相似三角形-备战2022年中考数学一轮复习考点(浙江专用)(解析版)

合集下载

中考专题复习相似三角形课件浙教版

中考专题复习相似三角形课件浙教版

中考专题复习相似三角形课件浙教版一、教学内容本节课我们将学习浙教版初中数学九年级下册第十章“几何图形的相似”中的“相似三角形”。

具体内容包括:相似三角形的判定、性质、应用等方面。

本章共分为三节,我们将重点学习第一节“相似三角形的判定”与第二节“相似三角形的性质”。

二、教学目标1. 理解并掌握相似三角形的判定方法及其性质。

2. 能够运用相似三角形的性质解决实际问题,提高几何解题能力。

3. 培养学生的观察能力、逻辑思维能力和团队合作能力。

三、教学难点与重点教学难点:相似三角形的判定与性质的理解和应用。

教学重点:掌握相似三角形的判定方法和性质,并能运用其解决实际问题。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、量角器、练习本。

五、教学过程1. 导入:通过展示实际生活中的相似图形(如建筑物的立面图、家具设计图等),引出相似三角形的概念。

2. 知识讲解:(1)相似三角形的判定方法:SSS、SAS、ASA、AAS。

(2)相似三角形的性质:对应角相等、对应边成比例、对应面积成比例。

3. 例题讲解:讲解典型例题,分析解题思路,引导学生运用相似三角形的判定与性质解决问题。

4. 随堂练习:让学生独立完成练习题,巩固所学知识。

5. 小组讨论:针对练习题中的难点,组织学生进行小组讨论,共同解决问题。

7. 课后作业布置:布置相关作业,要求学生在课后巩固所学知识。

六、板书设计1. 相似三角形的判定:(1)SSS:三组对应边成比例(2)SAS:两组对应边成比例且夹角相等(3)ASA:两组对应角相等且夹边成比例(4)AAS:两组对应角相等且一组对应边成比例2. 相似三角形的性质:(1)对应角相等(2)对应边成比例(3)对应面积成比例七、作业设计1. 作业题目:(1)已知三角形ABC与三角形DEF相似,求证:$\angleA=\angle D$,$\angle B=\angle E$,$\angle C=\angle F$。

相似三角形-2022年中考数学专练(解析版)

相似三角形-2022年中考数学专练(解析版)

热点07 相似三角形相似三角形在中考数学中的地址永远都是无法撼动的第一,不管是对相似三角形性质、判定、亦或是应用的考察,都有出题类型多变,出题形式随意的特点,并且,因为其高度的融合性,不管是在选择题、填空题、解答题的压轴题中,都可以作为压轴题的问题背景出现,也是解决压轴题问题不可或缺的方法途径。

基于以上特征,相似三角的考察难度可以从中等跨越到较难,属于中考数学中较为重要的压轴考点。

1.相似三角形的性质:分类记忆——边、角、线、面积+周长;相似三角形的性质有:对应边成比例、对应角相等、对应边上的“三线”之比=相似比、对应面积之比=相似比的平方、对应周长之比=相似比。

另外,相似三角形之前还有有关平行线分线段成比例的基本性质的考察。

2.相似三角形的判定:重点记“AA”与“SAS”类型,小题勿忘“SSS”类型;相似三角形的判定方法中,最常用的是有两个角对应相等的两个三角形相似,其次是对应角相等,对应边成比例的两个三角形相似。

三边对应成比例的两个三角形相似不长出现,但是个别小题,特别是和网格结合的问题小题中,也是有出现几率的。

3.相似三角形的应用:理解题意、提炼模型、注意特殊要求;相似三角形的应用多与实际生活结合,考察树或者楼的高度、物体的某些边的长度等。

此时通常需要自己提炼出应用的相似模型,并根据需要添加辅助线等,个别时候还会要求结果符合一定的要求,需要特点别注意。

当相似三角形与函数结合考察时,通常为压轴题,需要同时注意相似三角形与函数各自的性质的融合。

相似三角形的考察热点有:平行线分线段成比例的基本性质、相似三角形的性质、判定以及其综合应用。

近几年也常考察相似里的几何模型,如:手拉手模型、K型图模型、A字图与8字图模型、母子三角形模型等。

A卷(建议用时:60分钟)1.(2021•攀枝花·中考真题)若(x、y、z均不为0),则=.【分析】设比值为k,然后用k表示出x、y、z,再代入比例式进行计算即可得解.【解答】解:设===k(k≠0),则x=6k,y=4k,z=3k,所以,==3.故答案为:3.2.(2021•百色·中考真题)如图,△ABC中,AB=AC,∠B=72°,∠ACB的平分线CD交AB于点D,则点D是线段AB的黄金分割点.若AC=2,则BD=.【分析】证AD=CD=BC,再证△BCD∽△BAC,得BC:AB=BD:BC,则AD:AB=BD:AD,得点D是AB边上的黄金分割点,AD>BD,求出AD=AB=﹣1,即可求解.【解答】解:∵AB=AC=2,∴∠B=∠ACB=72°,∠A=36°,∵CD平分∠ACB,∴∠ACD=∠BCD=36°,∴∠A=∠ACD,∴AD=CD,∵∠CDB=180°﹣∠B﹣∠BCD=72°,∴∠CDB=∠B,∴BC=CD,∴BC=AD,∵∠B=∠B,∠BCD=∠A=36°,∴△BCD∽△BAC,∴BC:AB=BD:BC,∴AD:AB=BD:AD,∴点D是AB边上的黄金分割点,AD>BD,∴AD=AB=﹣1,∴BD=AB﹣AD=2﹣(﹣1)=3﹣,故答案为:3﹣.3.(2021•哈尔滨·中考真题)如图,在△ABC中,DE∥BC,AD=2,BD=3,AC=10,则AE的长为()A.3B.4C.5D.6【分析】根据平行线分线段成比例由DE∥BC得到,然后根据比例的性质可求出AE.【解答】解:∵DE∥BC,∴,∵AD=2,BD=3,AC=10,∴,∴AE=4.故选:B.4.(2021•上海·中考真题)如图所示,已知在梯形ABCD中,AD∥BC,=,则=.【分析】过D作DM⊥BC于M,过B作BN⊥AD于N,由四边形BMDN是矩形,可得DM=BN,=,根据AD∥BC,可得==,=,即可得到=.【解答】解:过D作DM⊥BC于M,过B作BN⊥AD于N,如图:∵AD∥BC,DM⊥BC,BN⊥AD,∴四边形BMDN是矩形,DM=BN,∵=,∴=,∴=,∵AD∥BC,∴==,∴=,∴=,故答案为:.5.(2021•镇江·中考真题)如图,点D,E分别在△ABC的边AC,AB上,△ADE∽△ABC,M,N分别是DE,BC的中点,若=,则=.【分析】根据相似三角形对应中线的比等于相似比求出,根据相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵M,N分别是DE,BC的中点,∴AM、AN分别为△ADE、△ABC的中线,∵△ADE∽△ABC,∴==,∴=()2=,故答案为:.6.(2021•湘潭·中考真题)如图,在△ABC中,点D,E分别为边AB,AC上的点,试添加一个条件:,使得△ADE与△ABC相似.(任意写出一个满足条件的即可)【分析】根据相似三角形判定定理:两个角相等的三角形相似;夹角相等,对应边成比例的两个三角形相似,即可解题.【解答】解:添加∠ADE=∠C,又∵∠A=∠A,∴△ADE∽△ACB,故答案为:∠ADE=∠C(答案不唯一).7.(2021•巴中·中考真题)如图,△ABC中,点D、E分别在AB、AC上,且==,下列结论正确的是()A.DE:BC=1:2B.△ADE与△ABC的面积比为1:3C.△ADE与△ABC的周长比为1:2D.DE∥BC【分析】根据相似三角形的判定与性质进行逐一判断即可.【解答】解:∵==,∴AD:AB=AE:AC=1:3,∵∠A=∠A,∴△ADE∽△ABC,∴DE:BC=1:3,故A错误;∵△ADE∽△ABC,∴△ADE与△ABC的面积比为1:9,周长的比为1:3,故B和C错误;∵△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC.故D正确.故选:D.8.(2021•恩施州·中考真题)如图,在4×4的正方形网格中,每个小正方形的边长都为1,E为BD与正方形网格线的交点,下列结论正确的是()A.CE≠BD B.△ABC≌△CBD C.AC=CD D.∠ABC=∠CBD【分析】根据勾股定理可以得到BC、CD、BD的长,再根据勾股定理的逆定理可以得到△BCD的形状,利用相似三角形的判定与性质,可以得到EF的长,然后即可得到CE的长,从而可以得到CE和BD的关系;根据图形,很容易判断△ABC≌△CBD和AC=CD不成立;再根据锐角三角函数可以得到∠ABC 和∠CBD的关系.【解答】解:由图可得,BC==2,CD==,BD==5,∴BC2+CD2=(2)2+()2=25=BD2,∴△BCD是直角三角形,∵EF∥GD,∴△BFE∽△BGD,∴,即,解得EF=1.5,∴CE=CF﹣EF=4﹣1.5=2.5,∴=,故选项A错误;由图可知,显然△ABC和△CBD不全等,故选项B错误;∵AC=2,CD=,∴AC≠CD,故选项C错误;∵tan∠ABC==,tan∠==,∴∠ABC=∠CBD,故选项D正确;故选:D.9.(2021•内江·中考真题)在同一时刻,物体的高度与它在阳光下的影长成正比.在某一时刻,有人测得一高为1.8m的竹竿的影长为3m,某一高楼的影长为60m,那么这幢高楼的高度是()A.18m B.20m C.30m D.36m【分析】设此高楼的高度为x米,再根据同一时刻物高与影长成正比例出关于x的比例式,求出x的值即可.【解答】解:设这幢高楼的高度为x米,依题意得:=,解得:x=36.故这幢高楼的高度为36米.故选:D.10.(2021•兰州·中考真题)如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m时,标准视力表中最大的“”字高度为72.7mm,当测试距离为3m时,最大的“”字高度为()A.121.17mm B.43.62mm C.29.08mm D.4.36mm【分析】直接利用平行线分线段成比例定理列比例式,代入可得结论.【解答】解:由题意得:CB∥DF,,∵AD=3m,AB=5m,BC=72.7mm,,∴DF=43.62(mm),故选:B.11.(2021•锦州·中考真题)如图,△ABC内接于⊙O,AB为⊙O的直径,D为⊙O上一点(位于AB下方),CD交AB于点E,若∠BDC=45°,BC=6,CE=2DE,则CE的长为()A.2B.4C.3D.4【分析】连接CO,过点D作DG⊥AB于点G,连接AD,因为CE=2DE,构造△DGE∽△COE,求出DG=3,设GE=x,则OE=2x,DG=3,则AG=6﹣3x,BG=6+3x,再利用△AGD∽△ADB,列出方程即可解决.【解答】解:方法一、连接CO,过点D作DG⊥AB于点G,连接AD,∵∠BDC=45°,∴∠CAO=∠CDB=45°,∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∴∠CAB=∠CBA=45°,∵BC=6,∴AB=BC=12,∵OA=OB,∴CO⊥AB,∴∠COA=∠DGE=90°,∵∠DEG=∠CEO,∴△DGE∽△COE,∴=,∵CE=2DE,设GE=x,则OE=2x,DG=3,∴AG=6﹣3x,BG=6+3x,∵∠ADB=∠AGB=90°,∠DAG=∠BAD,∴△AGD∽△ADB,∴DG2=AG•BG,∴9=(6﹣3x)(6+3x),∵x>0,∴x=,∴OE=2,在Rt△OCE中,由勾股定理得:CE=,方法二、∵∠CDB=∠A=45°,∴∠ABC=∠A=45°,∵∠BCE=∠DCB,∴△BCE∽△DCB,∴BC2=CE×CD,设DE=x,则CE=2x,∴(6)2=2x×3x,∵x>0,∴x=2,∴CE=4,故选:D.12.(2021•连云港·中考真题)如图,△ABC中,BD⊥AB,BD、AC相交于点D,AD=AC,AB=2,∠ABC=150°,则△DBC的面积是()A.B.C.D.【分析】过点C作BD的垂线,交BD的延长线于点E,可得△ABD∽△CED,可得==,由AD=AC,AB=2,可求出CE的长,又∠ABC=150°,∠ABD=90°,则∠CBD=60°,解直角△BCE,可分别求出BE和BD的长,进而可求出△BCD的面积.【解答】解:如图,过点C作BD的垂线,交BD的延长线于点E,则∠E=90°,∵BD⊥AB,CE⊥BD,∴AB∥CE,∠ABD=90°,∴△ABD∽△CED,∴==,∵AD=AC,∴=,∴===,则CE=,∵∠ABC=150°,∠ABD=90°,∴∠CBE=60°,∴BE=CE=,∴BD=BE=,∴S△BCD=•BD•CE=×=.故选:A.13.(2021•济南·中考真题)如图,一个由8个正方形组成的“C”模板恰好完全放入一个矩形框内,模板四周的直角顶点M,N,O,P,Q都在矩形ABCD的边上,若8个小正方形的面积均为1,则边AB的长为.【分析】如解答图所示,连接EG,则∠OEP=90°,由题意得,小正方形的边长为1,根据勾股定理得出OP=,根据矩形的性质可判定△OEP∽△QBM,得到===,进而得出BM=,QB=,利用AAS证明△QBM≌△MAN,根据全等三角形的性质及线段的和差即可得解.【解答】解:如下图所示,连接EG,则∠OEP=90°,由题意得,小正方形的边长为1,∴OP===,∵四边形ABCD是矩形,∴∠B=∠C=∠A=90°,∠MQP=90°,∴∠BMQ=∠CQP=90°﹣∠MQP,同理∠EPO=∠CQP=90°﹣∠QPC,∴∠BMQ=∠EPO,又∠OEP=∠B=90°,∴△OEP∽△QBM,∴===,∴BM===,QB===,∵∠B=∠A=90°,∠NMQ=90°,∴∠BMQ=∠ANM=90°﹣∠AMN,在△QBM和△MAN中,,∴△QBM≌△MAN(AAS),∴AM=QB=,∴AB=BM+AM=+=.故答案为:.14.(2021•鄂州·中考真题)如图,在▱ABCD中,点E、F分别在边AD、BC上,且∠ABE=∠CDF.(1)探究四边形BEDF的形状,并说明理由;(2)连接AC,分别交BE、DF于点G、H,连接BD交AC于点O.若=,AE=4,求BC的长.【分析】(1)利用∠ABE=∠CDF以及平行四边形的性质,求证BE∥DF,AD∥BC即可判断四边形BEDF 的形状;(2)设AG=2a,通过已知条件即可推出的值,再通过求证△AGE∽△CGB,利用相似比即可求出BC的长.【解答】解:(1)四边形BEDF为平行四边形,理由如下:∵四边形ABCD为平行四边形,∴∠ABC=∠ADC,∵∠ABE=∠CDF,∴∠EBF=∠EDF,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠EDF=∠DFC=∠EBF,∴BE∥DF,∵AD∥BC,∴四边形BEDF为平行四边形;(2)设AG=2a,∵,∴OG=3a,AO=5a,∵四边形ABCD为平行四边形,∴AO=CO=5a,AC=10a,CG=8a,∵AD∥BC,∴△AGE∽△CGB,∴,∵AE=4,∴BC=16.15.(2021•聊城·中考真题)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,AE是直径,交BC 于点H,点D在上,连接AD,CD过点E作EF∥BC交AD的延长线于点F,延长BC交AF于点G.(1)求证:EF是⊙O的切线;(2)若BC=2,AH=CG=3,求EF和CD的长.【分析】(1)由题意可证∠BAE=∠CAE,由等腰三角形的性质可得AE⊥BC,由平行线的性质可证EF ⊥AE,可得结论;(2)在Rt△OHC中,利用勾股定理可求半径,可得AE的长,通过证明△AEF∽△AHG,可得,可求EF的长,通过证明△DCG∽△BAG,可得,可求CD的长.【解答】证明:(1)∵AB=AC,∴=,∵AE是直径,∴=,∴∠BAE=∠CAE,又∵AB=AC,∴AE⊥BC,又∵EF∥BC,∴EF⊥AE,∴EF是⊙O的切线;(2)连接OC,设⊙O的半径为r,∵AE⊥BC,∴CH=BH=BC=1,∴HG=HC+CG=4,∴AG===5,在Rt△OHC中,OH2+CH2=OC2,∴(3﹣r)2+1=r2,解得:r=,∴AE=,∵EF∥BC,∴△AEF∽△AHG,∴,∴=,∴EF=,∵AH=3,BH=1,∴AB===,∵四边形ABCD内接于⊙O,∴∠B+∠ADC=180°,∵∠ADC+∠CDG=180°,∴∠B=∠CDG,又∵∠DGC=∠AGB,∴△DCG∽△BAG,∴,∴=,∴CD=.B卷(建议用时:80分钟)1.(2021•大庆·中考真题)已知==,则=.【分析】设===k,分别求出x、y、z的值,代入所求式子化简即可.【解答】解:设===k,∴x=2k,y=3k,z=4k,∴===,故答案为.2.(2021•德阳·中考真题)我们把宽与长的比是的矩形叫做黄金矩形.黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形ABCD是黄金矩形,边AB的长度为﹣1,则该矩形的周长为.【分析】分两种情况:①边AB为矩形的长时,则矩形的宽为3﹣,求出矩形的周长即可;②边AB为矩形的宽时,则矩形的长为=2,求出矩形的周长即可.【解答】解:分两种情况:①边AB为矩形的长时,则矩形的宽为×(﹣1)=3﹣,∴矩形的周长为:2(﹣1+3﹣)=4;②边AB为矩形的宽时,则矩形的长为:(﹣1)÷=2,∴矩形的周长为2(﹣1+2)=2+2;综上所述,该矩形的周长为2+2或4.3.(2021•阿坝州·中考真题)如图,直线l1∥l2∥l3,直线a,b与l1,l2,l3分别交于点A,B,C和点D,E,F.若AB:BC=2:3,EF=9,则DE的长是()A.4B.6C.7D.12【分析】根据平行线分线段成比例定理得出AB:BC=DE:EF,再求出答案即可.【解答】解:∵l1∥l2∥l3,∴AB:BC=DE:EF.∵AB:BC=2:3,EF=9,∴DE=6.故选:B.4.(2021•宿迁·中考真题)如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD=2BD,CE=2AE,BE交AD于点F,则△AFE面积的最大值是.【分析】连接DE.首先证明DE∥AB,推出S△ABE=S△ABD,推出S△AEF=S△BDF,可得S△AEF=S△ABD,求出△ABD面积的最大值即可解决问题.【解答】解:连接DE.∵CD=2BD,CE=2AE,∴==2,∴DE∥AB,∴△CDE∽△CBA,∴==,∴==,∵DE∥AB,∴S△ABE=S△ABD,∴S△AEF=S△BDF,∴S△AEF=S△ABD,∵BD=BC=,∴当AB⊥BD时,△ABD的面积最大,最大值=××4=,∴△AEF的面积的最大值=×=,故答案为:5.(2021•盘锦·中考真题)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学著作《九章算术》中的“井深几何”问题,它的题意可以由示意图获得,设井深为x尺,所列方程正确的是()A.=B.=C.=D.=【分析】如图,设AD交BE于K.利用相似三角形的性质求解即可.【解答】解:如图,设AD交BE于K.∵DK∥BC,∴△EKD∽△EBC,∴=,∴=,故选:A.6.(2021•临沂·中考真题)如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.3【分析】根据相似三角形的判定和性质可以得到AB的长,然后由图可知AC=AB﹣BC,然后代入数据计算即可.【解答】解:作CD⊥BD于点D,作AE⊥BD于点E,如右图所示,则CD∥AE,∴△BDC∽△BEA,∴,∴=,解得BA=2,∴AC=BA﹣BC=2﹣=,故选:B.7.(2021•湘西州·中考真题)如图,在△ECD中,∠C=90°,AB⊥EC于点B,AB=1.2,EB=1.6,BC =12.4,则CD的长是()A.14B.12.4C.10.5D.9.3【分析】由∠ABE=∠C,∠E=∠E,证明△ABE∽△DCE,得=,即可求解.【解答】解:∵EB=1.6,BC=12.4,∴EC=EB+BC=14,∵AB⊥EC,∴∠ABE=90°,∵∠C=90°,∴∠ABE=∠C,又∵∠E=∠E,∴△ABE∽△DCE,∴=,即=,解得:CD=10.5,故选:C.8.(2021•益阳·中考真题)如图,Rt△ABC中,∠BAC=90°,tan∠ABC=,将△ABC绕A点顺时针方向旋转角α(0°<α<90°)得到△AB′C′,连接BB′,CC′,则△CAC′与△BAB′的面积之比等于.【分析】证明△ACC′∽△ABB′,可得=()2,解决问题.【解答】解:由旋转的性质可知,∠BAC=∠B′AC′,∴∠BAB′=∠CAC′,∵AB=AB′,AC=AC′,∴=,∴△ACC′∽△ABB′,∴=()2,∵∠CAB=90°,∴tan∠ABC==,∴=()2=.故答案为:9:4.9.(2021•常州·中考真题)如图,在△ABC中,AC=3,BC=4,D、E分别在CA、CB上,点F在△ABC 内.若四边形CDFE是边长为1的正方形,则sin∠FBA=.【分析】连接AF,过点F作FG⊥AB于G,由四边形CDFE是边长为1的正方形可得AD=2,BE=3,根据勾股定理求出AB=5,AF=,BF=,设BG=x,利用勾股定理求出x=3,可得FG=1,即可得sin∠FBA的值.【解答】解:连接AF,过点F作FG⊥AB于G,∵四边形CDFE是边长为1的正方形,∴CD=CE=DF=EF=1,∠C=∠ADF=90°,∵AC=3,BC=4,∴AD=2,BE=3,∴AB==5,AF==,BF==,设BG=x,∵FG2=AF2﹣AG2=BF2﹣BG2,∴5﹣(5﹣x)2=10﹣x2,解得:x=3,∴FG==1,∴sin∠FBA==.故答案为:.10.(2021•绵阳·中考真题)如图,在△ACD中,AD=6,BC=5,AC2=AB(AB+BC),且△DAB∽△DCA,若AD=3AP,点Q是线段AB上的动点,则PQ的最小值是()A.B.C.D.【分析】根据相似三角形的性质得到=,得到BD=4(负值舍去),AB=BD=4,过B作BH⊥AD 于H,根据等腰三角形的性质得到AH=AD=3,根据勾股定理得到BH===,当PQ⊥AB时,PQ的值最小,根据相似三角形的性质即可得到结论.【解答】解:∵△DAB∽△DCA,∴=,∴=,解得:BD=4(负值舍去),∵△DAB∽△DCA,∴,∴AC=,∵AC2=AB(AB+BC),∴(AB)2=AB(AB+BC),∴AB=4,∴AB=BD=4,过B作BH⊥AD于H,∴AH=AD=3,∴BH===,∵AD=3AP,AD=6,∴AP=2,当PQ⊥AB时,PQ的值最小,∵∠AQP=∠AHB=90°,∠P AQ=∠BAH,∴△APQ∽△ABH,∴,∴=,∴PQ=,故选:A.11.(2021•温州·中考真题)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG于点H.若AE=2BE,则的值为()A.B.C.D.【分析】如图,过点G作GT⊥CF交CF的延长线于T,设BH交CF于M,AE交DF于N.设BE=AN =CM=DF=a,则AE=BM=CF=DN=2a,想办法求出BH,CG,可得结论.【解答】解:如图,过点G作GT⊥CF交CF的延长线于T,设BH交CF于M,AE交DF于N.设BE =AN=CM=DF=a,则AE=BM=CF=DN=2a,∴EN=EM=MF=FN=a,∵四边形ENFM是正方形,∴∠EFH=∠TFG=45°,∠NFE=∠DFG=45°,∵GT⊥TF,DF⊥DG,∴∠TGF=∠TFG=∠DFG=∠DGF=45°,∴TG=FT=DF=DG=a,∴CT=3a,CG==a,∵MH∥TG,∴△CMH∽△CTG,∴CM:CT=MH:TG=1:3,∴MH=a,∴BH=2a+a=a,∴==,故选:C.12.(2021•山西·中考真题)如图,在△ABC中,点D是AB边上的一点,且AD=3BD,连接CD并取CD 的中点E,连接BE,若∠ACD=∠BED=45°,且CD=6,则AB的长为.【分析】取AD中点F,连接EF,过点D作DG⊥EF于G,DH⊥BE于H,设BD=a,由三角形中位线定理可得DF=a,EF∥AC,DE=3,通过证明四边形DGEH是正方形,可得DE=DG=3,DH∥EF,通过证明△BDH∽△DFG,可得,可求BH的长,在Rt△DHB中,利用勾股定理可求BD的长,即可求解.【解答】解:如图,取AD中点F,连接EF,过点D作DG⊥EF于G,DH⊥BE于H,设BD=a,∴AD=3BD=3a,AB=4a,∵点E为CD中点,点F为AD中点,CD=6,∴DF=a,EF∥AC,DE=3,∴∠FED=∠ACD=45°,∵∠BED=45°,∴∠FED=∠BED,∠FEB=90°,∵DG⊥EF,DH⊥BE,∴四边形EHDG是矩形,DG=DH,∴四边形DGEH是正方形,∴DE=DG=3,DH∥EF,∴DG=DH=3,∵DH∥EF,∴∠BDH=∠DFG,∴△BDH∽△DFG,∴,∴=,∴BH=2,∴BD===,∴AB=4,故答案为:4.13.(2021•鞍山·中考真题)如图,△ABC的顶点B在反比例函数y=(x>0)的图象上,顶点C在x 轴负半轴上,AB∥x轴,AB,BC分别交y轴于点D,E.若==,S△ABC=13,则k=.【分析】过点B作BF⊥x轴于点F,通过设参数表示出三角形ABC的面积,从而求出参数的值,再利用三角形ABC与矩形ODBF的关系求出矩形面积,即可求得k的值.【解答】解:如图,过点B作BF⊥x轴于点F.∵AB∥x轴,∴△DBE∽△OCE,∴=,∵==,∴====,设CO=3a,DE=3b,则AD=2a,OE=2b,∴,OD=5b,∴BD=,∴AB=AD+DB=,∵S△ABC===13,∴ab=,∵S矩形ODBF=BD•OD===18,又∵反比例函数图象在第一象限,∴k=18,故答案为18.14.(2021•营口·中考真题)如图,AB是⊙O直径,点C,D为⊙O上的两点,且=,连接AC,BD 交于点E,⊙O的切线AF与BD延长线相交于点F,A为切点.(1)求证:AF=AE;(2)若AB=8,BC=2,求AF的长.【分析】(1)利用AB是⊙O直径,AF是⊙O的切线,得到∠DAF=∠ABF,利用=得到∠ABF=∠CAD,进而证得∠F=∠AEF,根据等角对等边即可证得AF=AE;(2)利用勾股定理求得AC,利用△BCE∽△BAF得到=,求得CE=AF=AE,根据AE+CE =AC即可求得AF.【解答】(1)证明:连接AD,∵AB是⊙O直径,∴∠ADB=∠ADF=90°,∴∠F+∠DAF=90°,∵AF是⊙O的切线,∴∠F AB=90°,∴∠F+∠ABF=90°,∴∠DAF=∠ABF,∵=,∴∠ABF=∠CAD,∴∠DAF=∠CAD,∴∠F=∠AEF,∴AF=AE;(2)解:∵AB是⊙O直径,∴∠C=90°,∵AB=8,BC=2,∴AC===2,∵∠C=∠F AB=90°,∠CEB=∠AEF=∠F,∴△BCE∽△BAF,∴=,即=,∴CE=AF,∵AF=AE,∴CE=AE,∵AE+CE=AC=2,∴AE=,∴AF=AE=.15.(2021•杭州·中考真题)如图,锐角三角形ABC内接于⊙O,∠BAC的平分线AG交⊙O于点G,交BC边于点F,连接BG.(1)求证:△ABG∽△AFC.(2)已知AB=a,AC=AF=b,求线段FG的长(用含a,b的代数式表示).(3)已知点E在线段AF上(不与点A,点F重合),点D在线段AE上(不与点A,点E重合),∠ABD =∠CBE,求证:BG2=GE•GD.【分析】(1)根据∠BAC的平分线AG交⊙O于点G,知∠BAG=∠F AC,由圆周角定理知∠G=∠C,即可证△ABG∽△AFC;(2)由(1)知=,由AC=AF得AG=AB,即可计算FG的长度;(3)先证△DGB∽△BGE,得出线段比例关系,即可得证BG2=GE•GD.【解答】(1)证明:∵AG平分∠BAC,∴∠BAG=∠F AC,又∵∠G=∠C,∴△ABG∽△AFC;(2)解:由(1)知,△ABG∽△AFC,∴=,∵AC=AF=b,∴AB=AG=a,∴FG=AG﹣AF=a﹣b;(3)证明:∵∠CAG=∠CBG,∠BAG=∠CAG,∴∠BAG=∠CBG,∵∠ABD=∠CBE,∴∠BDG=∠BAG+∠ABD=∠CBG+∠CBE=∠EBG,又∵∠DGB=∠BGE,∴△DGB∽△BGE,∴=,∴BG2=GE•GD.16.(2021•罗湖区·中考真题)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.【分析】(1)利用相似三角形的判定得出△ABE∽△ACB,进而求出答案;(2)首先证明AD=BF,进而得出AD∥BF,即可得出四边形ABFD是平行四边形,再利用AD=AB,得出四边形ABFD是菱形.【解答】证明:(1)∵AB=AD,∴∠ADB=∠ABE,又∵∠ADB=∠ACB,∴∠ABE=∠ACB,又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴=,又∵AB=AD,∴=;(2)设AE=x,∵AE:EC=1:2,∴EC=2x,由(1)得:AB2=AE•AC,即AB2=x•3x∴AB=x,又∵BA⊥AC,∴BC=2x,∴∠ACB=30°,∵F是BC中点,∴BF=x,∴BF=AB=AD,连接AF,则AF=BF=CF,∠ACB=30°,∠ABC=60°,又∵∠ABD=∠ADB=30°,∴∠CBD=30°,∴∠ADB=∠CBD=∠ACB=30°,∴AD∥BF,∴四边形ABFD是平行四边形,又∵AD=AB,∴四边形ABFD是菱形.。

考点11 三角形与全等三角形-备战2022年中考数学一轮复习考点帮(浙江专用)(解析版)

考点11  三角形与全等三角形-备战2022年中考数学一轮复习考点帮(浙江专用)(解析版)

考点11 三角形与全等三角形【命题趋势】三角形的基础知识是解决后续很多几何问题的基础,全等三角形也是几何问题中证明线段相等或者角相等的常用关系。

所以,在中考中,考察的几率也是比较大。

但是因为该考点与其他几何考点的融入性特别多,所以不会再过多的单独考察,很多城市基本都是融合考察,不再单独出题。

【中考考查重点】一、三角形的三边关系二、三角形的内角和定理及其外角定理三、三角形中的重要线段四、全等三角形的性质与判定考向一:三角形的三边关系三角形三边关系的定理及其推论1.若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.4D.8【分析】根据三角形三边关系定理得出5﹣3<a<5+3,求出即可.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有4,故选:C.2.三个数3,1﹣a,1﹣2a在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则a的取值范围为.【分析】由三个数的大小关系初步确定a的取值范围a<﹣2;再由三角形三边关系得到3+(1﹣a)>1﹣2a,从而求出a的取值范围.【解答】解:∵3,1﹣a,1﹣2a在数轴上从左到右依次排列,∴3<1﹣a<1﹣2a,∴a<﹣2,∵这三个数为边长能构成三角形,∴3+(1﹣a)>1﹣2a,∴a>﹣3,∴﹣3<a<﹣2,故答案为﹣3<a<﹣2.考向二:三角形的内角和定理及其外角定理角的定义、性质及其他相关:三角形内角和定理三角形的内角和等于180°三角形外角的推论三角形的一个外角=和它不相邻的两个内角的和【方法提炼】➢三角形内角和与外角定理是几何图形求解角度时常用的等量关系;即使是其他多边形,也常转化为三角形求角度【同步练习】1.在△ABC中,∠A=20°,∠B=4∠C,则∠C等于()A.32°B.36°C.40°D.128°【分析】由三角形的内角和定理可得:∠A+∠B+∠C=180°,再结合所给的条件,可得5∠C=160°,从而可求解.【解答】解:∵∠A=20°,∠B=4∠C,∴在△ABC中,∠A+∠B+∠C=180°,20°+4∠C+∠C=180°,5∠C=160°,∠C=32°.故选:A.2.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=160°,则∠B 的度数为()A.40°B.50°C.60°D.70°【分析】利用平角的定义可得∠ADE=20°,再根据平行线的性质知∠A=∠ADE=20°,再由内角和定理可得答案.【解答】解:∵∠CDE=160°,∴∠ADE=20°,∵DE∥AB,∴∠A=∠ADE=20°,∴∠B=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°.故选:D.3.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为度.【分析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据三角形的内角和定理可得结论.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60或10;4.如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为()A.60°B.70°C.75°D.85°【分析】由三角形的内角和定理,可得∠1=180﹣(∠B+∠ADB),∠ADB=∠A+∠C,所以∠1=180°﹣(∠B+∠A+∠C),由此解答即可.【解答】解:∵∠1=180﹣(∠B+∠ADB),∠ADB=∠A+∠C,∴∠1=180°﹣(∠B+∠A+∠C)=180°﹣(25°+35°+50°)=180°﹣110°=70°,故选:B.5.满足下列条件的△ABC中,不是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠A:∠B:∠C=2:3:5C.∠A+∠B=∠CD.一个外角等于和它相邻的一个内角【解答】解:A.∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴三角形中最大角∠C =×180°=75°<90°,∴满足条件的三角形为锐角三角形,选项A符合题意;B.∵∠A:∠B:∠C=2:3:5,∠A+∠B+∠C=180°,∴三角形中最大角∠C =×180°=90°,∴满足条件的三角形为直角三角形,选项B不符合题意;C.∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴三角形中最大角∠C =×180°=90°,∴满足条件的三角形为直角三角形,选项C不符合题意;D.∵一个外角等于和它相邻的一个内角,∴该内角=×180°=90°,∴满足条件的三角形为直角三角形,选项D不符合题意.故选:A.考向三:三角形中重要的线一.三角形的分类按角分类锐角三角形(三个内角都是锐角)直角三角形(有一个内角是直角)钝角三角形(有一个内角是钝角)按边分类非等边三角形(三边均不相等)等腰三角形普通等腰三角形(有两边长相等)等边三角形(三边长均相等)二.三角形中的重要线段∠CAD ∠BACEC=½BC∠AFC=90°½BC【方法提炼】三角形中“三线”的常见作用及其辅助线:(一).中线常见“用途”:平分线段、平分面积;辅助线类型:倍长中线造全等—→延伸:倍长中线类模型;(二)高线常见“用途”:求面积(等积法)、求角度(余角);辅助线类型:见特殊角做⊥,构特殊直角△、见等腰做底边上高线,构三线合一;(三)角平分线常见“用途”:得角相等(定义)、得线段相等(性质)、SAS证全等、知2得1等;辅助线类型:见角平分线作双垂、见角平分线作对称、截长补短构全等、见角平分线+垂直,延长出等腰;(四)中垂线常见“用途”:平分线段、得90°、证全等、求新形成三角形周长等;辅助线类型:连接两点由△的三线组成的几个“心”:△三边中线交点—→重心—→性质:△的重心到一中线中点的距离=重心到这条中线定点距离的一半;△三条角平分线交点—→内心—→性质:△的内心到△三边的距离(垂线段)相等;△三边中垂线交点—→外心—→性质:△的外心到△三个顶点的距离(连接)相等;【同步练习】1.如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且△ABC的面积为24,则△BEF的面积是()A.2B.4C.6D.8【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=S△ACD=12,再求出S△EBD=6,S△ECD=6,然后利用F点为CE的中点得到S△BEF=S△EBC.【解答】解:∵D点为BC的中点,∴S△ABD=S△ACD=S△ABC=×24=12,∵E点为AD的中点,∴S△EBD=S△ABD=6,S△ECD=S△ACD=6,∴S△EBC=S△EBD+S△ECD=6+6=12,∵F点为CE的中点,∴S△BEF=S△EBC=×12=6.故选:C.2.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.3.如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.8B.7.5C.15D.无法确定【分析】过D点作DE⊥BC于E,如图,根据角平分线的性质得到DE=DA=3,然后根据三角形面积公式计算.【解答】解:过D点作DE⊥BC于E,如图,∵BD平分∠ABC,DE⊥BC,DA⊥AB,∴DE=DA=3,∴△BCD的面积=×5×3=7.5.故选:B.4.如图,Rt△ABC中,∠C=90°,D是BC的中点,∠CAD=30°,BC=6,则AD+DB 的长为.【分析】先根据D是BC的中点得出CD=DB=BC=3,然后根据30°角所对的直角边等于斜边的一半得出AD=2CD=6,进而求出AD+DB的长.【解答】解:∵D是BC的中点,BC=6,∴CD=DB=BC=3.∵Rt△ABC中,∠C=90°,∠CAD=30°,∴AD=2CD=6,∴AD+DB=6+3=9.故答案为:9.5.如图,BD是△ABC的高,AE是△ABC的角平分线,BD交AE于F,若∠BAC=44°,∠C=80°,求∠BEF和∠AFD的度数.【分析】根据三角形内角和定理和角平分线的定义解答即可.【解答】解:∵BD是△ABC的高,AE是△ABC的角平分线,∠BAC=44°,∠C=80°,∴∠ADB=90°,∠BAE=∠EAD=22°,∴∠CBA=180°﹣44°﹣80°=56°,∴∠BEF=180°﹣22°﹣56°=102°,∠AFD=180°﹣90°﹣22°=68°.考向四:全等三角形的性质和判定一.全等三角形的性质性质对应边相等,对应角相等推论全等三角形的周长相等,面积相等,对应边上的中线相等,对应边上的高线相等,对应角的角平分线相等所有三角形SSS 、SAS 、ASA 、AAS直角三角形HL【方法提炼】➢证三角形全等的基本步骤:①准备条件;②罗列条件;③得出结论。

相似三角形的应用-2022年中考数学一轮复习考点(浙江专用)(解析版)

相似三角形的应用-2022年中考数学一轮复习考点(浙江专用)(解析版)

考点15 相似三角形的应用【命题趋势】相似三角形的应用在中考中主要考察热点有:8字图、A字图等简单相似模型。

出题类型可以是选择填空这类小题,也可以是18~19这类解答题,难度通常不大,问题背景多以现实中的实物如树高、楼高、物体尺寸等为背景,提炼出数学模型,进而利用(或构造)简单相似模型求解长度等问题。

【中考考查重点】一、相似三角形在实际生活中的应用二、位似图形三、相似三角形与函数综合考向一:相似三角形在实际生活中的应用相似三角形在实际生活中的应用:(一)建模思想:建立相似三角形的模型(二)常见题目类型:1.利用投影、平行线、标杆等构造相似三角形求解2.测量底部可以到达的物体的高度3.测量底部不可以到达的物体的高度4.测量河的宽度【同步练习】1.如图,小明周末晚上陪父母在马路上散步,他由灯下A处前进4米到达B处时,测得影子BC长为1米,已知小明身高1.6米,他若继续往前走4米到达D处,此时影子DE长为()A.1米B.2米C.3米D.4米【分析】依据△CBF∽△CAP,即可得到AP=8,再依据△EDG∽△EAP,即可得到DE 长.【解答】解:由FB∥AP可得,△CBF∽△CAP,∴=,即=,解得AP=8,由GD∥AP可得,△EDG∽△EAP,∴=,即=,解得ED=2,故选:B.2.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为()A.2米B.3米C.米D.米【分析】由题意知:△ABE∽△CDE,得出对应边成比例即可得出CD.【解答】解:由题意知:AB∥CD,则∠BAE=∠C,∠B=∠CDE,∴△ABE∽△CDE,∴=,∴=,∴CD=3米,故选:B.3.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.5m,木竿PQ的影子有一部分落在了墙上,它的影子QN=1.8m,MN=0.8m,木竿PQ的长度为.【分析】根据同一时刻物高与影长成正比列式求解即可.【解答】解:设木竿PQ长为xm,依题意得=,解得x=1.6,答:木竿PQ长度为1.6m,故答案为:1.6m.4.如图,有一块三角形余料,它的边BC=100m,高线AH=80m,要把它加工成矩形零件,使矩形的一边EF在BC上,其余两个顶点D、G分别在边AB、AC上,设矩形DEFG的一边长DE=xm,矩形DEFG的面积为S.(1)矩形DEFG的另一边长DG是多少?(用关于x的代数式表示)(2)求S关于x的函数表达式和自变量x的取值范围.(3)当x为多少时,矩形DEFG的面积S有最大值?最大值是多少?【分析】(1)利用矩形的性质,DG∥EF,利用同位角相等,证△ADG∽△ABC,利用相似三角形的性质求解即可;(2)由(1)可知,DG=(80﹣x),然后即可求出用x表示的矩形面积的关系式.(3)利用配方法求出最大值即可.【解答】解:(1)∵四边形DEFG是矩形,∴DG∥EF,∴∠ADG=∠ABC,∠AGD=∠ACB,∴△ADG∽△ABC,∴=,∴=,∴DG=(80﹣x)(m);(2)矩形面积S=x•(80﹣x)=﹣x2+100x(0<x<80);(3)∵S=﹣(x2﹣80x)=﹣(x﹣40)2+2000,∵﹣<0,∴x=40时,S的值最大,最大值为2000.答:当x=40时,S的值最大,最大值为2000m2.考向二:位似图形位似图形满足的条件:①所有经过对应点的直线都相交于同一点(该点叫做位似中心);②这个交点到两个对应点的距离之比都相等(这个比值叫做位似比)【同步练习】1.如图,BC∥ED,下列说法不正确的是()A.AE:AD是相似比B.点A是两个三角形的位似中心C.B与D、C与E是对应位似点D.两个三角形是位似图形【分析】根据位似变换的概念和性质判断即可.【解答】解:A、当BC∥ED时,△AED∽△ACB,AE:AC是相似比,本选项说法不正确,符合题意;B、点A是两个三角形的位似中心,本选项说法正确,不符合题意;C、B与D、C与E是对应位似点,本选项说法正确,不符合题意;D、两个三角形是位似图形,本选项说法正确,不符合题意;故选:A.2.如图,已知△ABC和△ADE是以点A为位似中心的位似图形,且△ABC和△ADE的周长比为2:1,则△ABC和△ADE的位似比是()A.1:4B.4:1C.1:2D.2:1【分析】利用位似的性质求解.【解答】解:∵△ABC和△ADE是以点A为位似中心的位似图形,∴△ABC∽△ADE,位似比等于相似比,∵△ABC和△ADE的周长比为2:1,∴△ABC和△ADE的相似比为2:1,∴△ABC和△ADE的位似比是2:1.故选:D.3.如图,在网格图中,以O为位似中心,把△ABC缩小到原来的,则点A的对应点为()A.D点B.E点C.D点或G点D.D点或F点【分析】作射线AO,根据位似变换的概念判断即可.【解答】解:作射线AO,由图可知,点D和点G都在射线AO上,且=,=,则点A的对应点为D点或G点,故选:C.4.如图,在7×4方格纸中,点A,B,C都在格点上,用无刻度直尺作图.(1)在图1中的线段AC上找一个点E,使AE=AC;(2)在图2中作一个格点△CDE,使△CDE与△ABC相似.【分析】(1)构造相似比为的相似三角形即可解决问题;(2)利用勾股定理的逆定理判断出∠ACB=90°,从而解决问题.【解答】解:(1)如图,构造相似比为的相似三角形,则点E即为所求;(2)如图,∵BC2=5,AC2=20,AB2=25,∴BC2+AC2=AB2,∴∠ACB=90°,AC=2BC,∴△CDE即为所求.5.如图,在平面直角坐标系中,△ABC的顶点为A(2,1),B (1,3),C(4,1),若△A1B1C1与△ABC是以坐标原点O为位似中心的位似图形,点A、B、C的对应点分别为A1、B1、C1,且A1的坐标为(4,2).(1)请在所给平面直角坐标系第一象限内画出△A1B1C1;(2)分别写出点B1、C1的坐标.【分析】(1)(2)利用点A和点A1的坐标特征确定位似比为2,然后把点B、C的横纵坐标都乘以2得到点B1、C1的坐标,然后描点即可.【解答】解:(1)如图,△A1B1C1;(2)点B1的坐标为(2,6),点C1的坐标为(8,2).考向三:相似三角形与函数综合【方法提炼】【同步练习】1.(2021•无棣县二模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④【分析】据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E 时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED 的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.【解答】解:根据图(2)可得,当点P到达点E时,点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,相似三角形与函数的综合重点是利用相似三角形的性质,设置参数,构建对应函数模型,再利用函数的性质求解后续问题在Rt△ABE中,AB===4,∴cos∠ABE==,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PB sin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2,故③小题正确;当t=秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,PQ=CD﹣PD=4﹣=,∵=,==,∴=,又∵∠A=∠Q=90°,∴△ABE∽△QBP,故④小题正确.综上所述,正确的有①③④.故选:C.2.(2020•达州)如图,在梯形ABCD中,AB∥CD,∠B=90°,AB=6cm,CD=2cm.P 为线段BC上的一动点,且和B、C不重合,连接P A,过点P作PE⊥P A交射线CD于点E.聪聪根据学习函数的经验,对这个问题进行了研究:(1)通过推理,他发现△ABP∽△PCE,请你帮他完成证明.(2)利用几何画板,他改变BC的长度,运动点P,得到不同位置时,CE、BP的长度的对应值:当BC=6cm时,得表1:BP/cm…12345…CE/cm…0.83 1.33 1.50 1.330.83…当BC=8cm时,得表2:BP/cm…1234567…CE/cm… 1.17 2.00 2.50 2.67 2.50 2.00 1.17…这说明,点P在线段BC上运动时,要保证点E总在线段CD上,BC的长度应有一定的限制.①填空:根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,的长度为自变量,的长度为因变量;②设BC=mcm,当点P在线段BC上运动时,点E总在线段CD上,求m的取值范围.【分析】(1)根据两角对应相等两三角形相似证明即可.(2)①根据函数的定义判断即可.②设BP=xcm,CE=ycm.利用相似三角形的性质构建二次函数,利用二次函数的性质求出y的最大值即可解决问题.【解答】(1)证明:∵AB∥CD,∴∠B+∠C=180°,∵∠B=90°,∴∠B=∠C=90°,∵AP⊥PE,∴∠APE=90°,∴∠APB+∠EPC=90°,∵∠EPC+∠PEC=90°,∴∠APB=∠PEC,∴△ABP∽△PCE.(2)解:①根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,BP的长度为自变量,EC的长度为因变量,故答案为:BP,EC.②设BP=xcm,CE=ycm.∵△ABP∽△PCE,∴=,∴=,∴y=﹣x2+mx=﹣(x﹣m)2+,∵﹣<0,∴x=m时,y有最大值,∵点E在线段CD上,CD=2cm,∴≤2,∴m≤4,∴0<m≤4.1.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m时,标准视力表中最大的“”字高度为72.7mm,当测试距离为3m时,最大的“”字高度为()A.121.17mm B.43.62mm C.29.08mm D.4.36mm【分析】直接利用平行线分线段成比例定理列比例式,代入可得结论.【解答】解:由题意得:CB∥DF,,∵AD=3m,AB=5m,BC=72.7mm,,∴DF=43.62(mm),故选:B.2.如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.3【分析】根据相似三角形的判定和性质可以得到AB的长,然后由图可知AC=AB﹣BC,然后代入数据计算即可.【解答】解:作CD⊥BD于点D,作AE⊥BD于点E,如右图所示,则CD∥AE,∴△BDC∽△BEA,∴,∴=,解得BA=2,∴AC=BA﹣BC=2﹣=,故选:B.3.国旗法规定:所有国旗均为相似矩形,在下列四面国旗中,其中只有一面不符合标准,这面国旗是()A.B.C.D.【分析】根据已知条件分别求出矩形的长与宽的比,即可得到结论.【解答】解:A、=,B、=,C、=,D、=,∵==≠,∴B选项不符合标准,故选:B.4.如图,△ABC与△A′B′C′位似,位似中心为点O,,△ABC的面积为9,则△A′B′C′面积为()A.B.6C.4D.【分析】根据位似图形的概念得到△ABC∽△A′B′C′,根据相似三角形的面积之比等于相似比的平方解答.【解答】解:根据题意知,△ABC∽△A′B′C′,∵,∴△ABC的面积:△A′B′C′面积=9:4.又∵△ABC的面积为9,∴△A′B′C′面积为4.故选:C.5.如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,若OA:AA′=2:5,则△ABC与△A′B′C′的周长比为()A.2:3B.4:3C.2:9D.4:9【分析】根据题意求出OA:OA′=2:3,根据相似三角形的性质求出AC:A′C′,根据相似三角形的性质计算即可.【解答】解:∵OA:AA′=2:5,∴OA:OA′=2:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,△ABC∽△A′B′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=2:3,∴△ABC与△A′B′C′的周长比为2:3,故选:A.6.小明的身高为1.6m,某一时刻他在阳光下的影子长为2m,与他邻近的一棵树的影长为10m,则这棵树的高为m.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:设这棵树的高度为xm,根据相同时刻的物高与影长成比例,则可列比例为:,解得:x=8.故答案为:8.7.据《墨经》记载,在两千多年前,我国学者墨子和他的学生做了“小孔成像”实验,阐释了光的直线传播原理.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布上形成倒立的实像CD(点A、B的对应点分别是C、D).若物体AB的高为6cm,小孔O到物体和实像的水平距离BE、CE分别为8cm、6cm,则实像CD的高度为cm.【分析】根据相似三角形的判定和性质定理即可得到答案.【解答】解:∵AB∥CD,∴△OAB∽△OCD,∴,∴,∴CD=4.5,答:实像CD的高度为4.5cm,故答案为:4.5.8.小丽想利用所学知识测量旗杆AB的高度,如图,小丽在自家窗边看见旗杆和住宅楼之间有一棵大树DE,小丽通过调整自己的位置,发现半蹲于窗边,眼睛位于C处时,恰好看到旗杆顶端A、大树顶端D在一条直线上,小丽用测距仪测得眼睛到大树和旗杆的水平距离CH、CG分别为7米、28米,眼睛到地面的距离CF为3.5米,已知大树DE的高度为7米,CG∥BF交AB于点G,AB⊥BF于点B,DE⊥BF于点E,交CG于点H,CF⊥BF于点F.求旗杆AB的高度.【分析】根据相似三角形的判定与性质得出比例式求解即可.【解答】解:由题意知BG=HE=CF=3.5米,∴DH=DE﹣CF=7﹣3.5=3.5(米),∵AB⊥BF,DE⊥BF,∴AG∥DH,∴△CDH∽△CAG,∴=,即,∴AG=14米,∴AB=AG+GB=14+3.5=17.5(米),∴旗杆AB的高度为17.5米.9.如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件PQMN,使一边在BC上,其余两个顶点分别在边AB、AC上.(1)求证:△APQ∽△ABC;(2)若这个矩形的边PN:PQ=1:2,则这个矩形的长、宽各是多少?【分析】(1)根据矩形的对边平行得到BC∥PQ,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可.(2)设宽为xmm,则长为2xmm,同(1)列出比例关系求解即可.【解答】解:(1)∵四边形PNQM为矩形,∴MN∥PQ,即PQ∥BC,∴△APQ∽△ABC;(2)设边宽为xmm,则长为2xmm,∵四边形PNMQ为矩形,∴PQ∥BC,∵AD⊥BC,∴PQ⊥AD,∵PN:PQ=1:2,∴PQ为长,PN为宽,∵PQ∥BC,∴△APQ∽△ABC,∴=,由题意知PQ=2xmm,AD=80mm,BC=120mm,PN=xmm,∴=,解得x=,2x=.即长为mm,宽为mm.答:矩形的长mm,宽为mm.10.(2022•禅城区校级模拟)如图①,四边形ABCD是矩形,AB=1,BC=2,点E是线段BC上一动点(不与B、C两点重合),点F是线段BA延长线的一动点,连接DE,EF,DF,EF交AD于点G,设BE,AF=y,已知y与x之间的函数关系式如图②所示,(1)图②中y与x的函数关系式为;(2)求证:△CDE∽△ADF;(3)当△DEG是等腰三角形时,求x的值.【分析】(1)利用待定系数法可得y与x的函数表达式.(2)利用两边成比例夹角相等证明△CDE∽△ADF即可.(3)分三种情况:①若DE=DG,则∠DGE=∠DEG,②若DE=EG,如图①,作EH ∥CD,交AD于H,③若DG=EG,则∠GDE=∠GED,分别列方程计算可得结论.【解答】(1)解:设y=kx+b,由图象得:当x=1时,y=2,当x=0时,y=4,代入得:,,∴y=﹣2x+4(0<x<2).故答案为:y=﹣2x+4(0<x<2).(2)证明:∵BE=x,BC=2∴CE=2﹣x,∴==,=,∴=,∵四边形ABCD是矩形,∴∠C=∠DAF=90°,∴△CDE∽△ADF,∴∠ADF=∠CDE.(3)解:假设存在x的值,使得△DEG是等腰三角形,①若DE=DG,则∠DGE=∠DEG,∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DGE=∠GEB,∴∠DEG=∠BEG,在△DEF和△BEF中,,∴△DEF≌△BEF(AAS),∴DE=BE=x,CE=2﹣x,在Rt△CDE中,由勾股定理得:1+(2﹣x)2=x2,x=.②若DE=EG,如图①,作EH∥CD,交AD于H,∵AD∥BC,EH∥CD,∴四边形CDHE是平行四边形,∴∠C=90°,∴四边形CDHE是矩形,∴EH=CD=1,DH=CE=2﹣x,EH⊥DG,∴HG=DH=2﹣x,∴AG=2x﹣2,∵EH∥CD,DC∥AB,∴EH∥AF,∴△EHG∽△F AG,∴=,∴=,∴x1=,x2=(舍),经检验x=是分式方程的解,∴x=.③若DG=EG,则∠GDE=∠GED,∵AD∥BC,∴∠GDE=∠DEC,∴∠GED=∠DEC,∵∠C=∠EDF=90°,∴△CDE∽△DFE,∴=,∵△CDE∽△ADF,∴==,∴=,∴2﹣x=,∴x=.综上,x=或或.1.(2021·浙江绍兴)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是()A.2m B.3m C.m D.m【分析】利用相似三角形的性质求解即可.【解答】解:∵AB∥OP,∴△CAB∽△CPO,∴,∴,∴AB=2(m),故选:A.2.(2021·浙江嘉兴)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是.【分析】根据图示,对应点所在的直线都经过同一点,该点就是位似中心.【解答】解:如图,点G(4,2)即为所求的位似中心.故答案是:(4,2).3.(2021·浙江温州)如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A′,B′.若AB=6,则A′B′的长为()A.8B.9C.10D.15【分析】根据位似图形的概念列出比例式,代入计算即可.【解答】解:∵图形甲与图形乙是位似图形,位似比为2:3,AB=6,∴=,即=,解得,A′B′=9,故选:B.4.(2021·浙江金华)如图1是一种利用镜面反射,放大微小变化的装置.木条BC上的点P处安装一平面镜,BC与刻度尺边MN的交点为D,从A点发出的光束经平面镜P反射后,在MN上形成一个光点E.已知AB⊥BC,MN⊥BC,AB=6.5,BP=4,PD=8.(1)ED的长为.(2)将木条BC绕点B按顺时针方向旋转一定角度得到BC′(如图2),点P的对应点为P′,BC′与MN的交点为D′,从A点发出的光束经平面镜P′反射后,在MN上的光点为E′.若DD′=5,则EE′的长为.【分析】(1)由题意可得,△ABP∽△EDP,则=,进而可得出DE的长;(2)过点E′作∠E′FG=∠E′D′F,过点E′作E′G⊥BC′于点G,易得△ABP′∽△E′FP′,由此可得=,在Rt△BDD′中,由勾股定理可求出BD′的长,可求出∠BD′D的正切值,设P′F的长,分别表示E′F和E′D′及FG和GD′的长,再根据BD′=13,可建立等式,可得结论.【解答】解:(1)如图,由题意可得,∠APB=∠EPD,∠B=∠EDP=90°,∴△ABP∽△EDP,∴=,∵AB=6.5,BP=4,PD=8,∴=,∴DE=13;故答案为:13.(2)如图2,过点E′作∠E′FD′=∠E′D′F,过点E′作E′G⊥BC′于点G,∴E′F=E′D′,FG=GD′,∵AB∥MN,∴∠ABD′+∠E′D′B=180°,∴∠ABD′+∠E′FG=180°,∵∠E′FB+∠E′FG=180°,∴∠ABP′=∠E′FP′,又∠AP′B=∠E′P′F,∴△ABP′∽△E′FP′,∴=即,=,设P′F=4m,则E′F=6.5m,∴E′D′=6.5m,在Rt△BDD′中,∠BDD′=90°,DD′=5,BD=BP+PD=12,由勾股定理可得,BD′=13,∴cos∠BD′D=,在Rt△E′GD′中,cos∠BD′D==,∴GD′=2.5m,∴FG=GD′=2.5m,∵BP′+P′F+FG+GD′=13,∴4+4m+2.5m+2.5m=13,解得m=1,∴E′D′=6.5,∴EE′=DE+DD′﹣D′E′=13+5﹣6.5=11.5.故答案为:11.5.5.(2021·浙江湖州)已知在平面直角坐标系xOy中,点A是反比例函数y=(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数y=(k>0,x<0)的图象于点B,过点A作AE⊥y轴于点E.(1)如图1,过点B作BF⊥x轴,于点F,连接EF.①若k=1,求证:四边形AEFO是平行四边形;②连结BE,若k=4,求△BOE的面积.(2)如图2,过点E作EP∥AB,交反比例函数y=(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.【分析】(1)①设点A的坐标为(a,),则当点k=1时,点B的坐标为(﹣a,﹣),得出AE=OF,AE∥OF,由平行四边形的判定可得出结论;②过点B作BD⊥y轴于点D,如图1,证明△AEO∽△BDO,由相似三角形的性质得出,则可得出答案;(2)过点P作PH⊥x轴于点H,PE与x轴交于点G,设点A的坐标为(a,),点P 的坐标为(b,),则AE=a,OE=,PH=﹣,证明△AEO∽△GHP,由相似三角形的性质得出,解方程得出,由三角形面积公式可得出答案.【解答】(1)①证明:设点A的坐标为(a,),则当点k=1时,点B的坐标为(﹣a,﹣),∴AE=OF=a,∵AE⊥y轴,∴AE∥OF,∴四边形AEFO是平行四边形;②解:过点B作BD⊥y轴于点D,如图1,∵AE⊥y轴,∴AE∥BD,∴△AEO∽△BDO,∴,∴当k=4时,,即,∴S△BOE=2S△AOE=1;(2)不改变.理由如下:过点P作PH⊥x轴于点H,PE与x轴交于点G,设点A的坐标为(a,),点P的坐标为(b,),则AE=a,OE=,PH=﹣,∵四边形AEGO是平行四边形,∴∠EAO=∠EGO,AE=OG,∵∠EGO=∠PGH,∴∠EAO=∠PGH,又∵∠PHG=∠AEO,∴△AEO∽△GHP,∴,∵GH=OH﹣OG=﹣b﹣a,∴,∴﹣k=0,解得,∵a,b异号,k>0,∴,∴S△POE=×OE×(﹣b)=×(﹣b)=﹣,∴对于确定的实数k,动点A在运动过程中,△POE的面积不会发生变化.1.(2021•温州模拟)如图,在正六边形桌面中心正上方有一盏吊灯,在灯光下,桌面在水平地面的投影是一个面积为m2的正六边形,已知桌子的高度为0.75m,桌面边长为1m,则吊灯距地面的高度为()A.2.25m B.2.3m C.2.35m D.2.4m【分析】首先根据正六边形的面积可得正六边形的边长,进而可通过构造相似三角形,由相似三角形性质求出.【解答】解:设正六边形的边长是xm,则x•x••6=,解得x=1.5,如图,依题意知DF=FE=0.5米,FG=0.75米,CG=0.75米,∵DE∥BC,∴△F AE∽△GAC,∴,即=,解得:AF=1.5,∴AG=1.5+0.75=2.25(m),答:吊灯距地面的高度为2.25m.故选:A.2.(2021•临海市一模)如图,为测量楼高AB,在适当位置竖立一根高2m的标杆MN,并在同一时刻分别测得其落在地面上的影长AC=20m,MP=2.5m,则楼高AB为()A.15m B.16m C.18m D.20m【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【解答】解:∵,即,∴楼高=16米.故选:B.3.(2022•温州模拟)如图,在4×7的方格中,点A,B,C,D在格点上,线段CD是由线段AB位似放大得到,则它们的位似中心是()A.点P1B.点P2C.点P3D.点P4【分析】延长CA、DB交于点P 1,根据位似中心的概念得到答案.【解答】解:延长CA、DB交于点P1,则点P1为位似中心,故选:A.4.(2021•嘉兴二模)如图,在直角坐标系中,△ABC的顶点B的坐标为(﹣1,1),现以坐标原点O为位似中心,作与△ABC的位似比为的位似图形△A'B'C',则B'的坐标为()A.B.C.或D.或【分析】根据以原点为位似中心的对应点的坐标关系,把B点的横纵坐标都乘以或﹣得到B'的坐标.【解答】解:∵位似中心为坐标原点,作与△ABC的位似比为的位似图形△A'B'C',而B的坐标为(﹣1,1),∴B'的坐标为(﹣,)或(,﹣).故选:C.5.(2021•嘉善县一模)如图,在平面直角坐标系中,点A的坐标为(1,0),点D的坐标为(3,0),若△ABC与△DEF是位似图形,则的值是()A.B.C.D.【分析】根据位似图形的概念得到AC∥DF,【解答】解:∵点A的坐标为(1,0),点D的坐标为(3,0),∴OA=1,OD=3,即=,∵△ABC与△DEF是位似图形,∴AC∥DF,∴△OAC∽△ODF,∴==,故选:B.6.(2021•瑞安市一模)数学兴趣小组计划测量公路上路灯的高度AB,准备了标杆CD,EF及皮尺,按如图竖直放置标杆CD与EF.已知CD=EF=2米,DF=2米,在路灯的照射下,标杆CD的顶端C在EF上留下的影子为G,标杆EF在地面上的影子是FH,测得FG=0.5米,FH=4米,则路灯的高度AB=米.【分析】延长CG交FH于M,根据相似三角形的判定和性质解答即可.【解答】解:如图,延长CG交FH于M,∵∠GMF=∠CMD,∠GFM=∠CDM=90°,∴△GFM∽△CDM,∴,设FM为a米,则a=(a+2)×,解得:a=,设BD=x米,AB=y米,同理可得,△CMD∽△AMB,∴,,可得,,整理得:,解得:,经检验是分式方程组的解,∴AB=5米.故答案为:5.7.(2022•鹿城区校级一模)如图,在8×8的网格中,△ABC是格点三角形,请分别在图1和图2中按要求作图.(1)在图1中以O为位似中心,作格点三角形△A1B1C1,使其与△ABC位似比为1:2.(2)在图2中作格点线段BM⊥AC.【分析】(1)连接OA,OB,OC,取OA,OB,OC的中点A1,B1,C1,连接A1B1,B1C1,C1A1即可;(2)利用数形结合的思想作出线段BM即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,线段BM即为所求.8.(2021•永嘉县校级模拟)已知一块等腰三角铁板废料如图所示,其中AB=AC=50cm,BC=60cm,现要用这块废料裁一块正方形DEFG铁板,使它的一边DE落在△ABC的一腰上,顶点F、G分别落在另一腰AB和BC上,求;(1)等腰三角形ABC的面积S△ABC;(2)正方形DEFG的边长.【分析】(1)过A作AH⊥BC于H,根据等腰三角形的性质得到BH=BC=30(cm),根据勾股定理得到AH===40(cm),由三角形的面积公式即可得到结论;(2)过B作BM⊥AC交FG于N,根据三角形的面积公式得到BM=48(cm),根据正方形的性质得到FG∥DE,根据相似三角形的性质即可得到结论.【解答】解:(1)过A作AH⊥BC于H,∵AB=AC=50cm,BC=60cm,∴BH=BC=30(cm),∴AH===40(cm),∴S△ABC=BC•AH=60×40=1200(cm2);(2)过B作BM⊥AC交FG于N,则S△ABC=AC•BM=1200,∵AC=50cm,∴BM=48(cm),∵四边形DEFG是正方形,∴FG∥DE,∴BN⊥FG,△BFG∽△BAC,∴=,∴,∴FG=,∴正方形DEFG的边长为.9.(2021•海曙区模拟)如图是某公园的一台滑梯,滑梯着地点B与梯架之间的距离BC=4m.(1)现在某一时刻测得身高1.8m的小明爸爸在阳光下的影长为0.9m,滑梯最高处A在阳光下的影长为1m,求滑梯的高AC;(2)若规定滑梯的倾斜角(∠ABC)不超过30°属于安全范围,请通过计算说明这架滑梯的倾斜角是否符合安全要求?【分析】(1)直接利用同一时刻太阳光下影长与物体高度成比例进而得出答案;(2)直接利用锐角三角函数关系得出∠ABC的取值范围.【解答】解:(1)由题意可得:=,解得:AC=2(m),答:滑梯的高AC为2m;(2)∵tan∠ABC===<tan30°=,∴∠ABC<30°,∴这架滑梯的倾斜角符合安全要求.10.(2021•婺城区校级模拟)已知在菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,联结PC.在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D 不重合),且∠PCQ=30°.(1)如图,当点P在边AB上时,如果BP=3,求线段PC的长;(2)当点P在射线BA上时,设BP=x,CQ=y,求y关于x的函数解析式及定义域;(3)联结PQ,直线PQ与直线BC交于点E,如果△QCE与△BCP相似,求线段BP的长.【分析】(1)如图1中,作PH⊥BC于H.解直角三角形求出BH,PH,在Rt△PCH中,理由勾股定理即可解决问题.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.证明△POQ∽△BOC,推出∠OPQ=∠OBC=30°=∠PCQ,推出PQ=CQ=y,推出PC=y,在Rt△PHB 中,BH=x,PH=x,根据PC2=PH2+CH2,可得结论.(3)分两种情形:①如图2中,若直线QP交直线BC于B点左侧于E.②如图3中,若直线QP交直线BC于C点右侧于E.分别求解即可.【解答】解:(1)如图1中,作PH⊥BC于H.∵四边形ABCD是菱形,∴AB=BC=4,AD∥BC,∴∠A+∠ABC=180°,∵∠A=120°,∴∠PBH=60°,∵PB=3,∠PHB=90°,∴BH=PB•cos60°=,PH=PB•sin60°=,∴CH=BC﹣BH=4﹣=,∴PC===.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.∵四边形ABCD是菱形,∴∠ABD=∠CBD=30°,∵∠PCQ=30°,∴∠PBO=∠QCO,∵∠POB=∠QOC,∴△POB∽△QOC,∴=,∴=,∵∠POQ=∠BOC,∴△POQ∽△BOC,∴∠OPQ=∠OBC=30°=∠PCQ,∴PQ=CQ=y,∴PC=y,在Rt△PHB中,BH=x,PH=x,∵PC2=PH2+CH2,∴3y2=(x)2+(4﹣x)2,∴y=(0≤x<8).(3)①如图2中,若直线QP交直线BC于B点左侧于E.此时∠CQE=120°,∵∠PBC=60°,∴△PBC中,不存在角与∠CQE相等,此时△QCE与△BCP不可能相似.②如图3中,若直线QP交直线BC于C点右侧于E.则∠CQE=∠B=QBC+∠QCP=60°=∠CBP,∵∠PCB>∠E,∴只可能∠BCP=∠QCE=75°,作CF⊥AB于F,则BF=2,CF=2,∠PCF=45°,∴PF=CF=2,此时PB=2+2,③如图4中,当点P在AB的延长线上时,∵△QCE与△BCP相似,∴∠CQE=∠CBP=120°,∴∠QCE=∠PCB=15°,作CF⊥AB于F.∵∠FCB=30°,∴∠FCP=45°,∴BF=BC=2,CF=PF=2,∴PB=2﹣2.综上所述,满足条件的PB的值为2+2或2﹣2.。

初三数学13 相似三角形-2024年中考数学真题分项汇编(全国通用)(解析版)

初三数学13 相似三角形-2024年中考数学真题分项汇编(全国通用)(解析版)

专题13 相似三角形一.选择题1.(2022·黑龙江哈尔滨)如图,,,AB CD AC BD ∥相交于点E ,1,2,3AE EC DE ===,则BD 的长为( )A .32B .4C .92D .6【答案】C【分析】根据相似三角形对应边长成比例可求得BE 的长,即可求得BD 的长.【详解】∵//AB CD ∴ABE CDE ∽ ∴AE BE EC DE= ∵1,2,3AE EC DE ===,∴32BE =∵BD BE ED =+ ∴92BD = 故选:C .【点睛】本题考查了相似三角形的对应边长成比例,解题的关键在于找到对应边长.2.(2022·广西贺州)如图,在ABC 中,25DE BC DE BC ==∥,,,则:ADE ABC S S 的值是( )A .325B .425C .25D .35【答案】B【分析】根据相似三角形的判定定理得到ADE ABC ,根据相似三角形的面积比等于相似比的平方计算,得到答案.【详解】解:25DE BC DE BC ==∥,,∴ADE ABC ,∴2224525ADE ABC S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ,故选:B .【点睛】此题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.3.(2022·广西梧州)如图,以点O 为位似中心,作四边形ABCD 的位似图形''''A B C D ﹐已知'13OA OA =,若四边形ABCD 的面积是2,则四边形''''A B C D 的面积是( )A .4B .6C .16D .18【答案】D 【分析】两图形位似必相似,再由相似的图形面积比等于相似比的平方即可求解.【详解】解:由题意可知,四边形ABCD 与四边形''''A B C D 相似,由两图形相似面积比等于相似比的平方可知:''''22'1139ABCD A B C D S OA S OA ⎛⎫⎛⎫= ⎪= ⎪= ⎪ ⎪⎝⎭⎝⎭,又四边形ABCD 的面积是2,∴四边形''''A B C D 的面积为18,故选:D .【点睛】本题考察相似多边形的性质,属于基础题,熟练掌握相似图形的性质是解决本题的关键.4.(2022·四川雅安)如图,在△ABC 中,D ,E 分别是AB 和AC 上的点,DE ∥BC ,若AD BD =21,那么DE BC =( )A .49B .12C .13D .23【答案】D【分析】先求解2,3AD AB =再证明,ADE ABC ∽可得2.3DE AD BC AB ==【详解】解: AD BD =21,2,3AD AB ∴= DE ∥BC ,,ADE ABC ∴ ∽ 2,3DE AD BC AB ∴== 故选D 【点睛】本题考查的是相似三角形的判定与性质,证明ADE ABC △△∽是解本题的关键.5.(2022·内蒙古包头)如图,在边长为1的小正方形组成的网格中,A ,B ,C ,D 四个点均在格点上,AC 与BD 相交于点E ,连接,AB CD ,则ABE △与CDE △的周长比为( )A .1:4B .4:1C .1:2D .2:1【答案】D 【分析】运用网格图中隐藏的条件证明四边形DCBM 为平行四边形,接着证明ABE CDE ∽,最后利相似三角形周长的比等于相似比即可求出.【详解】如图:由题意可知,3DM =,3BC =, ∴DM BC =,而DM BC ∥,∴四边形DCBM 为平行四边形,∴AB DC ∥,∴BAE DCE ∠=∠,ABE CDE ∠=∠,∴ABE CDE ∽,∴21ABE CDE C AB C CD ===△△.故选:D .【点睛】本题考查了平行四边形的判定与性质、相似三角形的判定与性质及勾股定理,熟练掌握相关知识并正确计算是解题关键.6.(2022·黑龙江绥化)如图,在矩形ABCD 中,P 是边AD 上的一个动点,连接BP ,CP ,过点B 作射线,交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =,其中25x < .则下列结论中,正确的个数为( )(1)y 与x 的关系式为4y x x =-;(2)当4AP =时,ABP DPC ∽;(3)当4AP =时,3tan 5EBP ∠=.A .0个B .1个C .2个D .3个【答案】C 【分析】(1)证明ABM APB ∽,得AB AM AP AB=,将2AB =,AP x =,PM y =代入,即可得y 与x 的关系式;(2)利用两组对应边成比例且夹角相等,判定ABP DPC ∽;(3)过点M 作MF BP ⊥垂足为F ,在Rt APB △中,由勾股定理得BP 的长,证明FPM APB ∽,求出MF ,PF ,BF 的长,在Rt BMF △中,求出tan EBP ∠的值即可.【详解】解:(1)∵在矩形ABCD 中,∴AD BC ∥,90A D ∠=∠=︒,5BC AD ==,2AB DC ==,∴APB CBP ∠=∠,∵ABE CBP =∠∠,∴ABE APB ∠=∠,∴ABM APB ∽,∴AB AM AP AB=,∵2AB =,AP x =,PM y =,∴22x y x -=,解得:4y x x=-,故(1)正确;(2)当4AP =时,541DP AD AP =-=-=,∴12DC DP AP AB ==,又∵90A D ∠=∠=︒,∴ABP DPC ∽,故(2)正确;(3)过点M 作MF BP ⊥垂足为F ,∴90A MFP MFB ∠=∠=∠=︒,∵当4AP =时,此时4x =,4413y x x =-=-=,∴3PM =,在Rt APB 中,由勾股定理得:222BP AP AB =+,∴BP ===,∵FPM APB ∠=∠,∴FPM APB ∽,∴MF PF PM AB AP PB ==,∴24MF PF ==∴MF =PF =∴BF BP PF =-=∴3tan 4MF EBP BF ∠===故(3)不正确;故选:C .【点睛】本题主要考查相似三角形的判定和性质,勾股定理的应用,矩形的性质,正确找出相似三角形是解答本题的关键.7.(2022·湖北鄂州)如图,定直线MN ∥PQ ,点B 、C 分别为MN 、PQ 上的动点,且BC =12,BC 在两直线间运动过程中始终有∠BCQ =60°.点A 是MN 上方一定点,点D 是PQ 下方一定点,且AE ∥BC ∥DF ,AE =4,DF =8,ADBC 在平移过程中,AB +CD 的最小值为()A .B .C .D .【答案】C 【分析】如图所示,过点F 作FH CD ∥交BC 于H ,连接EH ,可证明四边形CDFH 是平行四边形,得到CH =DF =8,CD =FH ,则BH =4,从而可证四边形ABHE 是平行四边形,得到AB =HE ,即可推出当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF ,延长AE 交PQ 于G ,过点E 作ET ⊥PQ 于T ,过点A 作AL ⊥PQ 于L ,过点D 作DK ⊥PQ 于K ,证明四边形BEGC 是平行四边形,∠EGT =∠BCQ =60°,得到EG =BC =12,然后通过勾股定理和解直角三角形求出ET 和TF 的长即可得到答案.【详解】解:如图所示,过点F 作FH CD ∥交BC 于H ,连接EH ,∵BC DF FH CD ∥∥,,∴四边形CDFH 是平行四边形,∴CH =DF =8,CD =FH ,∴BH =4,∴BH =AE =4,又∵AE BC ∥,∴四边形ABHE 是平行四边形,∴AB =HE ,∵EH FH EF +≥,∴当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF ,延长AE 交PQ 于G ,过点E 作ET ⊥PQ 于T ,过点A 作AL ⊥PQ 于L ,过点D 作DK ⊥PQ 于K ,∵MN PQ BC AE ∥∥,,∴四边形BEGC 是平行四边形,∠EGT =∠BCQ =60°,∴EG =BC =12,∴=cos =6=sin GT GE EGT ET GE EGT ⋅⋅∠,∠,同理可求得8GL AL ==,,4KF DK ==,,∴2TL =,∵AL ⊥PQ ,DK ⊥PQ ,∴AL DK ∥,∴△ALO ∽△DKO ,∴2AL AO DK DO==,∴2133AO AD DO AD ====∴24OL OK ===,,∴42TF TL OL OK KF =+++=,∴EF ==故选C .【点睛】本题主要考查了平行四边形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,正确作出辅助线推出当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF 是解题的关键.8.(2022·广西贵港)如图,在边长为1的菱形ABCD 中,60ABC ∠=︒,动点E 在AB 边上(与点A 、B 均不重合),点F 在对角线AC 上,CE 与BF 相交于点G ,连接,AG DF ,若AF BE =,则下列结论错误的是( )A .DF CE =B .120BGC ∠=︒C .2AF EG EC =⋅D .AG【答案】D【分析】先证明△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,得DF =CE ,判断A 项答案正确,由∠GCB +∠GBC =60゜,得∠BGC =120゜,判断B 项答案正确,证△BEG ∽△CEB 得BE CE GE BE= ,即可判断C 项答案正确,由120BGC ∠=︒,BC =1,得点G 在以线段BC 为弦的弧BC 上,易得当点G 在等边△ABC 的内心处时,AG 取最小值,由勾股定理求得AG D 项错误.【详解】解:∵四边形ABCD 是菱形,60ABC ∠=︒,∴AB =AD =BC =CD ,∠BAC =∠DAC =12∠BAD =12(180)ABC ⨯︒-∠=60ABC ︒=∠,∴△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,∴DF =CE ,故A 项答案正确,∠ABF =∠BCE ,∵∠ABC =∠ABF +∠CBF =60゜,∴∠GCB +∠GBC =60゜,∴∠BGC =180゜-60゜=180゜-(∠GCB +∠GBC )=120゜,故B 项答案正确,∵∠ABF =∠BCE ,∠BEG =∠CEB ,∴△BEG ∽△CEB ,∴BE CE GE BE = ,∴2BE GE CE = ,∵AF BE =,∴2AF GE CE = ,故C 项答案正确,∵120BGC ∠=︒,BC =1,点G 在以线段BC 为弦的弧BC 上,∴当点G 在等边△ABC 的内心处时,AG 取最小值,如下图,∵△ABC 是等边三角形,BC =1,∴BF AC ⊥,AF =12AC =12,∠GAF =30゜,∴AG =2GF ,AG 2=GF 2+AF 2,∴2221122AG AG ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭, 解得AG D 项错误,故应选:D【点睛】本题主要考查了菱形的基本性质、等边三角形的判定及性质、圆周角定理,熟练掌握菱形的性质是解题的关键.9.(2022·贵州贵阳)如图,在ABC 中,D 是AB 边上的点,B ACD ∠=∠,:1:2AC AB =,则ADC 与ACB △的周长比是( )A .B .1:2C .1:3D .1:4【答案】B 【分析】先证明△ACD ∽△ABC ,即有12AC AD CD AB AC BC ===,则可得12AC AD CD AB AC BC ++=++,问题得解.【详解】∵∠B =∠ACD ,∠A =∠A ,∴△ACD ∽△ABC ,∴AC AD CD AB AC BC ==,∵12AC AB =,∴12AC AD CD AB AC BC ===,∴12AC AD CD AC AD CD AB AC BC AB AC BC ++====++,∴△ADC 与△ACB 的周长比1:2,故选:B .【点睛】本题主要考查了相似三角形的判定与性质,证明△ACD ∽△ABC 是解答本题的关键.10.(2022·广西)已知△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,则△ABC 与△A 1B 1C 1的面积比( )A .1 :3B .1:6C .1:9D .3:1【答案】C【分析】根据位似图形的面积比等于位似比的平方,即可得到答案.【详解】∵△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,∴△ABC 与△A 1B 1C 1的面积比为1:9,故选:C .【点睛】本题考查位似图形的性质,熟练掌握位似图形的面积比等于位似比的平方是解题的关键.11.(2022·山东临沂)如图,在ABC 中,∥DE BC ,23AD DB =,若6AC =,则EC =( )A .65B .125C .185D .245【答案】C【分析】由∥DE BC ,23AD DB =,可得2,3AD AE DB EC ==再建立方程即可.【详解】解: ∥DE BC ,23AD DB =,2,3AD AE DB EC ∴== 6AC =,62,3CE CE -∴= 解得:18.5CE =经检验符合题意故选C 【点睛】本题考查的是平行线分线段成比例,证明“23AD AE DB EC ==”是解本题的关键.12.(2022·山东威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,∠AOB =∠BOC =∠COD =…=∠LOM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( )A .(43)3B .(43)7C .(43)6D .(34)6【答案】C【分析】根据题意得出A 、O 、G 在同一直线上,B 、O 、H 在同一直线上,确定与△AOB 位似的三角形为△GOH ,利用锐角三角函数找出相应规律得出OG=6x ,再由相似三角形的性质求解即可.【详解】解:∵∠AOB =∠BOC =∠COD =…=∠LOM =30°∴∠AOG =180°,∠BOH =180°,∴A 、O 、G 在同一直线上,B 、O 、H 在同一直线上,∴与△AOB 位似的三角形为△GOH ,设OA =x ,则OB=1cos30OA x ==︒,∴OC=24cos303OB x x ==︒,∴OD=3cos30OC x ==︒,…∴OG=6x ,∴6OG OA =,∴12643GOH AOB S S ⎛⎫== ⎪⎝⎭ ,∵1AOB S = ,∴643GOH S ⎛⎫= ⎪⎝⎭ ,故选:C .【点睛】题目主要考查利用锐角三角函数解三角形,找规律问题,相似三角形的性质等,理解题意,找出相应边的比值规律是解题关键.二.填空题13.(2022·贵州黔东南)如图,折叠边长为4cm 的正方形纸片ABCD ,折痕是DM ,点C 落在点E 处,分别延长ME 、DE 交AB 于点F 、G ,若点M 是BC 边的中点,则FG =______cm.【答案】53【分析】根据折叠的性质可得DE =DC =4,EM =CM =2,连接DF ,设FE =x ,由勾股定理得BF ,DF ,从而求出x 的值,得出FB ,再证明FEG FBM ∆∆ ,利用相似三角形对应边成比例可求出FG .【详解】解:连接,DF 如图,∵四边形ABCD 是正方形,∴4,90.AB BC CD DA A B C CDA ︒====∠=∠=∠=∠=∵点M 为BC 的中点,∴114222BM CM BC ===⨯=由折叠得,2,4,ME CM DE DC ====∠90,DEM C ︒=∠=∴∠90DEF ︒=,90,FEG ∠=︒设,FE x =则有222DF DE EF =+∴2224DF x =+又在Rt FMB ∆中,2,2FM x BM =+=,∵222FM FB BM =+∴FB ==∴4AF AB FB =-=在Rt DAF ∆中,222,DA AF DF +=∴2224(44,x +=+解得,124,83x x ==-(舍去)∴4,3FE =∴410233FM FE ME =+=+=∴83FB ==∵∠90DEM ︒=∴∠90FEG ︒=∴∠,FEG B =∠又∠.GFE MFB =∠∴△FEG FBM∆ ∴,FG FE FM FB=即4310833FG =∴5,3FG =故答案为:53【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,相似三角形的判定与性质,正确作出辅助线是解答本题的关键.14.(2022·上海)如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC 上,AD DE AB BC=,则AE AC =_____.【答案】12或14【分析】由题意可求出12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,满足112DE BC =,进而可求此时112AE AC =,然后在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,证明△DE1E2是等边三角形,求出E1E2=14AC ,即可得到214AE AC =,问题得解.【详解】解:∵D 为AB中点,∴12AD DE AB BC ==,即12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,此时DE 1∥BC ,112DE BC =,∴112AE AD AC AB ==,在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,∵∠A =30°,∠B =90°,∴∠C =60°,BC =12AC ,∵DE 1∥BC ,∴∠DE1E2=60°,∴△DE1E2是等边三角形,∴DE 1=DE 2=E1E2=12BC ,∴E1E2=14AC ,∵112AE AC =,∴214AE AC =,即214AE AC =,综上,AE AC 的值为:12或14,故答案为:12或14.【点睛】本题考查了三角形中位线的性质,平行线分线段成比例,等边三角形的判定和性质以及含30°角的直角三角形的性质等,根据12DE BC =进行分情况求解是解题的关键.15.(2022·北京)如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为_______.【答案】1【分析】根据勾股定理求出BC ,以及平行线分线段成比例进行解答即可.【详解】解:在矩形ABCD 中:AD BC ∥,90ABC ∠=︒,∴14AE AF BC FC ==,4BC =,∴144AE =,∴1AE =,故答案为:1.【点睛】此题考查了勾股定理以及平行线分线段成比例,掌握平行线分线段成比例是解题的关键.16.(2022·江苏常州)如图,在Rt ABC △中,90C ∠=︒,9AC =,12BC =.在Rt DEF 中,90F ∠=︒,3DF =,4EF =.用一条始终绷直的弹性染色线连接CF ,Rt DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt ABC △的外部被染色的区域面积是______.【答案】28【分析】过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如图,需要知道的是Rt ABC 的被染色的区域面积是MNF F S '梯形,所以需要利用勾股定理,相似三角形、平行四边形的判定及性质,求出相应边长,即可求解.【详解】解:过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如下图:90C ∠=︒ ,9AC =,12BC =,15AB ∴==,在Rt DEF 中,90F ∠=︒,3DF =,4EF =.5DE ∴==,15510AE AB DE =-=-= ,//,EF AF EF AF ''= ,∴四边形AEFF '为平行四边形,10AE FF '∴==,11622DEF S DF EF DE GF =⋅=⋅= ,解得:125GF =, //DF AC ,,DFM ACM FDM CAM ∴∠=∠∠=∠,DFM ACM ∴ ∽,13DM DF AM AC ∴==,1115344DM AM AB ∴===,//BC AF ' ,同理可证:ANF DNC ' ∽,13AF AN BC DN '∴==,345344DN AN AB ∴===,451530444MN DN DM ∴=-=-=,Rt ABC 的外部被染色的区域面积为130121028245MNF F S '⎛⎫=⨯+⨯= ⎪⎝⎭梯形,故答案为:28.【点睛】本题考查了直角三角形,相似三角形的判定及性质、勾股定理、平行四边形的判定及性质,解题的关键是把问题转化为求梯形的面积.17.(2022·广西)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为______米.【答案】12【分析】根据同时、同地物高和影长的比不变,构造相似三角形,然后根据相似三角形的性质解答.【详解】解:设旗杆为AB ,如图所示:根据题意得:ABC DEF ∆∆ ,∴DE EF AB BC= ∵2DE =米, 1.2EF =米,7.2BC =米,∴2 1.2=7.2AB 解得:AB =12米.故答案为:12.【点睛】本题考查了中心投影、相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.18.(2022·广东深圳)已知ABC 是直角三角形,90,3,5,B AB BC AE ∠=︒===连接CE 以CE 为底作直角三角形CDE 且,CD DE =F 是AE 边上的一点,连接BD 和,BF BD 且45,FBD ∠=︒则AF 长为______.【分析】将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,利用SAS 证明EDH CDB ∆≅∆,得5EH CB ==,90HED BCD ∠=∠=︒,从而得出////HE DC AB ,则ABF EHF ∆∆∽,即可解决问题.【详解】解:将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,BDH ∴∆是等腰直角三角形,又EDC ∆ 是等腰直角三角形,HD BD ∴=,EDH CDB ∠=∠,ED CD =,()EDH CDB SAS ∴∆≅∆,5EH CB ∴==,90HED BCD ∠=∠=︒,90EDC ∠=︒ ,90ABC ∠=︒,////HE DC AB ∴,,ABF EHF BAF HEF ∴∠=∠∠=∠,ABF EHF ∴∆∆∽,∴==-AB AF AF EH EF AE AF ,AE =∴35=AF ∴=,【点睛】本题主要考查了等腰直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质等知识,解题的关键是作辅助线构造全等三角形.19.(2022·广西河池)如图,把边长为1:2的矩形ABCD 沿长边BC ,AD 的中点E ,F 对折,得到四边形ABEF ,点G ,H 分别在BE ,EF 上,且BG =EH =25BE =2,AG 与BH 交于点O ,N 为AF 的中点,连接ON ,作OM ⊥ON 交AB 于点M ,连接MN ,则tan ∠AMN =_____.【答案】58##0.625【分析】先判断出四边形ABEF 是正方形,进而判断出△ABG ≌△BEH ,得出∠BAG =∠EBH ,进而求出∠AOB =90°,再判断出△AOB ~△ABG ,求出OA OB ==△OBM ~△OAN ,求出BM =1,即可求出答案.【详解】解:∵点E ,F 分别是BC ,AD 的中点,∴11,22AF AD BE BC ==,∵四边形ABCD 是矩形,∴∠A =90°,AD ∥BC ,AD =BC ,∴12AF BE AD ==,∴四边形ABEF 是矩形,由题意知,AD =2AB ,∴AF =AB ,∴矩形ABEF 是正方形,∴AB =BE ,∠ABE =∠BEF =90°,∵BG =EH ,∴△ABG≌△BEH(SAS),∴∠BAG=∠EBH,∴∠BAG+∠ABO=∠EBH+∠ABO=∠ABG=90°,∴∠AOB=90°,∵BG=EH=25BE=2,∴BE=5,∴AF=5,∴AG==∵∠OAB=∠BAG,∠AOB=∠ABG,∴△AOB∽△ABG,∴OA OB ABAB BG AG==,即52OA OB==∴OA OB==∵OM⊥ON,∴∠MON=90°=∠AOB,∴∠BOM=∠AON,∵∠BAG+∠FAG=90°,∠ABO+∠EBH=90°,∠BAG=∠EBH,∴∠OBM=∠OAN,∴△OBM~△OAN,∴OB BM OA AN=,∵点N是AF的中点,∴1522AN AF==,52BM=,解得:BM=1,∴AM=AB-BM=4,∴552tan48ANAMNAM∠===.故答案为:5 8【点睛】此题主要考查了矩形性质,正方形性质和判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,求出BM 是解本题的关键.20.(2022·内蒙古赤峰)如图,为了测量校园内旗杆AB 的高度,九年级数学应用实践小组,根据光的反射定律,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点O 处,然后观测者沿着水平直线BO 后退到点D ,这时恰好能在镜子里看到旗杆顶点A ,此时测得观测者观看镜子的俯角α=60°,观测者眼睛与地面距离CD =1.7m ,BD =11m ,则旗杆AB 的高度约为_________m . 1.7≈)【答案】17【分析】如图容易知道CD ⊥BD ,AB ⊥BD ,即∠CDO =∠ABO =90°.由光的反射原理可知∠COD =∠AOB =60°,这样可以得到△COD ∽△AOB ,然后利用对应边成比例就可以求出AB .【详解】解:由题意知∠COD =∠AOB =60°,∠CDE =∠ABE =90°,∵CD =1.7m ,∴OD =60CD tan =︒≈1(m),∴OB =11-1=10(m),∴△COD ∽△AOB .∴CD OD AB OB =,即1.7110AB =,∴AB =17(m),答:旗杆AB 的高度约为17m .故答案为:17.【点睛】本题考查了解直角三角形的应用,相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质就可以求出结果.21.(2022·湖北鄂州)如图,在边长为6的等边△ABC 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则△ABP 的周长为 _____.【答案】6+【分析】如图所示,过点E 作EF ⊥AB 于F ,先解直角三角形求出AF ,EF ,从而求出BF ,利用勾股定理求出BE 的长,证明△ABD ≌△BCE 得到∠BAD =∠CBE ,AD =BE ,再证明△BDP ∽△ADB ,得到62BP PD==,即可求出BP ,PD ,从而求出AP ,由此即可得到答案.【详解】解:如图所示,过点E 作EF ⊥AB 于F ,∵△ABC 是等边三角形,∴AB =BC ,∠ABD =∠BAC =∠BCE =60°,∵CE =BD =2,AB =AC =6,∴AE =4,∴cos 2sin AF AE EAF EF AE EAF =⋅∠==⋅∠=,,∴BF =4,∴BE =又∵BD =CE ,∴△ABD ≌△BCE (SAS ),∴∠BAD =∠CBE ,AD =BE ,又∵∠BDP =∠ADB ,∴△BDP ∽△ADB ,∴BD BP DP AD AB BD==,62BP PD==,∴BP PD =∴AP AD AP =-=,∴△ABP 的周长=6AB BP AP ++=故答案为:6+【点睛】本题主要考查了等边三角形的性质,解直角三角形,勾股定理,相似三角形的性质与判定,全等三角形的性质与判定,正确作出辅助线是解题的关键.22.(2022·山东潍坊)《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD 的面积为4,以它的对角线的交点为位似中心,作它的位似图形A B C D '''',若:2:1A B AB ='',则四边形A B C D ''''的外接圆的周长为___________.【答案】【分析】根据正方形ABCD 的面积为4,求出2AB =,根据位似比求出4A B ''=,周长即可得出;【详解】解: 正方形ABCD 的面积为4,∴2AB =,:2:1A B AB ''=,∴4A B ''=,∴A C ''==所求周长=;故答案为:.【点睛】本题考查位似图形,涉及知识点:正方形的面积,正方形的对角线,圆的周长,解题关键求出正方形ABCD 的边长.23.(2022·内蒙古包头)如图,在Rt ABC 中,90ACB ∠=︒,3AC BC ==,D 为AB 边上一点,且BD BC =,连接CD ,以点D 为圆心,DC 的长为半径作弧,交BC 于点E (异于点C ),连接DE ,则BE的长为___________.【答案】3##3-+【分析】过点D 作DF ⊥BC 于点F ,根据题意得出DC DE =,根据等腰三角形性质得出CF EF =,根据90ACB ∠=︒,3AC BC ==,得出AB =CF x =,则3BF x =-,证明DF AC ,得出BF BDCF AD=,列出关于x 的方程,解方程得出x 的值,即可得出3BE =.【详解】解:过点D 作DF ⊥BC 于点F ,如图所示:根据作图可知,DC DE =,∵DF ⊥BC ,∴CF EF =,∵90ACB ∠=︒,3AC BC ==,∴AB ===∵3BD BC ==,∴3AD =,设CF x =,则3BF x =-,∵90ACB ∠=︒,∴AC BC ⊥,∵DF BC ⊥,∴DF AC ,∴BF BDCF AD =,即3x x -=,解得:x =,∴226CE x ===-,∴3363BE CE =-=-+=.故答案为:3.【点睛】本题主要考查了等腰三角形的性质和判定,勾股定理,平行线分线段成比例定理,平行线的判定,作出辅助线,根据题意求出CF 的长,是解题的关键.24.(2022·江苏泰州)如图上,Δ,90,8,6,ABC C AC BC ∠=== 中O 为内心,过点O 的直线分别与AC 、AB 相交于D 、E ,若DE=CD+BE ,则线段CD 的长为__________.【答案】2或12##12或2【分析】分析判断出符合题意的DE 的情况,并求解即可;【详解】解:①如图,作//DE BC ,OF BC OG AB ⊥⊥,,连接OB ,则OD ⊥AC ,∵//DE BC ,∴OBF BOE ∠=∠∵O 为ABC ∆的内心,∴OBF OBE ∠=∠,∴BOE OBE ∠=∠∴BE OE =,同理,CD OD =,∴DE=CD+BE ,10AB ===∵O 为ABC ∆的内心,∴OF OD OG CD ===,∴BF BG AD AG==,∴6810AB BG AG BC CD AC CD CD CD =+=-+-=-+-=∴2CD =②如图,作DE AB ⊥,由①知,4BE =,6AE =,∵ACB AED CAB EAD ∠=∠∠=∠,∴ABC ADE ∆∆ ∴AB ADAC AE=∴1061582AB AE AD AC ⋅⨯===∴151822CD AC AD =-=-=∵92DE ===∴19422DE BE CD =+=+=∴12CD =故答案为:2或12.【点睛】本题主要考查三角形内心的性质、勾股定理、三角形的相似,根据题意正确分析出符合题意的情况并应用性质定理进行求解是解题的关键.25.(2022·黑龙江绥化)如图,60AOB ∠=︒,点1P 在射线OA 上,且11OP =,过点1P 作11PK OA ⊥交射线OB 于1K ,在射线OA 上截取12PP ,使1211PPPK =;过点2P 作22P K OA ⊥交射线OB 于2K ,在射线OA 上截取23P P ,使2322P P P K =.按照此规律,线段20232023P K 的长为________.20221【分析】解直角三角形分别求得11PK ,22P K ,33P K ,……,探究出规律,利用规律即可解决问题.【详解】解:11PK OA ⊥ ,11OPK ∴△是直角三角形,在11Rt OPK 中,60AOB ∠=︒,11OP =,12111tan 60PP PK OP ∴==⋅︒=11PK OA ⊥ ,22P K OA ⊥,1122PK P K ∴∥,2211OP K OPK ∴△∽△,222111P K OP PK OP ∴=,=221P K ∴,同理可得:2331P K =+,3441P K =,……,11n n n P K -∴=,2022202320231P K ∴=,20221.【点睛】本题考查了图形的规律,解直角三角形,平行线的判定,相似三角形的判定与性质,解题的关键是学会探究规律的方法.26.(2022·黑龙江)如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ……在x 轴上且11OA =,212OA OA =,322OA OA =,432OA OA =……按此规律,过点1A ,2A ,3A ,4A ……作x轴的垂线分别与直线y =交于点1B ,2B ,3B ,4B ……记11OA B ,22OA B △,33 OA B ,44 OA B ……的面积分别为1S ,2S ,3S ,4S ……,则2022S =______.【答案】2【分析】先求出11A B =,可得11OA B S =112233n n A B A B A B A B ⋯⋯∥∥∥∥,从而得到11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,再利用相似三角形的性质,可得11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231:2:2:2::2n ,即可求解.【详解】解:当x =1时,y =,∴点(1B ,∴11A B =∴11112OA B S =⨯= ,∵根据题意得:112233n n A B A B A B A B ⋯⋯∥∥∥∥,∴11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S :……∶n n OA B S = OA 12∶OA 22∶OA 32∶……∶OAn 2,∵11OA =,212OA OA =,322OA OA =,432OA OA =,……,∴22OA =,2342OA ==,3482OA ==,……,12n n OA -=,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231246221:2:2:2::21:2:2:2::2n n --= ,∴11222n n n OA B OA B S S -= ,∴220222202222S ⨯-==故答案为:2【点睛】本题主要考查了图形与坐标的规律题,相似三角形的判定和性质,明确题意,准确得到规律,是解题的关键.27.(2022·广西)如图,在正方形ABCD 中,AB =,对角线,AC BD 相交于点O .点E 是对角线AC 上一点,连接BE ,过点E 作EF BE ⊥,分别交,CD BD 于点F 、G ,连接BF ,交AC 于点H ,将EFH △沿EF 翻折,点H 的对应点H '恰好落在BD 上,得到EFH '△若点F 为CD 的中点,则EGH '△的周长是_________.【答案】5+【分析】过点E 作PQ //AD 交AB 于点P ,交DC 于点Q ,得到BP =CQ ,从而证得BPE ≌EQF △,得到BE =EF ,再利用BC =F 为中点,求得BF ==BE EF ===,再求出2EO ==,再利用AB //FC ,求出ABH CFH △∽△21AH CH ==,求得216833AH =⨯=,18833CH =⨯=,从而得到EH =AH -AE =1610233-=,再求得EOB GOE △∽△得到21242OG ===,求得EG OG =1, 过点F 作FM ⊥AC 于点M ,作FN ⊥OD 于点N ,求得FM =2,MH =23,FN =2,证得Rt FH N '△≌Rt FMH 得到23H N MH '==,从而得到ON =2,NG =1,25133GH '=+=,从而得到答案.【详解】解:过点E 作PQ //AD 交AB 于点P ,交DC 于点Q ,∵AD //PQ ,∴AP =DQ ,BPQ CQE ∠=∠,∴BP =CQ ,∵45ACD ∠=︒,∴BP =CQ =EQ ,∵EF ⊥BE ,∴90PEB FEQ ∠+∠=︒∵90PBE PEB ∠+∠=︒∴PBE FEQ ∠=∠,在BPE 与EQF △中BPQ FQE PB EQPBE FEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BPE ≌EQF △,∴BE =EF ,又∵BC AB ==F 为中点,∴CF =∴BF ==∴BE EF ===,又∵4BO ==,∴2EO ==,∴AE =AO -EO =4-2=2,∵AB //FC ,∴ABH CFH △∽△,∴AB AH CF CH=,21AH CH ==,∵8AC ==, ∴216833AH =⨯=,18833CH =⨯=,∴EH =AH -AE =1610233-=,∵90BEO FEO ∠+∠=︒,+90BEO EBO ∠∠=︒,∴FEO EBO ∠=∠,又∵90EOB EOG ∠=∠=︒,∴EOB GOE△∽△∴EG OG OE BE OE OB==,21242OG ===,∴EG OG =1,过点F 作FM ⊥AC 于点M ,∴FM=MC 2=,∴MH =CH -MC =82233-=, 作FN ⊥OD 于点N ,2,FN ==,在Rt FH N '△与Rt FMH 中FH FH FN FM'=⎧⎨=⎩∴Rt FH N '△≌Rt FHM∴23H N MH '==,∴ON =2,NG =1,∴25133GH '=+=,∴10533EGH C EH EG GH EH EG GH '''=++=++=△,故答案为:【点睛】本题考查了正方形的性质应用,重点是与三角形相似和三角形全等的结合,熟练掌握做辅助线是解题的关键.28.(2022·辽宁)如图,在正方形ABCD 中,E 为AD 的中点,连接BE 交AC 于点F .若6AB =,则AEF 的面积为___________.【答案】3【分析】由正方形的性质可知1113222AE AD AB BC ====,//AD BC ,则有AEF CBF ∽△△,然后可得12EF AE BF BC ==,进而问题可求解.【详解】解:∵四边形ABCD 是正方形,6AB =,∴6AD BC AB ===,//AD BC ,∴AEF CBF ∽△△,∴EF AE BF BC=,∵E 为AD 的中点,∴1113222AE AD AB BC ====,∴12EF AE BF BC ==,192ABE S AE AB =⋅= ,∴13EF BE =,∴133AEF ABE S S == ;故答案为3.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.29.(2022·贵州贵阳)如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,6cm AC BC ==,90ACB ADB ∠=∠=︒.若2BE AD =,则ABE △的面积是_______2cm ,AEB ∠=_______度.【答案】 36-36- 112.5【分析】通过证明ADE BCE ,利用相似三角形的性质求出23m AE =,263m CE =-,再利用勾股定理求出其长度,即可求三角形ABE 的面积,过点E 作EF ⊥AB ,垂足为F ,证明AEF 是等腰直角三角形,再求出AE CE =,继而证明()Rt BCE Rt BFE HL ≅ ,可知122.52EBF EBC ABC ∠=∠=∠=︒,利用外角的性质即可求解.【详解】90,ACB ADB AED BEC ∠=∠=︒∠=∠ ,ADE BCE ∴ ,AD AE BC BE∴=,6,2BC AC BE AD === ,设,2AD m BE m ==,62m AE m∴=,23m AE ∴=,263m CE ∴=-,在Rt BCE 中,由勾股定理得222BC CE BE +=,22226(6)(2)2m m ∴+-=,解得236m =-或236m =+ 对角线AC ,BD 相交于点E ,236m ∴=-,12AE ∴=-,6CE ∴=,∴(2111263622ABE S AE BC =⋅⋅=⨯-⨯=- ,过点E 作EF ⊥AB ,垂足为F ,90,ACB AC BC ∠=︒= ,45BAC ABC AEF ∴∠=∠=︒=∠,6AE AF AE CE ∴====,BE BE = ,()Rt BCE Rt BFE HL ∴≅ ,122.52EBF EBC ABC ∴∠=∠=∠=︒,112.5AEB ACB EBC ∴∠=∠+∠=︒,故答案为:36-,112.5.【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质及三角形外角的性质,熟练掌握知识点是解题的关键.三.解答题30.(2022·河北)如图,某水渠的横断面是以AB 为直径的半圆O ,其中水面截线MN AB ∥.嘉琪在A 处测得垂直站立于B 处的爸爸头顶C 的仰角为14°,点M 的俯角为7°.已知爸爸的身高为1.7m .(1)求∠C 的大小及AB 的长;(2)请在图中画出线段DH ,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan 76︒取4 4.1)【答案】(1)=76C ∠︒, 6.8(m)AB =(2)见详解,约6.0米【分析】(1)由水面截线MN AB ∥可得BC AB ⊥,从而可求得76C ∠=︒,利用锐角三角形的正切值即可求解.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,水面截线MN AB ∥,即可得DH 即为所求,由圆周角定理可得14BOM ∠=︒,进而可得ABC OGM ,利用相似三角形的性质可得4OG GM =,利用勾股定理即可求得GM 的值,从而可求解.(1)解:∵水面截线MN AB∥BC AB ∴⊥,90ABC ∴∠=︒,90=76C CAB ∴∠=︒-∠︒,在t R ABC 中,90ABC ∠=︒, 1.7BC =,tan 76 1.7AB AB BC ∴︒==,解得 6.8(m)AB ≈.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,如图所示:水面截线MN AB ∥,OH AB ⊥,DH MN ∴⊥,GM OD =,DH ∴为最大水深,7BAM ∠=︒ ,214BOM BAM ∴∠=∠=︒,90ABC OGM ∠=∠=︒ ,且14BAC ∠=︒,ABC OGM ∴ ,OG MG AB CB ∴=,即6.8 1.7OG MG =,即4OG GM =,在Rt OGM △中,90OGM ∠=︒, 3.42AB OM =≈,222OG GM OM ∴+=,即2224(3.4)GM GM +=(),解得0.8GM ≈,= 6.80.86DH OH OD ∴-=-≈,∴最大水深约为6.0米.【点睛】本题考查了解直角三角形,主要考查了锐角三角函数的正切值、圆周角定理、相似三角形的判定及性质、平行线的性质和勾股定理,熟练掌握解直角三角形的相关知识是解题的关键.31.(2022·吉林)下面是王倩同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,直线12l l ∥,ABC 与DBC △的面积相等吗?为什么?解:相等.理由如下:设1l 与2l 之间的距离为h ,则12ABC S BC h =⋅ ,12DBC S BC h =⋅△.∴ABC DBC S S = .【探究】(1)如图②,当点D 在1l ,2l 之间时,设点A ,D 到直线2l 的距离分别为h ,h ',则ABC DBC S h S h ='△△.证明:∵ABC S(2)如图③,当点D 在1l ,2l 之间时,连接AD 并延长交2l 于点M ,则ABC DBC S AM S DM =△△.证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,∴AE ∥ .∴AEM △∽ .∴AE AM DF DM =.由【探究】(1)可知ABC DBC S S =△△ ,∴ABC DBC S AM S DM =△△.(3)如图④,当点D 在2l 下方时,连接AD 交2l 于点E .若点A ,E ,D 所对应的刻度值分别为5,1.5,0,ABC DBC S S △△的值为 .【答案】(1)证明见解析(2)证明见解析(3)73【分析】(1)根据三角形的面积公式可得11,22ABC DBC S S BC h BC h '=⋅=⋅ ,由此即可得证;(2)过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,先根据平行线的判定可得AE DF ,再根据相似三角形的判定可证AEM DFM ~ ,根据相似三角形的性质可得AE AM DF DM=,然后结合【探究】(1)的结论即可得证;(3)过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,先根据相似三角形的判定证出AME DNE ~ ,再根据相似三角形的性质可得73AM AE DN DE ==,然后根据三角形的面积公式可得12ABC S BC AM =⋅ ,12DBC S BC DN =⋅ ,由此即可得出答案.(1)证明:12ABC S BC h =⋅ ,12DBC BC h S '=⋅ ,ABC DBC S h S h ∴='.(2)证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,AE DF ∴∥.AEM DFM ~∴ .AE AM DF DM∴=.由【探究】(1)可知ABC DBC S AE S DF= ,ABC DBC S AM S DM ∴= .(3)解:过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,则90AME DNE ∠=∠=︒,AM DN ∴ ,AME DNE ∴~ ,AM AE DN DE∴=, 点,,A E D 所对应的刻度值分别为5,1.5,0,5 1.5 3.5AE ∴=-=, 1.5DE =,3.571.53AM DN ∴==,又12ABC S BC AM =⋅ ,12DBC S BC DN =⋅ ,73ABCDBC S AM S DN =∴= ,故答案为:73.【点睛】本题考查了相似三角形的判定与性质、平行线的判定、三角形的面积等知识点,熟练掌握相似三角形的判定与性质是解题关键.32.(2022·山东青岛)如图,在Rt ABC △中,90,5cm,3cm ACB AB BC ∠=︒==,将ABC 绕点A 按逆时针方向旋转90︒得到ADE ,连接CD .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,点Q 从点A 出发,沿AD 方向匀速运动,速度为1cm/s .PQ 交AC 于点F ,连接,CP EQ .设运动时间为(s)(05)t t <<.解答下列问题:(1)当EQ AD ⊥时,求t 的值;(2)设四边形PCDQ 的面积为()2cm S ,求S 与t 之间的函数关系式;(3)是否存在某一时刻t ,使PQ CD ∥?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)16s 5(2)213714210S t t =-+(3)存在,65s 29t =【分析】(1)利用AQE AED △∽△得AQ AE AE AD =,即445t =,进而求解;(2)分别过点C ,P 作,CM AD PN BC ⊥⊥,垂足分别为M ,N ,证ABC CAM △∽△得,AB BC AC CA AM CM ==,求得121655AM CM ==,再证BPN BAC △∽△得BP PN BA AC=,得出45PN t =,根据ABC ACD APQ BPC PCDQ S S S S S S ==+-- 四边形即可求出表达式;(3)当PQ CD ∥时AQP ADC ∠=∠,易证APQ MCD △∽△,得出AP AQ MC MD =,则5161355t t -=,进而求出t 值.(1)解:在Rt ABC △中,由勾股定理得,4AC ===∵ABC 绕点A 按逆时针方向旋转90︒得到ADE。

专题4.3相似三角形的判定与性质(一)-知识点梳理+练习(含解析)-浙教版九年级数学上册

专题4.3相似三角形的判定与性质(一)-知识点梳理+练习(含解析)-浙教版九年级数学上册

A.①②③
B.①②④
C.①③④
【题型 3 根据图形数据判断两三角形相似】
试卷第 4 页,共 13 页
D.②③④
【例 3】(2023 春·河北保定·九年级统考期末) 9.如图, ABC 中, A 78 , AB 4 , AC 6 .将 ABC 沿图中的虚线剪开,下列 四种剪开的方法中,剪下的阴影三角形一定与原三角形相似的是( )
A.①②③
B.③④
C.①②③④
D.①②④
【变式 3-1】(2023 春·河南新乡·九年级统考期末)
10.如图,已知△MNP .下列四个三角形,与△MNP 相似的是( )
A.
B.
C.
D.
【变式 3-2】(2023 春·山西阳泉·九年级统考期末) 11.如图是老师画出的 ABC ,已标出三边的长度.下面四位同学画出的三角形与老师 画出的 ABC 不一定相似的是( )
试卷第 6 页,共 13 页
P ,它与 A , C 两点形成的三角形与 ABC 相似,则 P 点的坐标是 .
【变式 4-3】(2023 春·山东淄博·九年级统考期末) 16.平面直角坐标系中,直线 y 1 x 2 和 x、y 轴交于 A、B 两点,在第二象限内
2 找一点 P,使△PAO 和△AOB 相似的三角形个数为( )
A. OB 6 CD 5
B.
6 5
C.
S1 S2
6 5
【变式 1-1】(2023 春·九年级上海市民办文绮中学校考期中)
D.
C1 C2
6 5
2.两个相似三角形的面积之差为 3cm2 ,周长比是 2:3,那么较小的三角形面积是 cm2 .
【变式 1-2】(2023 春·四川成都·九年级成都实外校考期中)

浙江省中考数学总复习第28讲相似三角形优质课件2

浙江省中考数学总复习第28讲相似三角形优质课件2

浙江省中考数学总复习第28讲相似三角形优质课件一、教学内容本讲主要依据浙江省中考数学总复习教材,针对第28讲“相似三角形”进行深入讲解。

具体内容包括教材第三章第五节“相似图形”,详细内容涉及相似三角形判定、性质及其应用。

还包括相似三角形实际应用问题,以便学生能将理论知识与实际情境相结合。

二、教学目标1. 知识与技能:使学生掌握相似三角形判定定理、性质及应用,能运用相似三角形解决问题。

2. 过程与方法:培养学生运用几何直观和逻辑推理分析问题、解决问题能力。

3. 情感态度与价值观:激发学生学习数学兴趣,增强其探究精神,使其体会到数学在实际生活中应用。

三、教学难点与重点1. 教学难点:相似三角形判定与应用、性质理解及运用。

2. 教学重点:掌握相似三角形判定定理、性质,并能解决实际问题。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、三角板、量角器。

2. 学具:直尺、圆规、三角板、量角器。

五、教学过程1. 实践情景引入:通过展示实际生活中相似三角形例子,如三角形太阳能电池板摆放,引导学生发现相似三角形应用。

2. 知识讲解:(1)相似三角形判定定理:通过讲解例题,引导学生掌握SSS、SAS、ASA、AAS判定定理。

(2)相似三角形性质:通过例题讲解,让学生理解相似三角形对应角相等、对应边成比例等性质。

3. 随堂练习:布置一些相似三角形判定和性质应用题目,让学生当堂完成,并及时给予反馈。

4. 例题讲解:挑选具有代表性例题,详细讲解解题思路和步骤,引导学生运用所学知识解决问题。

六、板书设计1. 相似三角形判定定理:(1)SSS(2)SAS(3)ASA(4)AAS2. 相似三角形性质:(1)对应角相等(2)对应边成比例3. 例题及解题步骤七、作业设计1. 作业题目:(1)已知三角形ABC与三角形DEF相似,其中AB=4cm,BC=6cm,AC=8cm,求三角形DEF周长。

(2)在三角形ABC中,D、E分别是AB、AC上点,且BD=3cm,DE=4cm,EC=5cm,求证:三角形BDE与三角形CAB相似。

浙江省中考数学总复习第28讲相似三角形课件

浙江省中考数学总复习第28讲相似三角形课件

浙江省中考数学总复习第28讲相似三角形课件一、教学内容本讲主要依据浙江省中考数学总复习要求,围绕教材中相似三角形的内容进行深入讲解。

详细内容包括:相似三角形的判定(SAS、SSS、AA相似判定法)、相似三角形的性质(对应角相等、对应边成比例)、相似三角形的应用(主要包括解三角形、图形的放大与缩小等)。

涉及教材的第三章第三节“相似图形的判定与性质”及第四章第一节“相似三角形的应用”。

二、教学目标1. 理解并掌握相似三角形的判定方法及性质;2. 能够运用相似三角形的性质解决实际问题,如求三角形边长、角度等;3. 培养学生的空间想象能力和逻辑推理能力。

三、教学难点与重点重点:相似三角形的判定方法、性质及应用。

难点:相似三角形的实际应用问题,特别是综合应用相似与其他数学知识的题型。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、三角板;2. 学具:直尺、圆规、量角器、练习本。

五、教学过程1. 实践情景引入:通过展示图片或实际物体,让学生观察并发现相似三角形在生活中的应用,如地图、建筑设计等。

2. 例题讲解:讲解教材中的典型例题,引导学生掌握相似三角形的判定与性质。

3. 随堂练习:让学生独立完成练习题,巩固所学知识。

4. 知识拓展:介绍相似三角形在其他领域的应用,如摄影、艺术等。

六、板书设计1. 相似三角形的判定:SAS、SSS、AA2. 相似三角形的性质:对应角相等、对应边成比例3. 相似三角形的应用:解三角形、图形的放大与缩小七、作业设计1. 作业题目:(1)已知三角形ABC中,AB=6cm,AC=8cm,BC=10cm,求三角形ABC的面积。

(2)已知三角形DEF中,∠D=60°,∠E=40°,DF=8cm,求DE和EF的长度。

2. 答案:(1)三角形ABC的面积为24cm²。

(2)DE=8√3 cm,EF=4√3 cm。

八、课后反思及拓展延伸1. 反思:关注学生在课堂中的表现,针对学生的疑问和困难,进行针对性的解答和辅导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点14 相似三角形【命题趋势】相似三角形是中考数学中非常重要的一个考点,它不仅可以作为简单考点单独考察,还经常作为压轴题的重要解题方法,和其他如函数、特殊四边形、圆等问题一起考察。

而且,在很多压轴题中,虽然题面上没有明确考察相似三角形的判定或性质,但是经常通过相似三角形的判定以及性质来得到角相等或者边长间的关系,也是动点问题中得到函数关系式的重要手段。

需要考生在复习的时候给予加倍的重视! 【中考考查重点】 一、比例线段 二、相似三角形的性质 三、相似三角形的判定 四、相似三角形的基本图形考向一:比例线段一.比例的性质1.基本性质:bc ad d c b a =⇔=::;2.比例中项:b a c b c c a ⋅=⇔=2::,此时,c 为a 、b 的比例中项; 二.比例线段1.比例线段:在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段简称比例线段;2.黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB . 3.平行线分线段成比例的基本性质: 如图:AB ∥CD ∥EF ⇔DE BD CF AC =【同步练习】 1.已知=,则的值为( ) A .B .C .D .【分析】直接利用同一未知数表示出a,b的值,进而代入化简即可.【解答】解:∵=,∴设a=2x,b=5x,∴==.故选:C.2.线段AB的长为2,点C是线段AB的黄金分割点,则线段AC的长可能是()A.+1B.2﹣C.3﹣D.﹣2【分析】根据黄金分割点的定义,知AC可能是较长线段,也可能是较短线段,分别求出即可.【解答】解:∵点C是线段AB的黄金分割点,AB=2,∴AC=AB=×2=﹣1,或AC=2﹣(﹣1)=3﹣,故选:C.3.如图,直线a,b,c截直线e和f,a∥b∥c,,则下列结论中,正确的是()A.B.C.D.【分析】根据平行线分线段成比例定理即可解答本题.【解答】解:∵a∥b∥c,,∴=,∴,,,故选项A正确,符合题意,选项B、D不正确,不符合题意;连接AF,交BE于H,∵BE∥CF,∴△ABH∽△ACF,∴,,∴选项C不正确,不符合题意;故选:A.4.若==(a≠c),则=.【分析】根据等比的性质即可求解.【解答】解:∵==(a≠c),∴=.故答案为:.5.若(x、y、z均不为0),则=.【分析】设比值为k,然后用k表示出x、y、z,再代入比例式进行计算即可得解.【解答】解:设===k(k≠0),则x=6k,y=4k,z=3k,所以,==3.故答案为:3.6.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是.【分析】根据平行线分线段成比例定理的推论得出=,将AE=6代入,求出AC=14,那么EC=AC﹣AE=8.【解答】解:∵DE∥BC,∴=,∵AE=6,∴=,解得:AC =14,∴EC =AC ﹣AE =14﹣6=8. 故答案是:8.考向二:相似三角形的性质相似三角形的性质相似 三角 形的 性质相似三角形的对应角相等,对应边成比例 相似三角形的周长之比等于相似比 相似三角形的面积之比等于相似比的平方相似三角形的对应“三线”(高线、中线、角平分线)之比等于相似比【方法提炼】【同步练习】1.如图,已知△ABE ∽△CDE ,AD 、BC 相交于点E ,△ABE 与△CDE 的周长之比是,若AE =2、BE =1,则BC 的长为( )A .3B .4C .5D .6【分析】首先利用周长之比求得相似比,然后根据AE 的长求得CE 的长,从而求得BC 的长. 【解答】解:∵△ABE ∽△CDE ,△ABE 与△CDE 的周长之比是, ∴AE :CE =2:5, ∵AE =2, ∴CE =5,相似三角形性质的主要应用方向: ➢ 求角的度数 ➢ 求或证明比值关系 ➢ 证线段等积式 ➢ 求面积或面积比相似三角形的对应边成比例是求线段长度的重要方法,也是动点问题中得到函数关系式的重要手段∵BE=1,∴BC=BE+EC=1+5=6,故选:D.2.如图,已知△ABC∽△DEF,若∠A=35°,∠B=65°,则∠F的度数是()A.30°B.35°C.80°D.100°【分析】先根据三角形内角和定理求出∠C的度数,再根据相似三角形对应角相等即可解决问题.【解答】解:∵△ABC中,∠A=35°,∠B=65°,∴∠C=180°﹣∠A﹣∠B=180°﹣35°﹣65°=80°,又∵△ABC∽△DEF,∴∠F=∠C=80°,故选:C.3.如图,在正方形网格中:△ABC、△EDF的顶点都在正方形网格的格点上,△ABC∽△EDF,则∠ABC+∠ACB的度数为()A.30°B.45°C.60°D.75°【分析】利用相似三角形的性质,证明∠BAC=135°,可得结论.【解答】解:∵△ABC∽△EDF,∴∠BAC=∠DEF=135°,∴∠ABC+∠ACB=180°﹣135°=45°,故选:B.4.如图,△ABC∽△A'B′C′,下列说法正确的是()A.∠B=∠C′B.S△ABC=2S△A′B'C'C.AC=4A'C'D.A'B′=6【分析】根据相似三角形的性质解答即可.【解答】解:∵△ABC∽△A'B′C′,AB=12,BC=2a,B'C'=a,∴∠B=∠B',S△ABC:S△ABC==4,AC=2A'C',A'B'=AB==6.故A、B、C错误,D正确;故选:D.5.若D为△ABC中AB边上一点,且DE∥BC交AC于E,AB=6,BC=8,AC=10,若△ADE与△ABC 的相似比为,则AE =.【分析】先根据DE∥BC得出△ADE∽△ABC,再根据AC=10以及△ADE与△ABC的相似比为,即可求出AE.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵△ADE与△ABC的相似比为,∴=,∵AC=10,∴AE=5.故答案为:5.考向三:相似三角形的判定一.相似三角形的判定方法:判定方法1·平行∵DE∥BC∴△ABC∽△ADE判定方法2·“AA”∵∠A=∠A`,∠C=∠C` ∴△ABC∽△A,B,C,二.判定三角形相似的思路:(1)有平行截线——用平行线的性质,找等角 (2)有一对等角,找⎩⎨⎧该角的两边对应成比例另一对等角 (3)有两边对应成比例,找夹角相等(4)直角三角形,找⎩⎨⎧例直角边、斜边对应成比一对锐角相等 (5)等腰三角形,找⎩⎨⎧底边和腰长对应成比例一对底角相等 【同步练习】1.如图,在△ABC 纸片中,∠A =76°,∠B =34°.将△ABC 纸片沿某处剪开,下列四种方式中剪下的阴影三角形与原三角形相似的是( ) A .①②B .②④C .①③D .③④【分析】根据相似三角形的判定定理逐个判断即可.【解答】解:图①中,∠B =∠B ,∠A =∠BDE =76°,所以△BDE 和△ABC 相似;图②中,∠B =∠B ,不符合相似三角形的判定,不能推出△BCD 和△ABC 相似;判定方法3·“SAS ”∵````C B BCB A AB =,∠B=∠B ∴△ABC ∽△A ,B ,C , 判定方法4·“SSS ”∵``````C A ACC B BC B A AB == ∴△ABC ∽△A ,B ,C ,图③中,∠C=∠C,∠CED=∠B,所以△CDE和△CAB相似;图④中,∠C=∠C,不符合相似三角形的判定,不能推出△CDE和△ABC相似;所以阴影三角形与原三角形相似的有①③,故选:C.2.下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.=D.AB2=AD•AC【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、不能判定△ADB∽△ABC,故此选项符合题意;D、∵AB2=AD•AC,∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意.故选:C.3.如图,在下列四个条件:①∠B=∠C,②∠ADB=∠AEC,③AD:AC=AE:AB,④PE:PD=PB:PC 中,随机抽取一个能使△BPE∽△CPD的概率是()A.0.25B.0.5C.0.75D.1【分析】根据相似三角形的判定方法判断即可.【解答】解:由题意得:∠DPC=∠EPB,①∠B=∠C,根据两角相等的两个三角形相似可得:△BPE∽△CPD,②∵∠ADB=∠AEC,∴∠PDC =∠PEB ,所以,根据两角相等的两个三角形相似可得:△BPE ∽△CPD , ③∵AD :AC =AE :AB ,∠A =∠A , ∴△ADB ∽△AEC , ∴∠B =∠C ,所以,根据两角相等的两个三角形相似可得:△BPE ∽△CPD ,④PE :PD =PB :PC ,根据两边成比例且夹角相等的两个三角形相似可得:△BPE ∽△CPD , ∴在上列四个条件中,随机抽取一个能使△BPE ∽△CPD 的概率是:1, 故选:D .4.如图,在△ABC 中,AB =12,BC =15,D 为BC 上一点,且BD =BC ,在AB 边上取一点E ,使以B ,D ,E 为顶点的三角形与△ABC 相似,则BE= .【分析】根据相似三角形对应边成比例得出或,再代值计算即可.【解答】解:∵△BDE ∽△BCA 或△BDE ∽△BAC , ∴或,∵BD =BC ,BC =15, ∴BD =5, ∵AB =12, ∴或, 解得:BE =4或. 故答案为:4或.考向四:相似三角形的基本图形 一、A 字图及其变型“斜A 型”当∠ADE=∠ACB 时 △ADE ∽△ACB 性质:BCDEAB AE AC AD ==当DE ∥BC 时 △ADE ∽△ABC 性质:BCDEACAE ABAD ==①当∠A=∠C 时 △AJB ∽△CJD 性质:JDJBJC JA CDAB ==变型☆:斜A 型在圆中的应用: 如图可得:△PAB ∽△PCD二、8字图及其变型“蝴蝶型”变型三、一般母子型:联系应用:切割线定理:如图,PB 为圆O 切线,B 为切点,则:△PAB ∽△PBC得:四、一线三等角:同侧型(通常以等腰三角形或者等边三角形为背景)当AB ∥CD 时 △AOB ∽△DOC性质:OCOBOD OA CD AB ==当∠ABD=∠ACB 时 △ABD ∽△ACB 性质:ACAD AB •=2 PC PA PB •=2其中: ∠A 是公共角 AB 是公共边 BD 与BC 是对应边异侧型五、手拉手相似模型:模型名称几何模型图形特点具有性质相似型手拉手△ABC∽△ADEA、D、E逆时针A、B、C逆时针连结BD、CE①△ABD∽△ACE②△AOB∽△HOC③旋转角相等④A、B、C、H四点共圆“反向”相似型手拉手△ABC∽△ADEA、D、E顺时针A、B、C逆时针A、D、E`逆时针作△ADE关于AD对称的△ADE`性质同上①②③【同步练习】1.如图,已知,DE∥BC,AD:DB=1:2,那么下列结论中,正确的是()A.DE:BC=1:2B.AE:AC=1:3C.AD:AE=1:2D.S△ADE:S四边形BDEC=1:4【分析】利用平行线分线段成比例定理,比例的性质和相似三角形的性质对每个选项进行逐一判断即可得出结论.【解答】解:∵AD:DB=1:2,∴.∵DE∥BC,∴△ADE∽△ABC.∴.∴A选项的结论错误;∵DE∥BC,∴△ADE∽△ABC.∴.∴B选项的结论正确;∵DE∥BC,∴△ADE∽△ABC.∴.∴C选项的结论错误;∵DE∥BC,∴△ADE∽△ABC.∴.设S△ADE=k,则S△ABC=9k,∴S四边形BDEC=S△ABC﹣S△ADE=8k,∴.∴D选项的结论错误.综上所述,正确的结论是B,故选:B.2.如图,在矩形ABCD中,E,F,G分别在AB,BC,CD上,DE⊥EF,EF⊥FG,BE=3,BF=2,FC=6,则DG的长是()A.4B.C.D.5【分析】由矩形的性质可求出∠A=∠B=∠C=90°,AB=CD,证明△EFB∽△FGC,由相似三角形的性质得出,求出CG=4,同理可得出△DAE∽△EBF,由相似三角形的性质求出AE的长,则可求出答案.【解答】解:∵EF⊥FG,∴∠EFB+∠GFC=90°,∵四边形ABCD为矩形,∴∠A=∠B=∠C=90°,AB=CD,∴∠GFC+∠FGC=90°,∴∠EFB=∠FGC,∴△EFB∽△FGC,∴,∵BE=3,BF=2,FC=6,∴,∴CG=4,同理可得△DAE∽△EBF,∴,∴,∴AE=,∴BA=AE+BE=+3=,∴DG=CD﹣CG=﹣4=.故选:B.3.如图,将△ABC绕点C顺时针旋转α得到△DEC,此时点D落在边AB上,且DE垂直平分BC,则的值是()A.B.C.D.【分析】根据旋转的性质和线段垂直平分线的性质证明△DCF∽△DEC,对应边成比例即可解决问题.【解答】解:如图,设DE与BC交于点F,由旋转可知:CA=CD,AB=DE,BC=EC,∠B=∠E,∵DE垂直平分BC,∴DF⊥BC,DC=DB,CF=BF=BC=EC,∴∠DCB=∠B=∠E,∵∠DCB+∠FDC=90°,∴∠E+∠FDC=90°,∴∠DCE=90°,∴△DCF∽△DEC,∴==,∴=.故选:B.4.如图,已知在△ABC中,点D在边AB上,那么下列条件中不能判定△ABC∼△ACD的是()A.B.AC2=AD•AB C.∠B=∠ACD D.∠ADC=∠ACB【分析】△ABC和△ACD有公共角,然后根据相似三角形的判定方法对各选项进行判断.【解答】解:∵∠DAC=∠CAB,∴当∠ACD=∠B或∠ADC=∠ACB,可根据有两组角对应相等的两个三角形相似可判断△ACD∽△ABC;当,即AC2=AD•AB时,可根据两组对应边的比相等且夹角对应相等的两个三角形相似可判断△ACD∽△ABC.故选:A.5.如图,AB∥CD,AD与BC相交于点E,若AE=3,ED=5,则的值为.【分析】利用平行线的性质判定△ABE∽△DCE,利用相似三角形的性质可得结论.【解答】解:∵AB∥CD,∴△ABE∽△DCE.∴.∵AE=3,ED=5,∴=.故答案为:.1.已知,则的值是()A.B.C.D.【分析】设=k(k≠0),得出a=13k,b=5k,再代入要求的式子进行计算即可求出答案.【解答】解:设=k(k≠0),则a=13k,b=5k,∴==;故选:D.2.如图,在△ABC中,∠ABC=3∠A,AC=6,BC=4,所以AB长为()A.2B.C.D.4【分析】将∠ABC三等分,与△ABC外接圆相交,交点分别为:E与F,利用托勒密定理列出方程组,求解即可解决问题.【解答】解:将∠ABC三等分,与△ABC外接圆相交,交点分别为:E与F,如图所示:圆上依次为ABCEF,记BE=m,AB=b,则利用托勒密定理有:,可得:,即,∴b=,故选:B.3.如图,在平行四边形ABCD中,E是AB的中点,F是AD的中点,FE交AC于O点,交CB的延长线于G点,那么S△AOF:S△COG=()A.1:4B.1:9C.1:16D.1:25【分析】根据平行四边形的性质求出AD=BC,AD∥BC,推出△AFE∽△BGE,△AFO∽△CGO,再根据相似三角形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵E为AB的中点,F为AD的中点,∴AE=BE,AF=AD=BC,∵AD∥BC,∴△AFE∽△BGE,∴,∵AE=BE,∴AF=BG=BC,∴=∵AD∥BC,∴△AFO∽△CGO,∴=()2=,即S△AOF:S△COG=1:9,故选:B.4.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.B.C.D.【分析】根据平行线分线段成比例性质进行解答便可.【解答】解:∵EF∥BC,∴,∵EG∥AB,∴,∴,故选:A.5.如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△P AB 的面积分别为S,S1,S2.若S=3,则S1+S2的值为()A.24B.12C.6D.3【分析】过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD与ABQP 都为平行四边形,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC 的中位线,利用中位线定理得到EF为BC的一半,且EF平行于BC,得出△PEF与△PBC相似,相似比为1:2,面积之比为1:4,求出△PBC的面积,而△PBC面积=△CPQ面积+△PBQ面积,即为△PDC面积+△P AB面积,即为平行四边形面积的一半,即可求出所求的面积.【解答】解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=12.故选:B.6.如图,在平行四边形ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=4,则S△ADF的值为()A.6B.10C.15D.【分析】因为四边形ABCD是平行边形,所以AD∥BC,则△AEF∽△ABC,得==,根据相似三角形面积的比等于相似比的平方求出△ABC的面积为25,而△CDA≌△ABC,则△CDA的面积为25,根据等高三角形面积的比等于底的比即可求出△ADF的面积.【解答】解:如图,∵四边形ABCD是平行边形,∴AD∥BC,∴△AEF∽△ABC,∵3AE=2EB,∴=,∴==,∴===,∵S△AEF=4,∴S△ABC===25,∴CD=AB,AD=BC,AC=CA,∴△CDA≌△ABC(SSS),∴S△CDA=S△ABC=25,∴S△ADF=S△CDA=×25=10,∴S△ADF的值为10,故选:B.7.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,那么=.【分析】由平行四边形的对边相等可求得BC=AD,BC∥AD,易证得△BEF∽△DAF,则,根据比例的性质即可得解.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;∵=,∵AD∥BC,∴△BEF∽△DAF,∴,∴,∴==.故答案为:.8.在矩形ABCD中,AB=6,AD=8,E是BC的中点,连接AE,过点D作DF⊥AE于点F,连接CF、AC.(1)线段DF的长为;(2)若AC交DF于点M,则=.【分析】(1)利用三角形面积相等,列出等式,求解即可;(2)延长DF交CB的延长线于K,利用相似三角形的性质求出KE,再利用平行线分线段成比例定理求解即可.【解答】解:(1)根据题意,画出下图:∵AB=6,AD=8,BE==4,∴AE=,∴S△ADE==,S△ADE==24,∴DF==.(2)若AC交DF于点M,延长DF交BC延长线于点K,如图所示:∵∠KEF=∠AEB,∠EFK=∠ABE=90°,∴△KEF∽△AEB,∴,∴,∴KE=5,∴CK=KE+EC=9,∵AD∥CK,∴=.9.如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:BD•AD=DE•AC.(2)若AB=13,BC=10,求线段DE的长.(3)在(2)的条件下,求cos∠BDE的值.【分析】(1)证明∠B=∠C,∠DEB=∠ADC=90°,可证明△BDE∽△CAD即可解决问题;(2)利用面积法:•AD•BD=•AB•DE求解即可;(3)可得出∠BDE=∠BAD,则cos∠BDE=cos∠BAD=.【解答】证明:(1)∵AB=AC,BD=CD,∴AD⊥BC,∠B=∠C,∵DE⊥AB,∴∠DEB=∠ADC,∴△BDE∽△CAD.∴,∴BA•AD=DE•CA;(2)∵AB=AC,BD=CD,∴AD⊥BC,在Rt△ADB中,AD===12,∵•AD•BD=•AB•DE,∴DE=.(3)∵∠ADB=∠AED=90°,∴∠BDE=∠BAD,∴cos∠BDE=cos∠BAD=.10.已知:四边形ABCD中,AC=AB=20,点E为BC边上一点,BE≥CE,且DE=DC,∠AED=∠B,AC、DE相交于点F,cos∠B=.(1)求证:△ABE∽△ECF;(2)若BE=18,求EF的长;(3)若∠DAE=90°,求CE的长.【分析】(1)正确作出辅助线,找到对等关系,即可证明△ABE∽△ECF;(2)找到包含有要求解的边长有关系的三角形,利用勾股定理,求出AE的边长,再利用相似三角形,找到对应关系,即可求出EF的长;(3)在直角三角形内,根据给定的余弦值,找到对应边长,即可求出CE的长.【解答】(1)证明:如图所示:过点A作AH⊥BC于H,∵AB=AC=20,∴∠AED=∠B,∴∠1+∠2=180°﹣∠AED,∵∠3+∠2=180°﹣∠B,∴∠1=∠3,∴△ABE∽△ECF;(2)解:由(1)知,过点A作AH⊥BC于H,∵AB=20,cos∠B=,∴BH=16,∵AB=AC,∴BH=CH=16,∴BC=32,∵BE=18,∴EC=14,在△ABH中,AH=,HE=BE﹣BH=18﹣16=2,∴AE=,∵△ABE∽△ECF,∴,即,∴EF=.(3)解:若∠DAE=90°,则∠BAE=90°,∵AB=20,cos∠B=,∴BE=25,∴CE=BC﹣BE=32﹣25=7.1.(2021·浙江衢州)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且OA=OB,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,F A,EB均与地面垂直,测得F A=54cm,EB=45cm,AB=48cm.(1)椅面CE的长度为cm.(2)如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角∠CHD 的度数达到最小值30°时,A,B两点间的距离为cm(结果精确到0.1cm).(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)【分析】(1)由平行线的性质可得∠ECB=∠ABF,由锐角三角函数可得,即可求解;(2)如图2,延长AD,BE交于点N,由“ASA”可证△ABF≌△BAN,可得BN=AF,可求NE的长,由锐角三角函数可求DE的长,即可求DH的长,如图3,连接CD,过点H作HP⊥CD于P,由锐角三角函数和等腰三角形的性质,可求DC的长,通过相似三角形的性质可求解.【解答】解:(1)∵CE∥AB,∴∠ECB=∠ABF,∴tan∠ECB=tan∠ABF,∴,∴,∴CE=40(cm),故答案为:40;(2)如图2,延长AD,BE交于点N,∵OA=OB,∴∠OAB=∠OBA,在△ABF和△BAN中,,∴△ABF≌△BAN(ASA),∴BN=AF=54(cm),∴EN=9(cm),∵tan N=,∴=,∴DE=8(cm),∴CD=32(cm),∵点H是CD的中点,∴CH=DH=16(cm),∵CD∥AB,∴△AOB∽△DOC,∴===,如图3,连接CD,过点H作HP⊥CD于P,∵HC=HD,HP⊥CD,∴∠PHD=∠CHD=15°,CP=DP,∵sin∠DHP==sin15°≈0.26,∴PD≈16×0.26=4.16(cm),∴CD=2PD=8.32(cm),∵CD∥AB,∴△AOB∽△DOC,∴,∴,∴AB=12.48≈12.5(cm),故答案为:12.5.2.(2021·浙江宁波)【证明体验】(1)如图1,AD为△ABC的角平分线,∠ADC=60°,点E在AB上,AE=AC.求证:DE平分∠ADB.【思考探究】(2)如图2,在(1)的条件下,F为AB上一点,连结FC交AD于点G.若FB=FC,DG=2,CD=3,求BD的长.【拓展延伸】(3)如图3,在四边形ABCD中,对角线AC平分∠BAD,∠BCA=2∠DCA,点E在AC上,∠EDC=∠ABC.若BC=5,CD=2,AD=2AE,求AC的长.【分析】(1)由△EAD≌△CAD得∠ADE=∠ADC=60°,因而∠BDE=60°,所以DE平分∠ADB;(2)先证明△BDE∽△CDG,其中CD=ED,再由相似三角形的对应边成比例求出BD的长;(3)根据角平分线的特点,在AB上截取AF=AD,连结CF,构造全等三角形和相似三角形,由相似三角形的性质求出AC的长.【解答】(1)证明:如图1,∵AD平分∠BAC,∴∠EAD=∠CAD,∵AE=AC,AD=AD,∴△EAD≌△CAD(SAS),∴∠ADE=∠ADC=60°,∵∠BDE=180°﹣∠ADE﹣∠ADC=180°﹣60°﹣60°=60°,∴∠BDE=∠ADE,∴DE平分∠ADB.(2)如图2,∵FB=FC,∴∠EBD=∠GCD;∵∠BDE=∠CDG=60°,∴△BDE∽△CDG,∴;∵△EAD≌△CAD,∴DE=CD=3,∵DG=2,∴BD===.(3)如图3,在AB上取一点F,使AF=AD,连结CF.∵AC平分∠BAD,∴∠F AC=∠DAC,∵AC=AC,∴△AFC≌△ADC(SAS),∴CF=CD,∠FCA=∠DCA,∠AFC=∠ADC,∵∠FCA+∠BCF=∠BCA=2∠DCA,∴∠DCA=∠BCF,即∠DCE=∠BCF,∵∠EDC=∠ABC,即∠EDC=∠FBC,∴△DCE∽△BCF,∴,∠DEC=∠BFC,∵BC=5,CF=CD=2,∴CE===4;∵∠AED+∠DEC=180°,∠AFC+∠BFC=180°,∴∠AED=∠AFC=∠ADC,∵∠EAD=∠DAC(公共角),∴△EAD∽△DAC,∴=,∴AC=2AD,AD=2AE,∴AC=4AE=CE=×4=.3.(2021·浙江杭州)如图,锐角三角形ABC内接于⊙O,∠BAC的平分线AG交⊙O于点G,交BC边于点F,连接BG.(1)求证:△ABG∽△AFC.(2)已知AB=a,AC=AF=b,求线段FG的长(用含a,b的代数式表示).(3)已知点E在线段AF上(不与点A,点F重合),点D在线段AE上(不与点A,点E重合),∠ABD =∠CBE,求证:BG2=GE•GD.【分析】(1)根据∠BAC的平分线AG交⊙O于点G,知∠BAC=∠F AC,由圆周角定理知∠G=∠C,即可证△ABG∽△AFC;(2)由(1)知=,由AC=AF得AG=AB,即可计算FG的长度;(3)先证△DGB∽△BGE,得出线段比例关系,即可得证BG2=GE•GD.【解答】(1)证明:∵AG平分∠BAC,∴∠BAG=∠F AC,又∵∠G=∠C,∴△ABG∽△AFC;(2)解:由(1)知,△ABG∽△AFC,∴=,∵AC=AF=b,∴AB=AG=a,∴FG=AG﹣AF=a﹣b;(3)证明:∵∠CAG=∠CBG,∠BAG=∠CAG,∴∠BAG=∠CBG,∵∠ABD=∠CBE,∴∠BDG=∠BAG+∠ABD=∠CBG+∠CBE=∠EBG,又∵∠DGB=∠BGE,∴△DGB∽△BGE,∴=,∴BG2=GE•GD.4.(2021·浙江金华)在平面直角坐标系中,点A的坐标为(﹣,0),点B在直线l:y=x上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB的长;若不存在,请说明理由.【分析】(1)①由BC⊥AB,CO⊥BO,可得∠BAD+∠ADB=∠COD+∠DOB=90°,而根据已知有∠BAD=∠DOB,故∠ADB=∠COD,从而可得∠COD=∠CDO,CD=CO;②过A作AM⊥OB于M,过M作MN⊥y轴于N,设M(m,m),可得tan∠OMN=tan∠AOM=,即=,设AM=3n,则OM=8n,Rt△AOM中,AM2+OM2=OA2,可求出AM=3,OM=8,由∠CBO=45°可知△BOC是等腰直角三角形,△ABM是等腰直角三角形,从而有AM=BM=3,BO=CO =OM﹣BM=5,AB=AM=3,BC=BO=5,即可求出S四边形ABOC=S△ABC+S△BOC=;(2)(一)过A作AM⊥OB于M,当B在线段OM或OM延长线上时,设OB=x,则BM=|8﹣x|,AB =,由△AMB∽△BOC,=,即=,得OC=,BC==,以A,B,C为顶点的三角形与△BCO相似,分两种情况:①若=,OB=4;②若=,OB =4+或OB=4﹣或OB=9;(二)当B在线段MO延长线上时,设OB=x,则BM=8+x,AB=,由△AMB∽△BOC,=,即=,得OC=•(8+x),以A,B,C为顶点的三角形与△BCO相似,需满足=,即=,可得OB=1.【解答】(1)①证明:∵BC⊥AB,CO⊥BO,∴∠ABC=∠BOC=90°,∴∠BAD+∠ADB=∠COD+∠DOB=90°,∵BA=BO,∴∠BAD=∠DOB,∴∠ADB=∠COD,∵∠ADB=∠CDO,∴∠COD=∠CDO,∴CD=CO;②解:过A作AM⊥OB于M,过M作MN⊥y轴于N,如图:∵M在直线l:y=x上,设M(m,m),∴MN=|m|=﹣m,ON=|m|=﹣m,Rt△MON中,tan∠OMN==,而OA∥MN,∴∠AOM=∠OMN,∴tan∠AOM=,即=,设AM=3n,则OM=8n,Rt△AOM中,AM2+OM2=OA2,又A的坐标为(﹣,0),∴OA=,∴(3n)2+(8n)2=()2,解得n=1(n=﹣1舍去),∴AM=3,OM=8,∵∠CBO=45°,CO⊥BO,∴△BOC是等腰直角三角形,∵BC⊥AB,∠CBO=45°,∴∠ABM=45°,∵AM⊥OB,∴△ABM是等腰直角三角形,∴AM=BM=3,BO=CO=OM﹣BM=5,∴等腰直角三角形△ABM中,AB=AM=3,等腰直角三角形△BOC中,BC=BO=5,∴S△ABC=AB•BC=15,S△BOC=BO•CO=,∴S四边形ABOC=S△ABC+S△BOC=;(2)解:存在点B,使得以A,B,C为顶点的三角形与△BCO相似,理由如下:(一)过A作AM⊥OB于M,当B在线段OM或OM延长线上时,如图:由(1)②可知:AM=3,OM=8,设OB=x,则BM=|8﹣x|,AB=,∵CO⊥BO,AM⊥BO,AB⊥BC,∴∠AMB=∠BOC=90°,∠ABM=90°﹣∠OBC=∠BCO,∴△AMB∽△BOC,∴=,即=,∴OC=,Rt△BOC中,BC==,∵∠ABC=∠BOC=90°,∴以A,B,C为顶点的三角形与△BCO相似,分两种情况:①若=,则=,解得x=4,∴此时OB=4;②若=,则=,解得x1=4+,x2=4﹣,x3=9,x4=﹣1(舍去),∴OB=4+或OB=4﹣或OB=9;(二)当B在线段MO延长线上时,如图:由(1)②可知:AM=3,OM=8,设OB=x,则BM=8+x,AB=,∵CO⊥BO,AM⊥BO,AB⊥BC,∴∠AMB=∠BOC=90°,∠ABM=90°﹣∠OBC=∠BCO,∴△AMB∽△BOC,∴=,即=,∴OC=•(8+x),Rt△BOC中,BC==•,∵∠ABC=∠BOC=90°,∴以A,B,C为顶点的三角形与△BCO相似,需满足=,即=,解得x1=﹣9(舍去),x2=1,∴OB=1,综上所述,以A,B,C为顶点的三角形与△BCO相似,则OB的长度为:4或4+或4﹣或9或1;1.(2021•瓯海区模拟)若=,则的值是()A.3B.C.D.2【分析】根据比例的性质求出b=2a,再代入求出答案即可.【解答】解:∵=,∴b=2a,∴===,故选:C.2.(2021•下城区校级四模)在比例尺为1:10000的地图上,相距4cm的A、B两地的实际距离是()A.400m B.400dm C.400cm D.400km【分析】设AB的实际距离为xcm,根据比例尺的定义得到4:x=1:10000,利用比例的性质求得x的值,注意单位统一.【解答】解:设AB的实际距离为xcm,∵比例尺为1:10000,∴4:x=1:10000,∴x=40000cm=400m.故选:A.3.(2021•温岭市一模)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,则BC:CE=()A.3:5B.1:3C.5:3D.2:3【分析】直接根据平行线分线段成比例定理求解.【解答】解:∵AB∥CD∥EF,∴===.故选:A.4.(2021•拱墅区二模)如图,在正方形ABCD中,E,F分别是BC、AB上一点,且AF=BE,AE与DF 交于点G,连接CG.若CG=BC,则AF:FB的比为()A.1:1B.1:2C.1:3D.1:4【分析】作CH⊥DF于点H,证明△AGD≌△DHC,可得AG=DH=GH,tan∠ADG==.由此可解决此问题.【解答】解:作CH⊥DF于点H,如图所示.在△ADF和△BAE中,,∴△ADF≌△BAE(SAS).∴∠ADF=∠BAE,又∠BAE+∠GAD=90°,∴∠ADF+∠GAD=90°,即∠AGD=90°.由题意可得∠ADG+∠CDG=90°,∠HDC+∠CDG=90°,.∴∠ADG=∠HDC.在△AGD和△DHC中,,∴△AGD≌△DHC(AAS).∴DH=AG.又CG=BC,BC=DC,∴CG=DC.由等腰三角形三线合一的性质可得GH=DH,∴AG=DH=GH.∴tan∠ADG=.又tan∠ADF==,∴AF=AB.即F为AB中点,∴AF:FB=1:1.故选:A.5.(2021•宁波模拟)如图,在△ABC中,DE∥AB,且=2,则的值为()A.B.C.2D.3【分析】根据平行线分线段成比例定理定理列出比例式,计算即可.【解答】解:∵=2,∴=,∵DE∥AB,∴==,故选:B.6.(2021•丽水模拟)如图,已知△ABC∽△BDC,其中AC=4,CD=2,则BC=()A.2B.C.D.4【分析】直接利用相似三角形的性质得出BC2=AC•CD,进而得出答案.【解答】解:∵△ABC∽△BDC,∴=,∵AC=4,CD=2,∴BC2=AC•CD=4×2=8,∴BC=2.故选:B.7.(2021•宁波模拟)如图,△ABC的两条中线BE,CD交于点O,则下列结论不正确的是()A.=B.=C.△ADE∽△ABC D.S△DOE:S△BOC=1:2【分析】根据三角形中位线定理得到DE=BC,DE∥BC,根据相似三角形的性质进行计算,判断即可.【解答】解:∵AD=DB,AE=EC,∴DE=BC,DE∥BC,∴=,A选项结论正确,不符合题意;∵DE∥BC,∴=,B选项结论正确,不符合题意;∵DE∥BC,∴△ADE∽△ABC,C选项结论正确,不符合题意;∵DE∥BC,∴△DOE∽△COB,∴S△DOE:S△COB=1:4,D选项结论错误,符合题意;故选:D.8.(2021•西湖区校级二模)如图,正六边形ABCDEF外作正方形DEGH,连接AH交DE于点O,则等于()A.3B.C.2D.【分析】连接BD,如图所示:由正六边形和正方形的性质得:B、D、H三点共线,设正六边形的边长为a,则AB=BC=CD=DE=a,解直角三角形求出BD,再利用平行线分线段成比例定理解决问题即可.【解答】解:连接BD,如图所示:由正六边形和正方形的性质得:B、D、H三点共线,设正六边形的边长为a,则AB=BC=CD=DE=a,∵在△BCD中,BC=CD=a,∠BCD=120°,∴BD=a.∵OD∥AB,∴===,故选:B.9.(2021•拱墅区二模)黄金分割比符合人的视觉习惯,在人体躯干和身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618越给人以美感.张女士身高165cm,若她下半身的长度(脚底到肚脐的高度)与身高的比值是0.60,为尽可能达到匀称的效果,她应该选择约厘米的高跟鞋看起来更美.(结果保留整数)【分析】根据黄金分割定义:下半身长与全身的比等于0.618即可求解.【解答】解:根据已知条件可知:下半身长是165×0.6=99(cm),设需要穿的高跟鞋为ycm,则根据黄金分割定义,得=0.618,解得:y≈8,经检验y≈8是原方程的根,答:她应该选择大约8cm的高跟鞋.故答案为8.10.(2021•金东区校级模拟)如图,已知直角坐标系中四点A(﹣2,4)、C(2,﹣3),分别过A、C作AB、CD垂直于x轴于B、D.设P是x轴上的点,且P A、PB、AB所围成的三角形与PC、PD、CD所围成的三角形相似,请写出所有符合上述条件的点P的坐标是.【分析】需要分情况分析,当点P在AB左边,在AB与CD之间,在CD的右边,通过相似三角形的性质:相似三角形的对应边成比例即可求得.【解答】解:设OP=x(x>0),分三种情况:一、若点P在AB的左边,有两种可能:①此时△ABP∽△PDC,则PB:CD=AB:PD,则(x﹣2):3=4:(x+2),解得x=4,∴点P的坐标为(﹣4,0);②若△ABP∽△CDP,则AB:CD=PB:PD,则(﹣x﹣2):(2﹣x)=4:3,解得:x=14,与假设在B点左边矛盾,舍去.二、若点P在AB与CD之间,有两种可能:①若△ABP∽△CDP,则AB:CD=BP:PD,∴4:3=(x+2):(2﹣x),解得:x=,∴点P的坐标为(,0);②若△ABP∽△PDC,则AB:PD=BP:CD,∴4:(2﹣x)=(x+2):3,方程无解;三、若点P在CD的右边,有两种可能:①若△ABP∽△CDP,则AB:CD=BP:PD,∴4:3=(2+x):(x﹣2),∴x=14,∴点P的坐标为(14,0),②若△ABP∽△PDC,则AB:PD=BP:CD,∴4:(x﹣2)=(x+2):3,∴x=4,∴点P的坐标为(4,0);∴点P的坐标为(,0)、(14,0)、(4,0)、(﹣4,0).故答案为:(,0)、(14,0)、(4,0)、(﹣4,0).11.(2021•宁波模拟)如图,▱ABCD中,对角线AC与BD相交于点O,∠ABD=∠ACB,G是线段OD上一点,∠DGC﹣∠DCG=90°,tan∠DCG=,则的值为.【分析】由锐角三角函数可设GF=a,CF=2a,由“AAS”可证△GCE≌△GCF,可得CE=CF=2a,GF=EG=a,通过证明△GFD∽△CED,可求DC=a,DE=a,通过证明△DCO∽△ACD,可得,由勾股定理可求OE,即可求解.【解答】解:如图,过点C作CE⊥BD于E,过G作GF⊥CD于F,∵∠DGC=∠CEG+∠GCE=90°+∠GCE,∴∠DGC﹣∠GCE=90°,又∵∠DGC﹣∠DCG=90°,∴∠GCD=∠ECG,∵tan∠DCG==,∴设GF=a,CF=2a,在△GCE和GCF中,,∴△GCE≌△GCF(AAS),∴CE=CF=2a,GF=EG=a,∵∠GDF=∠EDC,∠GFD=∠CED=90°,∴△GFD∽△CED,∴,∴==,∴DF=a,DG=a,∴DC=a,DE=a,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AO=CO,BO=DO,∴∠ABD=∠BDC,∠DAC=∠ACB,∵∠ABD=∠ACB,∴∠BDC=∠DAC,又∵∠ACD=∠DCO,∴△DCO∽△ACD,∴,∴DC2=2OC2,∴OC2=a2=a2,∴OE==a,∴OD=DE+OE=a=OB,∴=,故答案为:.12.(2021•西湖区二模)如图,在矩形ABCD中,E是CD上一点,AE=AB,作BF⊥AE.(1)求证:△ADE≌△BF A;(2)连接BE,若△BCE与△ADE相似,求.【分析】(1)根据矩形的性质得出∠D=∠DAB=90°,求出∠DAE+∠F AB=90°,∠FBA+∠F AB=90°,求出∠D=∠AFB,∠DAE=∠FBA,再根据全等三角形的判定推出即可;(2)根据矩形的性质得出∠C=∠D=90°,DC∥AB,根据平行线的性质得出∠CEB=∠ABE,设∠CEB=∠ABE=x°,根据等腰三角形的性质求出∠AEB=∠EBA=x°,根据相似三角形的性质得出两种情况:①∠DEA=∠CEB=x°,根据∠DEA+∠AEB+∠CEB=180°得出x+x+x=180,求出x,再解直角三角形求出AE和AD,再求出答案即可;②∠DEA=∠EBC,设∠DEA=∠EBC=y°,求出∠DEA+∠AEB+∠CEB=(y+2x)°=180°,∠EBC+∠CEB=(y+x)°=90°,求出x,再得出答案即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAB=90°,∴∠DAE+∠F AB=90°,∵BF⊥AE,∴∠AFB=90°,∴∠D=∠AFB,∠FBA+∠F AB=90°,∴∠DAE=∠FBA,在△ADE和△BF A中,∴△ADE≌△BF A(AAS);(2)解:∵四边形ABCD是矩形,∴∠C=∠D=90°,DC∥AB,∴∠CEB=∠ABE,设∠CEB=∠ABE=x°,∵AE=AB,∴∠AEB=∠EBA=x°,当△BCE与△ADE相似时,有两种情况:①∠DEA=∠CEB=x°,∵∠DEA+∠AEB+∠CEB=180°,∴x+x+x=180,解得:x=60,即∠DEA=60°,∴∠DAE=90°﹣60°=30°,∴AE=2DE,由勾股定理得:AD===DE,∵AE=AB,∴===;②∠DEA=∠EBC,设∠DEA=∠EBC=y°,∵∠CEB=∠EBA=∠AEB=x°,则∠DEA+∠AEB+∠CEB=y°+x°+x°=(y+2x)°=180°,在Rt△BCE中,∠EBC+∠CEB=y°+x°=(y+x)°=90°,即,解得:x=90°,即∠CEB=90°,此时点E和点C重合,△BEC不存在,舍去;所以=.13.(2021•拱墅区二模)如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE∽△DFE.【分析】(1)首先利用中位线定理得到DE∥AB以及DE的长,再证明∠DEC=∠F即可;(2)根据等腰三角形的性质得到∠A=∠B,进而求出∠CDE=∠F并结合∠CED=∠DEF即可证明△CDE∽△DFE.【解答】解:(1)∵D、E分别是AC、BC的中点,∴DE∥AB,DE=AB=5,∵DE∥AB,∴∠DEC=∠B,而∠F=∠B,∴∠DEC=∠F,∴DF=DE=5;(2)∵AC=BC,∴∠A=∠B,∵∠CDE=∠A,∠CED=∠B,∴∠CDE=∠B,∵∠B=∠F,∴∠CDE=∠F,∵∠CED=∠DEF,∴△CDE∽△DFE.14.(2021•宁波模拟)如图,矩形ABCD中,E是边AD的中点,CE与BD交于点P,将△ABE沿BE翻折,点A的对应点F刚好落在线段CP上.(1)求证:△EBC是等边三角形.(2)求的值.【分析】(1)根据矩形的性质证明△ABE≌△DCE(SAS),可得EB=EC,∠AEB=∠CED,由翻折可知:∠AEB=∠FEB,进而可以解决问题;(2)证明△PDE∽△PBC,可得==,所以=,进而可以解决问题.【解答】(1)证明:∵E是边AD的中点,∴AE=DE,∵四边形ABCD是矩形,∴∠A=∠CDA=90°,AB=CD,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴EB=EC,∠AEB=∠CED,由翻折可知:∠AEB=∠FEB,∴∠AEB=∠FEB=∠CED=60°,∴△EBC是等边三角形;(2)解:∵四边形ABCD是矩形,∴AD∥BC,。

相关文档
最新文档