C .53D .358.如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ) A .6个B .7个C .8个D .9个9.如图,AB =2,BC =AE =6,CE =CF =7,BF =8,四边形ABDE 与△CDF 面积的比值是( ) A .21B .32C .43 D .110.如图,在△ABC 中,BC 的垂直平分线DF 交△ABC 的外角平分线AD 于点D ,DE ⊥AB 于点E ,且AB >AC ,则( ) A .BC =AC +AEB .BE =AC +AEC .BC =AC +AD D .BE =AC +AD二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形的内角和是外角和的2倍,则它的边数是___________12.设△ABC 的三边长分别为a 、b 、c ,其中a 、b 满足|a +b -6|+(a -b +4)2=0,则第三边长c 的取值范围是_____________13.点M (-5,3)关于直线x =1的对称点的坐标是___________14.如图所示,在△FED 中,AD =FC ,∠A =∠F .如果用“SAS ”证明△ABC ≌△FED ,只需添加条件_____________即可15.在△ABC 中,高AD 、BE 所在的直线相交于点G ,若BG =AC ,则∠ABC 的度数是_____16.如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,一条线段PQ =AB =10,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,如果以A 、P 、Q 为顶点的三角形与△ABC 全等,则AP =____________三、解答题(共8小题,共72分)17.(本题8分)解方程组:(1) ⎩⎨⎧=-=-32373y x y x(2) ⎩⎨⎧=-=+5342y x y x18.(本题8分)如图所示,在△ABC 中:(1) 画出BC 边上的高AD 和中线AE(2) 若∠B =30°,∠ACB =130°,求∠BAD 和∠CAD 的度数19.(本题8分)如图,点B 、E 、C 、F 在同一直线上,且AB =DE ,AC =DF ,BE =CF ,请将下面说明△ABC ≌△DEF 的过程和理由补充完整解:∵BE =CF (_____________)∴BE +EC =CF +EC即BC =EF在△ABC 和△DEF 中⎪⎩⎪⎨⎧===__________________BC DF AB )()(∴△ABC ≌△DEF (__________)20.(本题8分)如图所示,D是边AB的中点,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长21.(本题8分)已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD,求证:(1) △BDE≌△CDF(2) 点D在∠BAC的角平分线上22.(本题10分)如图,设△ABC和△CDE都是等边三角形,并且∠EBD=90°,求证:(1) △ACE≌△BCD(2) 求∠AEB的度数23.(本题10分)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F(1) 直接写出∠AFC的度数(2) 请你判断并写出FE与FD之间的数量关系(3) 如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD 与AC之间的数量关系并说明理由24.(本题12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E.已知AO=m,BO=n,且m、n 满足(n-6)2+|n-2m|=0(1) 求A、B两点的坐标(2) 若点D为AB中点,求OE的长(3) 如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P 的坐标2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.下面的图形中,是轴对称图形的是()A.B.C.D.2.下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)23.利用尺规进行作图,根据下列条件作三角形,画出的三角形不唯一的是()A.已知三条边B.已知两边和夹角C.已知两角和夹边D.已知三个角4.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.已知一个三角形有两边相等,且周长为25,若量得一边为5,则另两边长分别为()A.10,10 B.5,10 C.12.5,12.5 D.5,156.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1 B.1 C.﹣3 D.37.如图,已知AB∥CF,E为DF的中点,若AB=8cm,CF=5cm,则BD为()A.2cm B.3cm C.4cm D.1cm8.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣710.如图,△BDC′是将矩形纸片ABCD沿BD折叠得到的,BC′与AD交于点E,则图中共有全等三角形()A.2对B.3对C.4对D.5对11.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC 对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+AB/AD=B.2BC=5CFC.∠AEB+22°=∠DEF D.4AB/BD =12.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm二.填空题(共6小题,满分18分,每小题3分)13.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.14.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.15.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC= °.16.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF= .17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.18.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是.三.解答题(共7小题)19.因式分解:(1)9a2﹣4(2)ax2+2a2x+a320.如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.21.如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.22.若m2﹣2m n+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+()=0,即()2+()2=0.根据非负数的性质,∴m=n=阅读上述解答过程,解答下面的问题,设等腰三角形ABC的三边长a、b、c,且满足a2+b2﹣4a﹣6b+13=0,求△ABC的周长.23.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.24.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.25.如图,某学校(A点)与公路(直线L)的距离AB为300米,又与公路车站(D点)的距离AD为500米,现要在公路上建一个小商店(C点),使CA=CD,求商店与车站之间的距离CD的长.参考答案一.选择题1. D.2. C.3. D.4. D.5. A.6. A.7. B.8. B.9. B.10. C.11. A.12. C.二.填空题13. 4.14. 24.15. 75°或35°16. 4.17..18. 2016.三.解答题19.解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)220.解:(1)如图所示,由图可知 A1(﹣4,5);(2)如图所示,点P即为所求点.设直线AB1的解析式为y=kx+b(k≠0),∵A(4,5),B1(﹣1,0),∴,解得,∴直线AB1的解析式为y=x+1,∴点P坐标(0,1),∴△PAB的周长最小值=AB1+AB=+=5+.21.证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.22.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,即(m﹣n)2+(n﹣4)2=0.根据非负数的性质,∴m=n=4,故答案为:n2﹣8n+16;m﹣n;n﹣4;4;已知等式变形得:(a﹣2)2+(b﹣3)2=0,所以a=2,b=3,第一种情况2,2,3,周长=7;第二种情况3,3,2,周长=8.23.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.24.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.……………………………………………………………(1分)∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.………………………………………………(2分)∴FA=DA.………………………………………………∴AB=AD+BD=FA+BD.………………………………………(4分)(2)如图2,当D在AB延长线上时,AF=AB+BD,…………(6分)理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF,…………………(8分)理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.25.解:∵AB⊥l于B,AB=300m,AD=500m.∴BD==400m.设CD=x米,则CB=(400﹣x)米,x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5m.答:商店与车站之间的距离为312.5米.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE5.下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6[来6.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块7.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC ≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高9.如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个二.填空题(共6小题,满分18分,每小题3分)11.计算(2m2n2)2•3m2n3的结果是.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.等腰三角形的一个外角是80°,则其底角是度.14.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.15.如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD= 度.16.在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三.解答题(共9小题,满分72分)17.(6分)计算:(1)(12a3﹣6a2+3a)÷3a;(2)(x﹣y)(x2+xy+y2).18.(6分)如图,∠A=50°,OB、OC为角平分线,求∠BOC.19.(8分)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.20.(8分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)(3)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.21.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.22.(8分)已知一个等腰三角形的三边长分别为2x﹣1、x+1、3x﹣2,求这个等腰三角形的周长.(1)完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x﹣1=x+1时,解x= ,此时构成三角形(填“能”或“不能”).②当2x﹣1=3x﹣2时,解x= ,此时构成三角形(填“能”或“不能”).(2)请你根据(1)中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.24.(10分)已知,△ABC是等边三角形,过点C作CD∥AB,且CD=AB,连接BD交AC于点O(1)如图1,求证:AC垂直平分BD;(2)点M在BC的延长线上,点N在AC上,且MD=NM,连接BN.①如图2,点N在线段CO上,求∠NMD的度数;②如图3,点N在线段AO上,求证:NA=MC.25.(10分)已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.参考答案与试题解析一.选择题1.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16, 16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.2.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=a,故本选项错误;D、(a2)3=a6,正确.故选:D.6.【解答】解:因为正六边形的内角为120°,所以360°÷120°=3,即每一个顶点周围的正六边形的个数为3.故选:A.7.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.8.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.9.【解答】解:∵AB=AC,∠BAC=∠DAE,AE=AD,∴ABE≌△ACD,故①正确.∵ABE≌△ACD,∴∠AEB=∠ADC.∵∠AEB+∠AEF=180°,∴∠AEF+∠ADC=180°,∴∠BFD=180°﹣∠EAD=180°﹣70°=110°,故③正确.∵AE平分∠BAC,∴∠EAC=35°.又∵∠DAE=70°,∴AC平分∠EAD.又∵AE=AD,∴AC⊥EF,AC平分EF.∴AC是EF的垂直平分线,故④正确.由已知条件无法证明BE=EF,故②错误.故选:C.10.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:原式=4m4n4•3m2n3=12m6n7,故答案是:12m6n7.12.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.13.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故填40.14.【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.15.【解答】解:在Rt△ABC中,∠B=28°,∴∠CAB=90°﹣28°=62°,∵DE垂直平分AB,∴AD=BD,∴∠DAB=∠B=28°,∴∠CAD=∠CAB﹣∠DAB=62°﹣28°=34°.故答案为:34.16.【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三.解答题(共9小题,满分72分)17.【解答】解:(1)(12a3﹣6a2+3a)÷3a;=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1;(2)(x﹣y)(x2+xy+y2).=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.18.【解答】解:∵OB、OC为角平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∵∠ABC+∠ACB=180°﹣∠A,∠OBC+∠OCB=180°﹣∠BOC,∴2∠OBC+2∠OCB=180°﹣∠A,∴180°﹣∠A=2(180°﹣∠BOC),∴∠BOC=90°+∠A=90°+×50°=115°.19.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图可知,点A与点A1之间10个格子,所以AA1的长度为10.20.【解答】解:(1)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(2)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c2(3)当6x﹣5y=10时,∴3x﹣2.5y=5原式=[4x2﹣y2﹣(4x2﹣12xy+9y2)]÷4y=(12xy﹣10y2)÷4y=3x﹣2.5y=522.【解答】解:(1)①当2x﹣1=x+1时,解x=2,此时3,3,4,能构成三角形.②当2x﹣1=3x﹣2时,解x=1,此时1,2,1不能构成三角形.故答案为2,能,1,不能;(2)③当x+1=3x﹣2,解得x=,此时2,,能构成三角形.23.【解答】解:接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对圆周角为直角;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端且垂直于这条半径的直线是圆的切线,证明过程如下:由作图可知OP为⊙C的直径,∴∠OAP=∠OBP=90°,即OA⊥PA、OB⊥PB,∵OA、OB是⊙O的半径,∴OP是⊙O的切线.故答案为:直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形2.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(2,﹣1)6.如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分24分,每小题3分)7.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.8.(3分)如图,在△ABC中,∠B=40°,∠C=28°,点D在BA的延长线上,则∠CAD的大小为.9.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.10.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.11.在△ABC中,∠C=∠A=∠B,则∠A= 度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为.14.在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长= .三.解答题(共4小题,满分24分,每小题6分)15.(6分)等腰三角形一腰上的中线,分别将该三角形周长分成30cm 和33cm,试求该等腰三角形的底边长.16.(6分)如图,点F是△ABC的边BC延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.17.(6分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.(6分)如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.四.解答题(共3小题,满分21分,每小题7分)19.(7分)已知:如图,△ABC中,D是BC延长线上一点,E是CA 延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.20.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.21.(7分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.五.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.(8分)已知:如图1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.六.解答题(共2小题,满分17分)24.(8分)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.25.(9分)如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C 逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.参考答案一.选择题1. A.2. B.3. B.4. D.5. A.6. B.二.填空题7.60°.8.68°.9. 6.10.37.11. 60.12.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13. 214. 9三.解答题16.解:在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=∠A+∠B=30°+50°=80°.18.解:(1)∵AB=AC,∴∠B=∠C=60°,∴∠BAC=60°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠DAE=40°,∴∠BAD=∠BAC﹣∠DAE=20°,∵∠AED=∠CDE+∠C,∴∠CDE=70°﹣60°=10°.(2)结论:α=2β,理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=∠AED﹣∠ACB=﹣==,∴α=2β;19.证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.20.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.21.(1)解:∵EF垂直平分AC,∴AE=CE,∴∠C=∠EAC=40°,∵AD⊥BC,BD=DE,∴AB=AE,∴∠B=∠BEA=2∠C=80°,∴∠BAD=90°﹣80°=10°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=DE+AE=DE+CE=DC,∴C△ABC=AB+BC+AC=2DC+AC=2×4+5=13..25.解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF;证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°∴∠A1CF=∠BCD∵A1C=BC∴∠A1=∠CBD=45°∴△CBD≌△CA1F;∴CF=CD,∵CA=CB1,∴AF=B1D,∵∠A=∠EB1D,∠AEF=∠B1ED,∴△AEF≌△B1ED,∵AC=B1C,∠ACD=∠B1CF,∠A=∠CB1F,∴△ACD≌△≌△B1CF.(2)在△CBB1中。
2021-2022学年广西桂林市灌阳县八年级(上)期中数学试卷(解析版)

2021-2022学年广西桂林市灌阳县八年级第一学期期中数学试卷注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.一、选择题(共12小题).1.若分式有意义,则()A.x≠1B.x=1C.x≠0D.x=02.计算(﹣)3的结果是()A.﹣B.﹣C.﹣D.3.计算的结果是()A.1B.0C.3D.64.下列运算,正确的是()A.0.2﹣2=0.04B.(2﹣2)3=2﹣8C.(﹣2)﹣2=4D.5.分式方程的解是()A.x=2B.x=3C.x=4D.x=56.一艘轮船在两个码头之间航行,顺水航行81km所需的时间与逆水航行69km所需的时间相同.已知水流速度是速度2km/h,则轮船在静水中航行的速度是()A.25km/h B.24km/h C.23km/h D.22km/h7.已知等腰三角形的一边为5,另一边为6,那么这个三角形的周长为()A.16B.17C.18D.16或178.有长度为1,2,3,4的四条线段,任选其中三条线段组成一个三角形,则最多能组成三角形的的个数为()A.1个B.2个C.3D.4个9.下列命题中,是假命题的是()A.三个角都是60°的三角形是等边三角形B.两个锐角的和是钝角C.若|a|=3,则a=±3D.在同一平面内,若直线a⊥l,b⊥l,则a∥b10.如图,已知△ABC中,AB=AC,点D、E分别在BC、AC上,AD=AE,∠BAD=∠CAD=20°,则∠EDC等于()A.30°B.20°C.10°D.5°11.如图,D是BC的中点,E是AC的中点,△ADE的面积为2,则△ABC的面积为()A.4B.8C.10D.1212.如图,在第1个△A1BC中,∠B=40°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E.得到第3个△A2A3E…按此做法继续下去,则第n+1个三角形中以A n+1为顶点的内角度数是()A.B.C.D.二、填空题(每小题3分,共18分)13.用科学记数法表示:0.00000036=.14.计算:x5⋅x3=.15.约分:=.16.如图,已知△ABC≌△ADE,D是∠BAC平分线上一点,∠BAC=76.6°,则∠CAE =°.17.如图,在△ABC中,∠ABC=116°,若DE、FG分别垂直平分AB、BC,那么∠EBF 的度数为度.18.已知a2﹣a﹣1=0,且,则x=.三、解答题(本大题共66分)19.计算:.20.解方程:.21.如图,在Rt△ABC中,∠B=60°,∠C=30°.(1)尺规作图:在线段BC上求作一点P,使PA=PB.(不写作法,保留作图痕迹)(2)在(1)的条件下,求∠CAP的度数.22.先约分,再求值:•,其中x=3.23.如图,已知BE⊥AD,CF⊥AD,且BE=CF.请你判断AD是△ABC的中线还是角平分线?并说明理由.24.某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.25.观察下列各式:;;;;…(1)请你观察上面各式的规律,将下列式子写成类似的形式:①=;②=;(2)请利用上述规律计算:(用含有n的式子表示)=;(3)请利用上述规律解方程:.26.如图,在四边形ABCD中,BC=DC,AC平分∠BAD.(1)当AB>AD时,求证:∠B+∠D=180°;(2)当AB=AD时,∠D应满足什么条件时,等式∠B+∠D=180°才成立?参考答案一、选择题(本大题共12小题,每小题3分,共36分。
2020-2021学年八年级上学期数学期中考试卷附答案

一.选择题〔本大题共10小题,每题3分,共30分〕1.〔3分〕以下图形中,是轴对称图形的是〔〕A、 B、C、D、2.〔3分〕假设一个多边形的内角和是1080度,那么这个多边形的边数为〔〕A、 6B、7C、8D、103.〔3分〕如图,∠1=∠2,那么不一定能使△ABD≌△ACD的条件是〔〕A、AB=ACB、BD=CDC、∠B=∠CD、∠BDA=∠CDA4.〔3分〕如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,假设CD=3,点Q是线段AB上的一个动点,那么DQ 的最小值〔〕A、 5B、 4C、 3D、 25.〔3分〕为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是〔〕A、5mB、15mC、20mD、28m6.〔3分〕如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.假设∠1=129°,那么∠2的度数为〔〕A、49°B、50°C、51°D、52°7.〔3分〕如下图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是〔〕A、SSSB、SASC、AASD、ASA8.〔3分〕如图,∠B=∠C=90°,E是BC的中点,DE平分线∠ADC,那么以下结论不正确是〔〕A、AE平分∠DAEB、AB∥CDC、△EBA≌△DCED、AB+CD=AD9.〔3分〕如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,那么这样的三角形〔不包含△ABC本身〕共有〔〕A、1个B、2个C、3个D、4个10.〔3分〕如下图的正方形网格中,网格线的交点称为格点.A、B 是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,那么点C的个数是〔〕A、 2B、 4C、 6D、8【二】填空题〔此题共6小题,每题3分,共18分〕11.〔3分〕等腰三角形一边长等于4,一边长等于9,它的周长是.12.〔3分〕如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于点D,如果BC=10cm,那么△BCD的周长是cm.13.〔3分〕如图△ABC中,AB=AD=DC,∠BAD=40°,那么∠C=.14.〔3分〕如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,那么AD=.15.〔3分〕如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E、假设AB=5,AC=4,那么△ADE的周长是.16.〔3分〕如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板〔即其边长为前一块被剪掉正三角形纸板边长的后,得图③、④,…,记第n〔n≥3〕块纸板的周长为Pn,那么周长Pn=.三.解答题〔此题共10题,共102分,解答应写文字说明,证明过程或演算步骤〕17.〔10分〕△ABC中,AB=AC,D是BC中点,DE⊥AB于E,DF ⊥AC于F,求证:DE=DF.18.〔10分〕如图,边长为1的正方形网格中,△ABC的顶点均在格点上,在所给的直角坐标系中解答以下问题〔1〕画出△ABC关于x轴对称的△A′B′C′,并写出A′、B′、C′三点的坐标;〔2〕在y轴上作出点P,使PA+PB的长最小.〔保留痕迹找出点P 即可〕〔3〕假设△ABC内有一点Q〔2m+n,3.5〕关于x轴对称后Q′〔2.5,n﹣m〕,求m,n的值.19.〔10分〕等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.20.〔10分〕如图,AB=AC=10,∠A=40°,AB的垂直平分线MN交AC于D,求:〔1〕∠CBD的度数;〔2〕假设△BCD的周长是m,求BC的长.21.〔10分〕如图,在平面直角坐标系中,在第一象限内,OM与OB是两坐标轴的夹角的三等分线点E是OM上一点,EC⊥X轴于C 点,ED⊥OB于D点,OD=8,OE=10〔1〕求证:∠ECD=∠EDC;〔2〕求证:OE垂直平分CD、22.〔10分〕如图,△ABC为等边三角形,点D,E分别在BC,AC 边上,且AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.〔1〕求证:△ABE≌△CAD;〔2〕求AD的长.23.〔10分〕如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE、〔1〕求证:△DEF是等腰三角形;〔2〕当DE⊥EF,E是BC的中点时,试比较BD+CF与DF的大小.24.〔10分〕四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC= 120°,∠MBN=60°,∠MBN的两边分别交AD、CD于E、F.〔1〕当AE=CF时,如图1试猜想AE+CF与EF之间存在怎样的数量关系?请给予证明.〔2〕当AE≠CF,如图2的情况下,上问的结论分别是否仍然成立?假设成立,请给出证明;假设不成立,请说明理由.25.〔12分〕:在平面直角坐标系中,等腰Rt△ABC的顶点A、C在坐标轴上运动,且∠ACB=90°,AC=BC、〔1〕如图1,当A〔0,﹣2〕,C〔1,0〕,点B在第四象限时,那么点B的坐标为;〔2〕如图2,当点C在x轴正半轴上运动,点A在y轴正半轴上运动,点B在第四象限时,作BD⊥y轴于点D,试判断与哪一个是定值,并说明定值是多少?请证明你的结论.〔3〕如图3,当点C在y轴正半轴上运动,点A在x轴正半轴上运动,使点D恰为BC的中点,连接DE,求证:∠ADC=∠BDE、参考答案与试题解析一.选择题〔本大题共10小题,每题3分,共30分〕1.〔3分〕以下图形中,是轴对称图形的是〔〕A、 B、C、D、考点:轴对称图形.分析:根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线〔成轴〕对称,进而得出答案.解答:解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.应选:B、点评:此题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.〔3分〕假设一个多边形的内角和是1080度,那么这个多边形的边数为〔〕A、 6B、7C、8D、10考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,如果多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据n边形的内角和公式,得〔n﹣2〕•180=1080,解得n=8.∴这个多边形的边数是8.应选:C、点评:此题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.3.〔3分〕如图,∠1=∠2,那么不一定能使△ABD≌△ACD的条件是〔〕A、AB=ACB、BD=CDC、∠B=∠CD、∠BDA=∠CDA考点:全等三角形的判定.专题:压轴题.分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解答:解:A、∵∠1=∠2,AD为公共边,假设AB=AC,那么△ABD ≌△ACD〔SAS〕;故A不符合题意;B、∵∠1=∠2,AD为公共边,假设BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,假设∠B=∠C,那么△ABD≌△ACD〔AAS〕;故C不符合题意;D、∵∠1=∠2,AD为公共边,假设∠BDA=∠CDA,那么△ABD≌△ACD 〔ASA〕;故D不符合题意.应选:B、点评:此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.4.〔3分〕如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,假设CD=3,点Q是线段AB上的一个动点,那么DQ 的最小值〔〕A、 5B、 4C、 3D、 2考点:角平分线的性质;垂线段最短.分析:根据垂线段最短,过点D作DQ⊥AB于Q,此时DQ的值最小,再根据角平分线上的点到角的两边距离相等可得DQ=CD、解答:解:如图,过点D作DQ⊥AB于Q,由垂线段最短可得,此时DQ的值最小,∵∠C=90°,BD是∠ABC的平分线,∴DQ=CD=3.应选C、点评:此题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质并确定出DQ最短的情况是解题的关键.5.〔3分〕为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是〔〕A、5mB、15mC、20mD、28m考点:三角形三边关系.专题:应用题.分析:首先根据三角形的三边关系定理求出AB的取值范围,然后再判断各选项是否正确.解答:解:∵PA、PB、AB能构成三角形,∴PA﹣PB<AB<PA+PB,即4m<AB<28m.应选D、点评:三角形的两边,那么第三边的范围是:大于的两边的差,而小于两边的和.6.〔3分〕如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.假设∠1=129°,那么∠2的度数为〔〕A、49°B、50°C、51°D、52°考点:翻折变换〔折叠问题〕;三角形内角和定理.专题:计算题.分析:根据翻折的性质可知,∠DOE=∠A,∠HOG=∠B,∠EOF=∠C,又∠A+∠B+∠C=180°,可知∠1+∠2=180°,又∠1=129°,继而即可求出答案.解答:解:根据翻折的性质可知,∠DOE=∠A,∠HOG=∠B,∠EOF=∠C,又∵∠A+∠B+∠C=180°,∴∠DOE+∠HOG+∠EOF=180°,∴∠1+∠2=180°,又∵∠1=129°,∴∠2=51°.应选C、点评:此题考查翻折变换的知识,解答此题的关键是三角形折叠以后的图形和原图形全等,对应的角相等,同时注意三角形内角和定理的灵活运用.7.〔3分〕如下图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是〔〕A、SSSB、SASC、AASD、ASA考点:全等三角形的应用.分析:根据图象,三角形有两角和它们的夹边是完整的,所以可以根据〝角边角〞画出.解答:解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用〝角边角〞定理作出完全一样的三角形.应选D、点评:此题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8.〔3分〕如图,∠B=∠C=90°,E是BC的中点,DE平分线∠ADC,那么以下结论不正确是〔〕A、AE平分∠DAEB、AB∥CDC、△EBA≌△DCED、AB+CD=AD考点:全等三角形的判定与性质;平行线的判定.分析:由∠B=∠C=90°,直接得出选项B成立;作EF⊥AD垂足为点F,证得△DEF≌△DCE和△AFE≌△ABE,得出选项A、选项D成立;因为AB≠CD,AE≠DE,不可能得出选项C成立;由此得出结论即可.解答:解:∵∠B=∠C=90°,∴∠B+∠C=180°,∴AB∥CD,故B正确;如图,作EF⊥AD垂足为点F,∴∠DFE=90°,∴∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DEF和△DCE中;,∴△DEF≌△DCE〔AAS〕;∴CE=EF,DC=DF,∠CED=∠FED,又∵∠B=∠C=∠DFE=90°,AE=AE,在Rt△AFE和Rt△ABE中,,∴Rt△AFE≌Rt△ABE〔HL〕;∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故A正确;AD=AF+DF=AB+CD,故D正确;∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE、∵AB≠CD,AE≠DE,∴△EBA≌△DCE不可能成立.即C不正确;应选:C、点评:此题题综合考查了角平分线的性质、三角形全等的判定与性质等知识点.9.〔3分〕如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,那么这样的三角形〔不包含△ABC本身〕共有〔〕A、1个B、2个C、3个D、4个考点:轴对称的性质.分析:先把田字格图标上字母如图,确定对称轴找出符合条件的三角形,再计算个数.解答:解:△HEC关于CD对称;△FDB关于BE对称;△GED关于HF对称;关于AG对称的是它本身.所以共3个.应选C、点评:此题考查了轴对称的性质;确定对称轴然后找出成轴对称的三角形是解题的关键.10.〔3分〕如下图的正方形网格中,网格线的交点称为格点.A、B 是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,那么点C的个数是〔〕A、 2B、 4C、 6D、8考点:等腰直角三角形;勾股定理.专题:网格型.分析:根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC 底边;②AB为等腰△ABC其中的一条腰.解答:解:如上图:分情况讨论①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.应选:C、点评:此题考查了等腰三角形的判定;解答此题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.【二】填空题〔此题共6小题,每题3分,共18分〕11.〔3分〕等腰三角形一边长等于4,一边长等于9,它的周长是22.考点:等腰三角形的性质.分析:题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:∵4+4=8<9,0<4<9+9=18∴腰的不应为4,而应为9∴等腰三角形的周长=4+9+9=22故填:22.点评:此题考查了等腰三角形的性质和三角形的三边关系;没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.〔3分〕如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于点D,如果BC=10cm,那么△BCD的周长是26 cm.考点:线段垂直平分线的性质;等腰三角形的性质.分析:连接BD,根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,然后求出△BCD的周长=BC+AC,代入数据计算即可得解.解答:解:如图,连接BD、∵DE是AB的垂直平分线,∴AD=BD,∴△BCD的周长=BC+BD+CD=BC+AD+CD=BC+AC,∵AC=16cm,BC=10cm,∴△BCD的周长=10+16=26cm.故答案为:26.点评:此题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键.13.〔3分〕如图△ABC中,AB=AD=DC,∠BAD=40°,那么∠C=35°.考点:等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠B,根据等边对等角可得∠C=∠CAD,然后利用三角形的内角和定理列式进行计算即可得解.解答:解:∵AB=AD,∠BAD=40°,∴∠B=〔180°﹣∠BAD〕=〔180°﹣40°〕=70°,∵AD=DC,∴∠C=∠CAD,在△A BC中,∠BAC+∠B+∠C=180°,即40°+∠C+∠C+70°=180°,解得∠C=35°.故答案为:35°.点评:此题考查了等腰三角形两底角相等的性质,等边对等角的性质,熟记性质是解题的关键.14.〔3分〕如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,那么AD=8.考点:含30度角的直角三角形;等腰三角形的判定与性质.分析:根据直角三角形两锐角互余求出∠BDC=30°,然后根据30°角所对的直角边等于斜边的一半求出BD,再求出∠ABC,然后求出∠ABD=15°,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,从而得解.解答:解:∵∠DBC=60°,∠C=90°,∴∠BDC=90°﹣60°=30°,∴BD=2BC=2×4=8,∵∠C=90°,∠A=15°,∴∠ABC=90°﹣15°=75°,∴∠ABD=∠ABC﹣∠DBC=75°﹣60°=15°,∴∠ABD=∠A,∴AD=BD=8.故答案为:8.点评:此题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等角对等边的性质,熟记性质是解题的关键.15.〔3分〕如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E、假设AB=5,AC=4,那么△ADE的周长是9.考点:等腰三角形的判定与性质;平行线的性质.专题:压轴题.分析:由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.解答:解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.点评:此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB与△EOC是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.16.〔3分〕如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板〔即其边长为前一块被剪掉正三角形纸板边长的后,得图③、④,…,记第n〔n≥3〕块纸板的周长为Pn,那么周长Pn=3﹣.考点:规律型:图形的变化类;等边三角形的性质.分析:根据等边三角形的性质〔三边相等〕求出等边三角形的周长P1,P2,P3,P4,然后即可得到规律.解答:解:P1=1+1+1=3,P2=1+1+==3﹣,P3=1+1+×3==3﹣,P4=1+1+×2+×3==3﹣,…Pn=3﹣,故答案为:3﹣.点评:此题主要考查对等边三角形的性质的理解和掌握,此题是一个规律型的题目,题型较好.三.解答题〔此题共10题,共102分,解答应写文字说明,证明过程或演算步骤〕17.〔10分〕△ABC中,AB=AC,D是BC中点,DE⊥AB于E,DF ⊥AC于F,求证:DE=DF.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:根据AB=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,利用角角边定理可证此题,解答:证明:∵AB=AC,D是BC中点,∴∠ABC=∠ACB,BD=DC、∵DE⊥AB于E,DF⊥AC于F,∴∠DEB=∠DFC=90°在△DEB和△DFC中,,∴△DEB≌△DFC〔AAS〕,∴DE=DF.点评:此题主要考查学生对全等三角形的判定与性质和等腰三角形的性质的理解和掌握,难度不大,是一道基础题.18.〔10分〕如图,边长为1的正方形网格中,△ABC的顶点均在格点上,在所给的直角坐标系中解答以下问题〔1〕画出△ABC关于x轴对称的△A′B′C′,并写出A′、B′、C′三点的坐标;〔2〕在y轴上作出点P,使PA+PB的长最小.〔保留痕迹找出点P 即可〕〔3〕假设△ABC内有一点Q〔2m+n,3.5〕关于x轴对称后Q′〔2.5,n﹣m〕,求m,n的值.考点:作图-轴对称变换;轴对称-最短路线问题.分析:〔1〕直接利用关于x轴对称点的性质得出各点坐标画出图形即可;〔2〕利用轴对称求最短路线的方法得出即可;〔3〕利用关于x轴对称点的性质得出横纵坐标关系得出答案.解答:解:〔1〕如下图:A′〔4,﹣4〕、B′〔1,﹣2〕、C′〔3,﹣2〕;〔2〕如下图:P点即为所求;〔3〕∵△ABC内有一点Q〔2m+n,3.5〕关于x轴对称后Q′〔2.5,n﹣m〕,∴,解得:.点评:此题主要考查了轴对称变换以及利用轴对称求最短路径问题,得出对应点位置是解题关键.19.〔10分〕等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.考点:等边三角形的判定;全等三角形的判定与性质.专题:探究型.分析:先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.解答:解:△APQ为等边三角形.证明:∵△ABC为等边三角形,∴AB=AC、在△ABP与△ACQ中,∵,∴△ABP≌△ACQ〔SAS〕.∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠PAC=60°,∴∠PAQ=∠CAQ+∠PAC=60°,∴△APQ是等边三角形.点评:考查了等边三角形的判定及全等三角形的判定方法.20.〔10分〕如图,AB=AC=10,∠A=40°,AB的垂直平分线MN交AC于D,求:〔1〕∠CBD的度数;〔2〕假设△BCD的周长是m,求BC的长.考点:线段垂直平分线的性质;等腰三角形的性质.分析:〔1〕由垂直平分线的性质可知DA=DB,可求得∠ABD=40°,再由AB=AC,可求得∠ABC,再利用角的和差可求得∠CBD;〔2〕由〔1〕可知AD=BD,可得BD+CD=AC=10,结合△BCD的周长可求得BC、解答:解:〔1〕∵AB的垂直平分线MN交AC于D,∴DA=DB,∴∠ABD=∠A=40°,∵AB=AC,∴∠ABC=∠ACB==70°,∴∠CBD=∠ABC﹣∠ABD=70°﹣40°=30°;〔2〕由〔1〕可知DA=DB,∴BD+DC=AD+DC=AC=10,∵△BCD的周长是m,∴BC=m﹣10.点评:此题主要考查线段垂直平分线的性质,掌握线段垂直平分线的点到线段两端点的距离相等是解题的关键.21.〔10分〕如图,在平面直角坐标系中,在第一象限内,OM与OB是两坐标轴的夹角的三等分线点E是OM上一点,EC⊥X轴于C 点,ED⊥OB于D点,OD=8,OE=10〔1〕求证:∠ECD=∠EDC;〔2〕求证:OE垂直平分CD、考点:角平分线的性质;全等三角形的判定与性质;等腰三角形的判定与性质.分析:〔1〕由角平分线的性质可得ED=EC,那么可得∠ECD=∠EDC;〔2〕由角平分线的性质可知ED=EC,在Rt△ODE中可求得DE=6,那么EC=6,在Rt△OEC中可求得OC=8=OD,可得点E、O都在线段CD的垂直平分线上,可知OE垂直平分CD、解答:证明:〔1〕∵OM与OB是两坐标轴的夹角的三等分线,∴OM平分∠BOC,∵EC⊥X轴于C点,ED⊥OB于D点,∴DE=CE,∴∠ECD=∠EDC;〔2〕在Rt△ODE中,OD=8,OE=10,由勾股定理可求得DE=6,由〔1〕可得EC=ED=6,在Rt△OCE中,OE=10,EC=6,由勾股定理可求得OC=8,∴OC=OD,∴点O、E都在线段CD的垂直平分线上,∴OE垂直平分CD、点评:此题主要考查角平分线的性质及等腰三角形的性质、线段垂直平分线的判定,由条件得到DE=CE且求得OC=OD=8是解题的关键,注意勾股定理的应用.22.〔10分〕如图,△ABC为等边三角形,点D,E分别在BC,AC 边上,且AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.〔1〕求证:△ABE≌△CAD;〔2〕求AD的长.考点:全等三角形的判定与性质;等边三角形的性质.分析:〔1〕根据AE=CD,AB=AC,∠BAC=∠C即可求得△ABE≌△CAD;〔2〕由〔1〕得∠AEB=∠ADC,即可求得∠BPQ=∠C,即可求得BP 的长,即可解题.解答:解:〔1〕∵在△ABE和△CAD中,,∴△ABE≌△CAD,〔SAS〕〔2〕∵△ABE≌△CAD,∴AD=BE,∠AEB=∠ADC∵∠DAC+∠ADC+∠ACB=180°,∠DAC+∠AEB+∠APE=180°,∴∠ACB=∠APE=60°,∴∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=6,∴AD=BE=BP+PE=6+1=7.点评:此题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,此题中求证△ABE≌△CAD是解题的关键.23.〔10分〕如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE、〔1〕求证:△DEF是等腰三角形;〔2〕当DE⊥EF,E是BC的中点时,试比较BD+CF与DF的大小.考点:全等三角形的判定与性质;等腰三角形的判定与性质.分析:〔1〕根据AB=AC可得∠B=∠C,即可求证△BDE≌△CEF,即可解题;〔2〕根据E是BC的中点BD=CF=BE=CE,即可求得DF∥BC,即可解题.解答:〔1〕证明:∵AB=AC,[来源:]∴∠B=∠C,∵在△BDE和△CEF中,,∴△BDE≌△CEF,〔SAS〕∴DE=EF,∴△DEF是等腰三角形;〔2〕解:∵E是BC的中点,BE=CF,BD=CE、∴BD=CF=BE=CE,∴BD+CF=BC,∴∠BDE=∠CFE,∴∠ADF=∠AFD,∴DF∥BC,∵BC>DF,∴BD+CF>DF.点评:此题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,此题中求证△BDE≌△CEF是解题的关键.24.〔10分〕四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC= 120°,∠MBN=60°,∠MBN的两边分别交AD、CD于E、F.〔1〕当AE=CF时,如图1试猜想AE+CF与EF之间存在怎样的数量关系?请给予证明.〔2〕当AE≠CF,如图2的情况下,上问的结论分别是否仍然成立?假设成立,请给出证明;假设不成立,请说明理由.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:〔1〕作BQ⊥EF,易证△ABE≌△CBF和△BEF为等边三角形,可得∠ABE=30°和EF=BF,即可解题;〔2〕延长DA,使得AQ=CF,可证RT△BCF≌RT△BAQ,可得∠ABQ=∠CBF,CF=AQ,进而可以求证△BEF≌△BEQ得到QE=EF,即可解题.解答:解:〔1〕作BQ⊥EF,∵AE=CF,AB=BC,∴根据勾股定理可得:BF=BE,∵∠MBN=60°∴△BEF为等边三角形,∴EF=BF=BE,在RT△ABE和RT△CBF中,,∴RT△ABE≌RT△CBF〔HL〕,∴∠ABE=∠CBF,∵∠MBN=60°,∠ABC=120°,∴∠ABE=∠CBF=30°,∴BF=2CF,∴AE+CF=EF;〔2〕延长DA,使得AQ=CF,∵AQ=CF,AB=AC,∴根据勾股定理可得:BQ=BF,在RT△BCF和RT△BAQ中,,∴RT△BCF≌RT△BAQ〔HL〕,∴∠ABQ=∠CBF,CF=AQ,∴∠FBQ=∠ABC=120°,∴∠QBE=60°,在△BEF和△BEQ中,,∴△BEF≌△BEQ〔SAS〕,∴QE=EF,∴EF=QE=AE+AQ=AE+CF.点评:此题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,此题中,〔1〕中求证RT△ABE≌RT△CBF,〔2〕中求证△BEF≌△BEQ是解题的关键.25.〔12分〕:在平面直角坐标系中,等腰Rt△ABC的顶点A、C在坐标轴上运动,且∠ACB=90°,AC=BC、〔1〕如图1,当A〔0,﹣2〕,C〔1,0〕,点B在第四象限时,那么点B的坐标为〔3,﹣1〕;〔2〕如图2,当点C在x轴正半轴上运动,点A在y轴正半轴上运动,点B在第四象限时,作BD⊥y轴于点D,试判断与哪一个是定值,并说明定值是多少?请证明你的结论.〔3〕如图3,当点C在y轴正半轴上运动,点A在x轴正半轴上运动,使点D恰为BC的中点,连接DE,求证:∠ADC=∠BDE、考点:全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.分析:〔1〕作BD⊥CD,易证△OAC≌△DCB,即可解题;〔2〕作BE⊥OC,易证OAC≌△ECB,可求得OC=AO+BD,即可解题;〔3〕过点B作BG⊥BC交y轴于点G,易证△BCG≌△CAD,可得BG=BD,进而可以求证△DBE≌△GBE,可得∠BDE=∠BGE,即可解题.解答:解:〔1〕作BD⊥CD,∵∠OCA+∠DCB=90°,∠OAC+∠DCB=90°,∴∠OAC=∠DCB,∵在△OAC和△DCB中,,∴△OAC≌△DCB,〔AAS〕∴CD=OA=2,BD=OC=1,OD=3,∴B点坐标为〔3,﹣1〕;〔2〕作BE⊥OC,那么四边形ODBE为矩形,∵∠ACO+∠BC O=90°,∠ACO+∠OAC=90°,∴∠BCO=∠CAO,∵△OAC和△ECB中,,∴△OAC≌△ECB,〔AAS〕∴EC=OA,∵四边形ODBE为矩形,∴OE=BD,∵OC=OE+EC,∴OC=AO+BD,∴存在定值,且为1;〔3〕过点B作BG⊥BC交y轴于点G,∴∠CBG=∠ACD=90°,∵∠BCG+∠ACG=90°,∠ACO+∠DCO=90°,∴∠DCO=∠CAO.在△BCG和△CAD中,,∴△BCG≌△CAD〔ASA〕,∴BG=CD=BD、∵∠ABC=∠BAC=45°,∴∠EBG=∠DBE=45°,在△DBE和△GBE中,,∴△DBE≌△GBE〔SAS〕,∴∠BDE=∠BGE,∵∠BCG+∠BGE=90°,∠BCG+∠ADC=90°,∴∠BGE=∠ADC,∴∠ADB=∠CDE、点评:此题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,此题中每一问都找出全等三角形并求证是解题的关键.。
2020-2021学年度上学期八年级期中考试数学试卷(图片版含答案)

2020-2021学年度上学期质量监测(一)八年级数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.D 2.C 3.A 4.B 5.B 6.D 7.D 8.A 二、填空题(每小题3分,共18分)9.6 10.3a - 11.11 12.3- 13.7 14.90 三、解答题(本大题共10小题,共78分) 15.(1)解:原式=(3)(3)a b a b +-……………………4分 (2)解:原式=22(816)x x -+……………………2分 =22(4)x -……………………4分 16.(1)解:原式=2x y -……………………5分 (2)解:原式=(2002)(2002)-⨯+ =222002-……………………3分 =39996……………………5分17.证明:∵1803ABC ∠=︒-∠,1804ABD ∠=︒-∠, ∠3=∠4,∴ABC ABD ∠=∠……………………3分 ∵AB AB =,∠1=∠2,∴△ABC ≌△ABD . ……………………5分 ∴AC =AD . ……………………6分 18.解:原式=222441a a a -+-=21a -……………………4分 当2a =时,原式=221⨯-=3.……………………6分 19.解:.……………………6分20.证明:∵AE ∥DF ,∴∠A =∠D .……………………2分∵CE ∥BF ,∴∠ECA =∠FBD . ……………………4分 ∵AC AB BC =+,DB DC BC =+,AB =DC . ∴AC =DB .∴△AEC ≌△DFB . ……………………6分 ∴AE =DF .……………………7分 21.解:由题意得,2(3)(4)()a b a b a b ++-+ ……………………3分=222212342a ab ab b a ab b +++--- ……………………5分 =2115a ab +.答:绿化的面积为2(115)a ab +平方米.……………………7分22.解:(1)∵5a =3,∴22(5)39a ==.……………………2分(2)∵5a =3,5b =8,5c =72,∴5537252758a c ab cb-+⨯⨯===.……………………5分 (3)2c a b =+.……………………8分23.解:(1)262x x -+2226332x x =-+-+ ……………………2分 ()237x =-- ……………………4分 (2)226215x y x y ++-+222263215x x y y -=+++++22(3)(1)5x y =++-+ ……………………6分 ∵2(3)0x +≥,2(1)0y -≥, ∴22(3)(1)55x y ++-+≥, ∴22(3)(1)50x y ++-+>,∴不论x ,y 取任何实数,多项式226215x y x y ++-+的值总为正数.……………………8分 24.解:(1)B ……………………3分 (2)证明:∵△ABC 、△ADE 均为等边三角形, ∴AD =AE ,AB =AC . 由旋转得:∠DAB =∠EAC .ABCABC图① 图②∴△ADB≌△AEC.……………………8分(3)60或120 ……………………12分。
2020年~2021年八年级第一学期期中考试数学试卷及答案

2020年~2021年八年级第一学期期中考试数学试卷一 选择题(共12个小题,每小题3分,共36分)1.自新冠肺炎疫情发生以来,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是( )2.点A(-1,-2)关于x 轴对称的点的坐标是( ) A.(1,2) B.(1,-2) C.(-1,2) D.(-1,-2)3.如图1,墙上钉着三根木条a ,b ,c ,量得∠1=70°,∠2=100°,那么木条a ,b 所在直线所夹的锐角是( )A.5°B.10°C.30°D.70°4.已知三角形的三边长分别为3,x,5,若x 为正整数,则这样的三角形个数为( ) A.2 B.3 C.5 D.75.如图2,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是 ( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°6.如图3,在△ABC 中,∠A=30°,∠ABC=50°,若△EDC≌△ABC,且点A ,C ,D 在同一条直线上,则∠BCE 的度数为( ) A .20° B.30° C.40° D.50°7.若正多边形的内角和是1260°,则该正多边形的一个外角为( ) A.30° B.40° C.45° D.60°8.如图4,△ABC 与△A 'B'C'关于MN 对称,P 为MN 上任一点(A ,P ,A'不共线),下列结论中不正确的是( )A.AP=A'PB.MN 垂直平分线段AA'C.△ABC 与△A 'B'C'面积相等D.直线AB ,A'B'的交点不一定在直线MN 上9.如图5,点O 在△ABC 内,且到三边的距离相等,若∠BOC=110°,则∠A 的度数为( )A.40°B.45°C.50°D.55°10.如图6,在△ABC 中,AB=AC ,AB 的垂直平分线交AB 于点D ,交BC 的延长线于点E ,交AC 于点F ,若AB+BC=6,则△BCF 的周长为( ) A.4.5 B.5 C.5.5 D.611.如图7,△ABC 的两条中线AM ,BN 相交于点O ,已知△ABO 的面积为4,△BOM 的面积为2,则四边形MCNO 的面积为( ) A.4 B.3 C.4.5 D.3.512.如图8,AB∥CD,AD∥B C ,AC 与BD 相交于点O ,AE⊥BD,CF⊥BD,垂足分别是E ,F ,则图中的全等三角形共有( ) A.5对 B.6对 C.7对 D.8对二 填空题(共5个小题,每小题3分,共15分)13.如图9,P 是∠AOB 的平分线OC 上一点,PD⊥OB,垂足为D ,若PD=2,则点P 到边OA 的距离是 .14.在△ABC 中,将∠B,∠C 按如图10所示方式折叠,点B ,C 均落于边BC 上点G 处,线段MN ,EF 为折痕.若∠A=82°,则∠MGE= .15.如图11,CE⊥AB,DF⊥AB,垂足分别为E ,F ,CE=DF ,AC=BD ,AB=10,EF=4,则BF= .16.如图12,过正六边形 ABCDEF 的顶点B 作一条射线与其内角∠BAF 的平分线相交于点P ,且∠APB=40°,则∠CBP 的度数为 .17.如图13,在△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于21AC 的长为半径画弧,两弧相三 解答题(共7个小题,共69分)18.(8分)如图,在平面直角坐标系中,已知四边形ABCD 是轴对称图形,点A 的坐标为(-3,3).(1)画出四边形ABCD 的对称轴;(2)画出四边形ABCD 关于y 轴对称的四边形A 1B 1C 1D 1,并写出点A 1,C 1的坐标19.(9分)如图,在△ABC 中,DE 是边AC ,BC 上的点,AE 和BD 交于点F ,已知∠CAE=20°,∠C=40°,∠CBD=30°,(1)求∠AFB 的度数;(2)若∠BAF=2∠ABF,求∠BAF 的度数.20.(9分)如图,小明用五根宽度相同的木条拼成了一个五边形,已知AE∥CD,∠A=21∠C,∠B=120°.(1)∠D+∠E= 度;(2)求∠A 的度数;(3)要使这个五边形木架保持现在的稳定状态,小明至少还需钉上 根相同宽度的木条.21.(10分)如图,要测量河流AB 的长,可以在AB 线外任取一点D ,在AB 的延长线上任取一点E ,连接ED 和BD ,并且延长BD 到点G ,使DG=BD ;延长ED 到点F ,使FD=ED ;连接FG 并延长到点H ,使点H ,D ,A 在同一直线上,这样测量出线段HG 的长就是河流AB 的长,请说明这样做的理由.22.(10分)如图,在△ABC 中,(1)下列操作,作∠ABC 的平分线的正确顺序是 (填序号);①分别以点M ,N 为圆心,大于21MN 的长为半径作圆弧,在∠ABC 内,两弧交于点P ;②以点B 为圆心,适当长为半径作圆弧,交AB 于点M ,交BC 于点N ;③画射线BP ,交AC 于点D.(2)能说明∠ABD=∠CBD 的依据是 (填序号);①SS S ;②ASA;③AAS;④角平分线上的点到角两边的距离相等.(3)若AB=18,BC=12,S △ABC =120,过点D 作DE⊥AB 于点E ,求DE 的长.23.(11分)如图,在△ABC 中,边AB ,AC 的垂直平分线分别交BC 于点D ,E ,交AB ,AC 于点M ,N.(1)若BC=10,求△ADE 的周长;(2)设直线DM ,EN 交于点O ,连接OB ,OC.①试判断点O 是否在BC 的垂直平分线上,并说明理由;②若∠BAC=100°,则∠BOC 的度数为 .24.(12分)如图①,在△ABC 中,∠ACB=90°,AC=BC=10,直线DE 经过点C ,过点A ,B 分别作AD⊥DE,BE⊥DE,垂足分别为点D 和E ,AD=8,BE=6.(1)①求证:△ADC≌△CEB,②求DE 的长;(2)点M 以3个单位长度/秒的速度从点C 出发沿着边CA 向终点A 运动,点N 以8个单位长度/秒的速度从点B 出发沿着边BC 和CA 向终点A 运动,如图②所示,点M ,N 同时出发,运动时间为t 秒(t>0),当点N 到达终点时,两点同时停止运动.过点M 作MP⊥DE 于点P ,过点N 作NQ⊥DE 于点Q.①当点N 在线段CA 上时,线段CN 的长度为 ;②当△PCM 与△QCN 全等时,求t 的值.2020年~2021年八年级第一学期期中考试数学试卷参考答案1.D2.C3.B4.C5.C6.A7.B8.D9.A 10.D 11.A 12.C 13.2 14.82° 15.3 16.40° 17.65°18.解:(1)如图;(2)如图,A1(3,3),C1(3,-1).19.解:(1)∵∠AEB=∠C+∠CAE=40°+20°=60°,∴∠AFB=∠CBD+∠AEB=30°+60°=90°;(2)∵∠BAF=2∠ABF ,∠AFB=90°,∴3∠ABF=90°,∴∠ABF=30°,∴∠BAF=60°.20.解:(1)180;(2)这个五边形的内角和为(5-2)×180°=540°.设∠A=x °,则∠C=2x °.∵∠A+∠B+∠C+∠D+∠E=540°,∴x+120+2x+180=540,∴x=80,∴∠A=80°;(3)2.21.解:∵BD=DG ,∠BDE=∠GDF ,ED=DF ,∴△BED ≌△GFD (SAS ),∴BE=FG ,∠E=∠F.又∵ED=DF ,∠ADE=∠HDF ,∴△AED ≌△HFD (ASA ),∴AE=FH ,∴AB=HG. 即测量出线段HG 的长就是河流AB 的长.22.解:(1)②①③;(2)①;(3)过点D 作DF ⊥BC 于点F. ∵∠ABD=∠CBD ,DE ⊥AB ,DF ⊥BC ,∴DE=DF ,∴S △ABC =S △ABD +S △CBD =21×AB ×DE+21×BC ×DF=120,∴21×18×DE+21×12×DE=120,解得DE=8. 23.解:(1)∵DM ,EN 分别是AB ,AC 的垂直平分线,∴AD=BD ,AE=CE ,∴AD+DE+AE=BD+DE+CE=BC=10,即△ADE 的周长是10;(2)①点O 在BC 的垂直平分线上;理由:连接OA.∵DM ,EN 分别是AB ,AC 的垂直平分线,∴OA=OB ,OA=OC ,∴OB=OC ,∴点O 在BC 的垂直平分线上;②160°.(提示:∵OM ⊥AB ,∴∠AMO=∠BMO=90°.又∵OA=OB ,OM=OM ,∴△AOM ≌△BOM ,∴∠OAM=∠OBM.同理可得∠OAN=∠OCN. ∴∠BOC=360°-2∠BAC=160°)24.解:(1)①证明:∵AD ⊥DE ,BE ⊥DE ,∴∠ADC=∠CEB=90°. ∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠ECB=90°,∴∠DAC=∠ECB.又∵AC=BC ,∴△ADC ≌△CEB (AAS );②由①得△ADC ≌△CEB ,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)①8t-10;②分两种情况:当点N 在线段BC 上时,△PCM ≌△QNC ,∴CM=CN ,∴3t=10-8t ,解得t=1110;当点N 在线段CA 上时,△PCM ≌△QCN ,点M 与N 重合,CM=CN ,则3t=8t-10,解得t=2.综上所述,当△PCM 与△QCN 全等时,t 的值为1110或2.。
八年级(上)期中数学试卷

2020-2021学年八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在以下节水、节能、回收、绿色食品四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)一个三角形的两边长分别为3cm和8cm,则此三角形第三边长可能是()A.3cm B.5cm C.7cm D.11cm3.(3分)已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°4.(3分)如图,直线m是五边形ABCDE的对称轴,其中∠A=130°,∠B=110°,那么∠BCD等于()A.40°B.50°C.60°D.70°5.(3分)如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DEF()A.BC=EF B.AC=DF C.AC∥DF D.∠A=∠D 6.(3分)在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B为()A.70°B.35°C.110°或35°D.110°7.(3分)若一个多边形的每个内角都为144°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形8.(3分)如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠C′BD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC′一定是全等三角形9.(3分)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC 于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm10.(3分)如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB 交BC于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+∠C;②AE+BF=EF;③当∠C=90°时,E,F分别是AC,BC的中点;④若OD=a,CE+CF=2b,则S△CEF=ab.其中正确的是()A.①②B.③④C.①②④D.①③④二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)在平面直角坐标系中,点(﹣3,5)关于x轴对称的点的坐标为.12.(3分)已知等腰三角形的两边长分别为5cm和8cm,则等腰三角形的周长为.13.(3分)如图,在△ABC中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC=8cm2,则图中阴影部分△BEF的面积等于cm2.14.(3分)如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.15.(3分)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是.16.(3分)如图,在平面直角坐标系中,直线l与x轴交于点B1,与y轴交点于D,且OB1=1,∠ODB1=60°,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长坐等三角形A3A2B3,…,则点A10的横坐标是.三、解答题(本大题共7题,共72分,解答应写出文字说明、证明过程或演算步骤.). 17.(8分)如图,已知∠AOB和两点M、N,试确定一点P,使得P到射线OA、OB的距离相等,并且到点M、N的距离也相等.(尺规作图:不写作法)18.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点均在边长为1的正方形网格上.(1)画出△ABC关于y轴对称的图形△A′B′C′,并写出A′,B′,C′的坐标;(2)若点D在图中所给网格中的格点上,且以A,B,D为顶点的三角形为等腰直角三角形,请直接写出点D的坐标.19.(10分)如图,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E(1)若∠A=40°,求∠DCB的度数;(2)若AE=5,△DCB的周长为16,求△ABC的周长.20.(10分)如图,AB=CD,AE⊥BC,DF⊥BC,CE=BF.求证:AB∥CD.21.(10分)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q.(1)求证:△ADC≌△BEA;(2)若PQ=4,PE=1,求AD的长.22.(12分)两个三角形有两组边对应相等,并且其中一组相等的边所对的角也相等,如果这两个三角形不全等,我们称它们互为“伴生三角形”,相等的边所对的相等的角称为“伴生角”.如图,AB=A′B′,AC=A′C′,∠B=∠B',但△ABC和△A′B′C′不全等,则称△ABC和△A′B′C′互为“伴生三角形”,∠B与∠B'称为“伴生角”.(1)若某三角形的两个内角为30°和50°,请直接写出这个三角形的伴生三角形的三个内角的度数;(2)若互为伴生三角形的两个三角形都是等腰三角形,求伴生角的度数.23.(12分)如图,△ABC中∠ACB是钝角,点P在边BC的垂直平分线上.(1)如图1,若点P也在边AC的垂直平分线上,且∠ACB=110°,求∠APB的度数;(2)如图2,若点P也在∠BAC的外角平分线上,过点P作PH⊥AB于H,试找出线段AB、AH、AC之间的数量关系,并说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年广西桂林市灌阳县八年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项是正确的,请用2B铅笔将正确答案的字母在答题卡上涂黑)1.(3分)若分式=0,x则等于()A.0B.﹣2C.﹣1D.22.(3分)以下列各组长度的线段为边,能构成三角形的是()A.7,3,4B.5,6,12C.3,4,5D.1,2,33.(3分)下列各式:,,,,(x﹣y)中,是分式的共有()A.1个B.2个C.3个D.4个4.(3分)计算:2﹣1=()A.2B.﹣2C.D.5.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°6.(3分)下列说法正确的有几个()①20200=1;②三个角分别相等的两个三角形是全等三角形;③分式的分母为0,则分式的值不存在;④若b≠0那么=.A.1个B.2个C.3个D.4个7.(3分)如图,AB∥DE,AF=DC,若要证明△ABC≌△DEF,还需补充的条件是()A.AC=DF B.AB=DE C.∠A=∠D D.BC=EF8.(3分)某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么下列方程中正确的是()A.B.C.D.9.(3分)若等腰三角形的两边长为8cm、3cm,则第三边长为()A.3cm B.11cm C.8cm或3cm D.8cm10.(3分)如果把分式中的x,y都扩大2倍,那么分式的值()A.不变B.缩小2倍C.扩大2倍D.无法确定11.(3分)若分式方程有增根,则a的值是()A.1B.0C.﹣1D.312.(3分)如图,已知长方形ABCD,将△DBC沿BD折叠得到△DBC′,BC′与AD交于点G,若长方形的周长为20cm,则△ABG的周长是()A.5cm B.10cm C.15cm D.20cm二、填空题(共6小题,满分18分,每小题3分)13.(3分)计算:a2•a3=.14.(3分)用科学记数法表示:﹣0.00000202=.15.(3分)如图,△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=12,CF=3,则AC=.16.(3分)命题:“如果a=b,那么a2=b2”的逆命题是命题(填“真”或“假”).17.(3分)若三角形其中两边的长是11和6,则第三边x的取值范围是.18.(3分)如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为.三、解答题(共8小题,满分66分)19.(8分)计算:(1)(﹣)﹣1﹣25÷23+(π﹣3.14+2020)0;(2)÷﹣m.20.(8分)解下列分式方程:(1)=+1;(2)=.21.(6分)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.22.(8分)先化简,再求值:,其中|x|=3.23.(8分)已知:如图,在△ABC中,AB=AC,点D是BC的中点,作∠EAB=∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连结CF.(1)求证:BE=CF;(2)若∠ACF=100°,求∠BAD的度数.24.(8分)如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=8,△CBD周长为13,求BC的长.25.(8分)李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有48分钟,于是他立即步行(匀速)回家,在家拿道具用了2分钟,然后立即骑自行车(匀速)返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度是多少?(2)李明能否在联欢会开始前赶到学校?26.(12分)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE =BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E 三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状并说明理由.2020-2021学年广西桂林市灌阳县八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项是正确的,请用2B铅笔将正确答案的字母在答题卡上涂黑)1.(3分)若分式=0,x则等于()A.0B.﹣2C.﹣1D.2【分析】根据分式的值为零,分子等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,x﹣2=0且x+4≠0,解得x=2.故选:D.2.(3分)以下列各组长度的线段为边,能构成三角形的是()A.7,3,4B.5,6,12C.3,4,5D.1,2,3【分析】根据三角形的三边满足两边之和大于第三边来进行判断.【解答】解:A、4+3=5,故此选项错误;B、5+6<12,故此选项错误;C、2+4>5,故此选项正确;D、5+1=3,故此选项错误;故选:C.3.(3分)下列各式:,,,,(x﹣y)中,是分式的共有()A.1个B.2个C.3个D.4个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,(x﹣y)分母中含有字母;,的分母中均不含有字母,而不是分式.故分式有3个.故选:C.4.(3分)计算:2﹣1=()A.2B.﹣2C.D.【分析】根据负整数指数幂的运算法则进行计算即可.【解答】解:原式=.故选C.5.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°【分析】根据两直线平行,同位角相等求出∠2的同位角,再根据三角形的外角性质求解即可.【解答】解:如图,∵∠2=50°,∴∠4=∠3=50°(两直线平行,同位角相等),∵∠1=30°,∴∠3=∠8﹣∠1=50°﹣30°=20°.故选:D.6.(3分)下列说法正确的有几个()①20200=1;②三个角分别相等的两个三角形是全等三角形;③分式的分母为0,则分式的值不存在;④若b≠0那么=.A.1个B.2个C.3个D.4个【分析】根据零指数幂,全等三角形的判定,分式有意义的条件以及分式的性质进行一一判断.【解答】解:①20200=1,故正确;②三个角分别相等的两个三角形不一定全等,因为对应边不一定相等;③根据分式有意义的条件,分式的分母不为8,故正确;④根据分式的性质知:若b≠0那么=,故正确.综上所述,正确的说法有3个.故选:C.7.(3分)如图,AB∥DE,AF=DC,若要证明△ABC≌△DEF,还需补充的条件是()A.AC=DF B.AB=DE C.∠A=∠D D.BC=EF【分析】根据平行线的性质得出∠A=∠D,求出AC=DF,根据全等三角形的判定定理逐个判断即可.【解答】解:AB=DE,理由是:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AF+FC=DC+FC,∴AC=DF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),即选项B正确,选项A、C、D都不能推出△ABC≌△DEF、C、D都错误,故选:B.8.(3分)某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么下列方程中正确的是()A.B.C.D.【分析】设原计划每天挖x米,则实际每天挖(x+20)米,由题意可得等量关系:原计划所用时间﹣实际所用时间=4,根据等量关系列出方程即可.【解答】解:设原计划每天挖x米,由题意得:﹣=4,故选:C.9.(3分)若等腰三角形的两边长为8cm、3cm,则第三边长为()A.3cm B.11cm C.8cm或3cm D.8cm【分析】从当等腰三角形的腰长为8cm,底边长为3cm时;当等腰三角形的腰长为3cm,底边长为8cm时;两种情况去分析即可.【解答】解:①当等腰三角形的腰长为8cm,底边长为3cm时:∵2+3>8,∴可构成三角形,∴第三边长为5cm;②当等腰三角形的腰长为3cm,底边长为8cm时:∵5+3<8,∴不能构成三角形.故第三边长为4cm.故选:D.10.(3分)如果把分式中的x,y都扩大2倍,那么分式的值()A.不变B.缩小2倍C.扩大2倍D.无法确定【分析】把分式中的x,y都扩大2倍,原分式变为,利用分式的基本性质化简得到,从而可对各选项进行判断.【解答】解:分式中的x,则原分式变为,因为=,所以把分式中的x,分式的值缩小2倍.故选:B.11.(3分)若分式方程有增根,则a的值是()A.1B.0C.﹣1D.3【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.【解答】解:去分母得:1+3x﹣8=a﹣x,由分式方程有增根,得到x﹣2=0,把x=6代入得:1+6﹣2=a﹣2,解得:a=3,故选:D.12.(3分)如图,已知长方形ABCD,将△DBC沿BD折叠得到△DBC′,BC′与AD交于点G,若长方形的周长为20cm,则△ABG的周长是()A.5cm B.10cm C.15cm D.20cm【分析】由折叠的性质可得∠GBD=∠CBD,由平行线的性质可得∠GBD=∠GDB=∠CBD,可得BG=DG,即可求解.【解答】解:∵矩形ABCD的周长为20cm,∴AB+AD=10(cm),∵将△DBC沿BD折叠得到△DBC′,∴∠GBD=∠CBD,∵四边形ABCD是矩形,∴AD∥BC,∴∠GDB=∠CBD,∴∠GBD=∠GDB,∴BG=DG,∴△ABG的周长=AB+AG+BG=AB+AD=10(cm),故选:B.二、填空题(共6小题,满分18分,每小题3分)13.(3分)计算:a2•a3=a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a3+3=a5.故答案为:a6.14.(3分)用科学记数法表示:﹣0.00000202=﹣2.02×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:﹣0.00000202=﹣2.02×10﹣2.故答案为:﹣2.02×10﹣6.15.(3分)如图,△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=12,CF=3,则AC=15.【分析】根据线段的垂直平分线的性质得到F A=BF,代入计算即可得到答案.【解答】解:∵EF是AB的垂直平分线,∴F A=BF=12,∴AC=AF+FC=15.故答案为:15.16.(3分)命题:“如果a=b,那么a2=b2”的逆命题是假命题(填“真”或“假”).【分析】直接利用逆命题的写法就是将原命题的结论与题设交换进而得出答案.【解答】解:命题:“如果a=b,那么a2=b2”的逆命题是如果a2=b2,那么a=b,是假命题;故答案为:假.17.(3分)若三角形其中两边的长是11和6,则第三边x的取值范围是5<x<17.【分析】根据三角形的三边关系:第三边大于两边之差5,而小于两边之和17.【解答】解:根据题意得:11﹣6<c<11+6,∴4<c<17.故答案为:5<c<17.18.(3分)如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为32.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A3是等边三角形,∴A1B1=A6B1,∠3=∠8=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠4=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA8=A1B1=7,∴A2B1=3,∵△A2B2A3、△A3B3A5是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B6∥A2B2∥A2B3,B1A5∥B2A3,∴∠6=∠6=∠7=30°,∠3=∠8=90°,∴A2B7=2B1A8,B3A3=2B2A3,∴A2B3=4B4A2=4,A5B4=8B5A2=8,A2B5=16B1A3=16,以此类推:A6B6=32B6A2=32.故答案是:32.三、解答题(共8小题,满分66分)19.(8分)计算:(1)(﹣)﹣1﹣25÷23+(π﹣3.14+2020)0;(2)÷﹣m.【分析】(1)根据负整数指数幂、同底数幂的除法和零指数幂可以解答本题;(2)根据分式的除法和减法可以解答本题.【解答】解:(1)(﹣)﹣5﹣25÷43+(π﹣3.14+2020)3=(﹣2)﹣27+1=(﹣2)﹣3+1=﹣5;(2)÷﹣m=﹣m=﹣m=﹣.20.(8分)解下列分式方程:(1)=+1;(2)=.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3=2+x﹣5,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:6x+10﹣3=﹣x﹣2,解得:x=﹣8.5,经检验x=﹣1.2是分式方程的解.21.(6分)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.【分析】(1)ED是AC的垂直平分线,可得AE=EC;∠A=∠C;已知∠A=36,即可求得;(2)△ABC中,AB=AC,∠A=36°,可得∠B=72°又∠BEC=∠A+∠ECA=72°,所以,得BC=EC=5;【解答】解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.答:(1)∠ECD的度数是36°;(2)BC长是5.22.(8分)先化简,再求值:,其中|x|=3.【分析】根据分式的减法和除法可以化简题目中的式子,然后根据|x|=3,可以得到x的值,然后代入化简后的式子即可解答本题.【解答】解:===,∵|x|=3,∴x=±3,∴当x=3时,原式==;当x=﹣3时,原式=.23.(8分)已知:如图,在△ABC中,AB=AC,点D是BC的中点,作∠EAB=∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连结CF.(1)求证:BE=CF;(2)若∠ACF=100°,求∠BAD的度数.【分析】(1)由等腰三角形的性质得出∠CAD=∠BAD.证明△ACF≌△ABE(SAS),根据全等三角形的性质可得出结论;(2)由全等三角形的性质得出∠ABE=∠ACF=100°,则∠ABC=80°,由等腰三角形的性质得出∠ABC=∠ACB=80°,则可得出答案.【解答】(1)证明:∵AB=AC,点D是BC的中点,∴∠CAD=∠BAD.又∵∠EAB=∠BAD,∴∠CAD=∠EAB.在△ACF和△ABE中,,∴△ACF≌△ABE(SAS).∴BE=CF.(2)解:∵△ACF≌△ABE.∴∠ABE=∠ACF=100°,∴∠ABC=80°,∵AB=AC,∴∠ABC=∠ACB=80°,∴∠BAC=20°,∵∠CAD=∠BAD,∴∠BAD=10°.24.(8分)如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=8,△CBD周长为13,求BC的长.【分析】(1)根据三角形内角和定理求出∠ABC=∠C=65°,根据线段垂直平分线的性质得到DA=DB,求出∠ABD的度数,计算即可;(2)根据线段垂直平分线的性质和三角形的周长公式计算即可.【解答】解:(1)∵AB=AC,∠A=50°,∴∠ABC=∠C=65°,又∵DE垂直平分AB,∴DA=DB,∴∠ABD=∠A=50°,∴∠DBC=15°;(2)∵DE垂直平分AB,∴DA=DB,∴DB+DC=DA+DC=AC,又∵AB=AC=8,△CBD周长为13,∴BC=5.25.(8分)李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有48分钟,于是他立即步行(匀速)回家,在家拿道具用了2分钟,然后立即骑自行车(匀速)返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度是多少?(2)李明能否在联欢会开始前赶到学校?【分析】(1)设李明步行的速度为x米/分,则骑自行车的速度为3x米/分,根据时间=路程÷速度结合李明骑自行车到学校比他从学校步行到家用时少20分钟,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用时间=路程÷速度结合在家拿道具用了2分钟,可求出李明回家拿道具及到校所需时间和,将其与48分钟比较后即可得出结论.【解答】解:(1)设李明步行的速度为x米/分,则骑自行车的速度为3x米/分.依题意,得:﹣,解得:x=70,经检验,x=70是原方程的解.答:李明步行的速度是70米/分.(2)++2=42(分钟),∵42<48,∴李明能在联欢会开始前赶到学校.26.(12分)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE =BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E 三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状并说明理由.【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE =BD,AD=CE,于是DE=AE+AD=BD+CE;(2)由∠BDA=∠AEC=∠BAC=120°,就可以求出∠BAD=∠ACE,进而由AAS就可以得出△BAD≌△ACE,就可以得出BD=AE,DA=CE,即可得出结论;(3)由等边三角形的性质,可以求出∠BAC=120°,就可以得出△BAD≌△ACE,就有BD=AE,进而得出△BDF≌△AEF,得出DF=EF,∠BFD=∠AFE,而得出∠DFE=60°,就有△DEF为等边三角形.【解答】解:(1)如图1,∵BD⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)如图2,∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠DBA=∠CAE,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)如图6,由(2)可知,∴BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠F AE,∵在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=60°,∴△DEF为等边三角形.。