(完整版)2018年宝山嘉定初三数学二模试卷参考答案与评分标准
上海市各区2018届中考数学二模试卷精选汇编压轴题专题(有答案)

上海市各区2018届九年级中考二模数学试卷精选汇编:压轴题专题宝山区、嘉定区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)在圆O 中,AO 、BO 是圆O 的半径,点C 在劣弧AB 上,10=OA,12=AC ,AC ∥OB ,联结AB . (1)如图8,求证:AB 平分OAC ∠;(2)点M 在弦AC 的延长线上,联结BM ,如果△AMB 是直角三角形,请你在如图9中画出 点M 的位置并求CM 的长;(3)如图10,点D 在弦AC 上,与点A 不重合,联结OD 与弦AB 交于点E ,设点D 与点C 的 距离为x ,△OEB 的面积为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.25.(1)证明:∵AO 、BO 是圆O 的半径 ∴BO AO =…………1分 ∴B OAB ∠=∠…………1分 ∵AC ∥OB∴B BAC ∠=∠…………1分 ∴BAC OAB ∠=∠∴AB 平分OAC ∠…………1分 (2)解:由题意可知BAM ∠不是直角,所以△AMB 是直角三角形只有以下两种情况:︒=∠90AMB 和︒=∠90ABM① 当︒=∠90AMB ,点M 的位置如图9-1……………1分 过点O 作AC OH ⊥,垂足为点H图8图10图8∵OH 经过圆心 ∴AC HC AH 21== ∵12=AC ∴6==HC AH 在Rt △AHO 中,222OA HO AH =+ ∵10=OA ∴8=OH∵AC ∥OB ∴︒=∠+∠180OBM AMB ∵︒=∠90AMB ∴︒=∠90OBM ∴四边形OBMH 是矩形 ∴10==HM OB∴4=-=HC HM CM ……………2分 ②当︒=∠90ABM ,点M 的位置如图9-2 由①可知58=AB ,552cos =∠CAB 在Rt △ABM 中,552cos ==∠AM AB CAB∴20=AM8=-=AC AM CM ……………2分综上所述,CM 的长为4或8.说明:只要画出一种情况点M 的位置就给1分,两个点都画正确也给1分. (3)过点O 作AB OG ⊥,垂足为点G 由(1)、(2)可知,CAB OAG ∠=∠sin sin 由(2)可得:55sin =∠CAB ∵10=OA ∴52=OG ……………1分 ∵AC ∥OB ∴ADOBAE BE =……………1分 又BE AE -=58,x AD -=12,10=OB ∴xBEBE -=-121058 ∴x BE -=22580 ……………1分∴52225802121⨯-⨯=⨯⨯=xOG BE y ∴xy -=22400……………1分自变量x 的取值范围为120<≤x ……………1分图10长宁区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO Θ,AO =5, ∴322=-=AC AO CO (1分)5=OD Θ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO Θ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO O AC DBO BA C DBAOxx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F , 则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121Θ ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO Θ,AO =5, ∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分) ②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G , 则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO Θ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG , 在Rt △GAD 中,︒=∠90DGA Θ,∴622=+=DG AG AD ( 3分)综上得6514或=AD 崇明区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图,已知ABC △中,8AB =,10BC =,12AC =,D 是AC 边上一点,且2AB AD AC =⋅,联结BD ,点E 、F 分别是BC 、AC 上两点(点E 不与B 、C 重合),AEF C ∠=∠,AE 与BD 相交于点G . (1)求证:BD 平分ABC ∠;(2)设BE x =,CF y =,求y 与x 之间的函数关系式; (3)联结FG ,当GEF △是等腰三角形时,求BE 的长度.25.(满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)(第25题图)A BCDGEF(备用图)ABCD(1)∵8AB =,12AC = 又∵2AB AD AC =g ∴163AD =∴16201233CD =-= ……………………………1分 ∵2AB AD AC =g ∴AD AB AB AC= 又∵BAC ∠是公共角 ∴ADB ABC △∽△ …………………………1分 ∴ABD C =∠∠,BD ADBC AB= ∴203BD =∴BD CD = ∴DBC C =∠∠ ………………………1分 ∴ABD DBC =∠∠ ∴BD 平分ABC ∠ ………………………1分 (2)过点A 作AH BC ∥交BD 的延长线于点H∵AH BC ∥ ∴16432053AD DH AH DC BD BC ==== ∵203BD CD ==,8AH = ∴163AD DH == ∴12BH = ……1分 ∵AH BC ∥ ∴AH HG BE BG = ∴812BG x BG -= ∴128xBG x =+…1分 ∵BEF C EFC =+∠∠∠ 即BEA AEF C EFC +=+∠∠∠∠ ∵AEF C =∠∠ ∴BEA EFC =∠∠ 又∵DBC C =∠∠∴BEG CFE △∽△ ……………………………………………………………1分∴BE BGCF EC= ∴12810x x x y x +=-∴228012x x y -++= …………………………………………………………1分(3)当△GEF 是等腰三角形时,存在以下三种情况:1° GE GF = 易证23GE BE EF CF == ,即23x y =,得到4BE = ………2分 2° EG EF = 易证BE CF =,即x y =,5BE =-+…………2分 3° FG FE = 易证 32GE BE EF CF == ,即32x y =3BE =-+ ………2分奉贤区25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知:如图9,在半径为2的扇形AOB 中,∠AOB=90°,点C 在半径OB 上,AC 的垂直平分线交OA 于点D ,交弧AB 于点E ,联结BE 、CD .(1)若C 是半径OB 中点,求∠OCD 的正弦值; (2)若E 是弧AB 的中点,求证:BC BO BE ⋅=2;(3)联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.图9备用图ABO备用图ABO黄浦区25.(本题满分14分)如图,四边形ABCD中,∠BCD=∠D=90°,E是边AB的中点.已知AD=1,AB=2.(1)设BC=x,CD=y,求y关于x的函数关系式,并写出定义域;(2)当∠B=70°时,求∠AEC的度数;(3)当△ACE为直角三角形时,求边BC的长.25. 解:(1)过A作AH⊥BC于H,————————————————————(1分)由∠D=∠BCD=90°,得四边形ADCH为矩形.在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,所以22221y x =+-,——————————————————————(1分) 则()22303y x x x =-++<<.———————————————(2分)(2)取CD 中点T ,联结TE ,————————————————————(1分) 则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD .∴∠AET =∠B =70°. ———————————————————————(1分) 又AD =AE =1,∴∠AED =∠ADE =∠DET =35°. ——————————————————(1分) 由ET 垂直平分CD ,得∠CET =∠DET =35°,————————————(1分) 所以∠AEC =70°+35°=105°. ——————————————————(1分)(3)当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2. ——————————————————————(2分)当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x =-=-,则2241174AD CAx x AC CBx -±=⇒=⇒=-(舍负)—————(2分) 易知∠ACE <90°.所以边BC 的长为2或117+.——————————————————(1分)金山区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5 分)如图9,已知在梯形ABCD 中,AD ∥BC ,AB =DC =AD =5,3sin 5B =,P 是线段BC 上 一点,以P 为圆心,PA 为半径的⊙P 与射线AD 的另一个交点为Q ,射线PQ 与射线CD 相交于点E ,设BP =x .(1)求证△ABP ∽△ECP ;(2)如果点Q 在线段AD 上(与点A 、D 不重合),设△APQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域; (3)如果△QED 与△QAP 相似,求BP 的长.25.解:(1)在⊙P 中,PA =PQ ,∴∠PAQ =∠PQA ,……………………………(1分)∵AD ∥BC ,∴∠PAQ =∠APB ,∠PQA =∠QPC ,∴∠APB =∠EPC ,……(1分) ∵梯形ABCD 中,AD ∥BC ,AB =DC ,∴∠B =∠C ,…………………………(1分) ∴△APB ∽△ECP .…………………………………………………………(1分) (2)作AM ⊥BC ,PN ⊥AD ,∵AD ∥BC ,∴AM ∥PN ,∴四边形AMPN 是平行四边形,∴AM =PN ,AN =MP .………………………………………………………(1分) 在Rt △AMB 中,∠AMB =90°,AB =5,sinB =35, ∴AM =3,BM =4,∴PN =3,PM =AN =x -4,……………………………………(1分) ∵PN ⊥AQ ,∴AN =NQ ,∴AQ = 2x -8,……………………………………(1分) ∴()1128322y AQ PN x =⋅⋅=⋅-⋅,即312y x =-,………………………(1分) 定义域是1342x <<.………………………………………………………(1分) (3)解法一:由△QED 与△QAP 相似,∠AQP =∠EQD ,①如果∠PAQ =∠DEQ ,∵△APB ∽△ECP ,∴∠PAB =∠DEQ ,又∵∠PAQ =∠APB ,∴∠PAB =∠APB ,∴BP =BA =5.………………………(2分)ABCD图9备用图②如果∠PAQ =∠EDQ ,∵∠PAQ =∠APB ,∠EDQ =∠C ,∠B =∠C ,∴∠B =∠APB ,∴ AB =AP ,∵AM ⊥BC ,∴ BM =MP =4,∴ BP =8.………(2分) 综上所述BP 的长为5或者8.………………………………………………(1分) 解法二:由△QAP 与△QED 相似,∠AQP =∠EQD , 在Rt △APN 中,AP PQ ===∵QD ∥PC ,∴EQ EPQD PC=, ∵△APB ∽△ECP ,∴AP EPPB PC=,∴AP EQ PB QD =, ①如果AQ EQ QP QD =,∴AQ AP QP PB =x=,解得5x =………………………………………………………………………(2分) ②如果AQ DQ QP QE =,∴AQ PBQP AP==解得8x =………………………………………………………………………(2分) 综上所述BP 的长为5或者8.…………………………………………………(1分)静安区25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分) 如图,平行四边形ABCD 中,已知AB =6,BC =9,31cos =∠ABC .对角线AC 、BD 交于点O .动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .设BP = x .(1) 求AC 的长;(2) 设⊙O 的半径为y ,当⊙P 与⊙O 外切时, 求y 关于x 的函数解析式,并写出定义域; (3) 如果AC 是⊙O 的直径,⊙O 经过点E , 求⊙O 与⊙P 的圆心距OP 的长.25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分) 解:(1)作AH ⊥BC 于H ,且31cos =∠ABC ,AB =6, A 第25题图B P OC DE · 第25题备用图ABOCDDA · POE那么2316cos =⨯=∠⋅=ABC AB BH …………(2分) BC =9,HC =9-2=7,242622=-=AH , ……………………(1分) 9493222=+=+=HC AH AC ﹒ ………(1分)(2)作OI ⊥AB 于I ,联结PO , AC =BC =9,AO =4.5 ∴∠OAB =∠ABC ,∴Rt △AIO 中, 31cos cos ==∠=∠AO AI ABC IAO∴AI =1.5,IO =2322=AI ……………………(1分) ∴PI =AB -BP -AI =6-x -1.5=x -29, ……………………(1分) ∴Rt △PIO 中,41539481918)29()23(2222222+-=+-+=-+=+=x x x x x OI PI OP ……(1分) ∵⊙P 与⊙O 外切,∴y x x x OP +=+-=415392 ……………………(1分) ∴y =x x x x x x -+-=-+-153364214153922…………………………(1分) ∵动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .∴定义域:0<x ≤3…………(1分) (3)由题意得:∵点E 在线段AP 上,⊙O 经过点E ,∴⊙O 与⊙P 相交 ∵AO 是⊙O 半径,且AO >OI ,∴交点E 存在两种不同的位置,OE =OA =29① 当E 与点A 不重合时,AE 是⊙O 的弦,OI 是弦心距,∵AI =1.5,AE =3, ∴点E 是AB 中点,321==AB BE ,23==PE BP ,3=PI , IO =23 3327)23(32222==+=+=IO PI OP ……………………(2分)② 当E 与点A 重合时,点P 是AB 中点,点O 是AC 中点,2921==BC OP ……(2分) ∴33=OP 或29. 闵行区25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)如图,已知在Rt △ABC 中,∠ACB = 90o,AC =6,BC = 8,点F 在线段AB 上,以点B 为圆心,BF 为半径的圆交BC 于点E ,射线AE 交圆B 于点D (点D 、E 不重合).(1)如果设BF = x ,EF = y ,求y 与x 之间的函数关系式,并写出它的定义域;第25题图(2)(2)如果»»2EDEF =,求ED 的长; (3)联结CD 、BD ,请判断四边形ABDC 是否为直角梯形?说明理由.25.解:(1)在Rt △ABC 中,6AC =,8BC =,90ACB ∠=o∴10AB =.……………………………………………………………(1分) 过E 作EH ⊥AB ,垂足是H , 易得:35EH x =,45BH x =,15FH x =.…………………………(1分) 在Rt △EHF 中,222223155EF EH FH x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∴(08)y x x =<<.………………………………………(1分+1分) (2)取»ED的中点P ,联结BP 交ED 于点G ∵»»2EDEF =,P 是»ED 的中点,∴»»»EP EF PD ==. ∴∠FBE =∠EBP =∠PBD .∵»»EPEF =,BP 过圆心,∴BG ⊥ED ,ED =2EG =2DG .…………(1分) 又∵∠CEA =∠DEB ,∴∠CAE =∠EBP =∠ABC .……………………………………………(1分)又∵BE 是公共边,∴BEH BEG ∆∆≌.∴35EH EG GD x ===.在Rt △CEA 中,∵AC = 6,8BC =,tan tan AC CECAE ABC BC AC∠=∠==, ∴66339tan 822CE AC CAE ⨯⨯=⋅∠===.……………………………(1分) (备用图)CBA (第25题图)CBEF DADEBACF∴9169782222BE =-=-=.……………………………………………(1分) ∴6672125525ED EG x ===⨯=.……………………………………(1分)(3)四边形ABDC 不可能为直角梯形.…………………………………(1分)①当CD ∥AB 时,如果四边形ABDC 是直角梯形, 只可能∠ABD =∠CDB = 90o. 在Rt △CBD 中,∵8BC =, ∴32cos 5CD BC BCD =⋅∠=, 24sin 5BD BC BCD BE =⋅∠==. ∴321651025CD AB ==,328153245CE BE -==; ∴CD CEAB BE≠. ∴CD 不平行于AB ,与CD ∥AB 矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分) ②当AC ∥BD 时,如果四边形ABDC 只可能∠ACD =∠CDB = 90o. ∵AC ∥BD ,∠ACB = 90o, ∴∠ACB =∠CBD = 90o . ∴∠ABD =∠ACB +∠BCD > 90o. 与∠ACD =∠CDB = 90o矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分)普陀区25.(本题满分14分)已知P 是O ⊙的直径BA 延长线上的一个动点,P ∠的另一边交O ⊙于点C 、D ,两点位于AB 的上方,AB =6,OP m =,1sin 3P =,如图11所示.另一个半径为6的1O ⊙经过点C 、D ,圆心距1OO n =.(1)当6m =时,求线段CD 的长;(2)设圆心1O 在直线AB 上方,试用n 的代数式表示m ;(3)△1POO 在点P 的运动过程中,是否能成为以1OO 为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.DEBACFDC25.解:(1)过点O 作OH ⊥CD ,垂足为点H ,联结OC .在Rt △POH 中,∵1sin 3P =,6PO =,∴2OH =. ········· (1分) ∵AB =6,∴3OC =. ······················ (1分)由勾股定理得 CH = ····················· (1分)∵OH ⊥DC ,∴2CD CH == ················ (1分) (2)在Rt △POH 中,∵1sin 3P =, PO m =,∴3mOH =. ········ (1分) 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. ················ (1分)在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. ·············· (1分)可得 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -=. ········· (2分)(3)△1POO 成为等腰三角形可分以下几种情况:● 当圆心1O 、O 在弦CD 异侧时①1OP OO =,即m n =,由23812n n n-=解得9n =. ········· (1分)即圆心距等于O ⊙、1O ⊙的半径的和,就有O ⊙、1O ⊙外切不合题意舍去.(1分)②11O P OO =n =,解得23m n =,即23n 23812n n -=,解得n ·········· (1分) ● 当圆心1O 、O 在弦CD 同侧时,同理可得 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132n n n-=,解得n . ·· (2分)综上所述,n .青浦区25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9-1,已知扇形MON,∠MON=90o,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA= x,∠COM的正切值为y.(1)如图9-2,当AB⊥OM时,求证:AM =AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.25.解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM =∠BAM=90°.··········(1分)∵∠ABM +∠M =∠DOM +∠M,∴∠ABM =∠DOM.·········(1分)∵∠OAC=∠BAM,OC =BM,∴△OAC≌△ABM,······················(1分)∴AC =AM.·························(1分)(2)过点D作DE//AB,交OM于点E.················(1分)∵OB=OM,OD⊥BM,∴BD=DM.················(1分)∵DE//AB,∴=MD MEDM AE,∴AE=EM,∵OM,∴AE=)12x.················(1分)∵DE//AB,∴2==OA OC DMOE OD OD,···················(1分)∴2=DM OAOD OE,∴=y(0<≤x·················(2分)(3)(i)当OA=OC时,∵111222===DM BM OC x,O MNDCBA图9-1ONDCBA图9-2NMO备用图在Rt △ODM中,==OD =DM y OD,1=x=x=x .(2分) (ii )当AO =AC 时,则∠AOC =∠ACO ,∵∠ACO >∠COB ,∠COB =∠AOC ,∴∠ACO >∠AOC ,∴此种情况不存在. ····················· (1分) (ⅲ)当CO =CA 时,则∠COA =∠CAO=α,∵∠CAO >∠M ,∠M =90α︒-,∴α>90α︒-,∴α>45︒,∴290α∠=>︒BOA ,∵90∠≤︒BOA ,∴此种情况不存在. ·· (1分)松江区25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分)如图,已知Rt △ABC 中,∠ACB =90°,BC =2,AC =3,以点C 为圆心、CB 为半径的圆交AB 于点D ,过点A 作AE ∥CD ,交BC 延长线于点E.(1)求CE 的长;(2)P 是 CE 延长线上一点,直线AP 、CD 交于点Q.① 如果△ACQ ∽△CPQ ,求CP 的长;② 如果以点A 为圆心,AQ 为半径的圆与⊙C 相切,求CP 的长.25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分) 解:(1)∵AE ∥CD∴BC DC BE AE=…………………………………1分 ∵BC=DC∴BE=AE …………………………………1分 设CE =x(第25题图)CBA DE(备用图)CBADECBA DE则AE =BE =x +2 ∵ ∠ACB =90°, ∴222AC CE AE +=即229(2)x x +=+………………………1分 ∴54x =即54CE =…………………………………1分 (2)①∵△ACQ ∽△CPQ ,∠QAC>∠P∴∠ACQ=∠P …………………………………1分 又∵AE ∥CD ∴∠ACQ=∠CAE∴∠CAE=∠P ………………………………1分 ∴△ACE ∽△PCA ,…………………………1分 ∴2AC CE CP =⋅…………………………1分 即2534CP =⋅ ∴365CP =……………………………1分 ②设CP =t ,则54PE t =- ∵∠ACB =90°,∴AP ∵AE ∥CD ∴AQ ECAP EP=……………………………1分5545454t t ==--∴AQ =1分若两圆外切,那么1AQ == 此时方程无实数解……………………………1分CBA DEPQ若两圆内切切,那么2595t AQ +== ∴21540160t t -+= 解之得2041015t ±=………………………1分又∵54t >∴2041015t +=………………………1分徐汇区25. 已知四边形ABCD 是边长为10的菱形,对角线AC 、BD 相交于点E ,过点C 作CF ∥DB 交AB 延长线于点F ,联结EF 交BC 于点H . (1)如图1,当EF BC ⊥时,求AE 的长;(2)如图2,以EF 为直径作⊙O ,⊙O 经过点C 交边CD 于点G (点C 、G 不重合),设AE 的长为x ,EH 的长为y ;① 求y 关于x 的函数关系式,并写出定义域;③ 联结EG ,当DEG ∆是以DG 为腰的等腰三角形时,求AE 的长.杨浦区25、(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9,在梯形ABCD中,AD//BC,AB=DC=5,AD=1,BC=9,点P为边BC上一动点,作PH⊥DC,垂足H在边DC上,以点P为圆心PH为半径画圆,交射线PB于点E.(1)当圆P过点A时,求圆P的半径;(2)分别联结EH和EA,当△ABE△CEH时,以点B为圆心,r为半径的圆B与圆P相交,试求圆B的半径r的取值范围;(3)将劣弧沿直线EH翻折交BC于点F,试通过计算说明线段EH和EF的比值为定值,并求出此定值。
上海市各区2018届中考二模数学分类汇编:压轴题专题(含答案)

上海市各区2018届九年级中考二模数学试卷精选汇编:压轴题专题宝山区、嘉定区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)在圆O 中,AO 、BO 是圆O 的半径,点C 在劣弧AB 上,10=OA ,12=AC ,AC ∥OB ,联结AB .(1)如图8,求证:AB 平分OAC ∠;(2)点M 在弦AC 的延长线上,联结BM ,如果△AMB 是直角三角形,请你在如图9中画出点M 的位置并求CM 的长;(3)如图10,点D 在弦AC 上,与点A 不重合,联结OD 与弦AB 交于点E ,设点D 与点C 的距离为x ,△OEB 的面积为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.25.(1)证明:∵AO 、BO 是圆O 的半径 ∴BO AO =…………1分图8图9图10图8∴B OAB ∠=∠…………1分 ∵AC ∥OB∴B BAC ∠=∠…………1分 ∴BAC OAB ∠=∠∴AB 平分OAC ∠…………1分 (2)解:由题意可知BAM ∠不是直角,所以△AMB 是直角三角形只有以下两种情况:︒=∠90AMB 和︒=∠90ABM① 当︒=∠90AMB ,点M 的位置如图9-1……………1分 过点O 作AC OH ⊥,垂足为点H∵OH 经过圆心 ∴AC HC AH 21==∵12=AC ∴6==HC AH 在Rt △AHO 中,222OA HO AH =+ ∵10=OA ∴8=OH∵AC ∥OB ∴︒=∠+∠180OBM AMB ∵︒=∠90AMB ∴︒=∠90OBM ∴四边形OBMH 是矩形 ∴10==HM OB∴4=-=HC HM CM ……………2分 ②当︒=∠90ABM ,点M 的位置如图9-2由①可知58=AB ,552cos =∠CAB 在Rt △ABM 中,552cos ==∠AM AB CAB ∴20=AM8=-=AC AM CM ……………2分综上所述,CM 的长为4或8.说明:只要画出一种情况点M 的位置就给1分,两个点都画正确也给1分.图9-1图9-2(3)过点O 作AB OG ⊥,垂足为点G 由(1)、(2)可知,CAB OAG ∠=∠sin sin 由(2)可得:55sin =∠CAB ∵10=OA ∴52=OG ……………1分∵AC ∥OB ∴ADOBAE BE =……………1分 又BE AE -=58,x AD -=12,10=OB∴xBEBE -=-121058 ∴x BE -=22580 ……………1分∴52225802121⨯-⨯=⨯⨯=xOG BE y ∴xy -=22400……………1分自变量x 的取值范围为120<≤x ……………1分长宁区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.图10O ACBO BA C DBAO25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO Θ,AO =5, ∴322=-=AC AO CO (1分)5=OD Θ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO Θ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分) (3)①当OBAE OB OH AB S ABO ⋅=⋅=∆2121ΘOF OB OH AB AE ==⋅=524︒=∠90AFO Θ5722=-=OF AO AF 5142==AF AD (3分)②当OA524==BM DG ︒=∠90DGO Θ5722=-=DG DO GO 518575=-=-=GO AO AG ︒=∠90DGA Θ622=+=DG AG AD 6514或=AD ABC △8AB =10BC =12AC =2AB AD AC =⋅AEF C ∠=∠ABC ∠BE x =CF y =y xGEF △8AB =12AC =2AB AD AC =g 163AD =16201233CD =-=2AB AD AC =g AD AB AB AC =BAC ∠ADB ABC △∽△ABD C =∠∠BD AD BC AB =203BD =BD CD =DBC C =∠∠ABD DBC =∠∠BD ABC ∠A AH BC ∥BD H AH BC∥16432053AD DH AH DC BD BC ====203BD CD ==8AH =163AD DH ==12BH =AH BC∥AH HGBE BG =812BG x BG-=128xBG x =+BEF C EFC=+∠∠∠BEA AEF C EFC+=+∠∠∠∠AEF C =∠∠BEA EFC=∠∠DBC C=∠∠BEG CFE△∽△BE BGCF EC=12810x x x y x+=-228012x x y -++=GEF GE GF=23GE BE EF CF ==23x y =4BE =EG EF =BE CF =x y =5BE =-FG FE =32GE BE EF CF ==32x y =3BE =-+BCBO BE ⋅=2(第25题图)A B C D G EF (备用图) A B C D知AD =1,AB =2.(1)设BC =x ,CD =y ,求y 关于x 的函数关系式,并写出定义域; (2)当∠B =70°时,求∠AEC 的度数; (3)当△ACE 为直角三角形时,求边BC 的长.25. 解:(1)过A 作AH ⊥BC 于H ,————————————————————(1分) 由∠D =∠BCD =90°,得四边形ADCH 为矩形.图9ABCDOE备用图ABO备用图AB O在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,所以22221y x =+-,——————————————————————(1分) 则()22303y x x x =-++<<.———————————————(2分)(2)取CD 中点T ,联结TE ,————————————————————(1分) 则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD .∴∠AET =∠B =70°. ———————————————————————(1分) 又AD =AE =1,∴∠AED =∠ADE =∠DET =35°. ——————————————————(1分) 由ET 垂直平分CD ,得∠CET =∠DET =35°,————————————(1分) 所以∠AEC =70°+35°=105°. ——————————————————(1分)(3)当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2. ——————————————————————(2分)当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x =--则22411724AD CAx x AC CBx x -±=⇒=⇒=-(舍负)—————(2分) 易知∠ACE <90°.所以边BC 的长为2或1172+.——————————————————(1分)金山区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5 分) 如图9,已知在梯形ABCD 中,AD ∥BC ,AB =DC =AD =5,3sin 5B,P 是线段BC 上 一点,以P 为圆心,PA 为半径的⊙P 与射线AD 的另一个交点为Q ,射线PQ 与射线CD 相交于点E ,设BP =x .(1)求证△ABP ∽△ECP ;(2)如果点Q 在线段AD 上(与点A 、D 不重合),设△APQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域; (3)如果△QED 与△QAP 相似,求BP 的长.25.解:(1)在⊙P 中,PA =PQ ,∴∠PAQ =∠PQA ,……………………………(1分)∵AD ∥BC ,∴∠PAQ =∠APB ,∠PQA =∠QPC ,∴∠APB =∠EPC ,……(1分) ∵梯形ABCD 中,AD ∥BC ,AB =DC ,∴∠B =∠C ,…………………………(1分) ∴△APB ∽△ECP .…………………………………………………………(1分)APC DQEAB CD图9备用图(2)作AM ⊥BC ,PN ⊥AD ,∵AD ∥BC ,∴AM ∥PN ,∴四边形AMPN 是平行四边形,∴AM =PN ,AN =MP .………………………………………………………(1分) 在Rt △AMB 中,∠AMB =90°,AB =5,sinB =35, ∴AM =3,BM =4,∴PN =3,PM =AN =x -4,……………………………………(1分) ∵PN ⊥AQ ,∴AN =NQ ,∴AQ = 2x -8,……………………………………(1分)∴()1128322y AQ PN x =⋅⋅=⋅-⋅,即312y x =-,………………………(1分)定义域是1342x <<.………………………………………………………(1分)(3)解法一:由△QED 与△QAP 相似,∠AQP =∠EQD ,①如果∠PAQ =∠DEQ ,∵△APB ∽△ECP ,∴∠PAB =∠DEQ ,又∵∠PAQ =∠APB ,∴∠PAB =∠APB ,∴BP =BA =5.………………………(2分) ②如果∠PAQ =∠EDQ ,∵∠PAQ =∠APB ,∠EDQ =∠C ,∠B =∠C ,∴∠B =∠APB ,∴ AB =AP ,∵AM ⊥BC ,∴ BM =MP =4,∴ BP =8.………(2分) 综上所述BP 的长为5或者8.………………………………………………(1分) 解法二:由△QAP 与△QED 相似,∠AQP =∠EQD ,在Rt △APN 中,AP PQ ===∵QD ∥PC ,∴EQ EPQD PC=, ∵△APB ∽△ECP ,∴AP EPPB PC=,∴AP EQ PB QD =,①如果AQ EQQP QD =,∴AQ AP QP PB =x=,解得5x =………………………………………………………………………(2分) ②如果AQ DQQP QE =,∴AQ PBQP AP ==解得8x =………………………………………………………………………(2分) 综上所述BP 的长为5或者8.…………………………………………………(1分)静安区25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,平行四边形ABCD 中,已知AB =6,BC =9,31cos =∠ABC .对角线AC 、BD 交于点O .动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .设BP = x .(1) 求AC 的长;(2) 设⊙O 的半径为y ,当⊙P 与⊙O 外切时, 求y 关于x 的函数解析式,并写出定义域; (3) 如果AC 是⊙O 的直径,⊙O 经过点E , 求⊙O 与⊙P 的圆心距OP 的长.25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分) 解:(1)作AH ⊥BC 于H ,且31cos =∠ABC ,AB =6, 那么2316cos =⨯=∠⋅=ABC AB BH …………(2分) BC =9,HC =9-2=7,242622=-=AH , ……………………(1分) 9493222=+=+=HC AH AC ﹒ ………(1分)(2)作OI ⊥AB 于I ,联结PO , AC =BC =9,AO = ∴∠OAB =∠ABC , ∴Rt △AIO 中, 31cos cos ==∠=∠AO AI ABC IAO ∴AI =,IO =2322=AI ……………………(1分)A 第25题图B P OC DE · 第25题备用图ABOCDDA·第25题图BP OCHE第25题图BH∴PI =AB -BP -AI ==x -29, ……………………(1分) ∴Rt △PIO 中,41539481918)29()23(2222222+-=+-+=-+=+=x x x x x OI PI OP ……(1分) ∵⊙P 与⊙O 外切,∴y x x x OP +=+-=415392 ……………………(1分) ∴y =x x x x x x -+-=-+-153364214153922…………………………(1分) ∵动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .∴定义域:0<x ≤3…………(1分) (3)由题意得:∵点E 在线段AP 上,⊙O 经过点E ,∴⊙O 与⊙P 相交 ∵AO 是⊙O 半径,且AO >OI ,∴交点E 存在两种不同的位置,OE =OA =29① 当E 与点A 不重合时,AE 是⊙O 的弦,OI 是弦心距,∵AI =,AE =3, ∴点E 是AB 中点,321==AB BE ,23==PE BP ,3=PI , IO =23 3327)23(32222==+=+=IO PI OP ……………………(2分) ② 当E 与点A 重合时,点P 是AB 中点,点O 是AC 中点,2921==BC OP ……(2分)∴33=OP 或29. 闵行区25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)如图,已知在Rt △ABC 中,∠ACB = 90o,AC =6,BC = 8,点F 在线段AB 上,以点B 为圆心,BF 为半径的圆交BC 于点E ,射线AE 交圆B 于点D (点D 、E 不重合). (1)如果设BF = x ,EF = y ,求y 与x 之间的函数关系式,并写出它的定义域; (2)如果»»2EDEF =,求ED 的长; (3)联结CD 、BD ,请判断四边形ABDC 是否为直角梯形说明理由.(备用图)CBA (第25题图)CBEF DA25.解:(1)在Rt △ABC 中,6AC =,8BC =,90ACB ∠=o∴10AB =.……………………………………………………………(1分) 过E 作EH ⊥AB ,垂足是H , 易得:35EH x =,45BH x =,15FH x =.…………………………(1分) 在Rt △EHF 中,222223155EF EH FH x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∴(08)y x x =<<.………………………………………(1分+1分) (2)取»ED的中点P ,联结BP 交ED 于点G ∵»»2EDEF =,P 是»ED 的中点,∴»»»EP EF PD ==. ∴∠FBE =∠EBP =∠PBD .∵»»EPEF =,BP 过圆心,∴BG ⊥ED ,ED =2EG =2DG .…………(1分) 又∵∠CEA =∠DEB ,∴∠CAE =∠EBP =∠ABC .……………………………………………(1分)又∵BE 是公共边,∴BEH BEG ∆∆≌.∴35EH EG GD x ===.在Rt △CEA 中,∵AC = 6,8BC =,tan tan AC CECAE ABC BC AC∠=∠==, ∴66339tan 822CE AC CAE ⨯⨯=⋅∠===.……………………………(1分) ∴9169782222BE =-=-=.……………………………………………(1分) ∴6672125525ED EG x ===⨯=.……………………………………(1分)(3)四边形ABDC 不可能为直角梯形.…………………………………(1分)①当CD ∥AB 时,如果四边形ABDC 是直角梯形, 只可能∠ABD =∠CDB = 90o. 在Rt △CBD 中,∵8BC =, ∴32cos 5CD BC BCD =⋅∠=, 24sin 5BD BC BCD BE =⋅∠==∴321651025CD AB ==,328153245CE BE -==; ∴CD CEAB BE≠. ∴CD 不平行于AB ,与CD ∥AB 矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分) ②当AC ∥BD 时,如果四边形ABDC 只可能∠ACD =∠CDB = 90o.∵AC ∥BD ,∠ACB = 90o, ∴∠ACB =∠CBD = 90o. ∴∠ABD =∠ACB +∠BCD > 90o. 与∠ACD =∠CDB = 90o矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分)普陀区25.(本题满分14分)已知P 是O ⊙的直径BA 延长线上的一个动点,P ∠的另一边交O ⊙于点C 、D ,两点位于AB 的上方,AB =6,OP m =,1sin 3P =,如图11所示.另一个半径为6的1O ⊙经过点C 、D ,圆心距1OO n =.(1)当6m =时,求线段CD 的长;(2)设圆心1O 在直线AB 上方,试用n 的代数式表示m ;(3)△1POO 在点P 的运动过程中,是否能成为以1OO 为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由. 25.解:(1)过点O 作OH ⊥CD ,垂足为点H ,联结OC .在Rt △POH 中,∵1sin 3P =,6PO =,∴2OH =. ········· (1分) ∵AB =6,∴3OC =. ······················ (1分) 由勾股定理得 5CH =. ····················· (1分)∵OH ⊥DC ,∴225CD CH ==. ··············· (1分) (2)在Rt △POH 中,∵1sin 3P =, PO m =,∴3m OH =. ········ (1分) 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. ················ (1分)在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. ·············· (1分)可得 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -=. ········· (2分)(3)△1POO 成为等腰三角形可分以下几种情况:● 当圆心1O 、O 在弦CD 异侧时①1OP OO =,即m n =,由23812n n n-=解得9n =. ········· (1分)即圆心距等于O ⊙、1O ⊙的半径的和,就有O ⊙、1O ⊙外切不合题意舍去.(1分) ②11O P OO =,由22233m m n m -+-()()n =, OAB备用图PDOABC图11解得23m n =,即23n 23812n n-=,解得n ········· (1分) ● 当圆心1O 、O 在弦CD 同侧时,同理可得 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132n n n-=,解得n . ·· (2分)综上所述,n.青浦区25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9-1,已知扇形MON,∠MON =90o ,点B 在弧MN 上移动,联结BM ,作OD ⊥BM ,垂足为点D ,C 为线段OD 上一点,且OC =BM ,联结BC 并延长交半径OM 于点A ,设OA = x ,∠COM 的正切值为y .(1)如图9-2,当AB ⊥OM 时,求证:AM =AC ; (2)求y 关于x 的函数关系式,并写出定义域; (3)当△OAC 为等腰三角形时,求x 的值.25.解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°. ·········· (1分)∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM . ········· (1分) ∵∠OAC =∠BAM ,OC =BM ,∴△OAC ≌△ABM , ······················ (1分) ∴AC =AM . ························· (1分)(2)过点D 作OMND C BA图9-1 ONDCBA图9-2NMO备用图DE=MD MEDMAE)12x2==OA OC DM OE OD OD 2=DM OA ODOE =y0<≤x 111222===DM BM OCx ==OD =DMyOD1=x2=x 2=x α90α︒-α90α︒-α45︒290α∠=>︒BOA 90∠≤︒BOA (1)求CE 的长;(2)P 是 CE 延长线上一点,直线AP 、CD 交于点Q.① 如果△ACQ ∽△CPQ ,求CP 的长;② 如果以点A 为圆心,AQ 为半径的圆与⊙C 相切,求CP 的长.25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分) 解:(1)∵AE ∥CD ∴BC DCBE AE=…………………………………1分 ∵BC=DC∴BE=AE …………………………………1分设CE =x 则AE =BE =x +2 ∵ ∠ACB =90°, ∴222AC CE AE +=(第25题图)CBA DE(备用图)CBADE(第25题图)CBADE即229(2)x x +=+………………………1分∴54x = 即54CE =…………………………………1分(2)①∵△ACQ ∽△CPQ ,∠QAC>∠P∴∠ACQ=∠P …………………………………1分 又∵AE ∥CD ∴∠ACQ=∠CAE∴∠CAE=∠P ………………………………1分 ∴△ACE ∽△PCA ,…………………………1分 ∴2AC CE CP =⋅…………………………1分即2534CP =⋅ ∴365CP = ……………………………1分②设CP =t ,则54PE t =-∵∠ACB =90°,∴AP ∵AE ∥CD∴AQ ECAP EP=……………………………1分5545454t t ==--∴AQ =1分若两圆外切,那么1AQ == 此时方程无实数解……………………………1分CBA DEPQ若两圆内切切,那么5AQ == ∴21540160t t -+=解之得2015t ±=………………………1分又∵54t >∴2015t +=………………………1分徐汇区25. 已知四边形ABCD 是边长为10的菱形,对角线AC 、BD 相交于点E ,过点C 作CF ∥DB 交AB 延长线于点F ,联结EF 交BC 于点H . (1)如图1,当EF BC ⊥时,求AE 的长;(2)如图2,以EF 为直径作⊙O ,⊙O 经过点C 交边CD 于点G (点C 、G 不重合),设AE 的长为x ,EH 的长为y ;① 求y 关于x 的函数关系式,并写出定义域;③ 联结EG ,当DEG ∆是以DG 为腰的等腰三角形时,求AE 的长.杨浦区25、(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)(1)如图9,在梯形ABCD中,AD当圆P过点A时,求圆P的半径;(2)分别联结EH和EA,当△ABE△CEH时,以点B为圆心,r为半径的圆B与圆P相交,试求圆B的半径r的取值范围;(3)将劣弧沿直线EH翻折交BC于点F,试通过计算说明线段EH和EF的比值为定值,并求出此定值。
上海市各区2018届中考数学二模试卷精选汇编:解方程组不等式组及参考答案

静安区
x1 1
5 ,
x2 1
5
,…………………………………………(
y1 3 5
y2 3 5
4 分)
20.(本题满分 10 分)
x4 5
解方程:
x1 1x
20.(本题满分 10 分)
6x
.
x2 1
x4 5
6x
解方程:
x1 1x
x2 1
解: ( x 4)( x 1) 5( x 1) 6x
x2 3x 4 5x 5 6x 0 x 2 8x 9 0 x1 1, x2 9 经检验 x1 1是 增根,舍去 ∴原方程的根是 x 9 .
20.(本题满分 10 分)
解:方程①可变形为 (x 6 y)( x y) 0
得 x 6y 0或 x y 0
( 2 分)
将它们与方程②分别组成方程组,得(Ⅰ)
x 6y 0
xy0
或(Ⅱ)
( 2 分)
2x y 1
2x y 1
解方程组(Ⅰ)
6 x
13 , 1
y 13
解方程组(Ⅱ)
x1 y1
( 4 分)
所以原方程组的解是
所以原方程组可化为两个二元一次方程组:
x 2 y 3, 2x y 1;
x 2 y 3,
……………… 2 分
2x y 1;
分别解这两个方程组,得原方程组的解是
1
x1 1, x2
, 5 ………… 4 分
y1 1; y2
7 .
5
长宁区 20.(本题满分 10 分)
2
x
5 xy
6y2
0 , ①
解方程组:
2x y 1 . ②
2x 3 x x x 12
上海市各区2018届最新中考二模数学分类汇编:综合计算专题(含答案)

∴梯形 ABCD 的面积 S
1 1 ( AD BC ) CH (10 8) 6 54 ………1 分 2 (1)小题 4 分,第(2)小题 6 分) 如图,在等腰三角形 ABC 中,AB=AC,点 D 在 BA 的延长线上,BC=24,
过点 P 作 (1)如图 1,当
交圆 O 于点 D. 时,求 PD 的长; 时,求 PC 的长.
(2)如图 2,当 BP 平分
C P A O D B A
C P
D
O
B
(第 21 题图 1)
(第 21 题图 2)
21. (本题满分 10 分,每小题 5 分) (1)解:联结 ∵直径 ∵ ∵ 又∵ ∴ ∵在 ∴ ∴ (2)过点 ∵ ∴ ∵ ∴ ∵在⊙ 中, , , ……………………2 分 作 ……………………………………………………………1 分 ,垂足为 中, ∴ ∴ ∴ , ………………………………………………1 分 ……………………………1 分 ∴ ……1 分 ……………………………………1 分
H
D
∵ ACD D CAD 180 ∴ D 70 …………………1 分
(2) 过点 C 作 CH AD ,垂足为点 H ,在 Rt△ CHD 中, cot D ∴ cot D
HD 1 …………………………1 分 CH 3
2 2
1 3
设 HD x ,则 CH 3 x ,∵ AC AD , AC 10 在 Rt△ CHA 中, AH CH
2 , 3
21. 解: (1)由 AB=AC=6,AH⊥BC, 得 BC=2BH.—————————————————————————(2 分) 在△ABH 中,AB=6,cosB= 得 BH=
精品上海市各区2018届精品中考二模数学分类汇编:几何证明专题(含答案)

上海市各区2018届九年级中考二模数学试卷精选汇编几何证明专题宝山区、嘉定区23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在CD 边的延长线上,且满足︒=∠90MAN ,联结MN 、AC ,MN 与边AD 交于点E . (1)求证;AN AM =;(2)如果NAD CAD ∠=∠2,求证:AE AC AM ⋅=2.23.证明:(1)∵四边形ABCD 是正方形∴AD AB =,︒=∠=∠=∠=∠90BCD ADC B BAD ……1分 ∴︒=∠+∠90MAD MAB ∵︒=∠90MAN∴︒=∠+∠90MAD NAD ∴NAD MAB ∠=∠………1分 ∵︒=∠+∠180ADC ADN ∴︒=∠90ADN ……1分 ∴ADN B ∠=∠……………………1分 ∴△ABM ≌△ADN ………………………1分 ∴AN AM = ……………………………1分(2)∵四边形ABCD 是正方形 ∴AC 平分BCD ∠和BAD ∠∴︒=∠=∠4521BCD BCA ,︒=∠=∠=∠4521BAD CAD BAC ……1分 ∵NAD CAD ∠=∠2 ∴︒=∠5.22NAD∵NAD MAB ∠=∠ ∴︒=∠5.22MAB ………1分 ∴︒=∠5.22MAC ∴︒=∠=∠5.22NAE MAC ∵AN AM =,︒=∠90MAN ∴︒=∠45ANE∴ANE ACM ∠=∠…………………1分图6图6∴△ACM ∽△ANE …………1分 ∴ANACAE AM =……1分 ∵AN AM =∴AE AC AM ⋅=2…………1分长宁区23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =. (1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分) ∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分)ACDEF GB第23题图崇明区23.(本题满分12分,第(1)、(2)小题满分各6分)如图,AM 是ABC △的中线,点D 是线段AM 上一点(不与点A 重合).DE AB ∥交BC 于点K ,CE AM ∥,联结AE . (1)求证:AB CMEK CK=; (2)求证:BD AE =.23.(本题满分12分,每小题6分) (1)证明:∵DE AB ∥∴ ABC EKC =∠∠ ……………………………………………………1分∵CE AM ∥∴ AMB ECK =∠∠ ……………………………………………………1分∴ABM EKC △∽△ ……………………………………………………1分 ∴AB BMEK CK=………………………………………………………1分 ∵ AM 是△ABC 的中线∴BM CM = ………………………………………………………1分∴AB CMEK CK=………………………………………………………1分 (2)证明:∵CE AM ∥∴DE CMEK CK =………………………………………………………2分 又∵AB CMEK CK=∴DE AB = ………………………………………………………2分 又∵DE AB ∥(第23题图)ABK MCDE∴四边形ABDE 是平行四边形 …………………………………………1分 ∴BD AE = ………………………………………………………1分奉贤区23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD ,DC ∥AB ,对角线AC 平分∠BCD , 点E 在边CB 的延长线上,EA ⊥AC ,垂足为点A . (1)求证:B 是EC 的中点;(2)分别延长CD 、EA 相交于点F ,若EC DC AC ⋅=2,求证:FC AC AF AD ::=.黄浦区23.(本题满分12分)如图,点E 、F 分别为菱形ABCD 边AD 、CD 的中点. (1)求证:BE =BF ;(2)当△BEF 为等边三角形时,求证:∠D =2∠A .23. 证:(1)∵四边形ABCD 为菱形,∴AB =BC =AD =CD ,∠A =∠C ,——————————————————(2分)ACD E图7B又E、F是边的中点,∴AE=CF,——————————————————————————(1分)∴△ABE≌△CBF———————————————————————(2分)∴BE=BF. ——————————————————————————(1分)(2)联结AC、BD,AC交BE、BD于点G、O. ——————————(1分)∵△BEF是等边三角形,∴EB=EF,又∵E、F是两边中点,∴AO=12AC=EF=BE.——————————————————————(1分)又△ABD中,BE、AO均为中线,则G为△ABD的重心,∴1133OG AO BE GE===,∴AG=BG,——————————————————————————(1分)又∠AGE=∠BGO,∴△AGE≌△BGO,——————————————————————(1分)∴AE=BO,则AD=BD,∴△ABD是等边三角形,———————————————————(1分)所以∠BAD=60°,则∠ADC=120°,即∠ADC=2∠BAD. —————————————————————(1分)金山区23.(本题满分12分,每小题6分)如图7,已知AD是△ABC的中线,M是AD的中点,过A点作AE∥BC,CM的延长线与AE相交于点E,与AB相交于点F.(1)求证:四边形AEBD是平行四边形;(2)如果AC=3AF,求证四边形AEBD是矩形.E AFM23.证明:(1)∵AE //BC ,∴∠AEM =∠DCM ,∠EAM =∠CDM ,……………………(1分)又∵AM=DM ,∴△AME ≌△DMC ,∴AE =CD ,…………………………(1分) ∵BD=CD ,∴AE =BD .……………………………………………………(1分) ∵AE ∥BD ,∴四边形AEBD 是平行四边形.……………………………(2分)(2)∵AE //BC ,∴AF AEFB BC=.…………………………………………………(1分) ∵AE=BD=CD ,∴12AF AE FB BC ==,∴AB=3AF .……………………………(1分) ∵AC=3AF ,∴AB=AC ,…………………………………………………………(1分) 又∵AD 是△ABC 的中线,∴AD ⊥BC ,即∠ADB =90°.……………………(1分) ∴四边形AEBD 是矩形.……………………………………………………(1分)静安区23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) 已知:如图,在平行四边形ABCD 中, AC 、DB 交于点E , 点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC .(1)求证:DBABBF EF =; (2)如果DF AD BD ⋅=22,求证:平行四边形ABCD 是矩形.23.(本题满分12分,第(1)小题6分,第(2)小题6分) 证明:(1)∵平行四边形ABCD ,∴AD //BC ,AB //DC∴∠BAD +∠ADC =180°,……………………………………(1分) 又∵∠BEF +∠DEF =180°, ∴∠BAD +∠ADC =∠BEF +∠DEF ……(1分)C第23题图AB DEFA DE∵∠DEF =∠ADC ∴∠BAD =∠BEF , …………………………(1分) ∵AB //DC , ∴∠EBF =∠ADB …………………………(1分)∴△ADB ∽△EBF ∴DB ABBF EF = ………………………(2分) (2) ∵△ADB ∽△EBF ,∴BFBEBD AD =, ………………………(1分) 在平行四边形ABCD 中,BE =ED =BD 21∴221BD BE BD BF AD =⋅=⋅∴BF AD BD ⋅=22, ………………………………………(1分) 又∵DF AD BD ⋅=22∴DF BF =,△DBF 是等腰三角形 …………………………(1分) ∵DE BE =∴FE ⊥BD , 即∠DEF =90° …………………………(1分) ∴∠ADC =∠DEF =90° …………………………(1分) ∴平行四边形ABCD 是矩形 …………………………(1分)闵行区23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知在△ABC 中,∠BAC =2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FG ∥AC ,联结DG .(1)求证:BF BC AB BD ⋅=⋅; (2)求证:四边形ADGF 是菱形.23.证明:(1)∵AE 平分∠BAC ,∴∠BAC =2∠BAF =2∠EAC .∵∠BAC =2∠C ,∴∠BAF =∠C =∠EAC .…………………………(1分) 又∵BD 平分∠ABC ,∴∠ABD =∠DBC .……………………………(1分) ∵∠ABF =∠C ,∠ABD =∠DBC ,∴ABF CBD ∆∆∽.…………………………………………………(1分) ∴AB BFBC BD=.………………………………………………………(1分) ∴BF BC AB BD ⋅=⋅.………………………………………………(1分) (2)∵FG ∥AC ,∴∠C =∠FGB ,∴∠FGB =∠FAB .………………(1分)ABEGCFD(第23题图)∵∠BAF =∠BGF ,∠ABD =∠GBD ,BF =BF ,∴ABF GBF ∆∆≌.∴AF =FG ,BA =BG .…………………………(1分) ∵BA =BG ,∠ABD =∠GBD ,BD =BD ,∴ABD GBD ∆∆≌.∴∠BAD =∠BGD .……………………………(1分) ∵∠BAD =2∠C ,∴∠BGD =2∠C ,∴∠GDC =∠C ,∴∠GDC =∠EAC ,∴AF ∥DG .……………………………………(1分) 又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分) ∴AF =FG .……………………………………………………………(1分) ∴四边形ADGF 是菱形.……………………………………………(1分)普陀区23.(本题满分12分)已知:如图9,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG EF =. (1)求证:四边形ABED 是菱形; (2)联结AE ,又知AC ⊥ED ,求证:212AE EF ED =.23.证明:(1)∵ AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形. ··························· (2分)∵FG ∥AD ,∴FG CFAD CA=. ·················································································· (1分) 同理EF CFAB CA = . ··································································································· (1分) 得FG AD =EF AB∵FG EF =,∴AD AB =. ···················································································· (1分) ∴四边形ABED 是菱形. ························································································· (1分) (2)联结BD ,与AE 交于点H .ABC DE FG图9∵四边形ABED 是菱形,∴12EH AE =,BD ⊥AE . ····································· (2分) 得90DHE ∠= .同理90AFE ∠=.∴DHE AFE ∠∠=.································································································ (1分) 又∵AED ∠是公共角,∴△DHE ∽△AFE . ··················································· (1分)∴EH DEEF AE =. ········································································································· (1分) ∴212AE EF ED =. ······························································································ (1分) 青浦区23.(本题满分12分,第(1)、(2)小题,每小题6分)如图7,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点M ,点E 在边 BC 上,且 DAE DCB ∠=∠,联结AE ,AE 与BD 交于点F .(1)求证:2DM MF MB =⋅; (2)联结DE ,如果3BF FM =,求证:四边形ABED 是平行四边形.23.证明:(1)∵AD //BC ,∴∠=∠DAE AEB , ····························································· (1分)∵∠=∠DCB DAE ,∴∠=∠DCB AEB , ··········································· (1分) ∴AE //DC , ···································································································· (1分)∴=FM AMMD MC.·························································································· (1分) ∵AD //BC ,∴=AM DMMC MB, ····································································· (1分) ∴=FM DMMD MB, ························································································· (1分) 即2=⋅MD MF MB .(2)设=FM a ,则=3BF a ,=4BM a . ························································· (1分)由2=⋅MD MF MB ,得24=⋅MD a a ,∴2=MD a , ································································································ (1分) ∴3==DF BF a . ························································································ (1分) ∵AD //BC ,∴1==AF DFEF BF, ····································································· (1分) MFE DCBA图7∴=AF EF , ································································································· (1分) ∴四边形ABED 是平行四边形. ······································································ (1分)松江区23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)如图,已知梯形ABCD 中,AB ∥CD ,∠D =90°,BE 平分∠ABC ,交CD 于点E , F 是AB 的中点,联结AE 、EF ,且AE ⊥BE .求证:(1)四边形BCEF 是菱形;(2)2BE AE AD BC ⋅=⋅.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分) 证明:(1) ∵BE 平分∠ABC ,∴∠ABE =∠CBE …………………………………………………1分 ∵AE ⊥BE ∴∠AEB =90° ∵F 是AB 的中点 ∴12EF BF AB ==………………………………………………1分 ∴∠FEB =∠FBE …………………………………………………1分 ∴∠FEB =∠CBE …………………………………………………1分 ∴EF ∥BC …………………………………………………1分 ∵AB ∥CD∴四边形BCEF 是平行四边形…………………………1分 ∵EF BF =∴四边形BCEF 是菱形……………………………………1分(2) ∵四边形BCEF 是菱形, ∴BC =BF∵12BF AB =(第23题图)FACD E(第23题图)FACD EB∴AB =2BC ………………………………………………1分∵ AB ∥CD∴ ∠DEA =∠EAB∵ ∠D =∠AEB∴ △EDA ∽△AEB ………………………………………2分∴AD AE BE AB = …………………………………………1分 ∴ BE ·AE =AD ·AB∴ 2BE AE AD BC ⋅=⋅…………………………………1分徐汇区23. 在梯形ABCD 中,AD ∥BC ,AB CD =,BD BC =,点E 在对角线BD 上,且DCE DBC ∠=∠.(1)求证:AD BE =;(2)延长CE 交AB 于点F ,如果CF AB ⊥,求证:4EF FC DE BD ⋅=⋅.杨浦区23、(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图7,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G 的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN。
上海市各区2018届中考数学二模试卷精选汇编:填空题及答案

16.如图,在梯形ABCD中,AB//CD,∠C=90°,BC=CD=4, ,
若 , ,用 、 表示 ▲.
17.如果一个三角形有一条边上的高等于这条边的一半,
那么我们把这个三角形叫做半高三角形.已知直角三角形ABC
是半高三角形,且斜边 ,则它的周长等于▲.
二、填空题:(本大题共12题,每题4分,满分48分)
7. ;8. ;9. ;10. ;
11. ;12. ;13. ;14. ;
15. ;16. ;17. ;18. .
奉贤区
7.计算: .
8.如果 ,且 ,那么 的值是.
9.方程 的根是.
10.已知反比例函数 ,在其图像所在的每个象限内, 的值随 的值增大而减
17.如图2,点 、 、 在圆 上,弦 与半径 互相平分,那么 度数为▲度.
18.如图3,在△ 中, , ,点 在边 上,且 .
如果△ 绕点 顺时针旋转,使点 与点 重合,点 旋转至点 ,那么线段
的长为▲.
7. 2 8. 9. 10.
11. 12. 13. 400 14. 2.8 15.
16. 2 17. 120° 18.
上海市各区2018届中考二模数学试卷精选汇编 填空题专题
宝山区、嘉定区
二、填空题(本大题共12题,每题4分,满分48分)
7.计算: ▲.
8.一种细菌的半径是 米,用科学记数法把它表示为▲米.
9.因式分解: ▲.
10.不等式组 的解集是▲.
11.在一个不透明的布袋中装有 个白球、 个红球和 个黄球,这些球除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到黄球的概率是▲.
2018年上海市嘉定区中考数学二模试卷(可编辑修改word版)
2018 年上海市嘉定区中考数学二模试卷一、选择题:(本大题共6 题,每题4 分,满分24 分)1.(4 分)下列说法中,正确的是()A.0 是正整数B.1 是素数C.是分数D.是有理数2.(4 分)关于x 的方程x2﹣mx﹣2=0 根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定3.(4 分)将直线y=2x 向下平移2 个单位,平移后的新直线一定不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(4 分)下列说法正确的是()A.一组数据的中位数一定等于该组数据中的某个数据B.一组数据的平均数和中位数一定不相等C.一组数据的众数可以有几个D.一组数据的方差一定大于这组数据的标准差5.(4 分)对角线互相平分且相等的四边形一定是()A.等腰梯形B.矩形C.菱形D.正方形6.(4 分)已知圆O1 的半径长为6cm,圆O2 的半径长为4cm,圆心距O1O2=3cm,那么圆O1与圆O2的位置关系是()A.外离B.外切C.相交D.内切二、填空题(本大题共12 题,每题4 分,满分48 分)7.(4 分).8.(4 分)一种细菌的半径是0.00000419 米,用科学记数法把它表示为米.9.(4 分)因式分解:x2﹣4x=.10.(4 分)不等式组的解集为.11.(4 分)在一个不透明的布袋中装有2 个白球、8 个红球和5 个黄球,这些球除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到黄球的概率是.12.(4 分)方程的解是x=.13.(4 分)近视眼镜的度数y(度)与镜片焦距x(米)呈反比例,其函数关系式为y.如果近似眼镜镜片的焦距x=0.3 米,那么近视眼镜的度数y 为.14.(4 分)数据1、2、3、3、6 的方差是.15.(4 分)在△ABC 中,点D 是边BC 的中点,,,那么(用、表示).16.(4 分)如图,在矩形ABCD 中,点E 在边CD 上,点F 在对角线BD 上,DF:DE=2:,EF⊥ BD,那么tan∠ADB=.17.(4 分)如图,点A、B、C 在圆O 上,弦AC 与半径OB 互相平分,那么∠AOC 度数为度.18.(4 分)如图,在△ ABC 中,AB=AC=5,BC=6,点D 在边AB 上,且∠ BDC=90°.如果△ACD 绕点A 顺时针旋转,使点C 与点B 重合,点D 旋转至点D1,那么线段DD1的长为.三、简答题(本大题共7 题,满分78 分)19.(10 分)先化简,再求值:,其中x=2.20.(10 分)解方程组:21.(10 分)如图,在梯形ABCD 中,AD∥BC,∠BAD=90°,AC=AD.(1)如果∠BAC﹣∠BCA=10°,求∠D 的度数;(2)若AC=10,cot∠D,求梯形ABCD 的面积.22.(12 分)有一座抛物线拱型桥,在正常水位时,水面BC 的宽为10 米,拱桥的最高点D到水面BC 的距离DO 为4 米,点O 是BC 的中点,如图,以点O 为原点,直线BC 为x,建立直角坐标xOy.(1)求该抛物线的表达式;(2)如果水面BC 上升3 米(即OA=3)至水面EF,点E 在点F 的左侧,求水面宽度EF 的长.23.(10 分)如图,在正方形ABCD 中,点M 是边BC 上的一点(不与B、C 重合),点N 在CD 边的延长线上,且满足∠MAN=90°,联结MN、AC,N 与边AD 交于点E.(1)求证;AM=AN;(2)如果∠CAD=2∠NAD,求证:AM2=AC•AE.24.(12 分)已知平面直角坐标系xOy(如图),直线y=x+m 的经过点A(﹣4,0)和点B(n,3).(1)求m、n 的值;(2)如果抛物线y=x2+bx+c 经过点A、B,该抛物线的顶点为点P,求sin∠ABP 的值;(3)设点Q 在直线y=x+m 上,且在第一象限内,直线y=x+m 与y 轴的交点为点D,如果∠AQO=∠DOB,求点Q 的坐标.25.(14 分)在圆O 中,AO、BO 是圆O 的半径,点C 在劣弧上,OA=10,AC=12,AC∥OB,联结AB.(1)如图1,求证:AB 平分∠OAC;(2)点M 在弦AC 的延长线上,联结BM,如果△AMB 是直角三角形,请你在如图2 中画出点M 的位置并求CM 的长;(3)如图3,点D 在弦AC 上,与点A 不重合,联结OD 与弦AB 交于点E,设点D 与点C 的距离为x,△OEB 的面积为y,求y 与x 的函数关系式,并写出自变量x 的取值范围.2018 年上海市嘉定区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6 题,每题4 分,满分24 分)1.(4 分)下列说法中,正确的是()A.0 是正整数B.1 是素数C.是分数D.是有理数【解答】解:A.0 不是正整数,故本选项错误;B.1 是正整数,故本选项错误;C.是无理数,故本选项错误;D.是有理数,正确;故选:D.2.(4 分)关于x 的方程x2﹣mx﹣2=0 根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【解答】解:△=(﹣m)2﹣4×1×(﹣2)=m2+8,∵m2≥0,∴m2+8>0,即△>0,∴方程有两个不相等的实数根.故选:A.3.(4 分)将直线y=2x 向下平移2 个单位,平移后的新直线一定不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:k>0,b=0 函数图象过第一,三象限,将直线y=2x 向下平移2 个单位,所得直线的k=2>0,b<0,函数图象过第一,三、四象限;故选:B.4.(4 分)下列说法正确的是()A.一组数据的中位数一定等于该组数据中的某个数据B.一组数据的平均数和中位数一定不相等C.一组数据的众数可以有几个D.一组数据的方差一定大于这组数据的标准差【解答】解:A、一组数据的中位数不一定等于该组数据中的某个数据,故本选项错误;B、一组数据的平均数和众数不一定相等,故本选项错误;C、一组数据的众数可以有几个,这种说法是正确的,故本选项正确.D、一组数据的方差不一定大于这组数据的标准差,故本选项错误;故选:C.5.(4 分)对角线互相平分且相等的四边形一定是()A.等腰梯形B.矩形C.菱形D.正方形【解答】解:对角线互相平分切相等的四边形一定是矩形,故选:B.6.(4 分)已知圆O1 的半径长为6cm,圆O2 的半径长为4cm,圆心距O1O2=3cm,那么圆O1与圆O2的位置关系是()A.外离B.外切C.相交D.内切【解答】解:因为6﹣4=2,6+4=10,圆心距为3cm,所以,2<d<8,根据两圆相交,圆心距的长度在两圆的半径的差与和之间,所以两圆相交.故选:C.二、填空题(本大题共12 题,每题4 分,满分48 分)7.(4 分) 2 .【解答】解:∵22=4,∴2.故答案为:28.(4 分)一种细菌的半径是0.00000419 米,用科学记数法把它表示为 4.19×10﹣6 米.【解答】解:0.00000419=4.19×10﹣6,故答案为:4.19×10﹣6.9.(4 分)因式分解:x2﹣4x= x(x﹣4).【解答】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).【解答】解:解不等式x﹣1≤0,得:x≤1,解不等式3x+6>0,得:x>﹣2,∴不等式组的解集为:﹣2<x≤1,故答案为:﹣2<x≤1.11.(4 分)在一个不透明的布袋中装有2 个白球、8 个红球和5 个黄球,这些球除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到黄球的概率是.【解答】解:∵布袋中共有15 个球,其中黄球有5 个,∴从中随机摸出一个球,摸到黄球的概率是,故答案为:.12.(4 分)方程的解是x= 1 .【解答】解:两边平方得,x+3=4,移项得:x=1.当x=1 时,x+3>0.故本题答案为:x=1.13.(4 分)近视眼镜的度数y(度)与镜片焦距x(米)呈反比例,其函数关系式为y.如果近似眼镜镜片的焦距x=0.3 米,那么近视眼镜的度数y 为 400 .【解答】解:把x=0.3 代入,y=400,故答案为:400.14.(4 分)数据1、2、3、3、6 的方差是 2.8 .【解答】解:这组数据的平均数是:(1+2+3+3+6)÷5=3,则方差S2[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(6﹣3)2]=2.8;故答案为:2.8.15.(4 分)在△ABC 中,点D 是边BC 的中点,,,那么()(用、表示).【解答】解:延长AD 到E,使得DE=AD,连接BE.∵AD=DE,∠ADC=∠BDE,CD=DB,∴△ADC≌△EDB,∴AC=BE,∠C=∠EBD,∴BE∥AC,∴,∴,∴(),故答案为().16.(4 分)如图,在矩形ABCD 中,点E 在边CD 上,点F 在对角线BD 上,DF:DE=2:,EF⊥ BD,那么tan∠ADB= 2 .【解答】解:∵EF⊥BD,∴∠DFE=90°,设DF=2x,DEx,由勾股定理得:EF=x,∵四边形ABCD 是矩形,∴∠ADC=90°,∴∠ADB+∠CDB=90°,∠CDB+∠DEF=90°,∴∠ADB=∠DEF,∴tan∠ADB=tan∠DEF2,故答案为:2.17.(4 分)如图,点A、B、C 在圆O 上,弦AC 与半径OB 互相平分,那么∠AOC 度数为 120 度.【解答】解:∵弦AC 与半径OB 互相平分,∴OA=AB,∵OA=OC,∴△OAB 是等边三角形,∴∠AOB=60°,∴∠AOC=120°,故答案为120.18.(4 分)如图,在△ ABC 中,AB=AC=5,BC=6,点D 在边AB 上,且∠ BDC=90°.如果△ACD 绕点A 顺时针旋转,使点C 与点B 重合,点D 旋转至点D1,那么线段DD1的长为.【解答】解:如图,作AE⊥BC 于E.∵AB=AC=5,BC=6,∴BE=ECBC=3,∴AE4.∵S△ABC AB•CDBC•AE,∴CD,∴AD.∵△ACD 绕点A 顺时针旋转,使点C 与点B 重合,点D 旋转至点D1,∴AD=AD1,∠CAD=∠BAD1,∵AB=AC,∴△ABC∽△ADD1,∴,∴,∴DD1.故答案为.三、简答题(本大题共7 题,满分78 分)19.(10 分)先化简,再求值:,其中x=2.【解答】解:原式,当x=2 时,原式.20.(10 分)解方程组:【解答】解:由②得(2x﹣y)2=1,所以2x﹣y=1③,2x﹣y=﹣1④由①③、①④联立,得方程组:,解方程组得,解方程组得,.所以原方程组的解为:,21.(10 分)如图,在梯形ABCD 中,AD∥BC,∠BAD=90°,AC=AD.(1)如果∠BAC﹣∠BCA=10°,求∠D 的度数;(2)若AC=10,cot∠D,求梯形ABCD 的面积.【解答】解:(1)在△ABC 中,∠B=90°,则∠BAC+∠BCA=90°,又∠BAC﹣∠BCA=10°,∴∠BCA=40°,∵AD∥BC,∴∠CAD=∠BCA=40°,又∵AC=AD,∴;(2)作CH⊥AD,垂足为H,在Rt△CDH 中,cot∠D,令DH=x,CH=3x,则在Rt△ACH 中,AC2=AH2+CH2,即102=(10﹣x)2+(3x)2,解得:x=2则CH=3x=6,BC=AH=10﹣x=8,∴梯形ABCD 的面积,22.(12 分)有一座抛物线拱型桥,在正常水位时,水面BC 的宽为10 米,拱桥的最高点D到水面BC 的距离DO 为4 米,点O 是BC 的中点,如图,以点O 为原点,直线BC 为x,建立直角坐标xOy.(1)求该抛物线的表达式;(2)如果水面BC 上升3 米(即OA=3)至水面EF,点E 在点F 的左侧,求水面宽度EF 的长.【解答】解:(1)设抛物线解析式为:y=ax2+c,由题意可得图象经过(5,0),(0,4),则,解得:a,故抛物线解析为:yx2+4;(2)由题意可得:y=3 时,3x2+4解得:x=±,故EF=5,答:水面宽度EF 的长为5m.23.(10 分)如图,在正方形ABCD 中,点M 是边BC 上的一点(不与B、C 重合),点N 在CD 边的延长线上,且满足∠MAN=90°,联结MN、AC,N 与边AD 交于点E.(1)求证;AM=AN;(2)如果∠CAD=2∠NAD,求证:AM2=AC•AE.【解答】证明:(1)∵四边形ABCD 是正方形,∴AB=AD,∠BAD=90°,又∠MAN=90°,∴∠BAM=∠DAN,在△BAM 和△DAN 中,,∴△BAM≌△DAN,∴AM=AN;(2)四边形ABCD 是正方形,∴∠CAD=45°,∵∠CAD=2∠NAD,∠BAM=∠DAN,∴∠MAC=45°,∴∠MAC=∠EAN,又∠ACM=∠ANE=45°,∴△AMC∽△AEN,∴,∴AN•AM=AC•AE,∴AM2=AC•AE.24.(12 分)已知平面直角坐标系xOy(如图),直线y=x+m 的经过点A(﹣4,0)和点B(n,3).(1)求m、n 的值;(2)如果抛物线y=x2+bx+c 经过点A、B,该抛物线的顶点为点P,求sin∠ABP 的值;(3)设点Q 在直线y=x+m 上,且在第一象限内,直线y=x+m 与y 轴的交点为点D,如果∠AQO=∠DOB,求点Q 的坐标.【解答】解:(1)把A(﹣4,0)代入直线y=x+m 中得:﹣4+m=0,m=4,∴y=x+4,把B(n,3)代入y=x+4 中得:n+4=3,n=﹣1,(2)解法一:把A(﹣4,0)和点B(﹣1,3)代入y=x2+bx+c 中得:,解得:,∴y=x2+6x+8=(x+3)2﹣1,∴P(﹣3,﹣1),易得直线PB 的解析式为:y=2x+5,当y=0 时,x,∴G(,0),过B 作BM⊥x 轴于M,过G 作GH⊥AB 于H,由勾股定理得:BG,S△ABG AG•BMAB•GH,GH,∴GH,Rt△GHB 中,sin∠ABP;解法二:连接AP,得AB2=18,AP2=2,PB2=42+22=20,∴PB2=AP2+AB2,∴∠PAB=90°,∴sin∠ABP;(3)设Q(x,x+4),∵∠BOD=∠AQO,∠OBD=∠QBO,∴△BDO∽△BOQ,∴,∴BO2=BD•BQ,∴12+32,10(x+1),x=4,∴Q(4,8).25.(14 分)在圆O 中,AO、BO 是圆O 的半径,点C 在劣弧上,OA=10,AC=12,AC∥OB,联结AB.(1)如图1,求证:AB 平分∠OAC;(2)点M 在弦AC 的延长线上,联结BM,如果△AMB 是直角三角形,请你在如图2 中画出点M 的位置并求CM 的长;(3)如图3,点D 在弦AC 上,与点A 不重合,联结OD 与弦AB 交于点E,设点D 与点C 的距离为x,△OEB 的面积为y,求y 与x 的函数关系式,并写出自变量x 的取值范围.【解答】解:(1)∵OA、OB 是⊙O 的半径,∴AO=BO,∴∠OAB=∠B,∵OB∥AC,∴∠B=∠CAB,∴∠OAB=∠CAB,∴AB 平分∠OAC;(2)由题意知,∠BAM 不是直角,所以△AMB 是直角三角形只有以下两种情况:∠AMB=90°和∠ABM=90°,①当∠AMB=90°,点M 的位置如图1,过点O 作OH⊥AC,垂足为点H,∵OH 经过圆心,AC=12,∴AH=HCAC=6,在Rt△AHO 中,∵OA=10,∴OH8,∵AC∥OB,∠AMB=90°,∴∠OBM=180°﹣∠AMB=90°,∴∠OHC=∠AMB=∠OBM=90°,∴四边形OBMH 是矩形,∴BM=OH=8、OB=HM=10,∴CM=HM﹣HC=4;②当∠ABM=90°,点M 的位置如图2,由①可知,AB8、cos∠CAB,在Rt△ABM 中,cos∠CAB,∴AM=20,则CM=AM﹣AC=8,综上所述,CM 的长为4 或8;(3)如图3,过点O 作OG⊥AB 于点G,由(1)知sin∠OAG=sin∠CAB,由(2)可得sin∠CAB,∵OA=10,∴OG=2,∵AC∥OB,∴,又AE=8BE、AD=12﹣x、OB=10,∴,∴BE,∴yBE×OG2(0≤x<12).。
精品上海市各区2018届精品中考二模数学分类汇编:二次函数专题(含答案)
上海市各区2018届九年级中考二模数学试卷精选汇编:二次函数专题宝山区、嘉定区24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 已知平面直角坐标系xOy (如图7),直线m x y +=的经过点)0,4(-A 和点)3,(n B . (1)求m 、n 的值;(2)如果抛物线c bx x y ++=2经过点A 、B ,该抛物线的顶点为点P ,求ABP ∠sin 的值;(3)设点Q 在直线m x y +=上,且在第一象限内,直线m x y +=与y 轴的交点为点D ,如果DOB AQO ∠=∠,求点Q 的坐标.24.解:(1) ∵直线m x y +=的经过点)0,4(-A∴04=+-m ……………………1分∴4=m ………………………………1分∵直线m x y +=的经过点)3,(n B ∴34=+n ……………………1分∴1-=n …………………………………………1分(2)由可知点B 的坐标为)3,1(-∵抛物线c bx x y ++=2经过点A 、B ∴⎩⎨⎧=+-=+-310416c b c b∴6=b , 8=c∴抛物线c bx x y ++=2的表达式为862++=x x y …………………1分∴抛物线862++=x x y 的顶点坐标为)1,3(--P ……………1分∴23=AB ,2=AP ,52=PB∴222PB BP AB =+∴︒=∠90PAB ……………………………………1分∴PB APABP =∠sin ∴1010sin =∠ABP …………………………………………1分图7(3)过点Q 作x QH ⊥轴,垂足为点H ,则QH ∥y 轴 ∵DOB AQO ∠=∠,QBO OBD ∠=∠∴△OBD ∽△QBO∴OBDBQB OB =……………1分 ∵直线4+=x y 与y 轴的交点为点D ∴点D 的坐标为)4,0(,4=OD又10=OB ,2=DB∴25=QB ,24=DQ ……………1分∵23=AB∴28=AQ ,24=DQ ∵QH ∥y 轴 ∴AQADQH OD = ∴28244=QH ∴8=QH ……………………………………1分 即点Q 的纵坐标是8又点Q 在直线4+=x y 上点Q 的坐标为)8,4(……………1分长宁区24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点.(1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分)若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 崇明区24.(本题满分12分,第(1)、(2)、(3)小题满分各4分)已知抛物线经过点(0,3)A 、(4,1)B 、(3,0)C . (1)求抛物线的解析式;(2)联结AC 、BC 、AB ,求BAC ∠的正切值;(3)点P 是该抛物线上一点,且在第一象限内,过点P 作PG AP ⊥交y 轴于点G ,当点G 在点A 的上方,且APG △与ABC △相似时,求点P 的坐标.24.(本题满分12分,每小题4分)解:(1)设所求二次函数的解析式为2(0)y ax bx c a =++≠,………………………1分将A (0,3)、B (4,)、C (3,0)代入,得 1641,930,3.a b c a b c c ++=⎧⎪++=⎨⎪=⎩解得12523a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩………2分所以,这个二次函数的解析式为215322y x x =-+ ……………………………1分 (2)∵A (0,3)、B (4,)、C (3,0)∴AC =BC =AB =∴222AC BC AB +=∴90ACB =︒∠ ………………………………………………………2分∴13BC tan BAC AC ===∠ ……………………………………………2分(3)过点P 作PH y ⊥轴,垂足为H设P 215(,3)22x x x -+,则H 215(0,3)22x x -+ ∵A (0,3) ∴21522AH x x =-,PH x = ∵90ACB APG ==︒∠∠∴当△APG 与△ABC 相似时,存在以下两种可能: 1° PAG CAB =∠∠ 则13tan PAG tan CAB ==∠∠ 即13PH AH = ∴2115322x x x =- 解得11x = ………………………1分∴点P 的坐标为(11,36) ……………………………………………………1分 2° PAG ABC =∠∠ 则3tan PAG tan ABC ==∠∠ 即3PH AH = ∴231522x x x =- 解得173x = …………………………1分 ∴点P 的坐标为1744(,)39……………………………………………………1分 奉贤区24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy (如图8),抛物线)0(3222>++-=m m mx x y 与x 轴交于点A 、B (点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴为直线,过点C 作直线的垂线,垂足为点E ,联结DC 、BC . (1)当点C (0,3)时,① 求这条抛物线的表达式和顶点坐标; ② 求证:∠DCE=∠BCE ;(2)当CB 平分∠DCO 时,求m 的值.黄浦区24.(本题满分12分)已知抛物线2y x bx c =++经过点A (1,0)和B (0,3),其顶点为D . (1)求此抛物线的表达式; (2)求△ABD 的面积;(3)设P 为该抛物线上一点,且位于抛物线对称轴 右侧,作PH ⊥对称轴,垂足为H ,若△DPH 与△AOB 相 似,求点P 的坐标.24. 解:(1)由题意得:013b cc=++⎧⎨=⎩,———————————————————(2分)解得:43b c =-⎧⎨=⎩,—————————————————————————(1分)所以抛物线的表达式为243y x x =-+. ——————————————(1分) (2)由(1)得D (2,﹣1),———————————————————(1分) 作DT ⊥y 轴于点T , 则△ABD 的面积=()11124131211222⨯⨯-⨯⨯-⨯+⨯=.————————(3分) (3)令P ()()2,432p p p p -+>.————————————————(1分)由△DPH 与△AOB 相似,易知∠AOB =∠PHD =90°,所以243132p p p -++=-或2431123p p p -++=-,————————————(2分) 解得:5p =或73p =,所以点P 的坐标为(5,8),78,39⎛⎫-⎪⎝⎭.————————————————(1分)金山区24.(本题满分12分,每小题4分)平面直角坐标系xOy 中(如图8),已知抛物线2y x bx c =++经过点A (1,0)和B (3,0),与y 轴相交于点C ,顶点为P .(1)求这条抛物线的表达式和顶点P 的坐标; (2)点E 在抛物线的对称轴上,且EA =EC ,求点E 的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN ,点Q 在直线MN 右侧的抛物线 上,∠MEQ =∠NEB ,求点Q 的坐标.24.解:(1)∵二次函数2y x bx c =++的图像经过点A (1,0)和B (3,0), ∴10930b c b c ++=⎧⎨++=⎩,解得:4b =-,3c =.……………………………(2分)∴这条抛物线的表达式是243y x x =-+…………………………………(1分)顶点P 的坐标是(2,-1).………………………………………………(1分)(2)抛物线243y x x =-+的对称轴是直线2x =,设点E 的坐标是(2,m ).…(1分)根据题意得:=,解得:m=2,…(2分)∴点E 的坐标为(2,2).…………………………………………………(1分) (3)解法一:设点Q 的坐标为2(,43)t t t -+,记MN 与x 轴相交于点F .图8作QD ⊥MN ,垂足为D ,则2DQ t =-,2243241DE t t t t =-+-=-+………………………(1分) ∵∠QDE=∠BFE=90°,∠QED=∠BEF ,∴△QDE ∽△BFE ,…………………(1分)∴DQ DEBF EF =,∴224112t t t --+=, 解得11t =(不合题意,舍去),25t =.……………………………(1分) ∴5t =,点E 的坐标为(5,8).…………………………………………(1分)解法二:记MN 与x 轴相交于点F .联结AE ,延长AE 交抛物线于点Q ,∵AE=BE , EF ⊥AB ,∴∠AEF=∠NEB ,又∵∠AEF=∠MEQ ,∴∠QEM=∠NEB ,………………………………(1分)点Q 是所求的点,设点Q 的坐标为2(,43)t t t -+, 作QH ⊥x 轴,垂足为H ,则QH =243t t -+,OH =t ,AH =t -1, ∵EF ⊥x 轴,∴EF ∥QH ,∴EF AFQH AH=,∴221431t t t =-+-,………(1分) 解得11t =(不合题意,舍去),25t =.……………………………………(1分) ∴5t =,点E 的坐标为(5,8).…………………………………………(1分)静安区24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系xOy 中,已知点B (8,0)和点C (9,3-).抛物线c ax ax y +-=82(a ,c 是常数,a ≠0)经过点B 、C ,且与x 轴的另一交点为A .对称轴上有一点M ,满足MA =MC . (1) 求这条抛物线的表达式; (2) 求四边形ABCM 的面积;(3) 如果坐标系内有一点D ,满足四边形ABCD且AD //BC ,求点D 的坐标.24.(本题满分12分,第(1)小题4分,第(2)小题4解:(1)由题意得:抛物线对称轴aax 28-=,即4=x . 点B (8,0)关于对称轴的对称点为点A (0,0)∴0=c , …………(1分)将C (9,-3)代入ax ax y 82-=,得31-=a …………………………(1分)∴抛物线的表达式:x x y 38312+-=…………………………(1分) (2)∵点M 在对称轴上,∴可设M (4,y ) 又∵MA =MC ,即22MCMA =∴2222)3(54++=+y y , 解得y =-3, ∴M (4,-3) …………………(2分) ∵MC //AB 且MC ≠AB , ∴四边形ABCM 为梯形,,AB =8,MC =5,AB 边上的高h = y M = 3 ∴2393)58(21)(21=⨯+⨯=⨯+=MH MC AB S(3) 将点B (8,0)和点C (9,﹣3)代入b kx y BC += 可得⎩⎨⎧-=+=+3908b k b k ,解得⎩⎨⎧=-=243b k 由题意得,∵AD //BC , 3-=BC k ∴3-=AD k ,x y AD 3-=…(又∵AD 过(0,0),DC =AB =8, 设D (x ,-3x ) 2228)33()9(=+-+-x x , …………………………(1分)解得11=x (不合题意,舍去), 5132=x …………………………(1分)∴5393-=-=x y ∴点D 的坐标)539,513(-.……………………(1分)闵行区24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系xOy 中,抛物线22y ax x c =-+与x 轴交于 点A 和点B (1,0),与y 轴相交于点C (0,3). (1)求抛物线的解析式和顶点D 的坐标;(2)求证:∠DAB=∠ACB ;(3)点Q 在抛物线上,且△ADQ 是以AD 为 底的等腰三角形,求Q 点的坐标.24.解:(1)把B (1,0)和C (0,3)代入22y ax x c =-+中,得9603a c c ++=⎧⎨=⎩,解得13a c =-⎧⎨=⎩.……………………………………(2分)∴抛物线的解析式是:223y x x =--+.……………………………(1分) ∴顶点坐标D (-1,4).……………………………………………(1分) (2)令0y =,则2230x x --+=,13x =-,21x =,∴A (-3,0)∴3OA OC ==,∴∠CAO =∠OCA .…………………………………(1分)在Rt BOC ∆中,1tan 3OB OCB OC ∠==.………………………………(1分)∵AC =,DC =AD =, ∴2220AC DC +=,220AD =;∴222AC DC AD +=,ACD ∆是直角三角形且90ACD ∠=,∴1tan 3DC DAC AC ∠==,又∵∠DAC 和∠OCB 都是锐角,∴∠DAC =∠OCB .…………………(1分) ∴DAC CAO BCO OCA ∠+∠=∠+∠,即DAB ACB ∠=∠.……………………………………………………(1分) (3)令(Q x ,)y 且满足223y x x =--+,(3A -,0),(1D -,4)∵ADQ ∆是以AD 为底的等腰三角形,∴22QD QA =,即2222(3)(1)(4)x y x y ++=++-, 化简得:220x y -+=.………………………………………………(1分) 由222023x y y x x -+=⎧⎨=--+⎩,……………………………………………………(1分)解得11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩. ∴点Q的坐标是⎝⎭,⎝⎭.…(2分) 普陀区24.(本题满分12分)如图10,在平面直角坐标系xOy 中,直线3y kx =+与x 轴、y 轴分别相交于点A 、B ,并与抛物线21742y x bx =-++的对称轴交于点()2,2C ,抛物线的顶点是点D .(1)求k 和b 的值;(2)点G 是y 轴上一点,且以点B 、C 、G 为顶点的三角形与△BCD 相似,求点G 的坐标;(3)在抛物线上是否存在点E :它关于直线AB 的对称点F 恰好在y 轴上.如果存在,直接写出点E 的坐标,如果不存在,试说明理由.24.解:(1) 由直线3y kx =+经过点()2,2C ,可得12k =-.·················································· (1分)由抛物线21742y x bx =-++的对称轴是直线2x =,可得1b =. ······················· (1分) (2) ∵直线132y x =-+与x 轴、y 轴分别相交于点A 、B ,∴点A 的坐标是()6,0,点B 的坐标是()0,3. ····················································· (2分)∵抛物线的顶点是点D ,∴点D 的坐标是92,2⎛⎫ ⎪⎝⎭.·············································· (1分) ∵点G 是y 轴上一点,∴设点G 的坐标是()0,m . ∵△BCG 与△BCD 相似,又由题意知,GBC BCD ∠=∠,∴△BCG 与△BCD 相似有两种可能情况: ·························································· (1分) ①如果BG BC CB CD =,解得1m =,∴点G 的坐标是()0,1. ···· (1分)②如果BG BC CD CB =,那么352m -=,解得12m =,∴点G 的坐标是10,2⎛⎫ ⎪⎝⎭. (1分)综上所述,符合要求的点G 有两个,其坐标分别是()0,1和10,2⎛⎫ ⎪⎝⎭.(3)点E 的坐标是91,4⎛⎫- ⎪⎝⎭或92,2⎛⎫ ⎪⎝⎭. ····································································· (2分+2分)图10xy 11 O青浦区24.(本题满分12分,第(1)、(2)、(3)小题,每小题4分)已知:如图8,在平面直角坐标系xOy 中,抛物线23y axbx =++的图像与x 轴交于点A (3,0),与y 轴交于点B ,顶点C 在直线2x =上,将抛物线沿射线AC 的方向平移,当顶点C 恰好落在y 轴上的点D 处时,点B 落在点E 处. (1)求这个抛物线的解析式;(2)求平移过程中线段BC 所扫过的面积;(3)已知点F 在x 轴上,点G 在坐标平面内,且以点C 、E 、F 、G 为顶点的四边形是矩形,求点F 的坐标. .24.解:(1)∵顶点C 在直线2x =上,∴22=-=bx a,∴4=-b a . ······················ (1分) 将A (3,0)代入23y ax bx =++,得933=0++a b , ························· (1分) 解得1=a ,4=-b . ····················································································· (1分) ∴抛物线的解析式为243=-+y x x .························································· (1分) (2)过点C 作CM ⊥x 轴,CN ⊥y 轴,垂足分别为M 、N .∵243=-+y x x =()221=--x ,∴C (2,1-).··································· (1分)∵1==CM MA ,∴∠MAC =45°,∴∠ODA =45°, ∴3==OD OA . ··························································································· (1分) ∵抛物线243=-+y x x 与y 轴交于点B ,∴B (0,3),∴6=BD . ································································································ (1分) ∵抛物线在平移的过程中,线段BC 所扫过的面积为平行四边形BCDE 的面积, ∴12262122==⨯⨯⋅=⨯=BCDEBCDSSBD CN . ································ (1分)(3)联结CE .∵四边形BCDE 是平行四边形,∴点O 是对角线CE 与BD 的交点, 即OE OC ==(i )当CE 为矩形的一边时,过点C 作1CF CE ⊥,交x 轴于点1F ,设点1F a (,0),在1Rt OCF 中,22211=OF OC CF +, 即 22(2)5a a =-+,解得 52a =,∴点152F (,0) ··········································· (1分) 同理,得点252F (-,0) ····························································································· (1分) (ii )当CE 为矩形的对角线时,以点O 为圆心,OC 长为半径画弧分别交x 轴于点3F 、4F ,可得34=OF OF OC =3F )、4F ()······· (2分) 综上所述:满足条件的点有152F (,0),252F (-,0),3F )),4F (). 松江区24.(本题满分12分,每小题各4分)如图,已知抛物线y=ax 2+bx 的顶点为C (1,1-),P 是抛物线上位于第一象限内的一点,直线OP 交该抛物线对称轴于点B ,直线CP 交x 轴于点A . (1)求该抛物线的表达式;(2)如果点P 的横坐标为m ,试用m 的代数式表示线段BC 的长; (3)如果△ABP 的面积等于△ABC 的面积,求点P 坐标.24.(本题满分12分,每小题各4分)解:(1)∵抛物线y=ax 2+bx 的顶点为C (1,1-)∴ 112a b b a +=-⎧⎪⎨-=⎪⎩…………………………………2分解得:12a b =⎧⎨=-⎩…………………………………1分∴抛物线的表达式为:y=x 2-2x ;…………………………1分 (2)∵点P 的横坐标为m ,∴P 的纵坐标为:m 2-2m ……………………………1分 令BC 与x 轴交点为M ,过点P 作PN ⊥x 轴,垂足为点N ∵P 是抛物线上位于第一象限内的一点,(第24题图)∴PN = m 2-2m ,ON =m ,O M =1由PN BMON OM =得221m m BM m -=………………………1分 ∴ BM =m -2…………………………………………………1分 ∵ 点C 的坐标为(1,1-),∴ BC= m -2+1=m -1………………………………………1分 (3)令P (t ,t 2-2t ) ………………………………………………1分 △ABP 的面积等于△ABC 的面积 ∴AC =AP过点P 作PQ ⊥BC 交BC 于点Q ∴CM =MQ =1∴t 2-2t =1 …………………………………………………1分∴1t =1t =………………………………1分∴ P 的坐标为(1)……………………………………1分徐汇区24. 如图,已知直线122y x =-+与x 轴、y 轴分别交于点B 、C ,抛物线212y x bx c =-++过点B 、C ,且与x 轴交于另一个点A .(1)求该抛物线的表达式;(2)点M 是线段BC 上一点,过点M 作直线l ∥y 轴 交该抛物线于点N ,当四边形OMNC 是平行四边形时, 求它的面积;(3)联结AC ,设点D 是该抛物线上的一点,且满足DBA CAO ∠=∠,求点D 的坐标.杨浦区24、(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图8,在平面直角坐标系中,抛物线于X轴交于点A、B,于y轴交于点C,直线经过点A、C,点P为抛物线上位于直线AC上方的一个动点。
2018届中考数学上海市各区二模试卷专题汇编七【二次函数题】含答案解析
2018届中考数学上海市各区二模试卷 专题汇编七【二次函数题】宝山区、嘉定区24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 已知平面直角坐标系(如图7),直线的经过点和点.(1)求、的值;(2)如果抛物线经过点、,该抛物线的顶点为点,求的值; (3)设点在直线上,且在第一象限内,直线与轴的交点为点,如果,求点的坐标.24.解:(1) ∵直线的经过点∴……………………1分∴………………………………1分∵直线的经过点∴……………………1分xOy mx y +=)0,4(-A )3,(n B m n c bx x y ++=2A B P ABP ∠sin Q mx y +=mx y +=y D DOB AQO ∠=∠Q mx y +=)0,4(-A 04=+-m 4=m mx y +=)3,(n B 34=+n 图7∴…………………………………………1分 (2)由可知点的坐标为∵抛物线经过点、 ∴∴,∴抛物线的表达式为…………………1分 ∴抛物线的顶点坐标为……………1分∴,,∴∴……………………………………1分∴∴…………………………………………1分(3)过点作轴,垂足为点,则∥轴∵, ∴△∽△1-=n B )3,1(-c bx x y ++=2A B ⎩⎨⎧=+-=+-310416c b c b 6=b 8=c c bx x y ++=2862++=x x y 862++=x x y )1,3(--P 23=AB 2=AP 52=PB 222PB BP AB =+︒=∠90PAB PB AP ABP =∠sin 1010sin =∠ABP Q x QH ⊥H QH y DOB AQO ∠=∠QBO OBD ∠=∠OBD QBO∴……………1分 ∵直线与轴的交点为点∴点的坐标为, 又,∴,……………1分 ∵∴, ∵∥轴∴∴∴ ……………………………………1分 即点的纵坐标是 又点在直线上 点的坐标为……………1分 长宁区24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)OB DBQB OB =4+=x y y D D )4,0(4=OD 10=OB 2=DB 25=QB 24=DQ 23=AB 28=AQ 24=DQ QH y AQ ADQH OD =28244=QH 8=QH Q 8Q 4+=x y Q )8,4(如图在直角坐标平面内,抛物线与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点.(1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1) 点B (-1,0)、C (3,0)在抛物线上 ∴,解得 ( 2分)32-+=bx ax y ACD ∆32-+=bx ax y ⎩⎨⎧=-+=--033903b a b a ⎩⎨⎧-==21ba 备用图第24题图∴抛物线的表达式为,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴,,∴ ∴ ( 2分)∴(1分)(3)∵,, ∴△CAD ∽△AOB ,∴∵OA=OC , ∴∴,即 ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是,设() 过P 作PH ⊥OC ,垂足为点H ,则,①当时,由得,∴,解得, ∴(2分) ②当时,由得,322--=x x y 23=AC 52=CD 2=AD 222AD AC CD +=︒=∠90CAD .32232121=⨯⨯=⋅⋅=∆AD AC S ACD ︒=∠=∠90AOB CAD 2==AO ACBO AD OAB ACD ∠=∠︒=∠90AOC ︒=∠=∠45OCA OAC ACD OCA OAB OAC ∠+∠=∠+∠BCD BAC ∠=∠POC ∆62-=x y )62,(-t t P 30<<t t OH =t PH 26-=ABC POC ∠=∠ABC POC ∠=∠tan tan BO AOOH PH =326=-t t 56=t )518,56(1-P ACB POC ∠=∠145tan tan tan =︒=∠=∠ACB POC 1=OH PH∴,解得,∴ ( 2分) 综上得或 崇明区24.(本题满分12分,第(1)、(2)、(3)小题满分各4分) 已知抛物线经过点、、.(1)求抛物线的解析式; (2)联结AC 、BC 、AB ,求的正切值;(3)点P 是该抛物线上一点,且在第一象限内,过点P 作交轴于点,当点在点的上方,且与相似时,求点P 的坐标.126=-t t2=t )2,2(2-P )518,56(1-P )2,2(2-P24.(本题满分12分,每小题4分)解:(1)设所求二次函数的解析式为,………………………1分将(,)、(,)、(,)代入,得解得………2分所以,这个二次函数的解析式为……………………………1分(2)∵(,)、(,)、(,)∴,,∴∴………………………………………………………2分∴……………………………………………2分(3)过点P作,垂足为H设,则∵(,)∴,∵∴当△APG与△ABC相似时,存在以下两种可能:1°则即∴解得………………………1分∴点的坐标为……………………………………………………1分2°则即∴解得…………………………1分∴点的坐标为……………………………………………………1分奉贤区24.(本题满分12分,每小题满分各4分)已知平面直角坐标系(如图8),抛物线为直线,过点C作直线的垂线,垂足为点E,联结DC、BC.(1)当点C(0,3)时,①求这条抛物线的表达式和顶点坐标;②求证:∠DCE=∠BCE;(2)当CB平分∠DCO时,求的值.黄浦区24.(本题满分12分)已知抛物线经过点A (1,0)和B (0,3),其顶点为D.(1)求此抛物线的表达式; (2)求△ABD 的面积;(3)设P 为该抛物线上一点,且位于抛物线对称轴 右侧,作PH ⊥对称轴,垂足为H ,若△DPH 与△AOB 相 似,求点P 的坐标.24. 解:(1)由题意得:,———————————————————(2分) 解得:,—————————————————————————(1分)所以抛物线的表达式为. ——————————————(1分) (2)由(1)得D (2,﹣1),———————————————————(1分) 作DT ⊥y 轴于点T,则△ABD 的面积=.————————(3分)2y x bx c =++013b cc =++⎧⎨=⎩43b c =-⎧⎨=⎩243y x x =-+()11124131211222⨯⨯-⨯⨯-⨯+⨯=(3)令P.————————————————(1分)由△DPH 与△AOB 相似,易知∠AOB=∠PHD=90°,所以或,————————————(2分) 解得:或,所以点P 的坐标为(5,8),.————————————————(1分)金山区24.(本题满分12分,每小题4分)平面直角坐标系xOy 中(如图8),已知抛物线经过点A (1,0)和B (3,0),与y 轴相交于点C ,顶点为P .(1)求这条抛物线的表达式和顶点P 的坐标; (2)点E 在抛物线的对称轴上,且EA=EC , 求点E 的坐标;(3)在(2)的条件下,记抛物线的对称轴为 直线MN ,点Q 在直线MN 右侧的抛物线 上,∠MEQ=∠NEB ,求点Q 的坐标.()()2,432p pp p -+>243132p p p -++=-2431123p p p -++=-5p =73p =78,39⎛⎫- ⎪⎝⎭2y x bx c =++24.解:(1)∵二次函数的图像经过点A (1,0)和B (3,0),∴,解得:,.……………………………(2分)∴这条抛物线的表达式是…………………………………(1分) 顶点P 的坐标是(2,-1).………………………………………………(1分)(2)抛物线的对称轴是直线,设点E 的坐标是(2,m ).…(1分)根据题意得:m=2,…(2分)∴点E 的坐标为(2,2).…………………………………………………(1分)(3)解法一:设点Q 的坐标为,记MN 与x 轴相交于点F . 作QD ⊥MN ,垂足为D ,则,………………………(1分) ∵∠QDE=∠BFE=90°,∠QED=∠BEF ,∴△QDE ∽△BFE ,…………………(1分)∴,∴,解得(不合题意,舍去),.……………………………(1分) ∴,点E 的坐标为(5,8).…………………………………………(1分) 解法二:记MN 与x 轴相交于点F .联结AE ,延长AE 交抛物线于点Q ,2y x bx c =++10930b c b c ++=⎧⎨++=⎩4b =-3c =243y x x =-+243y x x =-+2x ==2(,43)t t t -+2DQ t =-2243241DE t t t t =-+-=-+DQ DEBF EF =224112t t t --+=11t =25t =5t =∵AE=BE , EF ⊥AB ,∴∠AEF=∠NEB ,又∵∠AEF=∠MEQ ,∴∠QEM=∠NEB ,………………………………(1分)点Q 是所求的点,设点Q 的坐标为, 作QH ⊥x 轴,垂足为H ,则QH=,OH=t ,AH=t-1,∵EF ⊥x 轴,∴EF ∥QH ,∴,∴,………(1分)解得(不合题意,舍去),.……………………………………(1分) ∴,点E 的坐标为(5,8).…………………………………………(1分) 静安区24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系xOy 中,已知点B (8,0)和点C (9,).抛物线(a ,c 是常数,a ≠0)经过点B 、C ,且与x 轴的另一交点为A .对称轴上有一点M ,满足MA=MC . (1) 求这条抛物线的表达式; (2) 求四边形ABCM 的面积;(3) 如果坐标系内有一点D ,满足四边形ABCD且AD//BC ,求点D 的坐标.24.(本题满分12分,第(1)小题4分,第(2)小题4解:(1)由题意得:抛物线对称轴,即. …………(1分)点B (8,0)关于对称轴的对称点为点A (0,0)∴, …………(1分)2(,43)t t t -+243t t -+EF AF QH AH =221431t t t =-+-11t =25t =5t =3-c ax ax y +-=82a ax 28-=4=x 0=c将C (9,-3)代入,得…………………………(1分)∴抛物线的表达式:…………………………(1分) (2)∵点M 在对称轴上,∴可设M (4,y )又∵MA=MC ,即∴, 解得y=-3, ∴M (4,-3) …………………(2分)∵MC//AB 且MC ≠AB, ∴四边形ABCM 为梯形,, AB=8,MC=5,AB 边上的高h = yM = 3∴(3) 将点B (8,0)和点C (9,﹣3)代入可得,解得 由题意得,∵AD//BC,∴,…(1分)又∵AD 过(0,0),DC=AB=8, 设D(x,-3x), …………………………(1分)解得(不合题意,舍去),…………………………(1分)∴∴点D 的坐标.……………………(1分)axax y 82-=31-=a xx y 38312+-=22MC MA =2222)3(54++=+y y 2393)58(21)(21=⨯+⨯=⨯+=MH MC AB S bkx y BC +=⎩⎨⎧-=+=+3908b k b k ⎩⎨⎧=-=243b k 3-=BC k 3-=AD k x y AD 3-=2228)33()9(=+-+-x x 11=x 5132=x 5393-=-=x y )539,513(-闵行区24.(本题满分12分,其中每小题各4分) 如图,已知在平面直角坐标系xOy 中,抛物线点A 和点B (1,0),与y 轴相交于点C (0,3(1)求抛物线的解析式和顶点D 的坐标; (2)求证:∠DAB=∠ACB ;(3)点Q 在抛物线上,且△ADQ 是以AD 为 底的等腰三角形,求Q 点的坐标.24.解:(1)把B (1,0)和C (0,3)代入中,得,解得.……………………………………(2分)∴抛物线的解析式是:.……………………………(1分)∴顶点坐标D (-1,4).……………………………………………(1分)(2)令,则,,,∴A (-3,0)∴,∴∠CAO=∠OCA .…………………………………(1分)22y ax x c=-+22y ax x c=-+9603a c c ++=⎧⎨=⎩13a c =-⎧⎨=⎩223y x x =--+0y =2230x x --+=13x =-21x =3OA OC ==(第24题图)在中,.………………………………(1分)∵,,,∴,;∴,是直角三角形且,∴,又∵∠DAC 和∠OCB 都是锐角,∴∠DAC=∠OCB .…………………(1分) ∴,即.……………………………………………………(1分)(3)令,且满足,,0),,4)∵是以AD 为底的等腰三角形,∴,即,化简得:.………………………………………………(1分)由,……………………………………………………(1分)解得,.Rt BOC ∆1tan 3OB OCB OC ∠==AC=DC=AD =2220AC DC +=220AD =222AC DC AD +=ACD ∆90ACD ∠=1tan 3DC DAC AC ∠==DAC CAO BCO OCA ∠+∠=∠+∠DAB ACB ∠=∠(Q x )y 223y x x =--+(3A -(1D -ADQ ∆22QD QA =2222(3)(1)(4)x y x y ++=++-220x y -+=222023x y y x x -+=⎧⎨=--+⎩11x y ⎧=⎪⎪⎨⎪=⎪⎩22x y ⎧=⎪⎪⎨⎪=⎪⎩∴点Q 的坐标是,.…(2分) 普陀区24.(本题满分12分) 如图10,在平面直角坐标系中,直线与轴、轴分别相交于点、,并与抛物线的对称轴交于点,抛物线的顶点是点.(1)求和的值;(2)点是轴上一点,且以点、、为顶点的三角形与△相似,求点的坐标;(3)在抛物线上是否存在点:它关于直线的对称点恰好在轴上.如果存在,直接写出点的坐标,如果不存在,试说明理由. 24.解:(1) 由直线经过点,可得. (1分)由抛物线的对称轴是直线,可得. (1分)⎝⎭⎝⎭图10 xy1 1O∵直线与轴、轴分别相交于点、,∴点的坐标是,点的坐标是. (2分)∵抛物线的顶点是点,∴点的坐标是. (1分)∵点是轴上一点,∴设点的坐标是.∵△BCG 与△BCD 相似,又由题意知,,∴△BCG 与△相似有两种可能情况: (1分)①如果,那么,解得,∴点的坐标是. (1分)②如果,那么,解得,∴点的坐标是. (1分)综上所述,符合要求的点有两个,其坐标分别是和 .(3)点的坐标是或. (2分+2分)青浦区24.(本题满分12分,第(1)、(2)、(3)小题,每小题4分)已知:如图8,在平面直角坐标系xOy 中,抛物线的图像与x 轴交于点A (3,0),与y 轴交于点B ,顶点C 在直线上,将抛物线沿射线AC 的方向平移,当顶点C 恰好落在y 轴上的点D 处时,点B 落在点E 处.23y ax bx =++2x =(1)求这个抛物线的解析式;(2)求平移过程中线段BC 所扫过的面积;(3)已知点F 在x 轴上,点G 在坐标平面内,且以点C 、E 、F 、G 为顶点的四边形是矩形,求点F 的坐标. .24.解:(1)∵顶点C 在直线上,∴,∴. (1分)将A (3,0)代入,得, (1分)解得,. (1分)∴抛物线的解析式为. (1分)(2)过点C 作CM ⊥x 轴,CN ⊥y 轴,垂足分别为M 、N .∵=,∴C (2,). (1分)∵,∴∠MAC=45°,∴∠ODA=45°, ∴.(1分)∵抛物线与y 轴交于点B ,∴B (0,),∴.(1分)2x =22=-=bx a 4=-b a 23y ax bx =++933=0++a b 1=a 4=-b 243=-+y x x 243=-+y x x ()221=--x 1-1==CM MA 3==OD OA 243=-+y x x 36=BD∵抛物线在平移的过程中,线段BC 所扫过的面积为平行四边形BCDE 的面积,∴. (1分)(3)联结CE.∵四边形是平行四边形,∴点是对角线与的交点, 即 .(i )当CE 为矩形的一边时,过点C 作,交轴于点,设点,在中,,即,解得 ,∴点 (1分)同理,得点(1分)(ii )当CE 为矩形的对角线时,以点为圆心,长为半径画弧分别交轴于点、,可得、(2分)综上所述:满足条件的点有,,),.松江区24.(本题满分12分,每小题各4分)如图,已知抛物线y=ax2+bx 的顶点为C (1,),P 是抛物线上位于第一象限内的一点,直线OP 交该抛物线对称轴于点B ,直线CP 交x 轴于点A . (1)求该抛物线的表达式;(2)如果点P 的横坐标为m ,试用m 的代数式表示线段BC 的长; (3)如果△ABP 的面积等于△ABC 的面积,求点P 坐标.12262122==⨯⨯⋅=⨯=BCDEBCDSSBD CN BCDE O CE BD OE OC ==1CF CE⊥x 1F 1F a (,0)1Rt OCF 22211=OF OC CF +22(2)5a a =-+52a =152F (,0)252F (-,0)O OC x 3F 4F 34=OF OF OC ==3F )4F ()152F (,0)252F (-,0)3F )4F ()1-24.(本题满分12分,每小题各4分) 解:(1)∵抛物线y=ax2+bx 的顶点为C (1,) ∴ .......................................2分 解得: .......................................1分 ∴抛物线的表达式为:y=x2-2x ; (1)(2)∵点P 的横坐标为m ,∴P 的纵坐标为:m2-2m……………………………1分令BC 与x 轴交点为M ,过点P 作PN ⊥x 轴,垂足为点N∵P 是抛物线上位于第一象限内的一点,∴PN= m2-2m ,ON=m ,O M=1由得………………………1分∴ BM=m-2…………………………………………………1分∵ 点C 的坐标为(1,),∴ BC= m-2+1=m-1………………………………………1分(3)令P(t ,t2-2t) ………………………………………………1分△ABP 的面积等于△ABC 的面积∴AC=AP1-112a b b a +=-⎧⎪⎨-=⎪⎩12a b =⎧⎨=-⎩PN BM ON OM =221m m BMm -=1-(第24题图)过点P 作PQ ⊥BC 交BC 于点Q∴CM=MQ=1∴t2-2t=1 …………………………………………………1分∴(舍去)………………………………1分∴ P 的坐标为()……………………………………1分徐汇区24. 如图,已知直线与轴、轴分别交于点、,抛物线过点、,且与轴交于另一个点.(1)求该抛物线的表达式;(2)点是线段上一点,过点作直线∥轴交该抛物线于点,当四边形是平行四边形时,求它的面积;(3)联结,设点是该抛物线上的一点,且满足,求点的坐标.1t =1t =1122y x =-+x y B C 212y x bx c=-++B C x A M BC M l y N OMNC AC D DBA CAO ∠=∠D杨浦区24、(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图8,在平面直角坐标系中,抛物线于X轴交于点A、B,于y轴交于点C,直线经过点A、C,点P为抛物线上位于直线AC上方的一个动点。
上海市宝山、嘉定区2018届九年级下学期期中考试(二模)数学试题(解析版)
上海市宝山、嘉定区2018届九年级下学期期中考试(二模)数学试题一、选择题:(本大题共6题,每题4分,满分24分)1. 下列说法中,正确的是()A. 是正整数B. 是素数C. 是分数D. 是有理数【答案】D【解析】分析:根据正整数,素数,分数,有理数的概念判断即可.详解:A.0既不是正数,也不是负数,故错误.B.1不是素数,最小的素数是2,故错误.C.是无理数,不是分数,故错误.D.是有理数,正确.故选D.点睛:考查实数的相关概念,熟练掌握这些概念是解题的关键.2. 关于的方程根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定【答案】A【解析】分析:判断上述方程的根的情况,只要看根的判别式的值的符号就可以了.详解:方程有两个不相等的实数根.故选A.点睛:考查一元二次方程根的判别式,,方程有两个不相等的实数根.,方程有两个相等的实数根.,方程无实数根.3. 将直线向下平移个单位,平移后的新直线一定不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】分析:先求出一次函数平移后的解析式,,一次函数经过一、三象限,,一次函数经过第四象限,即可得到直线不经过的象限.详解:直线向下平移个单位,得到的直线解析式为,一次函数经过一、三象限,,一次函数经过第四象限,平移后的新直线一定不经过第二象限,故选B.点睛:考查一次函数图象的平移以及一次函数图象与系数的关系,掌握一次函数图象与系数的关系是解题的关键.4. 下列说法正确的是()A. 一组数据的中位数一定等于该组数据中的某个数据B. 一组数据的平均数和中位数一定不相等C. 一组数据的众数可以有几个D. 一组数据的方差一定大于这组数据的标准差【答案】C【解析】分析:根据中位数,平均数,众数,方差的概念判断即可.详解:A. 一组数据的中位数不一定等于该组数据中的某个数据,故错误.B. 一组数据的平均数和中位数可能相等,故错误.C. 一组数据的众数可以有一个,可能有几个,也可能没有.故正确.D. 一组数据的方差不一定大于这组数据的标准差,例如:方差此时标准差故错误.故选C.点睛:考查中位数,平均数,众数,方差的概念,掌握这些概念是解题的关键.5. 对角线互相平分且相等的四边形一定是()A. 等腰梯形B. 矩形C. 菱形D. 正方形【答案】B【解析】分析:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,判断即可.详解:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故选B.点睛:考查矩形的判定:对角线相等的平行四边形是矩形.6. 已知圆的半径长为,圆的半径长为,圆心距,那么圆与圆的位置关系是()A. 外离B. 外切C. 相交D. 内切【答案】C【解析】分析:设两圆的半径分别为R和r,且R≥r,圆心距为:外离,则外切,则相交,则内切,则;内含,则.详解:圆的半径长为,圆的半径长为,圆心距,圆与圆的位置关系是相交.故选C.学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...二、填空题(本大题共12题,每题4分,满分48分)7. 计算:_____.【答案】2【解析】分析:如果一个数x的平方等于a,那么x是a的平方根,其中正的平方根叫做算术平方根.由此即可求解.详解:故答案为:点睛:根据算术平方根的概念回答即可.8. 一种细菌的半径是米,用科学记数法把它表示为_____米.【答案】【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:故答案为:点睛:题目考查科学记数法,根据科学记数法的表示方法进行表示即可.9. 因式分解:_____.【答案】【解析】式子中含有x公因式,所以提取公因式法分解因式可得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年宝山嘉定初三数学二模试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 一、选择题:(本大题共6题,每题4分,满分24分) 1.下列说法中,正确的是(▲)(A )0是正整数; (B )1是素数; (C )22是分数; (D )722是有理数. 2.关于x 的方程022=--mx x 根的情况是(▲)(A )有两个不相等的实数根; (B )有两个相等的实数根; (C )没有实数根; (D )无法确定.3. 将直线x y 2=向下平移2个单位,平移后的新直线一定不经过的象限是(▲)(A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限. 4. 下列说法正确的是(▲)(A )一组数据的中位数一定等于该组数据中的某个数据;(B )一组数据的平均数和中位数一定不相等; (C )一组数据的众数可以有几个;(D )一组数据的方差一定大于这组数据的标准差. 5.对角线互相平分且相等的四边形一定是(▲)(A )等腰梯形; (B )矩形; (C )菱形; (D )正方形. 6.已知圆1O 的半径长为cm 6,圆2O 的半径长为cm 4,圆心距cm O O 321=,那么圆1O 与圆2O 的位置关系是(▲)(A )外离; (B )外切; (C )相交; (D )内切. 二、填空题(本大题共12题,每题4分,满分48分) 7.计算:=4 ▲ .8.一种细菌的半径是00000419.0米,用科学记数法把它表示为 ▲ 米. 9. 因式分解:=-x x 42▲ .10.不等式组⎩⎨⎧>+≤-063,01x x 的解集是 ▲ .11.在一个不透明的布袋中装有2个白球、8个红球和5个黄球,这些球除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到黄球的概率是 ▲ . 12.方程23=+x 的根是 ▲ .13.近视眼镜的度数y (度)与镜片焦距x (米)呈反比例,其函数关系式为xy 120=.如果近似眼镜镜片的焦距3.0=x 米,那么近视眼镜的度数y 为 ▲ . 14.数据1、2、3、3、6的方差是 ▲ .15.在△ABC 中,点D 是边BC 的中点,=,=,那么= ▲ (用、表示). 16.如图1,在矩形ABCD 中,点E 在边CD 上,点F 在对角线BD 上,5:2:=DE DF ,BD EF ⊥,那么=∠ADB tan ▲ .17.如图2,点A 、B 、C 在圆O 上,弦AC 与半径OB 互相平分,那么AOC ∠度数为 ▲ 度.18.如图3,在△ABC 中,5==AC AB ,6=BC ,点D 在边AB 上,且︒=∠90BDC .如果△ACD 绕点A 顺时针旋转,使点C 与点B 重合,点D 旋转至点1D ,那么线段1DD 的长为 ▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:xx x x x --+++-2321422,其中32+=x .图2 ABCD图3图120.(本题满分10分)解方程组:⎩⎨⎧=+-=+.144,3222y xy x y x21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数; (2)若10=AC ,31cot =∠D ,求梯形ABCD 的面积.22.(本题满分10分,第(1)小题5分,第(2)小题5分)有一座抛物线拱型桥,在正常水位时,水面BC 的宽为10米,拱桥的最高点D 到水面BC 的距离DO 为4米,点O 是BC 的中点,如图5,以点O 为原点,直线BC 为x 轴,建立直角坐标系xOy .(1)求该抛物线的表达式;(2)如果水面BC 上升3米(即3=OA )至水面EF ,点E 在点F 的左侧, 求水面宽度EF 的长.23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在边CD 的延长线上,且满足︒=∠90MAN ,联结MN 、AC ,MN 与边AD 交于点E . (1)求证;AN AM =;(2)如果NAD CAD ∠=∠2,求证:AE AC AM ⋅=2.图6图4DCB A24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 已知平面直角坐标系xOy (如图7),直线m x y +=的经过点)0,4(-A 和点)3,(n B . (1)求m 、n 的值;(2)如果抛物线c bx x y ++=2经过点A 、B ,该抛物线的顶点为点P ,求ABP ∠sin 的值; (3)设点Q 在直线m x y +=上,且在第一象限内,直线m x y +=与y 轴的交点为点D ,如果DOB AQO ∠=∠,求点Q 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)在圆O 中,AO 、BO 是圆O 的半径,点C 在劣弧AB上,10=OA ,12=AC ,AC ∥OB , 联结AB .(1)如图8,求证:AB 平分OAC ∠;(2)点M 在弦AC 的延长线上,联结BM ,如果△AMB 是直角三角形,请你在如图9中画出 点M 的位置并求CM 的长;(3)如图10,点D 在弦AC 上,与点A 不重合,联结OD 与弦AB 交于点E ,设点D 与点C 的 距离为x ,△OEB 的面积为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.图7图8图102018年宝山嘉定初三数学二模试卷参考答案与评分标准一、1. D ;2. A ;3.B ;4. C ;5. B ;6. C .二、7.2;8.61019.4-⨯;9.)4(-x x ;10.12≤<-x ;11.31;12.1=x ;13.400; 14.514;15.2121+;16.2;17.︒120;18.2542.三、19.解:原式2321)2)(2(2-+++++-=x x x x x x …………2分)2)(2()2(3)2)(1(2+-++-++=x x x x x x ………………………1分)2)(2(442+-++=x x x x …………………………………………2分)2)(2()2(2+-+=x x x ………………………2分22-+=x x …………………………………………1分把32+=x 代入22-+x x 得: 原式232232-+++=………………1分1334+=………………………………1分 20. ⎩⎨⎧=+-=+.144,3222y xy x y x②①解:由②得:1)2(2=-y x ……………………2分即:12=-y x 或12-=-y x …………………2分所以原方程组可化为两个二元一次方程组: ⎩⎨⎧=-=+;12,32y x y x⎩⎨⎧-=-=+;12,32y x y x ………………2分 分别解这两个方程组,得原方程组的解是⎩⎨⎧==;1,111y x ⎪⎪⎩⎪⎪⎨⎧==.57,5122y x …………4分. 21.解:(1)∵AD ∥BC∴CAD BCA ∠=∠ …………………1分∵BAC ∠︒=∠-10BCA∴BAC ∠︒=∠-10CAD …………………1分 ∵︒=∠90BAD∴BAC ∠︒=∠+90CAD∴︒=∠40CAD …………………1分 ∵AD AC =∴D ACD ∠=∠ …………………1分 ∵︒=∠+∠+∠180CAD D ACD∴︒=∠70D …………………1分(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,31cot =∠D图4 D C B A H∴31cot ==∠CH HD D …………………………1分 设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10在Rt △CHA 中,222AC CH AH =+ ∴22210)3()10(=+-x x ∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分 ∵︒=∠=∠90CHD BAD ∴AB ∥CH∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分∴梯形ABCD 的面积546)810(21)(21=⨯+=⨯+=CH BC AD S ………1分22.解:(1)根据题意:该抛物线的表达式为:b ax y +=2………………1分 ∵该抛物线最高点D 在y 轴上,4=DO ,∴点D 的坐标为)4,0(………1分∵10=BC ,点O 是BC 的中点 ∴点B 的坐标为)0,5(- ∴254-=a ,4=b …2分∴抛物线的表达式为:42542+-=x y …………………1分(2)根据题意可知点E 、点F 在抛物线42542+-=x y 上,EF ∥BC ……1分∵3=OA ∴点E 、点F 的横坐标都是3,…1分∴点E 坐标为)3,25(-……………1分 , 点F 坐标为)3,25(……1分∴5=EF (米)……………1分 答水面宽度EF 的长为5米. 23.证明:(1)∵四边形ABCD 是正方形∴AD AB =,︒=∠=∠=∠=∠90BCD ADC B BAD ……1分 ∴︒=∠+∠90MAD MAB ∵︒=∠90MAN∴︒=∠+∠90MAD NAD ∴NAD MAB ∠=∠………1分 ∵︒=∠+∠180ADC ADN ∴︒=∠90ADN ……1分 ∴ADN B ∠=∠……………………1分∴△ABM ≌△ADN ………………………1分 ∴AN AM = ……………………………1分(2)∵四边形ABCD 是正方形 ∴AC 平分BCD ∠和BAD ∠∴︒=∠=∠4521BCD BCA ,︒=∠=∠=∠4521BAD CAD BAC ……1分∵NAD CAD ∠=∠2 ∴︒=∠5.22NAD∵NAD MAB ∠=∠ ∴︒=∠5.22MAB ………1分 ∴︒=∠5.22MAC ∴︒=∠=∠5.22NAE MAC ∵AN AM =,︒=∠90MAN ∴︒=∠45ANE∴ANE ACM ∠=∠…………………1分∴△ACM ∽△ANE …………1分∴AN ACAE AM =……1分 ∵AN AM =∴AE AC AM ⋅=2…………1分24.解:(1) ∵直线m x y +=的经过点)0,4(-A∴04=+-m ……………………1分∴4=m ………………………………1分图6∵直线m x y +=的经过点)3,(n B ∴34=+n ……………………1分∴1-=n …………………………………………1分(2)由可知点B 的坐标为)3,1(-∵抛物线c bx x y ++=2经过点A 、B ∴⎩⎨⎧=+-=+-310416c b c b∴6=b , 8=c∴抛物线c bx x y ++=2的表达式为862++=x x y …………………1分∴抛物线862++=x x y 的顶点坐标为)1,3(--P ……………1分∴23=AB ,2=AP ,52=PB∴222PB BP AB =+∴︒=∠90PAB ……………………………………1分∴PB AP ABP =∠sin ∴1010sin =∠ABP …………………………………………1分(3)过点Q 作x QH ⊥轴,垂足为点H ,则QH ∥y 轴 ∵DOB AQO ∠=∠,QBO OBD ∠=∠∴△OBD ∽△QBO ∴OBDBQB OB =……………1分 ∵直线4+=x y 与y 轴的交点为点D ∴点D 的坐标为)4,0(,4=OD又10=OB ,2=DB∴25=QB ,24=DQ ……………1分∵23=AB∴28=AQ ,24=DQ ∵QH ∥y 轴 ∴AQADQH OD = ∴28244=QH ∴8=QH ……………………………………1分 即点Q 的纵坐标是8又点Q 在直线4+=x y 上点Q 的坐标为)8,4(……………1分25.(1)证明:∵AO 、BO 是圆O 的半径 ∴BO AO =…………1分 ∴B OAB ∠=∠…………1分 ∵AC ∥OB∴B BAC ∠=∠…………1分 ∴BAC OAB ∠=∠∴AB 平分OAC ∠…………1分(2)解:由题意可知BAM ∠不是直角,所以△AMB 是直角三角形只有以下两种情况: ︒=∠90AMB 和︒=∠90ABM① 当︒=∠90AMB ,点M 的位置如图9-1……………1分 过点O 作AC OH ⊥,垂足为点H∵OH 经过圆心 ∴AC HC AH 21== ∵12=AC ∴6==HC AH在Rt △AHO 中,222OA HO AH =+∵10=OA ∴8=OH∵AC ∥OB ∴︒=∠+∠180OBM AMB∵︒=∠90AMB ∴︒=∠90OBM ∴四边形OBMH 是矩形∴10==HM OB∴4=-=HC HM CM ……………2分②当︒=∠90ABM ,点M 的位置如图9-2由①可知58=AB ,552cos =∠CAB 在Rt △ABM 中,552cos ==∠AM AB CAB ∴20=AM 8=-=AC AM CM ……………2分综上所述,CM 的长为4或8.说明:只要画出一种情况点M 的位置就给1分,两个点都画正确也给1分. (3)过点O 作AB OG ⊥,垂足为点G 由(1)、(2)可知,CAB OAG ∠=∠sin sin由(2)可得:55sin =∠CAB∵10=OA ∴52=OG ……………1分∵AC ∥OB ∴ADOBAE BE =……………1分 又BE AE -=58,x AD -=12,10=OB ∴x BEBE -=-121058 ∴x BE -=22580 ……………1分 ∴52225802121⨯-⨯=⨯⨯=x OG BE y ∴xy -=22400……………1分自变量x 的取值范围为120<≤x ……………1分B 图10。