勾股定理复习导学案

合集下载

18.3勾股定理导学案(2)

18.3勾股定理导学案(2)
导学案设计
题目
勾股定理复习(2)
总课时
1
学校
星火一中
教者
杨玉杰
年级
八年
学科
数学
设计来源
自我设计
教学时间




知识技能
掌握直角三角形的边、角之间所存在的关系,熟练应用直角三角形的勾股定理和逆定理来解决实际问题.
ቤተ መጻሕፍቲ ባይዱ过程方法
经历反思本单元知识结构的过程,理解和领会勾股定理和逆定理.
情感态度价值观
熟悉勾股定理的历史,进一步了解我国古代数学的伟大成就,激发爱国主义思想,培养良好的学习态度
求①AD的长;②ΔABC的面积
A
D
E
B
C
考点二、利用列方程求线段的长
1.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?
2.如图,某学校(A点)与公路(直线L)的距离为300米,又与公路车站(D点)的距离为500米,现要在公路上建一个小商店(C点),使之与该校A及车站D的距离相等,求商店与车站之间的距离.
考点三、判别一个三角形是否是直角三角形
1.分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17
(4)4、5、6,其中能够成直角三角形的有
2.若三角形的三别是a2+b2,2ab,a2-b2(a>b>0),则这个三角形是.
3.如图1,在△ABC中,AD是高,且 ,求证:△ABC为直角三角形。
求证:AB2-AC2=BC(BD-DC).

勾股定理的复习导学案

勾股定理的复习导学案
首先利用勾股定理求出AB的长度。然后利用 线段的性质求出AD的长度。最后利用相似三 角形的性质求出AE的长度。
THANKS FOR WATCHING
感谢您的观看
答案
BC=3
解析
根据勾股定理,在直角三角形中,直角边的平方和等于 斜边的平方。即,AC²+BC²=AB²。代入已知值, 4²+BC²=5²,所以BC=3。
进阶练习题
题目
在直角三角形ABC中,∠C=90°,AC=√5,BC=2√5,则 AB的长度为多少?
答案
AB=3√5
解析
根据勾股定理,在直角三角形中,直角边的平方和等于斜边 的平方。即,AC²+BC²=AB²。代入已知值, (√5)²+(2√5)²=5+20=25,所以AB=3√5。
通过勾股定理可以推导出直角三角形的 面积公式为$frac{1}{2}ab$,其中a和b 为直角边。
勾股定理与相似三角形的关系
勾股定理与相似三角形之间存在一定的联系。 如果两个直角三角形相似,那么它们的对应边长比例满足勾股定理。
勾股定理与三角函数的关系
勾股定理与三角函数之间存在密切的 联系。
在直角三角形中,三角函数(如正弦、 余弦、正切)可以用于描述角度和边 长之间的关系。
误解二
只有当直角三角形中两条直角边分别为3和4时,斜边才为5。实际上,勾股定理适用于任意直角三角形,只要满 足勾股定理的条件即可。
勾股定理应用中的单位问题
单位不统一
在应用勾股定理时,必须确保涉及的所有边长单位统一,否则会导致计算错误。
忽视单位换算
在涉及不同单位时,需要正确进行单位换算,以确保计算结果的准确性。
确保给定的三边满足勾股定理的条件 ,避免误解。

八年级数学下_勾股定理导学案(全)

八年级数学下_勾股定理导学案(全)

18.1 勾股定理(1)学习目标:1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2、培养在实际生活中发现问题总结规律的意识和能力。

3、介绍我国古代在勾股定理研究方面所取得的成就,激发爱国热情,勤奋学习。

重点:勾股定理的内容及证明。

难点:勾股定理的证明。

学习过程:一、预习新知1、正方形边长和面积有什么数量关系?2、以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积之间有什么关系?归纳:等腰直角三角形三边之间的特殊关系。

(1)那么一般的直角三角形是否也有这样的特点呢?(2)组织学生小组学习,在方格纸上画出一个直角边分别为3和4的直角三角形,并以其三边为边长向外作三个正方形,并分别计算其面积。

(3)通过三个正方形的面积关系,你能说明直角三角形是否具有上述结论吗?(4)对于更一般的情形将如何验证呢?二、课堂展示方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。

S正方形=_______________=____________________方法二;已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

求证:a2+b2=c2。

以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90o,∴ ∠AED + ∠BEC = 90o.∴ ∠DEC = 180o―90o= 90o.∴ ΔDEC是一个等腰直角三角形,它的面积等于c2.又∵ ∠DAE = 90o, ∠EBC = 90o,∴ AD∥BC.∴ ABCD是一个直角梯形,它的面积等于_________________归纳:勾股定理的具体内容是。

三、随堂练习1、如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系:;(2)若∠B=30°,则∠B的对边和斜边:;(3)三边之间的关系:四、课堂检测1、在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则SRt△ABC =________。

第十八章勾股定理全章导学案

第十八章勾股定理全章导学案

第十八章勾股定理勾股定理(1)主备人:初审人:终审人:【导学目标】1.能用几何图形的性质和代数的计算方法探索勾股定理.2.知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示.3.能运用勾股定理理解用关直角三角形的问题.【导学重点】知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示.【导学难点】用拼图的方法验证勾股定理.【学法指导】探究、发现.【课前准备】查阅有关勾股定理的文化背景资料.【导学流程】一、呈现目标、明确任务1.了解勾股定理的文化背景,体验勾股定理的探索过程.2.了解利用拼图验证勾股定理的方法.3.利用勾股定理,已知直角三角形的两边求第三边的长.二、检查预习、自主学习1.动手画画、动手算算、动脑想想.在纸上作出边长分别为:(1)3、4、5(2)6、8、10的直角三角形,且动笔算一下,三条边长的平方有什么样的关系,你能猜想一下吗?2.借图说明(1)观察课本P64页图,思考:等腰直角三角形有什么性质吗?你是怎样得到的?它们满足上面的结论吗?(2)在P65页图中的三个直角三角形中,是否仍满足这样的关系?若能,试说明你是如何求出正方形的面积?3.有什么结论?三、问题导学、展示交流阅读P65页用拼图法证明勾股定理的内容,弄懂面积关系.四、点拨升华、当堂达标1.探究P66页“探究1”.在Rt△ABC中,根据勾股定理AC2 = 2+ 2因为AC=5≈2.236,因此AC木板宽,所以木板从门框内通过.2.讨论《配套练习》P24页选择填空题.五、布置预习预习“探究2”,完成P68页的练习.【教后反思】勾股定理(2)主备人:初审人:终审人:【导学目标】1.能运用勾股定理的数学模型解决现实世界的实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.【导学重点】运用勾股定理解决实际问题.【导学难点】勾股定理的灵活运用.【学法指导】观察、归纳、猜想.【课前准备】数轴的知识【导学流程】一、呈现目标、明确任务1.能运用勾股定理的数学模型解决现实世界的实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.二、检查预习、自主学习1.展示P66页“探究2”,完成填空.2.探究P68页“探究3”.提示:两直角边为1的等腰直角三角形,斜边长为多少?三、问题导学、展示交流1.展示上面的探究成果.2.研究P68页的课文,弄懂无理数在数轴上的表示方法.四、点拨升华、当堂达标1.完成练习题.2.填空题⑴在Rt△ABC,∠C=90°,a=8,b=15,则c= .⑵在Rt△ABC,∠B=90°,a=3,b=4,则c= .⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,b= .⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为 .3.完成《配套练习》P25页选择填空题.六、布置预习预习习题18.1中1—5题.【教后反思】练习课主备人:初审人:终审人:【导学目标】1.继续运用勾股定理的数学模型解决实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.【导学重点】运用勾股定理解决实际问题.【导学难点】勾股定理的灵活运用.【学法指导】观察、归纳、猜想.【课前准备】数的开方运算.【导学流程】一、呈现目标、明确任务继续运用勾股定理的数学模型解决实际问题.二、检查预习、自主学习分小组展示预习成果.三、教师引导讲解习题18.1中10题.1.一个剖面图,怎样抽象成一个几何图形?2.直角三角形在什么地方?3.在直角三角形中,已知哪些边长?4.若设芦苇的长为x,还可以表示哪些线段?5.在这个直角三角形中利用勾股定理可以列一个怎样的式子?四、问题导学、展示交流1.展示上面的讨论结果.2.讨论完成7,8题.五、点拨升华、当堂达标讨论9题.六、布置预习预习下一节,阅读例1前面的课文,完成练习1.【教后反思】勾股定理的逆定理(1)主备人:初审人:终审人:【导学目标】1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.2.探究勾股定理的逆定理的证明方法.3.理解原命题、逆命题、逆定理的概念及关系.【导学重点】掌握勾股定理的逆定理及证明.【导学难点】勾股定理的逆定理的证明.【学法指导】发现法、练习法、合作法【课前准备】三角形全等.【导学流程】一、呈现目标、明确任务1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.2.探究勾股定理的逆定理的证明方法.3.理解原命题、逆命题、逆定理的概念及关系. 二、检查预习、自主学习下面的三组数分别是一个三角形的三边长a ,b ,c .5、12、13 7、24、25 8、15、17 (1)这三组数满足222c b a =+吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?如果三角形的三边长a 、b 、c ,满足222c b a =+,那么这个三角形是 三角形.问题二:命题1: ,命题2: .命题1和命题2的 和 正好相反,把像这样的两个命题叫做 命题,如果把其中一个叫做 ,那么另一个叫做 .三、教师引导1.说出下列命题的逆命题,这些命题的逆命题成立吗? ⑴同旁内角互补,两条直线平行.⑵如果两个实数的平方相等,那么两个实数平方相等. ⑶线段垂直平分线上的点到线段两端点的距离相等. ⑷直角三角形中30°角所对的直角边等于斜边的一半. 四、问题导学、展示交流 自学P74页例1.五、点拨升华、当堂达标 1.完成习题18.2中1—3题.2.下列三条线段不能组成直角三角形的是( )A . 8, 15, 17B . 9, 12,15C .5,3,2 D .a :b :c =2:3:43.完成练习2. 六、布置预习1.完成《配套练习》P29页选择填空题.2.预习下一节,弄懂方位角的表示.3.完成练习3. 【教后反思】勾股定理的逆定理(2)主备人: 初审人: 终审人:【导学目标】1.灵活应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与判定定理之间关系的认识.【导学重点】灵活应用勾股定理及逆定理解决实际问题. 【导学难点】灵活应用勾股定理及逆定理解决实际问题. 【学法指导】抽象、迁移. 【课前准备】勾股定理的逆定理. 【导学流程】一、呈现目标、明确任务1.灵活应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与判定定理之间关系的认识. 二、检查预习、自主学习2.边长分别是c b a ,,的△ABC ,下列命题是假命题的是( ).A 、在△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形; B 、若()()c b c b a -+=2,则△ABC 是直角三角形;C 、若∠A ︰∠B ︰∠C =5︰4︰3,则△ABC 是直角三角形;D 、若3:4:5::=c b a ,则△ABC 是直角三角形.3.在△ABC 中,∠C =90°,已知4:3:=b a , 15=c ,求b 的值.4.展示练习3. 三、教师引导 例1(P75例2) 分析:⑴了解方位角,及方位名词; ⑵依题意画出图形;⑶依题意可得PR =12×1.5=18,PQ =16×1.5=24,QR =30;⑷因为242+182=302,PQ 2+PR 2=QR 2,根据勾股定理 的逆定理,知∠QPR =90°; ⑸∠PRS =∠QPR -∠QPS =45°. 四、问题导学、展示交流一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.⑴若判断三角形的形状,先求三角形的三边长;⑵设未知数列方程,求出三角形的三边长5、12、13;⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形. 五、点拨升华、当堂达标1.如图,AB ⊥BC 于点B ,DC ⊥BC 于点C ,点E 是BC 上的点,∠BAE =∠CED =60o,AB =3,CE =4.求:①AE 的长. ②DE 的长. ③AD 的长(提示:先证△____是直角三角形).2.完成《配套练习》P30页选择填空题. 六、布置预习预习这两节的《配套练习》中大题.AB D C【教后反思】练习课主备人:初审人:终审人:【导学目标】1.掌握勾股定理及其逆定理,并会运用定理解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【导学重点】掌握勾股定理及其逆定理,并会运用定理解决简单问题.【导学难点】了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【学法指导】抽象、迁移.【课前准备】勾股定理的逆定理.【导学流程】一、呈现目标、明确任务1.掌握勾股定理及其逆定理,并会运用定理解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.二、检查预习、自主学习分小组展示预习成果.三、教师引导如图,在四边形ABCD中,∠D=90°,AB=12,CD=3,DA=4,BC=13, 求S四边形ABCD.分析:因为∠D=90°,可连接AC构成直角形,由勾股定理求出AC,这样在△ABC中,三边均知道大小,利用勾股定理可以判断三角形的形状,再用两个三角形的面积求出S四边形ABCD.四、问题导学、展示交流讨论上面的问题,再展示交流.五、点拨升华、当堂达标讨论《配套练习》P29页5—7题和P31页6,7题.六、布置预习DB1.讨论《配套练习》剩余题目.2.预习复习题十八,1—3题.【教后反思】小结(1)主备人:初审人:终审人:【导学目标】1.掌握勾股定理及其逆定理,并能解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【导学重点】掌握勾股定理及其逆定理,并会运用定理解决简单问题.【导学难点】了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【学法指导】转化和数形结合.【课前准备】复习本章内容.【导学流程】一、呈现目标、明确任务1.用勾股定理及其逆定理解决简单问题;2.了解逆命题、逆定理的概念.二、检查预习、自主学习展示预习成果.三、教师引导本章知识结构:四、问题导学、展示交流1.直角三角形三边的长有什么关系?2.已知一个三角形的三边,能否判定它是直角三角形?举例说明.3.如果一个命题成立,那么它的逆命题一定成立吗?举例说明.4.如图,已知P是等边三角形ABC内上点,PA=5,PB=4,PC=3,求∠PBC.四、问题导学、展示交流提示:如果三角形的三条边分别是三、四、五,那么这个三角形一定是直角三角形.但本题长为3,4,5的三条线段不在同一个三角形中,联想到等边三角形的性质,可以将△APC绕点C旋转得到△BCP′.五、点拨升华、当堂达标1.讨论完成“复习题18”中4—7题.4题,可先设每份为k,再用勾股定理的逆定理.5题,不成立的需举反例.6题,可以数单位面积的正方形个数.7题,直接用勾股定理.2.讨论8,9题.六、布置预习预习下一章.B CP'。

勾股定理导学案(同名13074)

勾股定理导学案(同名13074)

第一章勾股定理导学案第1课时探索勾股定理(1)学习目标:1、经历探索勾股定理的过程,发展学生的合情推理意识,体会数形结合的思想。

2 、会初步利用勾股定理解决实际问题。

学习过程:一、课前预习:1、三角形按角的大小可分为:、、。

2、三角形的三边关系:三角形的任意两边之和;任意两边之差。

3、直角三角形的两个锐角;4、在RtΔABC中,两条直角边长分别为a、b,则这个直角三角形的面积可以表示为:。

二、自主学习:探索直角三角形三边的特殊关系:(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;(2)猜想:直角三角形的三边满足什么关系?(3)任画一直角三角形,量出三边长度,看得到的数据是否符合你的猜想。

猜想:三、合作探究::如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?AB CACB 图1-1图1-2ABCACB图1-3图1-4问题1、你能用三角形的边长表示正方形的面积吗?问题2、你能发现直角三角形三边长度之间存在什么关系吗?与同伴进行交流。

问题3、分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度。

问题(2)中的规律对这个三角形仍然成立吗?图形 A 的面积 B 的面积 C 的面积A 、B 、C 面积的关系 图1-1图1-2图1-3图1-4思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。

勾股定理:直角三角形 等于 ;几何语言表述:如图1.1-1,在Rt ΔABC 中, C = 90°, 则: ;若BC=a ,AC=b ,AB=c ,则上面的定理可以表示为: 。

四、课堂练习:1、求下图中字母所代表的正方形的面积如图示:A 代表的正方形面积为它的边长为B 代表的正方形面积为它的边长为64225AB169144AB蚂蚁沿图中所示的折线由A 点爬到B 点,蚂蚁一共爬行了多少厘米?(图中小方格的边长1、2、2、求出下列各图中x 的值。

勾股定理与方程 学历案(导学案)

勾股定理与方程 学历案(导学案)

A B C D1.3勾股定理的应用——勾股定理与方程学习目标:通过自主学习、合作交流会利用勾股定理构建方程解决实际问题1.如图,旗杆AB 高17m ,在离旗杆顶端1m 的D 处系一条绳索,绳索长20m ,将绳索拉直,绳索的另一端恰好到地面上的C 处,则A 、C 之间的距离是 。

2.如图,强大的台风使得一根大树折断倒下,大树顶部落在离大树底部4 m 若大树总长度为8 m ,求大树是离地面多高处折断的?设AC 为x 米,则AB 为 米,可列方程为 。

例 1.小刚想知道学校旗杆的高度,他发现旗杆顶端处的绳子垂到地面后还多1米,当他把绳子拉直后并使下端刚好接触地面,发现绳子的下端离旗杆下端3米。

你能帮小刚想求出旗杆的高度吗?练习:1.如图,有一个直角三角形纸片ABC ,AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合.则CD= cm 。

2.如图,在长方形ABCD 中,AB=8 cm ,BC=10 cm ,在边CD 上取一点E ,将△ADE 折叠后点D 恰好落在BC 边上的点F,求CE的长度例2.为了推广城市绿色出行,昆都仑区交委准备在AB路段建设一个共享单车停放点,该路段附近有两个广场C和D,如图所示,CA⊥AB于A,DB⊥AB于B,AB=3km,CA=2km,DB=1.6km,试问这个单车停放点E应建在距点A多少米处,才能使它到两广场的距离相等.练习:在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.课堂小结:挑战自我:已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B 出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.。

初中数学《勾股定理》复习教案

初中数学《勾股定理》复习教案

勾股定理复习(一)教学目标1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边.2.勾股定理的应用.3.会运用勾股定理的逆定理,判断直角三角形.重点:掌握勾股定理及其逆定理.难点:理解勾股定理及其逆定理的应用.教学过程一、复习回顾在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定理以及它的应用.其知识结构如下:1.勾股定理:(1)直角三角形两直角边的______和等于_______的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有:————————————.这就是勾股定理.(2)勾股定理揭示了直角三角形___之间的数量关系,是解决有关线段计算问题的重要依据.22222222,,b a c a c b b c a +=-=-=,2222,a c b b c a -=-=.2.勾股定理逆定理“若三角形的两条边的平方和等于第三边的平方,则这个三角形为________.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a 2+b 2=c 2),先构造一个直角边为a,b 的直角三角形,由勾股定理证明第三边为c,进而通过“SSS ”证明两个三角形全等,证明定理成立.3.勾股定理的作用:(1)已知直角三角形的两边,求第三边;(2)在数轴上作出表示(n 为正整数)的点.勾股定理的逆定理是用来判定一个三角形是否是直角三角形的.勾股定理的逆定理也可用来证明两直线是否垂直,勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.(3)三角形的三边分别为a 、b 、c ,其中c 为最大边,若222c b a =+,则三角形是直角三角形;若222c b a >+,则三角形是锐角三角形;若2<+c b a 22,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的最大边.二、课堂展示例1:如果一个直角三角形的两条边长分别是6cm 和8cm ,那么这个三角形的周长和面积分别是多少?例2:如图,在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD ⊥BD .三、随堂练习1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .321,421,521C .3,4,5D .4,721,821 2.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍B .2倍C .3倍D .4倍3.三个正方形的面积如图1,正方形A 的面积为( )A . 6B . 36C . 64D . 8 图1 A100644.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( )A .6cmB .8.5cmC .1330cm D .1360cm 5.在△ABC 中,三条边的长分别为a ,b ,c ,a =n 2-1,b =2n ,c =n 2+1(n >1,且n 为整数),这个三角形是直角三角形吗?若是,哪个角是直角四、课后练习1.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A .50cmB .100cmC .140cmD .80cm2.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为 ( )A .8cmB .10cmC .12cmD .14cm3.在△ABC 中,∠C =90°,若 a =5,b =12,则 c =___4.等腰△ABC 的面积为12cm 2,底上的高AD =3cm ,则它的周长为___.5.等边△ABC 的高为3cm ,以AB 为边的正方形面积为___.6.一个三角形的三边的比为5∶12∶13,它的周长为60cm ,则它的面积是__。

勾股定理的复习学案(第8、9课时)

勾股定理的复习学案(第8、9课时)
二、探索新知 (一) 活动1(考点1).在直角三角形中,已知两边求第三边 1、一种盛饮料的圆柱形杯,测得内部底面半径为2.5cm ,高为12cm ,吸管放进杯里,杯口外面至少要露出4.6cm ,问吸管 要做 cm . 2、已知直角三角形两直角边长分别为5和12, 求斜边上的高. 活动2(考点2). 勾股定理与方程联手求线段的长(方程思想) 1、如图 ,将一个边长为4、8的长方形纸片ABCD 折叠使C 点与A 点重合,则EB 的长是( ) A 、3 B 、4 C 、5 D 、5 2、如图,四边形ABCD 是长方形,把 △ACD 沿AC 折叠到△ACD / ,△ACD /与BC 交于E,若AD=4,CD=3,求BE 的长. A B C D E A D 3、如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现 在要在铁路AB 上建一个土特产品收购站E ,使得C , D 两村到 E 站的距离相等,则E 站应建在离A 站多少km 处? 活动3(考点3):用勾股定理的逆定理判别一个三角形是否是直角三角形 1.若一个三角形的周长 123cm ,一边长为33cm , 其他两边之差为3cm ,则这个三角形是 . 2、若△ABC 的三边为a 、b 、c 满足a :b :c=1:1:2,则△ABC 的形状为 。 3、分别以下列四组数为一个三角形的边长:(1)3、 4、5(2) 5、12、13(3)8、15、17(4)4、5、6,其中能构成直角三角形的有 4.若△ABC 的三边a ,b ,c 满足条件a 2+b 2+c 2+338=10a+24b+26问题 1、在直线l 上依次摆放着七个正方形(如上图所示).已知斜放置的三个正方形的面积分别是1、 2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+ S 2+S 3+S 4=_______. 三、分层练习 一层 1.在△ABC 中,∠C=90°,若a=8,b=6, 则c= ;若a=8,c=17,则b= . 2.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 3.直角三角形的两条直角边分别是5cm, 12cm,其斜边上的高是 4.以直角三角形的两直角边所作正方形的面积分别是25和144,则斜边长是 5.以直角三角形的两直角边所作正方形的面积分别是25和144,则斜边长是 6.把直角三角形两条直角边同时扩大到原来的3倍,则其斜边( ) A 、不变 B 、扩大到原来的3倍 C 、扩大到原来的9倍 D 、 减小到原来的1/3 A DE B C l 3 2 1 S4 S3 S2 S1 二层 7.如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为( ) A 、60∶13 B 、5∶12 C 、12∶13 D 、60∶169 8.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )A 、24cm 2 B 、36cm 2 C 、48cm 2 D 、60cm 2 9.等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A 、56 B 、48 C 、40
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理复习 课型:复习课
知识点: A. 熟练掌握勾股定理的各种表达形式: /C= 9 0 0, /A 、/E 、/C 的对边分别为 2 2, .2 2 2.2 .2 2 _ C =a +b , a =c -b , b =c -a 1. 某直角三角形的勾与股分别是另一直角三角形勾与股的 形与另一直角三角形的弦之比是( ) A. n:1 B.1:n C.1: n2 2. ___________________________ 由四根木棒,长度分别为 3, 4, 5, 6若取其中三根木棒组成三角形,有 成直角三角形的是 _________________
B. 勾股定理的应用:用勾股定理可以解决
(1) 已知直角三角形的任两边,求第三边问题; (2) 证明线段的平方关系问题;
(3) 作数轴上的 J 2、品、弼,……等; (4) 解决实际问题.、
3. 直角三角形的两条直角边分别是 5cm, 12cm,其斜边上的高是(
4. 以直角三角形的两直角边所作正方形的面积分别是 25和144,则斜边长是
5. —架5cm 长的梯子,斜立靠在一竖直的墙上,这是梯子下端距离墙的底端 1.4,若梯子顶端下滑了 0.8m, 则梯子底端将下滑( )
6. 要在高3m,斜坡5m 的楼梯表面铺地毯,地毯的长度至少需( )米
7. —座楔形台高14m,底座长48m,.—位自行车运动员要在 5s 内驶过楔形台斜面, 则要达到的平均速度为 _______________ ;
8.
一根旗杆高8m,断裂后旗杆顶端落于旗杆底端 4m 处,旗杆的断裂出距离地面( 如图,在R t △ ABC 中, a,b,c ,
2 n 倍,则这个三角
D. n2:1
( )种取法,其中,能构
)米 9、在数轴上做出 J 3 10、如图,在△ ABC 中,AB=AC , P 为BC 上任意一点,请用学过的知识说明: AB2 — AP2=PB X PC 。

C. 探索神秘的勾股数组:满足a 2 + b 2 =c 2的三个正整数,称为勾股数.如(1) (2) 5, 12, 13; (3) 6, 8, 10; (4) 8, 15, 17 ; (5) 7, 24, 25 ; (6) 若a 、b 、c 是一组勾股数,则 ka 、kb 、kc (k 为正整数)也是勾股数. ① 设n 为正整数,且 n > 1,令a=2n,b =
② 设m n 为正整数,且m>n ,令a = m 2 3, 4, 5; 9, 40,
41 11.把直角三角形两条直角边同时扩大到原来的 3倍, A.不变 B.扩大到原来的 C.扩大到原来的9倍 D.减小到原来的 D. 如何判定一个三角形是直角三角形
(1) 先确定最大边(如 c ) 验证c (2) 若c 2 = a 2 n 2 -1,c = n 2 +1,则有 __________ -n 2,b = 2mn, c = m 2 + n 2,则有 _ 则其斜边(
) 3倍
1/3 2与a 2 +b 2是否具有相等关系 + b 2」b ABC 是以/ C 为直角的直角三角形;若 c 2丰a 2 +b 2
则^ ABC 不是直角三角形。

E 、距离最短
1. 几何体的表面路径最短的问题,一般展开表面成平面。

2. 利用两点之间线段最短,及勾股定理求解。

12、如图,一圆柱高8cm,底面半径2cm,—只蚂蚁从点 A 爬到点B (CD 中点)处吃食,要爬行的最短路程(取3)是( )
A.20cm;
B.IOcm;
C.14cm;
D.无法确定.
13、如图,长方体的长为 15 cm ,宽为10 cm ,高为20 cm ,点B 离点C 5 cm ,一只蚂蚁如果要沿着长方 体的表面从点A 爬到点B ,需要爬行的最短距离是多少?
14、如图是一个三级台阶,它的每一级的长宽和高分别为 20dm 、3dm 、2dm ,A 和B 是这个台阶两个相 对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物, 则蚂蚁沿着台阶面爬到 B 点最短路程是多少? F 、勾股定理的证明 方法一解:(1)如图
(2)证明:T 大正方形的面积表示为 (a + b )2
,大正方形的面积也可表示为 2 1 2 2 1
c 2+4x —ab , (a + b )2 =c 2+4x-ab
2 2 2 2 2
方法二解:(1 )如图
(2 )证明:丁大正方形的面积表示为:c 2 ,又可以表示为: -abx4+(b —a )2 , 「.c 2=-ab x 4+(b —a )2
, c 2
=2ab + b 2 —2ab +a 2 , 2 2
2 2 2
c =a +b •即直角三角形两直角边的平方和等于斜边的平方.
由于三个直角三闻形面积的和等于梯形面积,
@P : 51AB 匚+S .EDE + 5iABE = 5?PH5ACOE
a 2 +
b 2 +2ab =
c 2
+ 2ab , /■ a +b =c .即直角三角形两直角边的平方和等于斜边的平方.
2 X —uh H——心'=—(,£/ + h) - {u + b)
2 2 2
ab——c 2 = —2+ 2iib+ 丿异)
2 2
= —it- +—h-
2 2 7
-护十b—z
这两个大正方形的边长都是"b ,因此它们的面积相等
即a2+b2+4K 2 ab=4x 2 ab+c 》
以上几种证法都是面积证法.
学习了相{以三角形后,利用射影定理,可以用代数方法证明勾股定理. G 解题思想:
一、分类思想
a. 直角三角形中,已知两边长是直角边、斜边不知道时,应分类讨论。

b. 当已知条件中没有给出图形时,应认真读句画图,避免遗漏另一种情况。

1. 已知:直角三角形的三边长分别是 3, 4,X,则X=
2. 三角形 ABC 中,AB=10,AC=17,BC 边上的高线 AD=8,求BC
二、方程思想
1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多 米后,
发现下端刚好接触地面,你能帮他算出来吗? 2、折叠矩形 ABCD 的一边AD,点D 落在BC 边上的点F 处,已知AB=8cm,BC=10cm 求1.CF 2.EC.
3、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树 20米处的池塘的A 处。

另一只爬到树 顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,求棵树高。

,他把一根竹竿插到离岸边 1.5m 远的水底,竹竿高出水面0.5m,把竹竿 ,则河水的深度为( )
D. 3m. AC=6 cm, BC=8 cm 。

现将直角边 AC 沿直线AD 折叠, 的长.1米,当他把绳子的下端拉开 5
4、小刚准备测量一段河水的深度
的顶端拉向岸边,竿顶和岸边的水面刚好相齐 A. 2m; B. 2.5m; C. 2.25m;
5、如图,一块直角三角形的纸片,两直角边 使它落在斜边 AB 上,且与 AE 重合,求 CD
a b
12、如图,小明和小方分别在 C 处同时出发,小明以每小时40千米的速度向南走,小方以每小时30千米的 速度向西走,2小时后,小明在A 处,小方在B 处,请求出AB 的距离. 6、已知一直角三角形的三边长都是正整数,其中斜边长 13 ,并且周长为 30,求其面积。

7、已知,如图,在 Rt △ ABC 中,/ C=90 ° , / 1= / 2, CD=1.5, BD=2.5, 求 AC 的长. 8 已知,△ ABC 中,AB=17cm , BC=16cm , BC 边上的中线 AD=15cm ,试说明^ ABC 是等腰三角形。

9、如图,铁路上 A , B 两点相距25km , C , D 为两村庄,DA 丄AB 于A , CB 丄AB 于B ,已知DA=15km , CB=10km ,现在要在铁路 AB 上建一个土特产品收购站 应建在离 A 站多少 km 处? E ,使得C , D 两村到E
站的距离相等,则 E 站 10、一直角三角形纸片直角边 AC=6,BC=8, 现将直角边 AC 沿AD 折叠,使C 与E 重合,则CD=
11、已知:如图," ABC 中,/ ACB = , AB = 5cm , 的
面积; BC = 3 cm , CD 丄AB 于D ,求CD 的长及三角形。

相关文档
最新文档