相交线与平行线典型例题分析和提高类型题(学生版)
初中数学第五章 相交线与平行线知识点-+典型题附解析

初中数学第五章 相交线与平行线知识点-+典型题附解析一、选择题1.如图,直线a ,b 被直线c 所截,且a//b ,若∠1=55°,则∠2等于( )A .35°B .45°C .55°D .125°2.如图,直角三角形ABC 的直角边AB =6,BC =8,将直角三角形ABC 沿边BC 的方向平移到三角形DEF 的位置,DE 交AC 于点G ,BE =2,三角形CEG 的面积为13.5,下列结论:①三角形ABC 平移的距离是4;②EG =4.5;③AD ∥CF ;④四边形ADFC 的面积为6.其中正确的结论是A .①②B .②③C .③④D .②④ 3.如图,在ABC 中,//EF BC ,ED 平分BEF ∠,且70∠︒=DEF ,则B 的度数为( )A .70°B .60°C .50°D .40°4.如图,已知AB ∥CD, EF ∥CD ,则下列结论中一定正确的是( )A .∠BCD= ∠DCE;B .∠ABC+∠BCE+∠CEF=360︒;C .∠BCE+∠DCE=∠ABC+∠BCD;D .∠ABC+∠BCE -∠CEF=180︒.5.下列说法中正确的是( )A.两条射线组成的图形叫做角B.小于平角的角可分为锐角和钝角两类C.射线就是直线D.两点之间的所有连线中,线段最短6.如下图,在下列条件中,能判定AB//CD的是( )A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.∠3=∠47.下列语句是命题的是 ( )(1)两点之间,线段最短;(2)如果两个角的和是180度,那么这两个角互补;(3)请画出两条互相平行的直线;(4)一个锐角与一个钝角互补吗?A.(1)(2)B.(3)(4)C.(2)(3)D.(1)(4)8.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是()已知:如图,∠BEC=∠B+∠C,求证:AB∥CD证明:延长BE交__※__于点F,则∠BEC=__⊙__+∠C又∵∠BEC=∠B+∠C,∴∠B=▲∴AB∥CD(__□__相等,两直线平行)A.⊙代表∠FEC B.□代表同位角C.▲代表∠EFC D.※代表AB 9.下列各命题中,属于假命题的是()A.若0a b->,则a b>B.若0a b-=,则0ab≥C.若0a b-<,则a b<D.若0a b-≠,则0ab≠10.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB∥CE,且∠ADC=∠B:④AB∥CE,且∠BCD=∠BAD.其中能推出BC∥AD的条件为()A.①②B.②④C.②③D.②③④二、填空题11.如图,//AB CD,GF与AB相交于点H,与CD 于F,FE平分HFD∠,若50EHF ∠=︒,则HFE ∠的度数为______.12.一副三角尺按如图所示叠放在一起,其中点,B D 重合,若固定三角形AOB ,将三角形ACD 绕点A 顺时针旋转一周,共有 _________次 出现三角形ACD 的一边与三角形AOB 的某一边平行.13.设a 、b 、c 为平面上三条不同直线,(1)若//,//a b b c ,则a 与c 的位置关系是_________;(2)若,a b b c ⊥⊥,则a 与c 的位置关系是_________;(3)若//a b ,b c ⊥,则a 与c 的位置关系是________.14.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___15.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.16.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.17.如图,AB ∥CD ,∠B =75°,∠E =27°,则∠D 的度数为_____.18.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.19.如图,CB ∥OA ,∠B =∠A =100°,E 、F 在CB 上,且满足∠FOC =∠AOC ,OE 平分∠BOF ,若平行移动AC ,当∠OCA 的度数为_____时,可以使∠OEB =∠OCA .20.如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.三、解答题21.(感知)如图①,AB ∥CD ,点E 在直线AB 与CD 之间,连结AE 、BE ,试说明∠BAE+∠DCE=∠AEC ;(探究)当点E 在如图②的位置时,其他条件不变,试说明∠AEC+∠BAE+∠DCE=360°; (应用)点E 、F 、G 在直线AB 与CD 之间,连结AE 、EF 、FG 和CG ,其他条件不变,如图③,若∠EFG=36°,则∠BAE+∠AEF+∠FGC+∠DCG=______°.22.已知:直线l 分别交AB 、CD 与E 、F 两点,且AB ∥CD .(1) 说明:∠1=∠2;(2) 如图2,点M 、N 在AB 、CD 之间,且在直线l 左侧,若∠EMN +∠FNM =260°, ①求:∠AEM +∠CFN 的度数;②如图3,若EP 平分∠AEM ,FP 平分∠CFN ,求∠P 的度数;(3) 如图4,∠2=80°,点G 在射线EB 上,点H 在AB 上方的直线l 上,点Q 是平面内一点,连接QG 、QH ,若∠AGQ =18°,∠FHQ =24°,直接写出∠GQH 的度数.23.问题情境:如图1,AB CD ,130PAB ∠=,120PCD ∠=.求 APC ∠ 度数. 小明的思路是:如图2,过 P 作 PE AB ,通过平行线性质,可得5060110APC ∠=+=.问题迁移:(1)如图3,AD BC ,点 P 在射线 OM 上运动,当点 P 在 A 、 B 两点之间运动时,ADP α∠=∠,BCP β∠=∠.CPD ∠ 、 α∠ 、 β∠ 之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点 P 在 A 、 B 两点外侧运动时(点 P 与点 A 、 B 、 O 三点不重合),请你直接写出 CPD ∠ 、 α∠ 、 β∠ 间的数量关系.24.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______. 问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.25.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=︒,60B ∠=︒,45D E ∠=∠=︒.(1)猜想BCD ∠与ACE ∠的数量关系,并说明理由;(2)若3BCD ACE ∠=∠,求BCD ∠的度数;(3)若按住三角板ABC 不动,绕顶点C 转动三角DCE ,试探究BCD ∠等于多少度时//CE AB ,并简要说明理由.26.如图1,已知直线PQ ∥MN ,点A 在直线PQ 上,点C 、D 在直线MN 上,连接AC 、AD ,∠PAC =50°,∠ADC =30°,AE 平分∠PAD ,CE 平分∠ACD ,AE 与CE 相交于E . (1)求∠AEC 的度数;(2)若将图1中的线段AD 沿MN 向右平移到A 1D 1如图2所示位置,此时A 1E 平分∠AA 1D 1,CE 平分∠ACD 1,A 1E 与CE 相交于E ,∠PAC =50°,∠A 1D 1C =30°,求∠A 1EC 的度数.(3)若将图1中的线段AD 沿MN 向左平移到A 1D 1如图3所示位置,其他条件与(2)相同,求此时∠A 1EC 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:根据图示可得:∠1和∠2是同位角,根据两直线平行,同位角相等可得:∠2=∠1=55°.考点:平行线的性质2.B解析:B【解析】分析:(1)对应线段的长度即是平移的距离;(2)根据EC 的长和△CEG 的面积求EG ;(3)平移前后,对应点的连线平行且相等;(4)根据平行四边形的面积公式求.详解:(1)因为点B ,E 是对应点,且BE =2,所以△ABC 平行的距离是2,则①错误; ②根据题意得,13.5×2=(8-2)EG ,解得EG =4.5,则②正确;③因为A ,D 是对应点,C ,F 是对应点,所以AD ∥CF ,则③正确;④平行四边形ADFC 的面积为AB ·CF =AB ·BE =6×2=12,则④错误.故选B .点睛:本题考查了平移的性质,平移的性质有:①平移只改变图形的位置,不改变图形的形状和大小;②平移得到的图形与原图形中的对应线段平行(或在同一条直线上)且相等,对应角相等;对应点连线平行(或在同一条直线上)且相等.3.D解析:D【分析】由角平分线的定义求出∠BEF=140°,再根据平行线的性质“两直线平行,同旁内角互补”求出∠B 的度数即可.【详解】∵ED 平分BEF ∠,且70∠︒=DEF ,∴70DEB ∠=︒∴270140BEF ︒=∠=⨯︒∵//EF BC∴180B BEF ∠+∠=︒∴180********B BEF ∠=︒-∠=︒-︒=︒故选D【点睛】此题主要考查了平行线的性质和角平分的性质,此题难度不大,注意掌握相关性质的运用4.D解析:D【解析】分析:根据平行线的性质,找出图形中的同旁内角、内错角即可判断.详解:延长DC 到H∵AB ∥CD ,EF ∥CD∴∠ABC+∠BCH=180°∠ABC=∠BCD∠CE+∠DCE=180°∠ECH=∠FEC∴∠ABC+∠BCE+∠CEF=180°+∠FEC∠ABC+∠BCE -∠CEF=∠ABC+∠BCH+∠ECH-∠CEF=180°.故选D.点睛:此题主要考查了平行线的性质,关键是熟记平行线的性质:两直线平行,内错角相等,同旁内角互补,同位角相等.5.D解析:D【解析】根据真假命题的概念,可知:A 、有公共端点的两条射线组成的图形叫做角,选项错误;B 、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.C 、射线是直线的一部分,选项错误;D 、两点之间的所有连线中,线段最短,选项正确;故选:D .6.C解析:C【解析】根据平行线的判定,可由∠2=∠3,根据内错角相等,两直线平行,得到AD ∥BC ,由∠1=∠4,得到AB∥CD.故选C.7.A解析:A【分析】根据命题的定义对四句话进行判断.【详解】解:(1)两点之间,线段最短,它是命题;(2)如果两个角的和是90度,那么这两个角互余,它是命题;(3)请画出两条互相平行的直线,它不是命题;(4)一个锐角与一个钝角互补吗?,它不是命题.所以,是命题的为(1)(2),故选:A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成如果…那么…形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.C解析:C【分析】延长BE交CD于点F,利用三角形外角的性质可得出∠BEC=∠EFC+∠C,结合∠BEC=∠B+∠C可得出∠B=∠EFC,利用“内错角相等,两直线平行”可证出AB∥CD,找出各符号代表的含义,再对照四个选项即可得出结论.【详解】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C.又∵∠BEC=∠B+∠C,∴∠B=∠EFC,∴AB∥CD(内错角相等,两直线平行).∴※代表CD,⊙代表∠EFC,▲代表∠EFC,□代表内错角.故选:C.【点睛】本题考查了平行线的判定以及三角形外角的性质,利用各角之间的关系,找出∠B=∠EFC 是解题的关键.9.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A、正确,符合不等式的性质;B、正确,符合不等式的性质.C、正确,符合不等式的性质;D、错误,例如a=2,b=0;故选D.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.10.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.二、填空题11.65°【分析】由AB//CD可得∠HFD=130︒,再由FE平分∠HFD可求出∠HFE.【详解】∵∴∠EHF+∠HFD=180°∵∴∠HFD=130°∵平分,∴∠HFE=∠HFD=解析:65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE .【详解】∵//AB CD∴∠EHF+∠HFD=180°∵50EHF ∠=︒∴∠HFD=130°∵FE 平分HFD ∠,∴∠HFE=12∠HFD=1130652⨯︒=︒ 故答案为:65°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.12.【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分8种情况讨论:(1)如图1,AD 边与OB 边平行时,∠BAD=45°;(2)如图2,解析:8【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分8种情况讨论:(1)如图1,AD 边与OB 边平行时,∠BAD =45°;(2)如图2,当AC 边与OB 平行时,∠BAD =90°+45°=135°;(3)如图3,DC 边与AB 边平行时,∠BAD =60°+90°=150°,(4)如图4,DC 边与OB 边平行时,∠BAD =135°+30°=165°,(5)如图5,DC 边与OB 边平行时,∠BAD =45°﹣30°=15°;(6)如图6,DC 边与AO 边平行时,∠BAD =15°+90°=105°(7)如图7,DC 边与AB 边平行时,∠BAD =30°,(8)如图8,DC边与AO边平行时,∠BAD=30°+45°=75°;综上所述:∠BAD的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.故答案为:8.【点睛】本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.13.平行平行垂直【解析】根据平行公理的推论,可由,得出a∥c;根据垂直的性质以及平行线的判定,可由,得到a∥c;根据,,得到a⊥c.故答案为平行,平行,垂直.点睛:由平解析:平行 平行 垂直【解析】根据平行公理的推论,可由//,//a b b c ,得出a ∥c ;根据垂直的性质以及平行线的判定,可由,a b b c ⊥⊥,得到a∥c;根据//a b ,b c ⊥,得到a⊥c.故答案为平行,平行,垂直.点睛:由平行于同一条直线的两条直线互相平行,可求解(1),因为在同一平面内,垂直于同一条直线的两条直线互相平行,可求解(2),再根据平行线的性质可求解(3). 14.130cm2.【分析】根据平移的性质可知梯形EFGH≌梯形ABCD ,那么GH=CD ,BC=FG ,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD ,再根据梯形的面积计解析:130cm 2.【分析】根据平移的性质可知梯形EFGH ≌梯形ABCD ,那么GH=CD ,BC=FG ,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD ,再根据梯形的面积计算公式计算即可.【详解】解:∵直角梯形EFGH 是由直角梯形ABCD 平移得到的,∴梯形EFGH ≌梯形ABCD ,∴GH=CD ,BC=FG ,∵梯形EFMD 是两个梯形的公共部分,∴S 梯形ABCD -S 梯形EFMD =S 梯形EFGH -S 梯形EFMD ,∴S 阴影=S 梯形MGHD =12(DM+GH )•GM=12(28-4+28)×5=130(cm 2). 故答案是130cm 2.【点睛】本题考查了图形的平移,解题的关键是知道平移前后的两个图形全等.15.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC 是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵b∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.16.70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB∥CD,∴∠BAE=∠DCE=140°,由折叠可得:,∴∠解析:70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB∥CD,∴∠BAE=∠DCE=140°,由折叠可得:12DCF DCE ∠=∠,∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.17.48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°解析:48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°,∴∠EFC=∠B=75°,又∵∠EFC=∠D+∠E,且∠E=27°,∴∠D=∠EFC﹣∠E=75°﹣27°=48°,故答案为:48°.【点睛】本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.18.40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∴∠ACB=12∠BCD=40°,∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.19.60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答. 【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80解析:60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.20.【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵,,∴,∴∠4=90°−∠3=55°,∵,∴∠2解析:55︒【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c ,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.三、解答题21.【感知】见解析;【探究】∠BAE+∠AEC+∠DCE=360°;【应用】396°.【分析】感知:如图①,过点E作EF∥AB.利用平行线的性质即可解决问题;探究:如图2中,作EG∥AB,利用平行线的性质即可解决问题;应用:作FH∥AB,利用平行线的性质即可解决问题;【详解】解:理由如下,【感知】过E点作EF//AB∵AB//CD∴EF//CD∵AB//CD∴∠BAE=∠AEF∵EF//CD∴∠CEF=∠DCE∴∠BAE+∠DCE=∠AEC.【探究】过E点作AB//EG.∵AB//CD∴EG//CD∵AB//CD∴∠BAE+∠AEG=180°∵EG//CD∴∠CEG+∠DCE=180°∴∠BAE+∠AEC+∠DCE=360°【应用】过点F作FH∥AB.∵AB ∥CD ,∴FH ∥CD ,∴∠BAE+∠AEF+∠EFH=360°,∠HFG+∠FGC+∠GCD=360°,∴∠BAE+∠AEF+∠EFH+∠HFG+∠FGC+∠GCD=720°,∴∠BAE+∠AEF+∠EFH+∠HFG+∠FGC+∠GCD+∠EFG=720°+36°,∴∠BAE+∠AEF+∠FGC+∠DCG=720°-360°+36°=396°故答案为396°.【点睛】本题考查平行线的性质,解题的关键是学会添加辅助线构造平行线解决问题,属于中考常考题型.22.(1)理由见解析;(2)①80°,②40°;(3)38°、74°、86°、122°.【分析】(1)根据平行线的性质及对顶角的性质即可得证;(2)①过拐点作AB 的平行线,根据平行线的性质推理即可得到答案;②过点P 作AB 的平行线,根据平行线的性质及角平分线的定义求得角的度数; (3)分情况讨论,画出图形,根据三角形的内角和与外角的性质分别求出答案即可.【详解】(1)//AB CD1EFD ∴∠=∠,2EFD ∠=∠12∠∠∴=; (2)①分别过点M ,N 作直线GH ,IJ 与AB 平行,则//////AB CD GH IJ ,如图:AEM EMH ∴∠=∠,CFN FNJ ∠=∠,180HMN MNJ ∠+∠=︒,()80AEM CFN EMH FNJ EMN MNF HMN MNJ ∴∠+∠=∠+∠=∠+∠-∠+∠=︒;②过点P 作AB 的平行线,根据平行线的性质可得:3AEP ∠=∠,4CFP ∠=∠, ∵EP 平分∠AEM ,FP 平分∠CFN , ∴11344022AEP CFP AEM CFM ∠+∠=∠+∠=∠+∠=︒, 即40P ∠=︒;(3)分四种情况进行讨论:由已知条件可得80BEH ∠=︒,①如图:118082EPG BEH AGQ ∠=︒-∠-∠=︒182HPQ EPG ∴∠=∠=︒11118074GQ H EHQ HPQ ∴∠=︒-∠-∠=︒ ②如图:104 BPH FHP BEH∠=∠+∠=︒,22122BQ H BPH AGQ∴∠=∠+∠=︒;③如图:56BPH BEH FHP∠=∠-∠=︒,3338BQ H BPH AGQ∴∠=∠-∠=︒;④如图:104BPH BEH FHP ∠=∠+∠=︒ ,4486GQ H BPH AGQ ∴∠=∠-∠=︒;综上所述,∠GQH 的度数为38°、74°、86°、122°.【点睛】本题考查平行线的性质,三角形外角的性质等内容,解题的关键是掌握辅助线的作法以及分类讨论的思想.23.(1)∠CPD=∠α+∠β,理由见解析;(2)①当点P 在A 、M 两点之间时,∠CPD=∠β−∠α;②当点P 在B 、O 两点之间时,∠CPD=∠α−∠β【分析】(1)过点P 作PE ∥AD 交CD 于点E ,根据题意得出AD ∥PE ∥BC ,从而利用平行线性质可知α∠=∠DPE ,β∠=∠CPE ,据此进一步证明即可;(2)根据题意分当点P 在A 、M 两点之间时以及当点P 在B 、O 两点之间时两种情况逐一分析讨论即可.【详解】(1)∠CPD=αβ∠+∠,理由如下:如图3,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠DPE ,β∠=∠CPE ,∴∠CPD=∠DPE +∠CPE=αβ∠+∠;(2)①当点P 在A 、M 两点之间时,∠CPD=βα∠-∠,理由如下:如图4,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠EPD ,β∠=∠CPE ,∴∠CPD=∠CPE −∠EPD=βα∠-∠;②当点P 在B 、O 两点之间时,∠CPD=αβ∠-∠,理由如下:如图5,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠DPE ,β∠=∠CPE ,∴∠CPD=∠DPE −∠CPE=αβ∠-∠,综上所述,当点P 在A 、M 两点之间时,∠CPD=∠β−∠α;当点P 在B 、O 两点之间时,∠CPD=∠α−∠β.【点睛】本题主要考查了在平行线性质及判定的综合运用,熟练掌握相关概念是解题关键.24.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【分析】问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.【详解】解:问题情境:∵AB ∥CD ,PE AB∴PE ∥AB ∥CD , ∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=50°+60°=110°;(1)CPD αβ∠=∠+∠过点P 作PQ AD .又因为AD BC ∥,所以PQ AD BC则ADP DPQ ∠=∠,BCP CPQ ∠=∠所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)情况1:如图所示,当点P 在B 、O 两点之间时过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠DPE-∠CPE=∠α-∠β情况2:如图所示,当点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠CPE-∠DPE=∠β-∠α【点睛】本题主要借助辅助线构造平行线,利用平行线的性质进行推理.25.(1)180BCD ACE ∠+∠=︒,理由详见解析;(2)135°;(3)BCD ∠等于150︒或30时,//CE AB .【分析】(1)依据∠BCD=∠ACB+∠ACD=90°+∠ACD ,即可得到∠BCD+∠ACE 的度数;(2)设∠ACE=α,则∠BCD=3α,依据∠BCD+∠ACE=180°,即可得到∠BCD 的度数; (3)分两种情况讨论,依据平行线的性质,即可得到当∠BCD 等于150°或30°时,CE//4B.【详解】解:(1)180BCD ACE ∠+∠=︒,理由如下:90BCD ACB ACD ACD ∠=∠+∠=︒+∠,∴90BCD ACE ACD ACE ∠+∠=︒+∠+∠9090180=︒+︒=︒;(2)如图①,设ACE α∠=,则3BCD α∠=,由(1)可得180BCD ACE ∠+∠=︒,∴3180αα+=︒,∴45α=,∴3135BCD α∠==︒;(3)分两种情况:①如图1所示,当//AB CE 时,180120BCE B ∠=︒-∠=︒, 又90DCE ∠=︒,∴36012090150BCD ∠=︒-︒-︒=︒;②如图2所示,当//AB CE 时,60BCE B ∠=∠=︒, 又90DCE ∠=︒,∴906030BCD ∠=︒-︒=︒.综上所述,BCD ∠等于150︒或30时,//CE AB .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.26.(1)∠AEC =130°;(2)∠A 1EC =130°;(3)∠A 1EC =40°.【解析】【分析】(1)由直线PQ ∥MN ,∠ADC=∠QAD=30°,可得∠PAD=150°,再求∠PAE=75°,可得∠CAE=25°;由∠PAC=∠ACN,求得∠ECA=25°,故∠AEC=180°﹣25°﹣25°;(2)先求出∠QA1D1=30°,∠PA1D1=150°,再求出∠PA1E=∠EA1D1=75°,再求出∠CAQ=130°,∠ACN=50°,根据平分线定义得∠ACE=25°,再利用四边形内角和性质可求∠CEA1;(3)根据平行线性质和角平分线定义可求得∠QA1E=∠2=15°,∠ACE=∠ECN=∠1=25°,再由∠CEA1=∠1+∠2即可求得答案.【详解】(1)如图1所示:∵直线PQ∥MN,∠ADC=30°,∴∠ADC=∠QAD=30°,∴∠PAD=150°,∵∠PAC=50°,AE平分∠PAD,∴∠PAE=75°,∴∠CAE=25°,可得∠PAC=∠ACN=50°,∵CE平分∠ACD,∴∠ECA=25°,∴∠AEC=180°﹣25°﹣25°=130°;(2)如图2所示:∵∠A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∴∠PA1D1=150°,∵A1E平分∠AA1D1,∴∠PA1E=∠EA1D1=75°,∵∠PAC=50°,PQ∥MN,∴∠CAQ=130°,∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=25°,∴∠CEA1=360°﹣25°﹣130°﹣75°=130°;(3)如图3所示:过点E作FE∥PQ,∵∠A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∵A1E平分∠AA1D1,∴∠QA1E=∠2=15°,∵∠PAC=50°,PQ∥MN,∴∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=∠ECN=∠1=25°,∴∠CEA1=∠1+∠2=15°+25°=40°.【点睛】本题考查了平行线性质,角平分线定义,熟练运用平行线性质和角平分线定义推出角的度数是解题的关键.。
初一数学相交线与平行线28道典型题(含 答案和解析)

初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。
初一数学《相交线与平行线综合探究型题及答案解析》

初一数学《相交线与平行线》及探究题、答案解析知识要点:1. 两条直线的位置关系(1)在同一平面内,两条直线的位置关系有两种:相交与平行. (2)平行线:在同一平面内,不相交的两条直线叫平行线. 2. 几种特殊关系的角(1)余角和补角:如果两个角的和是直角,称这两个角互为余角.如果两个角的和是平角,称这两个角互为补角.(2)对顶角:①定义:一个角的两边分别是另一个角两边的反向延长线,这两个角叫对顶角. ②性质:对顶角相等.(3)同位角、内错角、同旁内角两条直线分别与第三条直线相交,构成八个角.①在两条直线之间并且在第三条直线的两旁的两个角叫做内错角. ②在两条直线的同一侧并且在第三条直线同旁的两个角叫做同位角. ③在两条直线之间并且在第三条直线同旁的两个角叫做同旁内角. 3. 主要的结论 (1)垂线①过一点有且只有一条直线与已知直线垂直.②直线外一点与直线上各点连结的所有线段中,垂线段最短.简称:垂线段最短. (24. 几个概念(1)垂线段:过直线外一点,作已知直线的垂线,这点和垂足之间的线段. (2)点到直线的距离:从直线外一点到这条直线的垂线段的长度. 5. 几个基本图形(1)相交线型.①一般型(如图①);②特殊型(垂直,如图②).(2)三线八角.①一般型(如图①);②特殊型(平行,如图②).ABC DOABCDO ①②重点难点:重点有两个:一方面要掌握关于相交线和平行线的一些基本事实,另一方面学会借助三角尺上的直角或量角器画已知直线的垂线,用移动三角尺的方法画平行线.难点是是利用对顶角的性质、平行线的特征、两直线平行的条件等进行推理和计算.考点分析:考查(1)对顶角的性质;(2)平行线的识别方法;(3)平行线的特征,其中依据平行线的识别与特征解决一类与平行线有关的几何问题是历届中考命题的重要考点.常见题型有填空题、选择题和解答题,单纯考查一个知识点的题目并不难,属于中低档题,将平行线的特征与其他知识综合起来考查的题目难度较大,属高档题.【典型例题】1. 如图所示,已知FC ∥AB ∥DE ,∠α∶∠D ∶∠B =2∶3∶4,求∠α、∠D 、∠B 的度数.2. 如图所示,直线a ∥b ,则∠A =__________.3.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,∠1与∠2互补. (1)试判断直线AB 与直线CD 的位置关系,并说明理由;A BCDEFAB CDEF①②ABC DEF12αABCEa b28°50°(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.4.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①,求证:OB∥AC.(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC的度数等于;(在横线上填上答案即可).(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于.(在横线上填上答案即可).5.如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.6.已知E,F分别是AB、CD上的动点,P也为一动点.(1)如图1,若AB∥CD,求证:∠P=∠BEP+∠PFD;(2)如图2,若∠P=∠PFD﹣∠BEP,求证:AB∥CD;(3)如图3,AB∥CD,移动E,F使得∠EPF=90°,作∠PEG=∠BEP,求的值.7.已知:∠A=(90+x)°,∠B=(90﹣x)°,∠CED=90°,射线EF∥AC,2∠C﹣∠D=m.(1)判断AC与BD的位置关系,并说明理由.(2)如图1,当m=30°时,求∠C、∠D的度数.(3)如图2,求∠C、∠D的度数(用含m的代数式表示).8.(1)如图(1),EF⊥GF,垂足为F,∠AEF=150°,∠DGF=60°.试判断AB和CD的位置关系,并说明理由.(2)如图(2),AB∥DE,∠ABC=70°,∠CDE=147°,∠C=.(直接给出答案)(3)如图(3),CD∥BE,则∠2+∠3﹣∠1=.(直接给出答案)(4)如图(4),AB∥CD,∠ABE=∠DCF,求证:BE∥CF.9.如图1,点E在直线BH、DC之间,点A为BH上一点,且AE⊥CE,∠DCE﹣∠HAE=90°.(1)求证:BH∥CD.(2)如图2:直线AF交DC于F,AM平分∠EAF,AN平分∠BAE.试探究∠MAN,∠AFG的数量关系.10.平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等,如图,一束光线m先射到平面镜a上,被平面镜a反射到平面镜b上,又被平面镜b反射出光线n.(1)若m∥n,且∠1=50°,则∠2=°,∠3=°;(2)若m∥n,且∠1=40°,则∠3=°;(3)根据(1)、(2)猜想:当两平面镜a、b的夹角∠3是多少度时,总有m∥n?试证明你的猜想.初一数学相交线和平行线探究题1.AB∥CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合).∠ABC=n°,∠ADC=80°.(1)若点B在点A的左侧,求∠BED的度数(用含n的代数式表示);(2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠BED的度数是否改变.若改变,请求出∠BED的度数(用含n的代数式表示);若不变,请说明理由.2.已知:如图①、②,解答下面各题:(1)图①中,∠AOB=55°,点P在∠AOB内部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,求∠EPF 的度数。
专题02 《相交线与平行线》解答题、证明题重点题型分类(解析版)

专题02 《相交线与平行线》解答题、证明题重点题型分类专题简介:本份资料专攻《相交线与平行线》中“利用平行线的性质求角”、“利用平行线的判定及性质证明平行”、“利用平行线的判定及性质证明角相等”、“平行线中构造平行线”解答题、证明题重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。
考点1:利用平行线的性质求角方法点拨:题目中出现两直线平行的条件时,应立即想到平行线的三个性质,要注意分析图形特征,明确角与角的位置关系从而明确角与角之间的数量关系是相等还是互补。
平行线还通常会和角平分线、垂线等知识结合,求角的度数时需要根据已知条件综合利用角平分线、垂线的定义以及对顶角、领补角互补等性质求解!1.如图,已知:DE//BC,CD是∠ACB的平分线,∠B=80°,∠A=50°,求:∠EDC与∠BDC的度数.【答案】∠BDC=75°,∠EDC =25°【分析】先根据三角形内角和定理求出∠ACB =50°,再由角平分线的定义求出1===252BCD ACD ACBÐÐÐo,则由三角形内角和定理可求出∠BDC=180°-∠B-∠BCD=75°,再由平行线的性质即可得到∠EDC=∠BCD=25°.【详解】解:∵∠A=50°,∠B=80°,∴∠ACB=180°-∠A-∠B=50°,∵CD平分∠ACB,∴1===252BCD ACD ACBÐÐÐo,∴∠BDC=180°-∠B-∠BCD=75°,∵DE∥BC,∴∠EDC=∠BCD=25°.【点睛】本题主要考查了三角形内角和定理,角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.2.两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠E=45°,∠C=30°,AB与DF交于点M,BC ∥EF ,求∠BMD 的度数.【答案】75°【分析】首先根据直角三角形两锐角互余可算出∠F 和∠B 的度数,再由“两直线平行,内错角相等”,可求出∠MDB 的度数,在△BMD 中,利用三角形内角和可求出∠BMD 的度数.【详解】解:如图,在△ABC 和△DEF 中,∠BAC =∠EDF =90°,∠E =45°,∠C =30°,∴∠B =90°−∠C =60°,∠F =90°−∠E =45°,∵BC ∥EF ,∴∠MDB =∠F =45°,在△BMD 中,∠BMD =180°−∠B −∠MDB =75°.【点睛】本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.3.如图所示,AB //CD ,G 为AB 上方一点,E 、F 分别为AB 、CD 上两点,∠AEG =4∠GEB ,∠CFG =2∠GFD ,∠GEB 和∠GFD 的角平分线交于点H ,求∠G +∠H 的值.【答案】∠G +∠H =36°.【分析】先设2GEB x Ð=,2GFD y Ð=,由题意可得8AEG x Ð=,4CFG y Ð=,由28180x x +=°,24180y y +=°,从而求出x y ,;根据题意得AEG G CFG Ð=Ð+Ð, AEH H CFH Ð=Ð+Ð, 从而得到G H Ð+Ð的值.【详解】解:设2GEB x Ð=,2GFD y Ð=,由题意可得,8AEG x Ð=,4CFG y Ð=,由28180x x +=°,24180y y +=°,解得18x =°,30y =°;由靴子图AEGFC 知,AEG G CFG Ð=Ð+Ð,即84x G y=Ð+由靴子图AEHFC 知,AEH H CFH Ð=Ð+Ð,即即84x G y =Ð+,95x H y =Ð+,179171893036G H x y Ð+Ð=-=´°-´°=°【点睛】本题考查平行线的性质,解题的关键是设2GEB x Ð=,2GFD y Ð=,由题意得到x y ,的关系式,正确将G H Ð+Ð表示成x y ,的形式.4.如图所示,AB //CD ,点E 为两条平行线外部一点,F 为两条平行线内部一点,G 、H 分别为AB 、CD 上两点,GB 平分∠EGF ,HF 平分∠EHD ,且2∠F 与∠E 互补,求∠EGF 的大小.【答案】∠EGF =120°.【分析】过点F 作FM ∥AB ,设AB 于EH 的交点为N ,先设,EGB x EHF y Ð=Ð=,则,BGF x FHD y Ð=Ð=,由题意及平行线的性质得F BGF DHF Ð=Ð+Ð,EGB E EHD Ð=Ð+Ð,得到F x y Ð=+,2x E y =Ð+,由于2F Ð与E Ð互补,得到222180x y x y ++-=°,最终问题可求解【详解】解:过点F 作FM ∥AB ,设AB 于EH 的交点为N ,如图所示:设,EGB x EHF y Ð=Ð=,∵GB 平分∠EGF ,HF 平分∠EHD ,∴,EGB BGF x EHF FHD y Ð=Ð=Ð=Ð=,∵AB //CD ,∴FM ∥AB ∥CD ,∴,,FGB GFM MFH FHD ENB EHD Ð=ÐÐ=ÐÐ=Ð,∴GFH GFM MFH BGF DHF Ð=Ð+Ð=Ð+Ð,EGB E ENB E EHD Ð=Ð+Ð=Ð+Ð,即F x y Ð=+,2x E y =Ð+,∵2F Ð与E Ð互补,∴222180x y x y ++-=°,∴3180x =°,∴60x =°,∴120EGF x x Ð=+=°.【点睛】本题考查平行线的性质及三角形外角的性质,解题的关键是设,EGB x EHF y Ð=Ð=,且由题意得到x ,y 的关系.5.如图,CD ∥AB ,点O 在直线AB 上,OE 平分∠BOD ,OF ⊥OE ,∠D =110°,求∠DOF 的度数.【答案】35°【分析】根据平行线的性质求得DOB Ð,根据角平分线和垂直求解即可.【详解】解:∵CD AB∥∴110DOB D Ð=Ð=°∵OE 平分∠BOD ∴1552DOE DOB Ð=Ð=°又∵OF ⊥OE∴90EOF Ð=°∴905535DOF EOF DOE Ð=Ð-Ð=°-°=°故答案为:35°【点睛】此题考查了平行线、角平分线以及垂直的性质,解题的关键是掌握并利用它们的性质进行求解.6.小明同学遇到这样一个问题:如图①,已知:AB ∥CD ,E 为AB 、CD 之间一点,连接BE ,ED ,得到∠BED .求证:∠BED =∠B +∠D .小亮帮助小明给出了该问的证明.证明:过点E 作EF ∥AB则有∠BEF =∠B∵AB ∥CD∴EF∥CD∴∠FED=∠D∴∠BED=∠BEF+∠FED=∠B+∠D请你参考小亮的思考问题的方法,解决问题:(1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.(2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.【答案】(1)55°;(2)当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD;【分析】(1)过点P作PG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;(2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可.【详解】解:(1)如图所示,过点P作PG∥l1,∴∠APG=∠PAC=15°,∵l1∥l2,∴PG∥l2,∴∠BPG=∠PBD=40°,∴∠APB=∠APG+∠BPG=55°;(2)由(1)可得当P在线段CD上时,∠APB=∠PAC+∠PBD;如图1所示,当P在DC延长线上时,过点P作PG∥l1,∴∠APG=∠PAC,∵l1∥l2,∴PG∥l2,∴∠BPG=∠PBD=40°,∴∠APB=∠BPG-∠APG=∠PBD-∠PAC;如图2所示,当P在CD延长线上时,过点P作PG∥l1,∴∠APG=∠PAC,∵l1∥l2,∴PG∥l2,∴∠BPG=∠PBD=40°,∴∠APB=∠APG-∠BPG=∠PAC-∠PBD;∴综上所述,当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD.【点睛】本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质.考点2:利用平行线的判定及性质证明平行方法点拨:“由角定线”,也就是根据某些角的相等或互补关系来判断两直线平行,解此类题目必须要掌握好平行线的判定方法。
第五章 相交线与平行线(提高卷)(解析版)

2020-2021学年下学期七年级数学单元提升卷【人教版】第五章相交线与平行线(提高卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题2分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.【答案】D【分析】根据对顶角的概念判断即可.【解答】解:A、∠1与∠2不是对顶角;B、∠1与∠2不是对顶角;C、∠1与∠2不是对顶角;D、∠1与∠2是对顶角;故选:D.【知识点】对顶角、邻补角2.如图,能判定DE∥AC的条件是()A.∠3=∠C B.∠1=∠3C.∠2=∠4D.∠1+∠2=180°【答案】A【分析】直接利用平行线的判定方法分别分析得出答案.【解答】解:A、当∠3=∠C时,DE∥AC,符合题意;B、当∠1=∠3时,EF∥BC,不符合题意;C、当∠2=∠4时,无法得到DE∥AC,不符合题意;D、当∠1+∠2=180°时,EF∥BC,不符合题意;故选:A.【知识点】平行线的判定3.如图,已知AB∥CD.直线EF分别交AB、CD于点E、F,EG平分∠AEF,若∠1=65°,则∠2的度数是()A.70°B.65°C.60°D.50°【答案】D【分析】根据平行线及角平分线的性质即可求解.【解答】解:∵AB∥CD,∴∠AEG=∠1(两直线平行,内错角相等),∵EG平分∠AEF,∴∠GEF=∠AEG=∠1,∵∠1=65°,∴∠GEF=∠1=65°,∴∠2=180°﹣∠GEF﹣∠1=180°﹣65°﹣65°=50°,故选:D.【知识点】平行线的性质4.如图,一个直角三角板的直角顶点落在直尺上的一条边上,若∠1=58°,则∠2的大小为()A.48°B.38°C.42°D.32°【答案】D【分析】根据对顶角相等和直角三角形的性质,可以得到∠2的度数.【解答】解:∵∠1=58°,∠1=∠3,∴∠3=58°,∵∠3+∠2=90°,∴∠2=32°,故选:D.【知识点】平行线的性质5.如图,已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数为()A.28°B.34°C.56°D.46°【答案】B【分析】延长DC交AE于F,利用平行线的性质可得∠EFC的度数,然后再利用三角形外角的性质计算出∠E的度数即可.【解答】解:延长DC交AE于F,∵AB∥CD,∴∠A=∠EFC=87°,∵∠DCE=121°,∴∠E=121°﹣87°=34°,故选:B.【知识点】平行线的性质6.如图摆放的一副学生用直角三角板,∠F=30°,∠C=45°,AB与DE相交于点G,当EF∥BC时,∠EGB的度数是()A.135°B.120°C.115°D.105°【答案】D【分析】过点G作HG∥BC,则有∠HGB=∠B,∠HGE=∠E,又因为△DEF和△ABC都是特殊直角三角形,∠F=30°,∠C=45°,可以得到∠E=60°,∠B=45°,有∠EGB=∠HGE+∠HGB即可得出答案.【解答】解:过点G作HG∥BC,∵EF∥BC,∴GH∥BC∥EF,∴∠HGB=∠B,∠HGE=∠E,∵在Rt△DEF和Rt△ABC中,∠F=30°,∠C=45°∴∠E=60°,∠B=45°∴∠HGB=∠B=45°,∠HGE=∠E=60°∴∠EGB=∠HGE+∠HGB=60°+45°=105°故∠EGB的度数是105°,故选:D.【知识点】平行线的性质、三角形内角和定理7.如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=()A.130°B.115°C.110°D.125°【答案】D【分析】分别过E,F两点作AB∥ME,FN∥AB,根据平行线的性质可得∠BED+∠ABE+∠CDE=360°,∠BFD=∠ABF+∠CDF,再根据∠BED=110°,结合角平分线的定义可求解.【解答】解:分别过E,F两点作AB∥ME,FN∥AB,∴∠ABE+∠BEM=180°,∠ABF=∠BFN,∵AB∥CD,∴CD∥ME,FN∥CD,∴∠CDE+∠DEM=180°,∠CDF=∠DFN,∴∠BED+∠ABE+∠CDE=360°,∠BFD=∠ABF+∠CDF,∵∠BED=110°,∴∠ABE+∠CDE=250°,∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠ABF,∠CDE=2∠CDF,∴∠BFD=∠ABF+∠CDF=(∠ABE+∠CDE)=125°.故选:D.【知识点】平行线的性质8.下列说法正确的个数有()①不相交的两条直线叫做平行线;②过一点有且只有一条直线垂直于已知直线;③同一平面内,过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段叫做这点到这条直线的距离.A.0个B.1个C.2个D.3个【答案】A【分析】根据各个小题中的说法,可以判断各个小题中的说法是否正确,从而可以解答本题.【解答】解:在同一个平面内,不相交的两条直线叫做平行线,如果不在同一个平面内,不相交的两条直线不一定是平行线,故①错误;在同一个平面内,过一点有且只有一条直线垂直于已知直线,故②错误;同一平面内,过直线外一点有且只有一条直线与已知直线平行,故③错误;直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故④错误;故选:A.【知识点】平行公理及推论、点到直线的距离、平行线、平行线的性质、垂线9.如图,平面内∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,则以下结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB﹣∠AOD=90°;④∠COE+∠BOF=180°.其中正确结论的个数有()A.4个B.3个C.2个D.0个【答案】B【分析】由∠AOB=∠COD=90°根据等角的余角相等得到∠AOC=∠BOD,而∠COE=∠BOE,即可判断①正确;由∠AOD+∠COB=∠AOD+∠AOC+90°,而∠AOD+∠AOC=90°,即可判断,②确;由∠COB﹣∠AOD=∠AOC+90°﹣∠AOD,没有∠AOC≠∠AOD,即可判断③不正确;由OF平分∠AOD得∠AOF=∠DOF,由①得∠AOE=∠DOE,根据周角的定义得到∠AOF+∠AOE=∠DOF+∠DOE=180°,即点F、O、E共线,又∠COE=∠BOE,即可判断④正确.【解答】解:∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,而∠COE=∠BOE,∴∠AOE=∠DOE,所以①正确;∠AOD+∠COB=∠AOD+∠AOC+90°=90°+90°=180°,所以②正确;∠COB﹣∠AOD=∠AOC+90°﹣∠AOD,而∠AOC≠∠AOD,所以③不正确;∵OF平分∠AOD,∴∠AOF=∠DOF,而∠AOE=∠DOE,∴∠AOF+∠AOE=∠DOF+∠DOE=180°,即点F、O、E共线,∵∠COE=∠BOE,∴∠COE+∠BOF=180°,所以④正确.故选:B.【知识点】垂线、角平分线的定义10.如图,直线AB∥CD,点F在直线AB上,点N在直线CD上,∠EF A=25°,∠FGH=90°,∠HMN=25°,∠CNP=30°,则∠GHM=()A.45°B.50°C.55°D.60°【答案】D【分析】延长HG交直线AB于点K,延长PM交直线AB于点S.利用平行线的性质求出∠KSM,利用邻补角求出∠SMH,利用三角形的外角与内角的关系,求出∠SKG,再利用四边形的内角和求出∠GHM.【解答】解:延长HG交直线AB于点K,延长PM交直线AB于点S.∵AB∥CD,∴∠KSM=∠CNP=30°.∵∠EF A=∠KFG=25°,∠KGF=180°﹣∠FGH=90°,∠SMH=180°﹣∠HMN=155°,∴∠SKH=∠KFG+∠KGF=25°+90°=115°.∵∠SKH+∠GHM+∠SMH+∠KSM=360°,∴∠GHM=360°﹣115°﹣155°﹣30°=60°.故选:D.【知识点】平行线的性质11.如图,△ABC中,C、C′关于AB对称,B、B′关于AC对称,D、E分别在AB、AC上,且C′D∥BC∥B′E,BE,CD交于点F,若∠BFD=α,∠A=β,则α与β之间的关系为()A.2β+α=180°B.α=2βC.α=D.α=180°﹣【答案】B【分析】利用四边形内角和定理,三角形内角和定理,平行线的性质解决问题即可.【解答】解:在△ABC中,∵∠A=β,∴∠ABC+∠ACB=180°﹣β,∵C′D∥BC∥B′E,∴∠ABC=∠C′DB,∠ACB=∠B′EC,∵C、C′关于AB对称,∴AB垂直平分线段CC′,∴∠C′DB=∠CDB,同理∠B′EC=∠BEC,∴∠CDB+∠BEC=180°﹣β,∵∠ADC+∠CDB=180°,∠AEB+∠BEC=180°,∴∠ADC+∠AEB=180°+β,∵∠ADE+∠A+∠AEB+∠DFE=360°,∠DFE=180°﹣α,∴180°+β+β+180°﹣α=360°,∴α=2β,故选:B.【知识点】轴对称的性质、平行线的性质12.如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°【答案】B【分析】AD∥BC,∠D=∠ABC,则AB∥CD,则∠AEF=180°﹣∠AED﹣∠BEG=180°﹣2β,在△AEF 中,100°+2α+180°﹣2β=180°,故β﹣α=40°,即可求解.【解答】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEG=∠F AE=100°,∠AEF=180°﹣∠AED﹣∠BEG=180°﹣2β,在△AEF中,100°+2α+180°﹣2β=180°,故β﹣α=40°,而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,故选:B.【知识点】平行线的性质二、填空题(本大题共4小题,每小题2分,共8分.不需写出解答过程,请把答案直接填写在横线上)13.过平面上一点O作三条射线OA、OB和OC,已知OA⊥OB,∠AOC:∠AOB=1:2,则∠BOC=°.【答案】135或45【分析】根据题意画出图形,再结合垂直定义进行计算即可.【解答】解:∵OA⊥OB,∴∠AOB=90°,∵∠AOC:∠AOB=1:2,∴∠AOC=45°,如图1:∠BOC=90°+45°=135°,如图2:∠BOC=90°﹣45°=45°,故答案为:135或45.【知识点】垂线、角的计算14.如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为.【答案】76°【分析】根据平行线的性质和三角形的内角和解答即可.【解答】解:∵∠CEF=∠CHD,∴DH∥GE,∴∠ADH=∠G,∵∠EFC=∠ADH,∵∠BFG=∠EFC,∴∠G=∠BFG,∴∠ABC=∠G+∠BFG=2∠EFC,∵∠CEF:∠EFC=5:2,∠C=47°,∴∠EFC=38°,∴∠ABC=76°,∵DE∥BC,∴∠ADE=∠ABC=76°,故答案为:76°.【知识点】平行线的性质15.如图,直线MN分别与直线AB,CD相交于点E,F,EG平分∠BEF,交直线CD于点G,若∠MFD=∠BEF=62°,射线GP⊥EG于点G,则∠PGF的度数为度.【答案】59或121【分析】分两种情况:①当射线GP⊥EG于点G时,∠PGE=90°,②当射线GP′⊥EG于点G时,∠P′GE=90°,根据平行线的判定与性质和角平分线定义即可求出∠PGF的度数.【解答】解:如图,①当射线GP⊥EG于点G时,∠PGE=90°,∵∠MFD=∠BEF=62°,∴CD∥AB,∴∠GEB=∠FGE,∵EG平分∠BEF,∴∠GEB=∠GEF=BEF=31°,∴∠FGE=31°,∴∠PGF=∠PGE﹣∠FGE=90°﹣31°=59°;②当射线GP′⊥EG于点G时,∠P′GE=90°,同理:∠P′GF=∠PGE+∠FGE=90°+31°=121°.则∠PGF的度数为59或121度.故答案为:59或121.【知识点】平行线的判定与性质16.如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于点F,交AC于点E,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+∠C;②AE+BF=EF;③当∠C=90°时,E、F分别是AC、BC的中点;④若OD=a,CE+CF=2b,则S△CEF=ab,其中正确的是.【答案】①②④【分析】根据角平分线的定义和三角形内角和定理判断①;根据角平分线的定义和平行线的性质判断②;根据三角形三边关系判断③;根据角平分线的性质判断④.【解答】解:∵∠BAC和∠ABC的平分线相交于点O,∴∠OBA=∠CBA,∠OAB=∠CAB,∴∠AOB=180°﹣∠OBA﹣∠OAB=180°﹣∠CBA﹣∠CAB=180°﹣(180°﹣∠C)=90°+∠C,①正确;∵EF∥AB,∴∠FOB=∠ABO,又∠ABO=∠FBO,∴∠FOB=∠FBO,∴FO=FB,同理EO=EA,∴AE+BF=EF,②正确;当∠C=90°时,AE+BF=EF<CF+CE,∴E,F不是AC,BC的中点,③错误;作OH⊥AC于H,∵∠BAC和∠ABC的平分线相交于点O,∴点O在∠C的平分线上,∴OD=OH,∴S△CEF=×CF×OD+×CE×OH=ab,④正确.故答案为①②④.【知识点】角平分线的性质、平行线的性质、等腰三角形的判定与性质三、解答题(本大题共7小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.如图,直线AB,CD相交于点O,射线OF⊥CD于点O,∠BOF=30°,求∠BOD,∠AOD的度数.【分析】利用垂直的定义可得∠DOF=90°,再结合条件∠BOF=30°,可求出∠BOD的度数,利用邻补角互补可得∠AOD的度数.【解答】解:∵OF⊥CD,∴∠DOF=90°,∵∠BOF=30°,∴∠BOD=60°,∴∠AOD=180°﹣60°=120°.【知识点】对顶角、邻补角、垂线18.如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=145°,求∠AFG的度数.【分析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;(2)由∠2=145°得出∠1=35°,得出∠AFG的度数.【解答】解:(1)BF∥DE.理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵∠1+∠2=180°,∠2=145°,∴∠1=35°,∴∠AFG=90°﹣35°=55°.【知识点】平行线的判定与性质19.完成推理填空.填写推理理由:如图:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的过程填写完整.∵EF∥AD,∴∠2=,()又∵∠1=∠2,∴∠1=∠3,∴AB∥,()∴∠BAC+=180°,()又∵∠BAC=70°,∴∠AGD=110°.【答案】【第1空】∠3【第2空】两直线平行,同位角相等【第3空】DG【第4空】内错角相等,两直线平行【第5空】∠DGA【第6空】两直线平行,同旁内角互补【分析】根据平行线的性质和已知求出∠1=∠3,根据平行线的判定推出AB∥DG,根据平行线的性质推出∠BAC+∠DGA=180°即可.【解答】解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°,∴∠AGD=110°,故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠DGA;两直线平行,同旁内角互补.【知识点】平行线的判定与性质20.已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM∥FN.(1)如图1,求证:AB∥CD;(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.【分析】(1)根据平行线的判定与性质和角平分线定义即可证明;(2)根据平行线的判定与性质、角平分线定义和邻补角互补即可得结论.【解答】(1)证明:∵EM∥FN,∴∠EFN=∠FEM.∵EM平分∠BEF,FN平分∠CFE,∴∠CFE=2∠EFN,∠BEF=2∠FEM.∴∠CFE=∠BEF.∴AB∥CD.(2)∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°,∵FN平分∠CFE,∴∠CFE=2∠CFN,∵∠AEF=2∠CFN,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=45°,∴∠DFN=∠HFN=180°﹣45°=135°,同理:∠AEM=∠GEM=135°.∴∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.【知识点】平行线的判定与性质21.(1)如图1,已知射线BC,MA⊥BC,DF⊥BC,垂足分别为E和F,若∠BAM+∠D=180°,请判断AB和CD的位置关系,并说明理由.(2)在(1)的条件下,连接DE,直接写出∠BAE,∠EDC,∠AED之间的数量关系.(3)如图2,AB∥CD,EF∥CG,若∠A=32°,∠E=60°,请求出∠C的度数.【分析】(1)根据平行线的判定定理和垂直的定义即可得到结论;(2)根据平行线的性质和三角形外角的性质即可得到结论;(3)根据平行线的判定和性质定理即可得到结论.【解答】解:(1)AB∥CD,理由如下:∵∠BAM+∠D=180°,又∵∠BAM+∠BAE=180°,∴∠D=∠BAE,∵MA⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,∴∠BAE+∠B=90°,∠D+∠DCF=90°,∴∠B=∠DCF,∴AB∥CD;(2)∵AB∥CD,∴∠DCF=∠B,∵∠DCF=∠DEC+∠EDC,∴∠B=∠DEC+∠EDC,∵∠AEB=∠AEC=90°,∴∠BAE=90°﹣∠B,∵∠DEC=90°﹣∠AED,∴90°﹣∠BAE=∠EDC+∠90°﹣∠AED,∴∠BAE+∠EDC=∠AED;(3)延长CD至点N交EF于点H,过E作EM∥CN,∵EM∥CN,∴∠MEF=∠EHC,∵AB∥CD,∴AB∥EM,∴∠A=∠AEM,∵∠AEF=∠AEM+∠MEF,∴∠AEF=∠A+∠EHC,∴∠EHC=60°﹣32°=28°,∵EF∥CG,∴∠C=∠EHC=28°.【知识点】平行线的判定与性质22.三角形ABC中,D是AB上一点,DE∥BC交AC于点E,点F是线段DE延长线上一点,连接FC,∠BCF+∠ADE=180°.(1)如图1,求证:CF∥AB;(2)如图2,连接BE,若∠ABE=40°,∠ACF=60°,求∠BEC的度数;(3)如图3,在(2)的条件下,点G是线段FC延长线上一点,若∠EBC:∠ECB=7:13,BE平分∠ABG,求∠CBG的度数.【分析】(1)根据平行线的判定与性质即可完成证明;(2)如图2,过点E作EK∥AB,可得CF∥AB∥EK,再根据平行线的性质即可得结论;(3)根据∠EBC:∠ECB=7:13,可以设∠EBC=7x°,则∠ECB=13x°,然后根据∠AED+∠DEB+∠BEC=180°,13x+7x+100=180,求出x的值,进而可得结果.【解答】(1)证明:∵DE∥BC,∴∠ADE=∠B,∵∠BCF+∠ADE=180°.∴∠BCF+∠B=180°.∴CF∥AB;(2)解:如图2,过点E作EK∥AB,∴∠BEK=∠ABE=40°,∵CF∥AB,∴CF∥EK,∴∠CEK=∠ACF=60°,∴∠BEC=∠BEK+∠CEK=40°+60°=100°;(3)∵BE平分∠ABG,∴∠EBG=∠ABE=40°,∵∠EBC:∠ECB=7:13,∴设∠EBC=7x°,则∠ECB=13x°,∵DE∥BC,∴∠DEB=∠EBC=7x°,∠AED=∠ECB=13x°,∵∠AED+∠DEB+∠BEC=180°,∴13x+7x+100=180,解得x=4,∴∠EBC=7x°=28°,∵∠EBG=∠EBC+∠CBG,∴∠CBG=∠EBG﹣∠EBC=40°﹣28°=12°.【知识点】平行线的判定与性质23.已知AB∥CD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,∠AMP=∠PQN=α,PQ平分∠MPN.(1)如图①,求∠MPQ的度数(用含α的式子表示);(2)如图②,过点Q作QE∥PN交PM的延长线于点E,过E作EF平分∠PEQ交PQ于点F.请你判断EF与PQ的位置关系,并说明理由;(3)如图③,在(2)的条件下,连接EN,若NE平分∠PNQ,请你判断∠NEF与∠AMP的数量关系,并说明理由.【分析】(1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论;(2)根据已知条件可得2∠EPQ+2∠PEF=180°,进而可得EF与PQ的位置关系;(3)结合(2)和已知条件可得∠QNE=∠QEN,根据三角形内角和定理可得∠QNE=(180°﹣∠NQE)=(180°﹣3α),可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE,进而可得结论.【解答】解:(1)如图①,过点P作PR∥AB,∵AB∥CD,∴AB∥CD∥PR,∴∠AMP=∠MPR=α,∠PQN=∠RPQ=α,∴∠MPQ=∠MPR+∠RPQ=2α;(2)如图②,EF⊥PQ,理由如下:∵PQ平分∠MPN.∴∠MPQ=∠NPQ=2α,∵QE∥PN,∴∠EQP=∠NPQ=2α,∴∠EPQ=∠EQP=2α,∵EF平分∠PEQ,∴∠PEQ=2∠PEF=2∠QEF,∵∠EPQ+∠EQP+∠PEQ=180°,∴2∠EPQ+2∠PEF=180°,∴∠EPQ+∠PEF=90°,∴∠PFE=180°﹣90°=90°,∴EF⊥PQ;(3)如图③,∠NEF=∠AMP,理由如下:由(2)可知:∠EQP=2α,∠EFQ=90°,∴∠QEF=90°﹣2α,∵∠PQN=α,∴∠NQE=∠PQN+∠EQP=3α,∵NE平分∠PNQ,∴∠PNE=∠QNE,∵QE∥PN,∴∠QEN=∠PNE,∴∠QNE=∠QEN,∵∠NQE=3α,∴∠QNE=(180°﹣∠NQE)=(180°﹣3α),∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE=180°﹣(90°﹣2α)﹣3α﹣(180°﹣3α)=180°﹣90°+2α﹣3α﹣90°+α=α=∠AMP.∴∠NEF=∠∠AMP.【知识点】平行线的判定与性质。
七年级数学下册平行线相交线经典例题

七年级数学下册平行线相交线经典例题在七年级数学下册的学习中,平行线和相交线是一个非常基础且重要的概念。
理解这一概念不仅有助于我们解决实际问题,还可以帮助我们更好地理解几何学的其他知识。
在本文中,我将共享一些关于平行线和相交线的经典例题,以便能够更全面地掌握这一知识点。
1.平行线的性质我们要了解什么是平行线。
平行线是指在同一个平面上,永远也不会相交的两条直线。
了解平行线的性质对于解决相关问题非常重要。
例题1:已知平行线l1和l2,以及一条与l1相交的线m,求证直线m与l2相交的角和与直线l1与l2相交的角相等。
解析:根据平行线的定义,我们知道在同一个平面上,如果两条直线不相交,那么它们必定是平行线。
在这个例题中,我们可以利用已知的平行线性质来证明所求。
以l1和l2为平行线,m为相交线。
根据平行线的性质,可以得出直线m与l1相交的角等于直线m与l2相交的角。
这是因为在平行线与一条相交线所形成的交点处,对应角是相等的。
直线m与l2相交的角和与直线l1与l2相交的角相等。
2.相交线的性质除了平行线的性质,相交线也有一些独特的特点。
了解相交线的性质可以帮助我们更好地理解几何学知识,并能够更好地解决相关问题。
例题2:已知两条相交线l1和l2,以及直线m分别与l1和l2相交,求证直线m与l1或l2的交点的垂直角相等。
解析:相交线的性质是我们要理解和熟练运用的知识点。
在这个例题中,我们可以利用相交线的性质来解决问题。
根据相交线的性质,我们可以得出结论:相交线上的垂直角相等。
以l1和l2为相交线,m为另一条相交线。
根据相交线的性质,可以得出直线m与l1或l2的交点的垂直角相等。
这是因为在两条相交线所形成的交点处,垂直角是相等的。
直线m与l1或l2的交点的垂直角相等。
总结回顾:通过上面的两个例题,我们可以深入地理解平行线和相交线的性质。
对于平行线的性质,我们要了解在同一个平面上,永远也不会相交的两条直线是平行线。
利用平行线的性质可以帮助我们证明相关的几何问题。
相交线与平行线典型考题(附答案及解析)
A BDC第5题图 平行线相交线常见题型过关练习一、选择题一、如图,l 1∥l 2,∠1=120°,那么∠2= . (第1题图)二、如图,AB ∥CD ,∠DCE=80°,那么∠BEF=3、如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E 的大小为 (第2题图) (第3题图) (第4题图)4、如图,AB ∥CD ,AD 和BC 相交于点O ,∠A =40°,∠AOB =75°.那么∠C 等于 五、如图,AB ∥CD ,∠C =80°,∠CAD =60°,那么∠BAD 等于 六、如图,AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°,那么∠BCE 等于(第6题图) (第7题图) (第8题图) (第9题图)7、如图,AB∥CD,AC 与BD 相交于点O ,∠A=30°,∠COD=105°.那么∠D 的大小是 八、如图,直线l 1∥l 2,∠1=40°,∠2=75°,那么∠3等于九、如图,己知AB∥CD,BE 平分∠ABC,∠CDE=150°,那么∠C 的度数是 10、如图,已知AB ∥CD ,那么图中与∠1互补的角有 个。
1一、如图,CD ∥AB ,∠1=120°,∠2=80°,那么∠E 的度数是(第10题图)(第11题图) (第12题图) (第13题图)1二、如图,已知直线a ∥b ,∠1=40°,∠2=60°.那么∠3等于13、如图,已知AB∥CD,∠E=︒28,∠C=︒52,那么∠EAB 的度数是 14、如图,AB ∥EF ∥CD ,∠ABC = 46,∠CEF = 154,那么∠BCE 等于 1五、如下图,AB ∥CD ,∠E =37°,∠C =20°,那么∠EAB 的度数为1六、如图,已知AB ∥CD ,∠A =60°,∠C =25°,那么∠E 等于 (第15题图)B AD CEF 15446 (第14题图)(第16题图)(第17题图)(第18题图)17、如下图,直线a∥b.直线c与直线a,b别离相交于点A、点B,AM b⊥,垂足为点M,假设158∠=︒,那么2∠=_________1八、如图:CD平分∠ACB,DE∥AC且∠1=30°,那么∠2=度.1九、如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.(辅助线已画)(第19题图)答案及解析一、分析:由邻补角的概念,即可求得∠3的度数,又由l1∥l2,依照两直线平行,同位角相等,即可求得∠2的度数.解答:∵∠1=120°,∴∠3=180°﹣∠1=60°,∵l1∥l2,∴∠2=∠3=60°.点评:此题考查了平行线的性质与邻补角的概念.注意两直线平行,同位角相等.二、分析:依照平行线的性质推出∠DCE+∠BEF=180°,代入求出即可.解答:∵AB∥CD,∴∠DCE+∠BEF=180°,∵∠DCE=80°,∴∠BEF=180°﹣80°=100°.点评:此题要紧考查对平行线的性质,邻补角的概念等知识点的明白得和把握,依照平行线的性质推出∠DCE+∠BEF=180°是解此题的关键.3、分析:依照两直线平行,同位角相等,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.解答:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.4、分析:由∠A=40°,∠AOB=75°,依照三角形内角和定理,即可求得∠B的度数,又由AB∥CD,依照两直线平行,内错角相等,即可求得∠C的值.解答:∵∠A=40°,∠AOB=75°.∴∠B=180°﹣∠A﹣∠AOB=180°﹣40°﹣75°=65°,∵AB∥CD,∴∠C=∠B=65°.五、分析:依照三角形的内角和为180°,即可求出∠D的度数,再依照两直线平行,内错角相等即可明白∠BAD的度数.解答:∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°。
人教版初中七年级数学下册第五章《相交线与平行线》提高卷(含答案解析)(1)
一、选择题1.如图,若1234//,//l l l l ,则图中与1 互补的角有( )A .1个B .2个C .3个D .4个D解析:D【分析】 直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【详解】解:解:∵1234//,//l l l l ,∴∠1+∠2=180°,∠2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D .【点睛】本题主要考查了平行线的性质,注意不要漏角是解题的关键.2.在下列命题中,为真命题的是( )A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相平行B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、平行于同一条直线的两条直线互相平行,此项是真命题;C 、两直线平行,同旁内角互补,此项是假命题;D 、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题; 故选:B .【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.3.下列语句中不是命题的有()(1)两点之间,线段最短;(2)连接A、B两点;(3)鸟是动物;(4)不相交的两条直线叫做平行线;(5)无论a为怎样的有理数,式子a2+1的值都是正数吗?A.1个B.2个C.3个D.4个C解析:C【分析】根据命题的定义对各语句进行判断.【详解】两点之间,线段最短,所以(1)为命题;连接A、B两点,它为描述性语言,所以(2)不是命题;鸟是动物,所以(3)为命题;不相交的两条直线叫做平行线,所以(4)为命题;无论a为怎样的有理数,式子a2+1的值都是正数吗?它为疑问句,所以(5)不是命题.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.如图,将周长为7的△ABC沿BC方向向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.9 C.10 D.11D解析:D【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.【详解】解:根据题意,将周长为7的△ABC沿BC方向向右平移2个单位得到△DEF,∴AD=2,BF=BC+CF=BC+2,DF=AC;又∵AB+BC+AC=7,∴四边形ABFD 的周长=AD+AB+BF+DF=2+AB+BC+2+AC=11.故选:D .【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD ,DF=AC 是解题的关键.5.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A .∠1=50°,∠2=40°B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40°C 解析:C【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】A 、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A 选项错误;B 、不满足条件,故B 选项错误;C 、满足条件,不满足结论,故C 选项正确;D 、不满足条件,也不满足结论,故D 选项错误.故选:C .【点睛】此题考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键. 6.下列命题中,属于真命题的是( )A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b C 解析:C【分析】根据对顶角、补角、绝对值的定义与性质逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、一个角的补角不一定大于这个角,如这个角为130︒,其补角为50︒,小于这个角,此项是假命题;C 、由绝对值的非负性得:绝对值最小的数是0,此项是真命题;D 、如果a b =,那么a b =或=-a b ,此项是假命题;故选:C .【点睛】本题考查了对顶角、补角、绝对值、真命题与假命题,熟练掌握各定义与性质是解题关键.7.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.5C解析:C【分析】 根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.8.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④D解析:D【分析】 根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB ∥CD ,不符合题意;②∵∠3=∠4,∴BC ∥AD ,符合题意;③∵AB ∥CD ,∴∠B+∠BCD =180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.9.如图,△ABC经平移得到△EFB,则下列说法正确的有()①线段AC的对应线段是线段EB;②点C的对应点是点B;③AC∥EB;④平移的距离等于线段BF的长度.A.1 B.2 C.3 D.4D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.10.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是()A.75︒B.120︒C.135︒D.无法确定A解析:A【解析】分析:根据两直线平行,内错角相等,得到∠BFD的度数,进而得出∠CFD的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED交BC于F.∵DE∥AB,∴∠DFB=∠ABF=120°,∴∠CFD=60°.∵∠CDE=∠C+∠CFD,∴∠C=∠CDE-∠CFD=135°-60°=75°.故选A.点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.二、填空题11.如图,点A在直线m上,点B在直线l上,点A到直线l的距离为a,点B到直线m 的距离为b,线段AB的长度为c,通过测量等方法可以判断在a,b,c三个数据中,最大的是_____________.【分析】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB根据点到直线垂线段最短可知AB >ADAB>BH可得最大【详解】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB由题意得解析:c【分析】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,根据点到直线垂线段最短,可知AB>AD,AB>BH,可得c最大.【详解】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,由题意得:AD=a, BH=b,AB=c;根据点到直线垂线段最短,可知AB>AD,AB>BH∴c>a,c>b;∴c最大故答案:c【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.∠=∠=∠=︒,则∠4的度数是___________.12.已知:如图,12354126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如解析:126°.【分析】由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l1∥l2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.【详解】解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l1∥l2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.故答案为:126°.【点睛】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键.13.阅读下面材料:在数学课上,老师提出如下问题:如图,需要在A、B两地和公路l之间修地下管道.请你设计一种最节省材料的修路方案:小丽设计的方案如下:如图,(1)连接AB;(2)过点A画线段AC⊥直线l于点C,所以线段BA和线段AC即为所求.老师说:“小丽的画法正确”请回答:小丽的画图依据是___.两点之间线段最短;直线外一点到这条直线上所有点连结的线段中垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解【详解】由垂线段最短可知点A到直线l的最短距离为AC由两点之间线段最短可解析:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解.【详解】由垂线段最短可知,点A 到直线l 的最短距离为AC ,由两点之间线段最短可知,点B 到点A 的最短距离为AB .故答案为:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短);【点睛】本题考察线段的概念和垂线的性质,熟练掌握其概念和性质是解题的关键.14.如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为__平方米.42【分析】利用平移表示出草坪的长和宽然后根据长方形的面积公式列式计算即可得解【详解】解:由平移的性质得:草坪的长为8﹣1=7(米)宽为6米草坪的面积=7×6=42(平方米)故答案为:42【点睛】本 解析:42【分析】利用平移表示出草坪的长和宽,然后根据长方形的面积公式列式计算即可得解.【详解】解:由平移的性质,得:草坪的长为8﹣1=7(米),宽为6米,草坪的面积=7×6=42(平方米).故答案为:42.【点睛】本题考查了平移的性质,熟记性质并理解求出与草坪的面积相当的长方形的长和宽是解题的关键.15.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___ 130cm2【分析】根据平移的性质可知梯形EFGH ≌梯形ABCD 那么GH=CDBC=FG 观察可知梯形EFMD 是两个梯形的公共部分那么阴影部分的面积就等于梯形MGHD 再根据梯形的面积计算公式计算即可【解析:130cm 2.【分析】根据平移的性质可知梯形EFGH≌梯形ABCD,那么GH=CD,BC=FG,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD,再根据梯形的面积计算公式计算即可.【详解】解:∵直角梯形EFGH是由直角梯形ABCD平移得到的,∴梯形EFGH≌梯形ABCD,∴GH=CD,BC=FG,∵梯形EFMD是两个梯形的公共部分,∴S梯形ABCD-S梯形EFMD=S梯形EFGH-S梯形EFMD,∴S阴影=S梯形MGHD=12(DM+GH)•GM=12(28-4+28)×5=130(cm2).故答案是130cm2.【点睛】本题考查了图形的平移,解题的关键是知道平移前后的两个图形全等.16.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.17.用反证法证明“三角形中至少有一个内角不大于60°,应先假设这个三角形中____________________.三角形的三个内角都大于60°【分析】根据反证法的步骤先假设结论不成立即否定命题即可【详解】根据反证法的步骤第一步应假设结论的反面成立即三角形的三个内角都大于60°故答案为:三角形的三个内角都大于60解析:三角形的三个内角都大于60°【分析】根据反证法的步骤,先假设结论不成立,即否定命题即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即三角形的三个内角都大于60°.故答案为:三角形的三个内角都大于60°.【点睛】本题考查了反证法的知识,掌握反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立是解题的关键.18.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为______米.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB 铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB ,铅直距离等于(AD -1)×2,又∵长AB =50米,宽BC =25米,∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.19.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.65【分析】利用平行线的判定定理和性质定理等量代换可得∠CBD=∠EBC 可得结果【详解】∵∠1=50°∴∠DBE=180°-∠1=180°-50°=130°∵∠2=130°∴∠DBE=∠2∴AE ∥C解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC ,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.20.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到三角形DEF的位置,AB=10,DH=4,平移距离为8,则阴影部分的面积是_______________.64【分析】根据平移变化只改变图形的位置不改变图形的形状可得出两个三角形大小一样阴影部分面积等于梯形ABEH的面积;DE=AB根据线段的和差关系可求出HE的长度再根据梯形的面积公式即可得答案【详解】解析:64【分析】根据平移变化只改变图形的位置,不改变图形的形状,可得出两个三角形大小一样,阴影部分面积等于梯形ABEH的面积;DE=AB,根据线段的和差关系可求出HE的长度,再根据梯形的面积公式即可得答案.【详解】∵两个三角形大小一样,∴S△ABC=S△DEF,∴S△ABC-S△HEC=S△DEF-S△HEC,∴S阴影=S梯形ABEH,∵其中一个三角形沿着点B到点C的方向平移到三角形DEF的位置,AB=10,∴DE=AB=10,∵DH=4,∴HE=DE-DH=6,∵平移距离是8,∴BE=8,∴S阴影=S梯形ABEH=12(HE+AB)·BE=12×(10+6)×8=64,故答案为:64【点睛】本题主要考查了平移的性质,通过观察图形把阴影部分的面积转化为熟知图形的面积是关键的一步.三、解答题21.在一张地图上有、、A B C三地,但地图被墨迹污染,C地具体位置看不清楚,但知道C地在A地的北偏东30°方向,在B地南偏东45°方向.(1)根据以上条件,在地图上画出C地的位置;(2)直接写出ACB的度数.解析:(1)见详解;(2)105°.【分析】(1)过点A、B作正北方向,再据方位角的含义画射线BX和AY,两射线之交点即是C 地;(2)记过点A的正北方向线与射线BX之交点为D,先求得∠CDA的度数,最后由三角形内角和为180°计算得∠ACB的度数.【详解】(1)如下图,第一步过B作m的平行线BS,以B为顶点作射线BX,使∠SBX=45°;第二步过A作m的平行线AN交BX于点D,以A为顶点作射线AY,使∠NAY=30°;则射线BX与射线AY的交点就是C地.(2)如上图,由C 地在B 地南偏东45°方向得∠SBX=45°∵SB ∥m ,AN ∥m∴SB ∥AN∴∠ADC=∠SBX=45°由C 地在A 地的北偏东30°方向得∠NAY=30°,∴∠ACB=180°-∠ADC-∠NAY=180°-45°-30°=105°.【点睛】此题考查方位角、平行线等知识,其中理解方位角正确画出图形是关键.22.如图,有三个论断:①12∠=∠;②B C ∠=∠;③A D ∠=∠,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.解析:答案见解析【分析】先从①②③中任选两个作为条件,另一个作为结论构成一个命题,然后根据平行线的判定和性质及对顶角相等进行证明即可.【详解】已知:12∠=∠,B C ∠=∠求证:A D ∠=∠证明:如图:13∠=∠ 又12∠=∠32∴∠=∠//EC BF ∴AEC B ∴∠=∠又B C ∠=∠AEC C ∴∠=∠//AB CD ∴A D ∴∠=∠.【点睛】本题主要考查了平行线的判定与性质以及命题与定理的证明问题,证明的一般步骤包括写出已知、求证、画出图形和证明.23.如图,DE 平分∠ADF ,DF ∥BC ,点E ,F 在线段AC 上,点A ,D ,B 在一直线上,连接BF .(1)若∠ADF =70°,∠ABF =25°,求∠CBF 的度数;(2)若BF 平分∠ABC 时,求证:BF ∥DE .解析:(1)∠CBF =45°;(2)见解析.【分析】(1)根据平行线的性质和已知条件即可求出∠CBF 的度数;(2)根据平行线的性质可得∠ABC =∠ADF ,再根据BF 平分∠ABC ,DE 平分∠ADF ,可得∠ADE =∠ABF ,再根据同位角相等,两直线平行即可证明BF ∥DE .【详解】解:(1)∵DF ∥BC ,∴∠ABC =∠ADF =70°,∵∠ABF =25°,∴∠CBF =70°﹣25°=45°;(2)证明:∵DF ∥BC ,∴∠ABC =∠ADF ,∵BF 平分∠ABC ,DE 平分∠ADF ,∴∠ADE 12=∠ADF ,∠ABF 12=∠ABC , ∴∠ADE =∠ABF ,∴BF ∥DE .【点睛】 本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.24.如图,//,//DE BC EF AB ,图中与∠BFE 互补的角有几个,请分别写出来.解析:∠EFC 、∠DEF 、∠ADE 、∠B .【分析】根据平行的性质得EFC DEF ADE B ∠=∠=∠=∠,由180BFE EFC ∠+∠=︒,可知这些角与BFE ∠都互补.【详解】解:180BFE EFC ∠+∠=︒,∵//DE BC ,∴DEF EFC ∠=∠,∴180BFE DEF ∠+∠=︒,∵//EF AB ,∴DEF ADE ∠=∠,∴180BFE ADE ∠+∠=︒,∵//DE BC ,∴ADE B ∠=∠,∴180BFE B ∠+∠=︒,与∠BFE 互补的角有4个,分别为:∠EFC 、∠DEF 、∠ADE 、∠B .【点睛】本题考查平行线的性质,解题的关键利用平行线的性质找相等的角.25.如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F . (1)CD 与EF 平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,∠A=30°,求∠B 的度数.解析:(1)CD 与EF 平行.理由见解析;(2)∠B=35°【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF ∥CD ;(2)由EF ∥CD ,根据平行线的性质得∠2=∠BCD ,而∠1=∠2,所以∠1=∠BCD ,根据内错角相等,两直线平行得到DG ∥BC ,所以∠ACB=∠3=115°,根据三角形的内角和即可得到结论.【详解】(1)CD 与EF 平行.理由如下:∵CD ⊥AB ,EF ⊥AB ,∴∠CDB=∠EFB=90°,∴EF ∥CD ;(2)∵EF ∥CD ,∴∠2=∠BCD ,∵∠1=∠2,∴∠1=∠BCD ,∴DG ∥BC ,∴∠ACB=∠3=115°,∵∠A=30°,∴∠B=35°.【点评】本题考查了平行线的判定与性质,注意:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.26.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数; (2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.解析:(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300°【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解;(3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解.【详解】(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP .∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG ,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下:∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°,整理得:AEG ∠+CFG ∠=300°.【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键27.如图所示,在平面直角坐标系中,已知A (0,1)、B (2,0)、C (4,3).(1)在平面直角坐标系中画出△ABC ,作出△ABC 向下平移3格后的△A 1B 1C 1; (2)求△ABC 的面积;(3)已知点Q 为y 轴上一点,若△ACQ 的面积为8,求点Q 的坐标.解析:(1)见解析;(2)4;(3)(0,5)或(0,-3).【分析】(1)先在平面直角坐标系中描点,再连接,然后分别作出平移后的对应点,再顺次连接即可得;(2)利用割补法求解可得;(3)根据三角形面积公式求出AQ 的长,即可确定点Q 的坐标.【详解】解:(1)如图所示,(2)△ABC 的面积=111342421234222⨯-⨯⨯-⨯⨯-⨯⨯= (3)∵Q 为y 轴上一点,△ACQ 的面积为8, ∴1||482AQ ⨯⨯=, ∴AQ=4 ∴点Q 的纵坐标为:4+1=5或1-4=-3,故Q 点坐标为:(0,5)或(0,-3).【点睛】本题主要考查的是作图-平移变换、点的坐标与图形的性质,明确△ABC 的面积=四边形的面积-3个直角三角形的面积是解题的关键.28.如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,FO ⊥CD 于点O ,若∠BOD ∶∠EOB=2∶3,求∠AOF 的度数.解析:45︒.【分析】设2BOD x ∠=,从而可得3EOB x ∠=,先根据角平分线的定义3EOC EOB x ∠=∠=,再根据平角的定义可得求出x 的值,然后根据垂直的定义可得90DOF ∠=︒,最后根据平角的定义即可得.【详解】设2BOD x ∠=,则3EOB x ∠=,∵OE 平分BOC ∠,∴3EOC EOB x ∠=∠=,180BOD EOB EOC ∠+∠+∠=︒,233180x x x ∴++=︒,解得22.5x =︒,45BOD ∴∠=︒,FO CD ⊥,90DOF ∴∠=︒,又180BOD DOF AOF ∠+∠+∠=︒,4590180AOF ∴︒+︒+∠=︒,解得45AOF ∠=︒.【点睛】本题考查了角平分线的定义、平角的定义、垂直的定义等知识点,熟练掌握并理解各定义是解题关键.。
第5章《相交线与平行线》 大题专项提升训练:平行线的判定和性质(含答案)
人教版七年级下册第5章《相交线与平行线》大题专项提升训练平行线的判定和性质1.如图,AE平分∠BAD,DF平分∠CDA,且AE∥DF,求证:AB∥CD.2.如图,AD⊥CB于D,EF⊥CB于F,∠1=∠2,∠BAC=70°,求∠AGD的度数.3.如图,已知∠1+∠2=180°,∠3=108°.求∠4的度数.4.如图,已知AB=CD,∠1=∠2.求证:BC=DA.5.如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.6.如图,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并对结论进行说明.7.已知:如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF∥AB,(1)求证:CE∥DF;(2)若∠DCE=130°,求∠DEF的度数.8.如图,D,E分别是三角形ABC的边AB,BC上的点,DE∥AC,点F在DE的延长线上,且∠DFC=∠A.(1)求证:AB∥CF;(2)若∠ACF比∠BDE大40°,求∠BDE的度数.9.如图,在△ABC中,EF⊥AB,CD⊥AB.(1)求证:EF∥CD;(2)若点G在AC边上,∠1=∠2,求证:∠DGC+∠GCB=180°.10.如图,在三角形ABC中,AD⊥BC于点D,点E是AB上一点,EF⊥BC于点F,点G是AC上一点,连接DG,且∠1=∠2.求证:AB∥DG.11.如图,在三角形ABC中,AD⊥BC,EF⊥BC,垂足分别为D、F.G为AC上一点,E为AB上一点,∠1=∠2.求证:DG∥AB.12.如图,在三角形ABC中,EF⊥AB,∠ADG=∠B,若点G在AC边上,∠1=∠2,判断CD与AB的位置关系,并说明理由.13.如图,在三角形ABC中,∠1=∠2,点E,F,G分别在BC,AB,AC上,且EF⊥AB,GD∥BC交AB于点D.请判断CD与AB的位置关系,并说明理由.14.如图,在三角形ABC中,点D、F在边BC上,点E在边AB上,点G在边AC上,AD∥EF,∠1+∠FEA=180°.求证:∠CDG=∠B.15.如图,在三角形ABC中,CD⊥AB,垂足为点D,F为BC上的点,FG⊥AB,垂足为点G,点E在AC上,连接DE,若∠EDC=∠BFG.求证:∠B=∠ADE.16.如图,在三角形ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,EF与GD的延长线交于点H,∠CDG=∠B,∠1+∠FEA=180°.(1)EH与AD平行吗?请说明理由;(2)若∠BAD=30°,求∠H的度数.17.如图,在三角形ABC中,点D,F在边BC上,点E在边AB上,点G在边AC上,EF与GD的延长线交于点H,∠1=∠B,∠2+∠3=180°.(1)判断EH与AD的位置关系,并说明理由.(2)若∠DGC=58°,且∠H=∠4+10°,求∠H的度数.参考答案1.【解答】证明:∵AE平分∠BAD,DF平分∠CDA,∴∠DAE=∠BAD,∠ADF=∠CDA又∵AE∥DF,∴∠DAE=∠ADF,∴∠BAD=∠CDA,∴AB∥CD.2.【解答】解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等);∵∠1=∠2(已知),∴∠1=∠3(等量代换);∴DG∥AB(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°,∴∠AGD=110°.3.【解答】解:给图中各角标上序号,如图所示.∵∠1+∠2=180°,∠2+∠5=180°,∴∠1=∠5,∴AB∥CD,∴∠3=∠6.∵∠4+∠6=180°,∠3=108°,∴∠4=180°﹣108°=72°.4.【解答】证明:在△ABC与△CDA中,,∴△ABC≌△CDA(SAS),∴BC=DA.5.【解答】证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3.∴BD∥CE.∴∠ABD=∠C.又∠C=∠D,∴∠D=∠ABD.∴DF∥AC.∴∠A=∠F.6.【解答】解:∠ACB与∠DEB相等,理由如下:证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),∴∠2=∠DFE(同角的补角相等),∴AB∥EF(内错角相等两直线平行),∴∠BDE=∠DEF(两直线平行,内错角相等),∵∠DEF=∠A(已知),∴∠BDE=∠A(等量代换),∴DE∥AC(同位角相等两直线平行),∴∠ACB=∠DEB(两直线平行,同位角相等).7.【解答】(1)证明:∵∠1+∠2=180°,C,D是直线AB上两点,∴∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;(2)解:∵CE∥DF,∠DCE=130°,∴∠CDF=180°﹣∠DCE=180°﹣130°=50°,∵DE平分∠CDF,∴∠CDE=∠CDF=25°,∵EF∥AB,∴∠DEF=∠CDE=25°.8.【解答】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DFC=∠A,∴∠DFC=∠BDE,∴AB∥CF.(2)解:∵DE∥AC,∴∠ACF+∠DFC=180°,由(1)中已证∠DFC=∠BDE,∴∠ACF+∠BDE=180°,又∵∠ACF比∠BDE大40°,∴∠BDE+40°+∠BDE=180°,∴∠BDE=70°.9.【解答】证明:(1)∵EF⊥AB,CD⊥AB,∴∠BFE=∠CDB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠DGC+∠GCB=180°.10.【解答】证明:∵EF⊥BC,AD⊥BC,∴EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠BAD=∠2,∴AB∥DG.11.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠ADB=∠EFB=90°,∴AD∥EF,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG∥AB.12.【解答】解:CD⊥AB.理由如下:∵∠ADG=∠B,∴DG∥BC,∴∠1=∠DCB,∵∠1=∠2,∴∠2=∠DCB,∴CD∥EF,∴∠CDB=∠EFB,∵EF⊥AB,∴∠EFB=90°,∴∠CDB=90°,∴CD⊥AB.13.【解答】解:CD⊥AB.理由如下:∵DG∥BC,∴∠1=∠DCB.∵∠1=∠2,∴∠2=∠DCB.∴CD∥EF.∴∠CDB=∠EFB.∵EF⊥AB,∴∠EFB=90°.∴∠CDB=90°.∴CD⊥AB.14.【解答】证明:∵AD∥EF,(已知),∴∠2=∠3,(两直线平行,同位角相等),∵∠1+∠FEA=180°,∠2+∠FEA=180°,∴∠1=∠2(同角的补角相等),∴∠1=∠3(等量代换),∴DG∥AB(内错角相等,两直线平行),∴∠CDG=∠B.(两直线平行,同位角相等).15.【解答】证明:如图所示:∵FG⊥AB,CD⊥AB,∴∠FGB=∠CDB=90°,∴FG∥CD,∴∠BFG=∠BCD,又∵∠EDC=∠BFG,∴∠BCD=∠EDC,∴DE∥BC,∴∠B=∠ADE.16.【解答】解:(1)平行,理由如下:∵∠CDG=∠B,∴AB∥DG,∴∠BAD=∠1,∵∠1+∠FEA=180°,∴∠BAD+∠FEA=180°,∴EH//AD;(2)由(1)得EH//AD,∠1=∠BAD,∴∠H=∠1,∴∠BAD=∠H,∵∠BAD=30°,∴∠H=30°.17.【解答】解:(1)EH∥AD,理由如下:∵∠1=∠B,∴AB∥GD,∴∠2=∠BAD,∵∠2+∠3=180°,∴∠BAD+∠3=180°,∴EH∥AD;(2)由(1)得AB∥GD,∴∠2=∠BAD,∠DGC=∠BAC,∵∠DGC=58°,∴∠BAC=58°,∵EH∥AD,∴∠2=∠H,∴∠H=∠BAD,∴∠BAC=∠BAD+∠4=∠H+∠4=58°,∵∠H=∠4+10°,∴∠4+10°+∠4=58°,解得:∠4=24°,∴∠H=34°.。
专题34相交线与平行线(1) 中考数学真题分项汇编系列2(学生版)
专题34相交线与平行线(1)(全国一年)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020·浙江衢州中考真题)过直线l 外一点P 作直线l 的平行线,下列尺规作图中错误的是( ) A . B .C .D .2.(2020·广西河池中考真题)如图,直线a ,b 被直线c 所截,则∠1与∠2的位置关系是( )A .同位角B .内错角C .同旁内角D .邻补角3.(2020·贵州黔西中考真题)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37°时,∠1的度数为( )A .37°B .43°C .53°D .54°4.(2020·山东临沂中考真题)如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒5.(2020·辽宁大连中考真题)如图,ABC 中,60,40,//A B DE BC ︒︒∠=∠=,则AED ∠的度数是( )A .50︒B .60︒C .70︒D .80︒6.(2020·辽宁鞍山中考真题)如图,直线l 1//l 2,点A 在直线l 1上,以点A 为圆心,适当长为半径画弧,分别交直线l 1、l 2于B 、C 两点,连结AC 、BC .若∠ABC =54°,则∠1的大小为()A .36°.B .54°.C .72°.D .73°.7.(2020·浙江金华中考真题)如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b ,理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行8.(2020·辽宁朝阳中考真题)如图,四边形ABCO 是矩形,点D 是BC 边上的动点(点D 与点B 、点C不重合),则BAD DOC ADO∠+∠∠的值为( )A .1B .12C .2D .无法确定9.(2020·内蒙古呼伦贝尔中考真题)如图,直线//,AB CD AE CE ⊥于点E ,若120EAB ︒∠=,则ECD ∠的度数是( )A .120°B .100°C .150°D .160°10.(2020·山东滨州中考真题)如图,AB//CD ,点P 为CD 上一点,PF 是∠EPC 的平分线,若∠1=55°,则∠EPD 的大小为( )A .60°B .70°C .80°D .100°11.(2020·四川绵阳中考真题)在螳螂的示意图中,AB ∥DE ,△ABC 是等腰三角形,∠ABC =124°,∠CDE =72°,则∠ACD =( )A .16°B .28°C .44°D .45°12.(2020·四川绵阳中考真题)如图,在四边形ABCD 中,∠A =∠C =90°,DF ∥BC ,∠ABC 的平分线BE 交DF 于点G ,GH ⊥DF ,点E 恰好为DH 的中点,若AE =3,CD =2,则GH =( )A .1B .2C .3D .413.(2020·江苏宿迁中考真题)如图,直线a ,b 被直线c 所截,a ∥b ,∠1=50°,则∠2的度数为( )A .40°B .50°C .130°D .150°14.(2020·辽宁沈阳中考真题)如图,直线//AB CD ,且AC CB ⊥于点C ,若35BAC ∠=︒,则BCD ∠的度数为( )A .65°B .55°C .45°D .35°15.(2020·四川眉山中考真题)一副三角板如图所示摆放,则α∠与β∠的数量关系为( )A .180αβ∠+∠=︒B .225αβ∠+∠=︒C .270αβ∠+∠=︒D .αβ∠=∠16.(2020·江苏南通中考真题)如图,已知AB ∥CD ,∠A =54°,∠E =18°,则∠C 的度数是( )A .36°B .34°C .32°D .30°17.(2020·辽宁营口中考真题)如图,AB ∥CD ,∠EFD =64°,∠FEB 的角平分线EG 交CD 于点G ,则∠GEB 的度数为( )A .66°B .56°C .68°D .58°18.(2020·山东淄博中考真题)如图,在四边形ABCD 中,CD ∥AB ,AC ⊥BC ,若∠B =50°,则∠DCA 等于( )A .30°B .35°C .40°D .45°19.(2020·甘肃金昌中考真题)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE 间的距离,若AE 间的距离调节到60cm ,菱形的边长20AB cm =,则DAB ∠的度数是( )A .90︒B .100︒C .120︒D .150︒20.(2020·四川雅安中考真题)下列四个选项中不是命题的是( )A .对顶角相等B .过直线外一点作直线的平行线C .三角形任意两边之和大于第三边D .如果a b a c ==,,那么b c =21.(2020·山东威海中考真题)如图,矩形ABCD 的四个顶点分别在直线3l ,4l ,2l ,1l 上.若直线1234//////l l l l 且间距相等,4AB =,3BC =,则tan α的值为( )A .38B .34C .52D .151522.(2020·山东东营中考真题)如图,直线AB CD 、相交于点,O 射线OM 平分,BOD ∠若42AOC ∠=︒,则AOM ∠等于( )A .159B .161C .169D .13823.(2020·海南中考真题)如图,已知//,AB CD 直线AC 和BD 相交于点,E 若70,40ABE ACD ∠=︒∠=︒,则AEB ∠等于( )A .50︒B .60︒C .70︒D .80︒24.(2020·湖南永州中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d 可用公式0021kx y b d k -+=+计算.根据以上材料解决下面问题:如图,C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是( )A .355B .3515-C .6515-D .225.(2020·湖北荆州中考真题)将一张矩形纸片折叠成如图所示的图形,若30CAB ︒∠=,则ACB ∠的度数是( )A .45︒B .55︒C .65︒D .75︒26.(2020·宁夏中考真题)如图摆放的一副学生用直角三角板,3045F C ∠=∠=,,AB 与DE 相交于点G ,当//EF BC 时,EGB ∠的度数是( )A .135°B .120°C .115°D .105°27.(2020·贵州毕节中考真题)将一幅直角三角板(90A FDE ∠=∠=︒,45F ∠=︒,60C ∠=°,点D 在边AB 上)按图中所示位置摆放,两条斜边为EF ,BC ,且//EF BC ,则ADF ∠等于( )A .70︒B .75︒C .80︒D .85︒28.(2020·广西玉林中考真题)下列命题中,其逆命题是真命题的是( )A .对顶角相等B .两直线平行,同位角相等C .全等三角形的对应角相等D .正方形的四个角相等29.(2020·广西玉林中考真题)如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形30.(2020·湖南郴州中考真题)如图,直线,a b 被直线,c d 所截下列条件能判定//a b 的是( )A .13∠=∠B .24180∠+∠=C .45∠=∠D .12∠=∠31.(2020·广东深圳中考真题)一把直尺与30°的直角三角板如图所示,∠1=40°,则∠2=( )A .50°B .60°C .70°D .80°32.(2020·湖南娄底中考真题)如图,将直尺与三角尺叠放在一起,如果128∠=︒,那么2∠的度数为( )A .62°B .56°C .28°D .72°33.(2020·四川宜宾中考真题)如图,M ,N 分别是ABC ∆的边AB ,AC 的中点,若65,45A ANM ∠=︒∠=︒,则B =( )A .20︒B .45︒C .65︒D .70︒34.(2020·湖北省直辖县级单位中考真题)将一副三角尺如图摆放,点E 在AC 上,点D 在BC 的延长线上,//,90,45,60EF BC B EDF A F ∠=∠=︒∠=︒∠=︒,则CED ∠的度数是( )A .15°B .20°C .25°D .30°35.(2020·湖南长沙中考真题)如图,一块直角三角板的60度的顶点A 与直角顶点C 分别在平行线,FD GH上,斜边AB 平分CAD ∠,交直线GH 于点E ,则ECB ∠的大小为( )A .60︒B .45︒C .30︒D .25︒36.(2020·江苏常州中考真题)如图,直线a 、b 被直线c 所截,//a b ,1140∠=︒,则2∠的度数是( )A .30°B .40°C .50°D .60°37.(2020·辽宁抚顺中考真题)一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若120∠=︒,则∠2的度数是( )A .15°B .20°C .25°D .40°38.(2020·四川内江中考真题)如图,已知直线//a b ,150∠=︒,则2∠的度数为( )A .140︒B .130︒C .50︒D .40︒39.(2020·湖北随州中考真题)如图,直线12//l l ,直线l 与1l ,2l 分别交于A ,B 两点,若160︒∠=,则2∠的度数是( )A .60︒B .100︒C .120︒D .140︒40.(2020·黑龙江齐齐哈尔中考真题)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A 顺时针旋转,使BC ∥DE ,如图②所示,则旋转角∠BAD 的度数为( )A .15°B .30°C .45°D .60°41.(2020·湖北孝感中考真题)如图,直线AB ,CD 相交于点O ,OE CD ⊥,垂足为点O .若40BOE ∠=︒,则AOC ∠的度数为( )A .40︒B .50︒C .60︒D .140︒42.(2020·河北中考真题)如图,在平面内作已知直线m 的垂线,可作垂线的条数有( )A .0条B .1条C .2条D .无数条43.(2020·北京中考真题)如图,AB 和CD 相交于点O ,则下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1>∠4+∠5D .∠2<∠544.(2020·湖北鄂州中考真题)如图,//a b ,一块含45︒的直角三角板的一个顶点落在其中一条直线上,若165︒∠=,则2∠的度数为( )A .25︒B .35︒C .55︒D .65︒45.(2020·贵州贵阳中考真题)如图,直线a ,b 相交于点O ,如果1260∠+∠=︒,那么3∠是( )A .150︒B .120︒C .60︒D .3046.(2020·江西中考真题)如图,1265,335︒∠=∠=∠=︒,则下列结论错误的是( )A .//AB CD B .30B ∠=︒C .2C EFC ∠+∠=∠D .CG FG >47.(2020·湖北襄阳中考真题)如图,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分BEF ∠,若64EFG ∠=︒,则EGD ∠的大小是( )A .132︒B .128︒C .122︒D .112︒48.(2020·河南中考真题)如图,1234//,//l l l l ,若170∠=︒,则2∠的度数为( )A .100︒B .110︒C .120︒D .130︒49.(2020·湖南岳阳中考真题)如图,DA AB ⊥,CD DA ⊥,56B ∠=︒,则C ∠的度数是( )A .154︒B .144︒C .134︒D .124︒50.(2020·湖南岳阳中考真题)下列命题是真命题的是( ) A .一个角的补角一定大于这个角 B .平行于同一条直线的两条直线平行 C .等边三角形是中心对称图形D .旋转改变图形的形状和大小51.(2020·湖南怀化中考真题)如图,已知直线a ,b 被直线c 所截,且//a b ,若40α︒∠=,则β∠的度数为( )A .140︒B .50︒C .60︒D .40︒52.(2020·四川广元中考真题)如图,a ∥b,M 、N 分别在a,b 上,P 为两平行线间一点,那么∠1+∠2+∠3=( ).A .180°B .360°C .270°D .540°53.(2020·山东聊城中考真题)如图,在ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A .120°B .130°C .145°D .150°54.(2020·重庆中考真题)如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)ky k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE △的面积为18,则k 的值为( )A .6B .12C .18D .2455.(2020·四川自贡中考真题)如图,a ∥b ,150∠=,则2∠的度数为 ( )A .40°B .50°C .55°D .60°56.(2020·四川攀枝花中考真题)如图,平行线AB 、CD 被直线EF 所截,过点B 作BG EF ⊥于点G ,已知150∠=︒,则B ∠=( ).A .20︒B .30︒C .40︒D .50︒二、填空题57.(2020·辽宁大连中考真题)如图,在平面直角坐标系中,正方形ABCD 的顶点A 与D 在函数(0)ky x x=>的图象上,AC x ⊥轴,垂足为C ,点B 的坐标为(0,2),则k 的值为______.58.(2020·云南中考真题)如图,直线c 与直线a 、b 都相交.若a ∥b ,154∠=︒,则2∠=___________度.59.(2020·四川绵阳中考真题)如图,四边形ABCD 中,AB ∥CD ,∠ABC =60°,AD =BC =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则点M 到直线BC 的距离的最小值为_____.60.(2020·四川凉山中考真题)如图,点C 、D 分别是半圆AOB 上的三等分点,若阴影部分的面积为32π,则半圆的半径OA 的长为__________.61.(2020·云南昆明中考真题)如图,点C 位于点A 正北方向,点B 位于点A 北偏东50°方向,点C 位于点B 北偏西35°方向,则∠ABC 的度数为_____°.62.(2020·四川雅安中考真题)如图,//a b c ,与a b ,都相交,150∠=︒,则2∠=_________.63.(2020·吉林中考真题)如图,某单位要在河岸l 上建一个水泵房引水到C 处,他们的做法是:过点C 作CD l ⊥于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是_______.64.(2020·湖南益阳中考真题)如图,//AB CD ,AB AE ⊥,42CAE ∠=,则ACD ∠的度数为__________.65.(2020·湖南永州中考真题)已知直线//a b ,用一块含30°角的直角三角板按图中所示的方式放置,若125∠=︒,则2∠=_________.66.(2020·内蒙古通辽中考真题)如图,点O 在直线AB 上,531728AOC ︒'''∠=,则BOC ∠的度数是______.67.(2020·内蒙古中考真题)如图,在平行四边形ABCD 中,2,AB ABC =∠的平分线与BCD ∠的平分线交于点E ,若点E 恰好在边AD 上,则22BE CE +的值为______.68.(2020·陕西中考真题)如图,在正五边形ABCDE 中,DM 是边CD 的延长线,连接BD ,则∠BDM 的度数是_____.69.(2020·江苏盐城中考真题)如图,直线,a b 被直线c 所截,//,160a b ∠=.那么2∠=_______________________.70.(2020·湖北恩施中考真题)如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠=______.71.(2020·四川内江中考真题)如图,在矩形ABCD 中,10BC =,30ABD ∠=︒,若点M 、N 分别是线段DB 、AB 上的两个动点,则AM MN +的最小值为___________________.72.(2020·湖南邵阳中考真题)如图,在Rt ABC 中,90ACB ∠=︒,斜边2AB =,过点C 作//CF AB ,以AB 为边作菱形ABEF ,若30F ∠=︒,则Rt ABC 的面积为________.73.(2020·湖北黄冈中考真题)已知:如图,//,75,135AB EF ABC CDF ︒︒∠=∠=,则BCD ∠=_____________度.74.(2020·湖北咸宁中考真题)如图,请填写一个条件,使结论成立:∵__________,∴//a b .75.(2020·湖南湘西中考真题)如图,直线AE ∥BC ,BA AC ⊥,若54ABC ∠=︒,则EAC ∠=___________度.76.(2020·湖南张家界中考真题)如图,AOB ∠的一边OA 为平面镜,38AOB ︒∠=,一束光线(与水平线OB 平行)从点C 射入经平面镜反射后,反射光线落在OB 上的点E 处,则DEB ∠的度数是_______度.77.(2020·湖南湘潭中考真题)如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且3PD =,点M 是射线OC 上一动点,则PM 的最小值为________.78.(2020·湖南衡阳中考真题)一副三角板如图摆放,且//AB CD ,则∠1的度数为_________.79.(2020·山东临沂中考真题)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点(2,1)A 到以原点为圆心,以1为半径的圆的距离为_____.80.(2020·四川南充中考真题)如图,两直线交于点O ,若∠1+∠2=76°,则∠1=________度.81.(2020·江苏连云港中考真题)如图,正六边形123456A A A A A A 内部有一个正五形12345B B B B B ,且3344//A A B B ,直线l 经过2B 、3B ,则直线l 与12A A 的夹角α=________︒.三、解答题82.(2020·江苏镇江中考真题)如图,AC 是四边形ABCD 的对角线,∠1=∠B ,点E 、F 分别在AB 、BC 上,BE =CD ,BF =CA ,连接EF . (1)求证:∠D =∠2;(2)若EF ∥AC ,∠D =78°,求∠BAC 的度数.83.(2020·江苏宿迁中考真题)(感知)(1)如图①,在四边形ABCD 中,∠C =∠D =90°,点E 在边CD 上,∠AEB =90°,求证:AE EB =DECB. (探究)(2)如图②,在四边形ABCD 中,∠C =∠ADC =90°,点E 在边CD 上,点F 在边AD 的延长线上,∠FEG =∠AEB =90°,且EF EG =AEEB,连接BG 交CD 于点H .求证:BH =GH . (拓展)(3)如图③,点E 在四边形ABCD 内,∠AEB +∠DEC =180°,且AE EB =DEEC,过E 作EF 交AD于点F ,若∠EFA =∠AEB ,延长FE 交BC 于点G .求证:BG =CG .84.(2020·四川凉山中考真题)如图,AB 是半圆AOB 的直径,C 是半圆上的一点,AD 平分BAC ∠交半圆于点D ,过点D 作DH AC ⊥与AC 的延长线交于点H .(1)求证:DH 是半圆的切线; (2)若25DH =,5sin 3BAC ∠=,求半圆的直径. 85.(2020·黑龙江大庆中考真题)如图,AB ,CD 为两个建筑物,两建筑物底部之间的水平地面上有一点M .从建筑物AB 的顶点A 测得M 点的俯角为45°,从建筑物CD 的顶点C 测得M 点的俯角为75°,测得建筑物AB 的顶点A 的俯角为30°.若已知建筑物AB 的高度为20米,求两建筑物顶点A 、C 之间的距离(结果精确到1m ,参考数据:2 1.414≈,3 1.732≈)86.(2020·山东东营中考真题)如图,C 处是一钻井平台,位于东营港口A 的北偏东60方向上,与港口A 相距602海里,一艘摩托艇从A 出发,自西向东航行至B 时,改变航向以每小时50海里的速度沿BC 方向行进,此时C 位于B 的北偏西45方向,则从B 到达C 需要多少小时?87.(2020·湖北荆州中考真题)如图,将ABC 绕点B 顺时针旋转60度得到DBE ∆,点C 的对应点E 恰好落在AB 的延长线上,连接AD .(1)求证://BC AD ;(2)若AB=4,BC=1,求A ,C 两点旋转所经过的路径长之和.88.(2020·湖北黄石中考真题)如图,,//,70,40AB AE AB DE DAB E =∠=︒∠=︒.(1)求DAE ∠的度数;(2)若30B ∠=︒,求证:AD BC =. 89.(2020·山西中考真题)阅读与思考下面是小宇同学的数学日记,请仔细阅读并完成相应的任务.×年×月×日 星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB ,现根据木板的情况,要过AB 上的一点C ,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB 上量出30CD cm =,然后分别以D ,C 为圆心,以50cm 与40cm 为半径画圆弧,两弧相交于点E ,作直线CE ,则DCE ∠必为90︒.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M ,N 两点,然后把木棒斜放在木板上,使点M 与点C 重合,用铅笔在木板上将点N 对应的位置标记为点Q ,保持点N 不动,将木棒绕点N 旋转,使点M 落在AB 上,在木板上将点M 对应的位置标记为点R .然后将RQ 延长,在延长线上截取线段QS MN =,得到点S ,作直线SC ,则90RCS ∠=︒.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢? …… 任务:(1)填空;“办法一”依据的一个数学定理是_____________________________________; (2)根据“办法二”的操作过程,证明90RCS ∠=︒;(3)①尺规作图:请在图③的木板上,过点C 作出AB 的垂线(在木板上保留作图痕迹,不写作法); ②说明你的作法依据的数学定理或基本事实(写出一个即可)90.(2020·四川内江中考真题)如图,抛物线2y ax bx c =++经过A (-1,0)、B (4,0)、C (0,2)三点,点D (x ,y )为抛物线上第一象限内的一个动点. (1)求抛物线所对应的函数表达式;(2)当BCD ∆的面积为3时,求点D 的坐标;(3)过点D 作DE BC ⊥,垂足为点E ,是否存在点D ,使得CDE ∆中的某个角等于ABC ∠的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.91.(2020·广东中考真题)如图,点B 是反比例函数8y x=(0x >)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C ,反比例函数ky x=(0x >)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .(1)填空:k =_________; (2)求BDF ∆的面积;(3)求证:四边形BDFG 为平行四边形.92.(2020·湖北宜昌中考真题)光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射,如图,水面AB 与水杯下沿CD 平行,光线EF 从水中射向空气时发生折射,光线变成FH ,点G 在射线EF 上,已知20,45HFB FED ∠=︒∠=︒,求GFH ∠的度数.93.(2020·湖北孝感中考真题)如图,在ABCD 中,点E 在AB 的延长线上,点F 在CD 的延长线上,满足BE DF =.连接EF ,分别与BC ,AD 交于点G ,H .求证:EG FH =.94.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆的面积分成上下4:5两部分时,求MP 的长;(3)设点P 移动的路程为x ,当03x ≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长. 95.(2020·湖北武汉中考真题)如图,直线EF 分别与直线AB ,CD 交于点E ,F .EM 平分BEF ∠,FN 平分CFE ∠,且EM ∥FN .求证:AB ∥CD .96.(2020·北京中考真题)已知:如图,ABC 为锐角三角形,AB=BC ,CD ∥AB . 求作:线段BP ,使得点P 在直线CD 上,且∠ABP=12BAC ∠. 作法:①以点A 为圆心,AC 长为半径画圆,交直线CD 于C ,P 两点;②连接BP .线段BP 就是所求作线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹) (2)完成下面的证明. 证明:∵CD ∥AB , ∴∠ABP= . ∵AB=AC , ∴点B 在⊙A 上. 又∵∠BPC=12∠BAC ( )(填推理依据) ∴∠ABP=12∠BAC97.(2020·江苏南京中考真题)如图,在ABC 和A B C '''中,D 、D 分别是AB 、A B ''上一点,AD A D AB A B ''=''.(1)当CD AC ABC D A C A B ==''''''时,求证:~ABC A B C '''△△ 证明的途径可以用如框图表示,请填写其中的空格 E '(2)当CD AC BCC D A C B C==''''''时,判断ABC 与A B C '''是否相似,并说明理由 98.(2020·江西中考真题)如图,Rt ABC 中,90ACB ∠=,顶点A ,B 都在反比例函数(0)ky x x=>的图象上,直线AC x ⊥轴,垂足为D ,连结OA ,OC ,并延长OC 交AB 于点E ,当2AB OA =时,点E 恰为AB 的中点,若45AOD ∠=,22OA =. (1)求反比例函数的解析式; (2)求EOD ∠的度数.99.(2020·山东菏泽中考真题)如图,在ABC 中,AB AC =,以AB 为直径的⊙O 与BC 相交于点D ,过点D 作⊙O 的切线交AC 于点E .(1)求证:DE AC ⊥;(2)若⊙O 的半径为5,16BC =,求DE 的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交线与平行线典型例题分析和提高类型题【苏老师实体、网课内部专用,请勿外传其他群】做这一块题目的方法:【变复杂到简单】也即是将复杂的平面图形分解成若干个基本图形是解决问题的关键所在!典例1:如图,平行直线AB、CD与相交直线EF,GH相交,则图中同旁内角共有()A、4对B、8对C、12对D、16对分析:从原图形中的四条直线中任意取出一条,得到两类基本图形:一类为三线中两线平行,有两对同旁内角;另一类三线两两相交,有六对同旁内角。
解:(1)取出EF,得到基本图形如图(1),有2对同旁内角;(2)取出GH,得到基本图形如图(2),有2对同旁内角;(3)取出AB,得到基本图形如图(3),有6对同旁内角;(4)取出CD,得到基本图形如图(4),有6对同旁内角;故共有2+2+6+6=16对同旁内角对应的习题演练:1、如图:按各组角的位置,判断错误的是()A、∠1与∠A是同旁内角B、∠3与∠4是内错角C、∠5与∠6是同旁内角D、∠2与∠5是同位角【习题演练答案:1.C】总结:解决此类应用性问题基本步骤:(1)正确地将实际问题转化为基本定理或基本模型,转化来源于对已知条件的综合分析、归纳与抽象,并与熟知的模型相比较,以确定模型种类;(2)运用所学知识进行合理设计并确定最佳解题方案;(3)用所获得的结果去解释实际问题,即是对实际问题进行总结和作答。
典例2:如图(1),一辆汽车在公路上由A向B行驶,M,N分别为位于AB两侧的学校,(1)汽车在公路上行驶时会对学校的教学造成影响,当汽车行驶在何处时对学校影响最大?在图上标出来;(2)当汽车从A向B行驶时,哪一段上对两个学校的影响越来越大?哪一段上对M学校的影响逐渐减小,而对N学校的影响逐渐增大?分析:对学校影响的大小与汽车到学校的距离的远近有直接关系。
汽车行驶在直线AB上,用点到直线的距离中垂线段最短可得到实际问题的解决途径。
解:(1)如图(2),作M C⊥AB交AB于点C,ND⊥AB交AB于D.根据垂线段最短,知在点C 处对M学校的影响最大,在点D处对N学校的影响最大。
(2)由A向点C行驶时对两个学校的影响逐渐增大;由点C向点D行驶时,对M学校的影响逐渐减小,对N学校的影响逐渐增大。
对应的习题演练:2、如图,∠BAC =900,A D⊥BC (1)能表示点到直线距离的线段共有条;(2)已知AB =6,AC =8,BC =10,则AD =。
【习题演练答案:2.(1)5:(解析)∵AB 、AC 互相垂直,AD ⊥BC ,∴线段AB 的长度是点B 到直线AC 的距离;线段AC 的长度是点C 到直线AB 的距离;线段AD 的长度是点A 到直线BC 的距离;线段CD 的长度是点C 到直线AD 的距离;线段BD 的长度是点B 到直线AD 的距离.∴图形中能表示点到直线的距离的线段有5条.(2)4.8】总结:有些简单的几何问题,如果抓住问题的实质,在实质不变的情况下可以将问题进一步提升得出一般性结论。
典例3:如图(1),1AA ∥2BA ,求证∠1B =∠1A +∠2A 分析:将∠1B 通过平行线进行分割。
解:如图(2),过点1B 作1B E ∥1AA ,将∠211A B A 分成两个角∠1,∠2.∵1AA ∥2BA ∴1B E ∥2BA ∴∠1=∠1A ,∠2=∠2A .(两直线平行,内错角相等)∴∠1B =∠1+∠2=∠1A +∠2A 故∠1B =∠1A +∠2A 甲乙两同学从此题证明中发现,问题的实质在于1AA ∥2BA ,它与连接1A 、2A 两点之间的折线段无关。
因此,如图3,甲同学将1A 、3A 之间的折线段增加到4条11B A ,21A B ,22B A ,32A B .仍然有∠1A +∠2A +∠3A =∠1B +∠2B .如图4,乙同学发现∠1A +∠2A +…+∠n A =∠1B +∠2B +…+∠1 n B ,即向右凸出的角之和=向左凸出的角之和.你认为他们的想法对吗?【例3他们的想法是正确的,证明类似与上面的过程】典例4.AB 、CD 是钉在木板上的平行木条,将一根橡皮筋固定在A 、C 两点,点E 是橡皮筋上一点,拽动E 点将橡皮筋拉紧后.(1)..如图1,请你探索∠A、∠C、∠AEC 之间具有怎样的关系,并说明理由.解答如下:∠A+∠C=∠AEC 作EF∥ABAB∥CD(已知)∴EF∥CD(平行于同一直线的两直线平行)∴∠A=∠1∠C=∠2(两直线平行,内错角相等)∴∠A+∠C=∠1+∠2∴∠A+∠C=∠AEC(2).参考(1)问的解答,请你探索图2至图6中∠A、∠C、∠AEC 之间具有怎样的关系,并任选2个图说明理由.典例4【答案提示:图2:∠A+∠AEC+∠C=360˚(过E 做AB 或者CD 其中一条直线的平行线,利用同旁内角互补)图3:∠C=∠A+∠AEC (延长EC 交AB 与一点F ,就可以利用三角形外角性质)图4:∠A=∠C+∠AEC 利用三角形外角性质)图5:∠A=∠C+∠AEC (延长EA 交CD 与一点F ,就可以利用三角形外角性质)图6:∠C=∠A+∠AEC (利用三角形外角性质)三角形外角性质:三角形外角等于它不相邻的两个内角之和。
】典例5实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2=°,∠3=°.(2)在(1)中,若∠1=55°,则∠3=°;若∠1=40°,则∠3=°.(3)由(1)、(2),请你猜想:当两平面镜a 、b 的夹角∠3=°时,可以使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行.你能说明理由吗?解:(1)100°,90°.∵入射角与反射角相等,即∠1=∠4,∠5=∠6,根据邻补角的定义可得∠7=180°-∠1-∠4=80°,根据m ∥n ,所以∠2=180°-∠7=100°,所以∠5=∠6=(180°-100°)÷2=40°,根据三角形内角和为180°,所以∠3=180°-∠4-∠5=90°;(2)90°,90°.由(1)可得∠3的度数都是90°;(3)90°理由:因为∠3=90°,所以∠4+∠5=90°,由题意知∠1=∠4,∠5=∠6,所以∠2+∠7=180°-(∠5+∠6)+180°-(∠1+∠4)=360°-2∠4-2∠5=360°-2(∠4+∠5)=180°.由同旁内角互补,两直线平行,可知:m ∥n .习题演练4潜望镜中的两个镜子MN 和PQ 是互相平行的,如图所示,光线AB 经镜面反射后,∠1=∠2,∠3=∠4,试说明,进入的光线AB 与射出的光线CD 平行吗?为什么?ACEBD图1F21AB ECD 图2B AE D C 图3图4EAC BD 图6A EB CD图5EB CDA 321nmba习题演练答案:解:进入的光线AB 与射出的光线CD 平行.理由如下:∵MN ∥PQ ,∴∠2=∠3;又∵∠1=∠2,∠3=∠4,∴∠1+∠2=∠3+∠4,∴180°-∠1-∠2=180°-∠3-∠4,即∠5=∠6,∴AB ∥CD .相交线与平行线提高类型题演练1.在下列4个判断:①在同一平面内,不相交也不重合的两条线段一定平行.②在同一平面内,不相交也不重合的两条直线一定平行.③在同一平面内,不平行也不重合的两条线段一定相交.④在同一平面内,不平行也不重合的两条直线一定相交.正确判断的个数量().A.4B.3C.2D.12.下面四个命题中正确的是().(A)相等的两个角是对顶角;(B)和等于180°的两个角是互为邻补角;(C)连接两点的最短线是过这两点的直线;(D)两条直线相交所成的四个角都相等,则这两条直线互相垂直3.如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有()(A )4对(B )8对(C )12对(D )16对4.如图,∠1=∠2,则下列结论一定成立的是()A AB ∥CD B AD ∥BCC∠B=∠DD∠3=∠45.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是().A 、第一次右拐50o ,第二次左拐130oB 、第一次左拐50o ,第二次右拐50oC 、第一次左拐50o ,第二次左拐130oD 、第一次右拐50o ,第二次右拐50o6.同一平面内的四条直线若满足a ⊥b ,b ⊥c ,c ⊥d ,则下列式子成立的是().A 、a ∥dB 、b ⊥dC 、a ⊥dD 、b ∥cAB C第8题第3题图第4题图第7题图第11题图7.如图,能判断直线AB ∥CD 的条件是()A 、∠1=∠2B 、∠3=∠4C 、∠1+∠3=180oD 、∠3+∠4=180o8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯的角∠A 是120°,第二次拐弯的角∠B 是150°,第三次拐弯的角是∠C,这时道路恰好和第一次拐弯之前的道路平行,则∠C 是()A 120°B 130°C 140°D 150°9.两个角的两边互相平行,则这两个角的关系是10.平面内两两相交的6条直线,其交点个数最少为个,最多为个11.如图:(1)当∥时,∠DAC=∠BCA ;(2)当∥时,∠ADC+∠DAB=180o ;(3)当=时,AB ∥DC 。
12.仔细想一想,完成下面的推理过程.如图EF ∥AD ,∠1=∠2,∠BAC=70o ,求∠AGD 。
解:∵EF ∥AD ,(已知)∴∠2=.()又∵∠1=∠2,(已知)∴∠1=∠3.(等量代换)∴AB ∥()∴∠BAC+=180o .().∵∠BAC=70o ,∴∠AGD=.13.如图,EB ∥DC ,∠C=∠E ,请你说出∠A=∠ADE 的理由.14.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30o ,求∠EAD 、∠DAC 、∠C 的度数。
15.(1).如图1,B A 1∥C A 2013,请猜想2013321,,A A A A ∠⋅⋅⋅∠∠∠的关系(不需说明理由).(2).如图2,B A 1∥C A 2013,请猜想2013321,,A A A A ∠⋅⋅⋅∠∠∠的关系(不需说明理由).C2013A 2012A 3A 2A 图1B1A 图2B1A 2012A 2A C2013A 3A。