数学限时训练

合集下载

期末限时训练习(试题)-2023-2024学年六年级下册数学人教版

 期末限时训练习(试题)-2023-2024学年六年级下册数学人教版

人教版六年级下册数学期末限时训练习10考试范围:全册一、填空。

(第1、2题每空1分,其余每空2分,共24分)1. 我国的陆地面积约是9600000平方千米,横线上的数改写成以“万”为单位的数记作( );我国人口数约为十三亿六千零七十二万八千七百三十一,横线上的数写作( ),省略“亿”位后面的尾数约是( )亿。

2. 端午节,孙阿姨花了70元买了25个粽子,粽子的总价与个数的最简整数比是( ),比值是( ),这个比值表示的是( )。

3. 一个圆柱的体积是90cm³,高是6cm。

它的底面积是( )cm²。

4.7的分数单位是( ),再加上( )个这样的单位是最小的质数。

55.将同样大小的红球和黄球各5个放到一个袋子里,至少取出( )个球,可以保证取到两个颜色不同的球。

6.六(1)班学生跳远的平均成绩是1.5m ,其中晓洁跳了1.38m,晓敏跳了1.65m。

如果把平均成绩记为0m,那么晓洁的成绩可以记为( )m,晓敏的成绩可以记为( )m。

7.书店的图书凭优惠卡可打八折,聪聪用优惠卡买了一本书,节省了4.8 元,这本书原价是( )元。

8.一个三角形,在比例尺1:200的平面图上量得底是4cm,高是2cm ,这个三角形的实际面积是( )m²。

9.直角三角形ABC的两条直角边AB和BC的长度比是2:3。

如果直角三角形 ABC分别以BC边、AB边所在直线为轴旋转一周,那么所形成的两个圆锥的体积之比是( )。

二、判断。

(对的画“√”,错的画“×”)(每题1分,共5分)1. 车轮的半径一定,所行驶的路程与车轮的转数成正比例。

( )2. 种102棵树苗,其中有2棵没成活,那么这批树苗的成活率约是98%。

( )3. 一个圆柱的体积是25.8立方米,则与它等底等高的圆锥体积是8.6立方米。

( )4.5只鸽子飞进3个鸽笼,无论怎么飞,总有一个鸽笼至少飞进2只鸽子。

( )5.一种福利彩票的中奖率是1%,张叔叔买了100张彩票,他一定会中奖。

数学数列限时训练单选20题

数学数列限时训练单选20题

数学数列单项选择题:共20小题,每小题5份,共100分1.数列{a n}为等差数列,且a2+a7+a12=6,则{a n}的前13项的和为()A.52B.C.26D.2.记S n为正项等比数列{a n}的前n项和.若a1=1,4a3=a5,则S10=()A.512B.511C.1023D.10243.数列{a n}是公差为2的等差数列,S n为其前n项和,且a1,a4,a13成等比数列,则S4=()A.8B.12C.16D.244.已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.845.记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.86.已知等差数列{a n}中,a2=7,a4=15,则前10项的和S10=()A.100B.210C.380D.4007.设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=()A.120B.105C.90D.758.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)9.已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.9710.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.1211.已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.12.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130B.170C.210D.26013.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24B.﹣3C.3D.814.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则当n>1时,S n=()A.()n﹣1B.2n﹣1C.()n﹣1D.(﹣1)15.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138B.135C.95D.2316.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.17.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n﹣1)C.D.18.已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.1119.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D.20.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6数学数列单选答案1.数列{a n}为等差数列,且a2+a7+a12=6,则{a n}的前13项的和为()A.52B.C.26D.【分析】由等差数列的性质可求a7,然后代入到求和公式S==13a7可求.【解答】解:由等差数列的性质可知,a2+a7+a12=3a7=6,故a7=2,则{a n}的前13项的和S===13a7=26.故选:C.【点评】本题主要考查了等差数列的性质及求和公式的简单应用,属于基础试题.2.记S n为正项等比数列{a n}的前n项和.若a1=1,4a3=a5,则S10=()A.512B.511C.1023D.1024【分析】结合已知及等比数列的性质可求公比q,然后结合等比数列的求和公式即可求.【解答】解:由4a3=a5可得q2=4,∵q>0,所以q=2,由等比数列的求和公式可得,S10==1023.故选:C.【点评】本题主要考查了等比数列的求和公式及性质的简单应用,属于基础试题.3.数列{a n}是公差为2的等差数列,S n为其前n项和,且a1,a4,a13成等比数列,则S4=()A.8B.12C.16D.24【分析】运用等差数列的通项公式和等比数列的中项性质,解方程可得首项,再由等差数列的求和公式,计算可得所求值.【解答】解:数列{a n}是公差d为2的等差数列,S n为其前n项和,且a1,a4,a13成等可得a42=a1a13,即(a1+6)2=a1(a1+24),解得a1=3,则S4=4a1+6d=4×3+6×2=24.故选:D.【点评】本题考查等差数列的通项公式和求和公式的运用,等比数列的中项性质,考查方程思想和运算能力,属于基础题.4.已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.【点评】本题考查等差数列公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.6.已知等差数列{a n}中,a2=7,a4=15,则前10项的和S10=()A.100B.210C.380D.400【分析】由第二项和第四项的值可以求出首项和公差,写出等差数列前n项和公式,代入n=10得出结果.【解答】解:d=,a1=3,∴S10==210,故选:B.【点评】若已知等差数列的两项,则等差数列的所有量都可以求出,只要简单数字运算时不出错,问题可解.7.设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=()A.120B.105C.90D.75【分析】先由等差数列的性质求得a2,再由a1a2a3=80求得d即可.【解答】解:{a n}是公差为正数的等差数列,∵a1+a2+a3=15,a1a2a3=80,∴a2=5,∴a1a3=(5﹣d)(5+d)=16,∴d=3,a12=a2+10d=35∴a11+a12+a13=105故选:B.【点评】本题主要考查等差数列的运算.8.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)【分析】由已知可知,数列{a n}是以﹣为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求【解答】解:∵3a n+1+a n=0∴∴数列{a n}是以﹣为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1﹣3﹣10)故选:C.【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题9.已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.97【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.10.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.12【分析】利用等差数列的通项公式和前n项和公式列出方程,能求出a5的值.【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.【点评】本题考查等差数列的第五项的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.11.已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.12.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130B.170C.210D.260【分析】利用等差数列的前n项和公式,结合已知条件列出关于a1,d的方程组,用m 表示出a1、d,进而求出s3m;或利用等差数列的性质,s m,s2m﹣s m,s3m﹣s2m成等差数列进行求解.【解答】解:解法1:设等差数列{a n}的首项为a1,公差为d,由题意得方程组,a1解得d=,a1=,∴s3m=3ma1+d=3m+=210.故选C.解法2:∵设{a n}为等差数列,∴s m,s2m﹣s m,s3m﹣s2m成等差数列,即30,70,s3m﹣100成等差数列,∴30+s3m﹣100=70×2,解得s3m=210.故选C.a1【点评】解法1为基本量法,思路简单,但计算复杂;解法2使用了等差数列的一个重要性质,即等差数列的前n项和为s n,则s n,s2n﹣s n,s3n﹣s2n,…成等差数列.13.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24B.﹣3C.3D.8【分析】利用等差数列通项公式、等比数列性质列出方程,求出公差,由此能求出{a n}前6项的和.【解答】解:∵等差数列{a n}的首项为1,公差不为0.a2,a3,a6成等比数列,∴,∴(a1+2d)2=(a1+d)(a1+5d),且a1=1,d≠0,解得d=﹣2,∴{a n}前6项的和为==﹣24.故选:A.【点评】本题考查等差数列前n项和的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.14.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则当n>1时,S n=()A.()n﹣1B.2n﹣1C.()n﹣1D.(﹣1)【分析】利用递推关系与等比数列的通项公式即可得出.【解答】解:∵S n=2a n+1,得S n=2(S n+1﹣S n),即3S n=2S n+1,由a1=1,所以S n≠0.则=.∴数列{S n}为以1为首项,公比为的等比数列∴S n=.故选:A.【点评】本题考查了递推关系与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.15.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138B.135C.95D.23【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选:C.【点评】在求一个数列的通项公式或前n项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式.16.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选:A.【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.17.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n﹣1)C.D.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.【点评】本题考查等差数列的性质和求和公式,属基础题.18.已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:A.【点评】本题考查了等差数列的通项公式及其性质、前n项和公式,考查了推理能力与计算能力,属于中档题.19.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D.【分析】设等比数列{a n}的公比为q,利用已知和等比数列的通项公式即可得到,解出即可.【解答】解:设等比数列{a n}的公比为q,∵S3=a2+10a1,a5=9,∴,解得.∴.故选:C.【点评】熟练掌握等比数列的通项公式是解题的关键.20.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m+1﹣a m=1,S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.。

期末限时训练(试题)-2023-2024学年人教版六年级下册数学

期末限时训练(试题)-2023-2024学年人教版六年级下册数学

人教版六年级下册数学限时训练习9考试范围:全册一、填空。

(每空1分,共 18分)1.今年“五一”黄金周期间某市共接待游客24920300人次,实现旅游收入一百..一十四.亿二千..九百万元.。

横线上的数读作( ),改写成用“万”作单位的数是( )万;波浪线上的数写作( ),省略“亿”后面的尾数约是( )亿。

2.( )÷8=0.75=18÷( )=( )%=()折=()(填成数)3.在比例尺1:4000000的地图上,量得甲和乙两地的距离为4厘米,甲和乙的实际距离约为( )千米。

4.5米长的一根木头平均截成9段,平均每段占全长的( ),其中的2段长( )米。

,这个自然数是( )。

5.一个自然数比它的倒数多2236.数A=2×3×7,数 B=2×3×5,A和B的最大公因数是( ),最小公倍数是( )。

7.一个零件长为3毫米,把它画在20∶1的图纸上,应画( )厘米。

9.一个圆柱和一个圆锥等底等高,已知圆锥的体积比圆柱少1.2cm³,圆柱与圆锥的体积和是( )cm³。

10.一个圆柱的底面半径为5cm,侧面展开后是一个正方形,这个圆柱的体积是( )。

二、判断。

(正确的打“√”,错误的打“×”)(每题1分,共5分)1.假分数的倒数小于或等于1。

( )2.正方形的面积与它的边长成正比例关系。

( )3.旋转和平移不改变图形的形状和大小,只改变图形的位置与方向。

( )4.表面积相等的圆柱,体积也一定相等。

( )5.一件商品,先提价5%,再降价5%,现价低于原价。

()三、选择。

(将正确答案的序号填在括号里)(每题2分,共10分)A.3 : 1B.1 : 3C.1 : 22.一幅地图的比例尺是 1:100,表示把图上距离( )就是实际距离。

A.扩大 100倍B.缩小 100 倍C.不变3.圆柱的底面积扩大为原来的2倍,高扩大为原来的4倍,则体积扩大为原来的( )。

高三数学限时训练

高三数学限时训练

高三数学限时训练(2010.11.10)1、不等式xx --213≥1的解集是 ( ) A .{x|43≤x ≤2} B .{x|43≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 2、下列各函数中,最小值为2的是 ( ) A .y=x +x 1 B .y= sinx +x sin 1,x ∈(0,2π)C .y=2322++x x D .y=x +12-x 3、“x>y 且m>n ”是“x+m>y+n ”成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.不充分不必要条件 4、若,0log log log 532<==z y x 则513121,,z y x 之间的大小关系为A. 512131z x y << B. 513121z y x << C. 213151x y z << D. 315121y z x << 5、x 为实数,且|x -3|-|x -1|>m 恒成立,则m 的取值范围是( )A.m>2B.m<2C.m>-2D.m<-26、设0,0,1x y x y A x y +>>=++, 11x yB x y=+++,则,A B 的大小关系是( ) A .A B = B .A B < C .A B ≤ D .A B > 7、不等式1522--x x >0的解是( )(A) x<-3 或x>5 (B) –5<x<-3 (C) x<-3或 x>3 (D ) x<-5 或x>5 8、若关于x 的不等式342+++x x ax >0的解集为-3<x<-1或x>2,则a 的取值为( )A.2B.21 C.-21D.-29、函数y =log21(x +11+x +1) (x > 1)的最大值是 ( )A .-2B .2C .-3D .3 10、、二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小, 则a 的取值范围是 ( )A .-3<a <1B .-2<a <0C .-1<a <0D .0<a <2 11、已知实数x 、y 满足x 2+y 2=1,则(1-xy)(1+xy)( )A.有最小值21,也有最大值1B.有最小值43,也有最大值1C.有最小值43,但无最大值 D.有最大值1,但无最小值12、若关于x 的不等式062<--a ax x 的解区间不超过5个单位长,则a 的取值范围是 A. 125≤≤-a B. 125≥-≤a a 或 C. 241025<≤<≤-a a 或 D. 102425≤<-<≤-a a 或13、043)4(2≥---x x x 的解集为______________________。

七年级数学限时训练试卷

七年级数学限时训练试卷

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √16B. √-16C. πD. √0.252. 下列各数中,无理数是()A. 2/3B. √9C. 3.14D. √-93. 如果 |x| = 5,那么 x 的值为()A. ±5B. 5C. -5D. 04. 下列函数中,y 与 x 成正比例关系的是()A. y = 2x + 3B. y = 3x^2C. y = 4xD. y = 5/x5. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^26. 一个长方形的长是 8 厘米,宽是 3 厘米,那么它的周长是()A. 20 厘米B. 24 厘米C. 28 厘米D. 32 厘米7. 下列各图中,全等的是()A.B.C.D.8. 如果一个等腰三角形的底边长是 6 厘米,腰长是 8 厘米,那么它的面积是()A. 24 平方厘米B. 28 平方厘米C. 32 平方厘米D. 36 平方厘米9. 下列各数中,是质数的是()A. 11B. 12C. 13D. 1410. 下列各数中,是偶数的是()A. 23B. 24C. 25D. 26二、填空题(每题5分,共50分)11. (1)一个数的相反数是它本身的数是(),(2)两个数的和为 0,则这两个数互为(),(3)如果 a > b,那么 a - b 的值是()。

12. (1)√64 的值是(),(2)3 的平方根是(),(3)如果 a^2 = 4,那么 a 的值是()。

13. (1)正比例函数 y = 2x 的图象是一条()线,当 x = 1 时,y 的值为(),(2)反比例函数 y = 1/x 的图象是一条()线,当 x = 2 时,y 的值为()。

数学限时训练1-120915

数学限时训练1-120915
小试牛刀
1. 为了解1200名学生对学校某项教改试验的意见,打算从 中抽取一个容量为30的样本,考虑采用系统抽样,则分 段间隔(抽样距)为(A) A. 40 B.30 C.20 D.12 3. 随机抽取某中学甲、乙两班各10 名同学,测量他们的身高 ,获得身 高茎叶图如右图所示。若乙班有60 名同学,通过茎叶图估计乙班有多 少同学身高超过175?甲班样本的 中位数,众数各是多少?
ห้องสมุดไป่ตู้
答案:24;169;168, 179
3. 右图是一容量为100的样本频率 分布直方图,则由图形中的数据, 样本落在[15, 20)内的频数为(B ) A. 20 B. 30 C.40 D.50
4. 某篮球队教练要从甲乙两名运动员中 x甲 x乙 8 挑选一名运动员,甲乙两人进行10轮投 3 2 2 s甲 1 s乙 ; 篮比赛,甲每轮投中的次数分别为9,7, ; 5 8,7,8,10,7,9,8,7,乙每轮投 中的次数分别为7,8,9,8,7,8,9, 8,9,7.分别计算两个样本的平均数 和方差s2, 并估计哪位运动员的水平高。

40分钟限时练习5-挑战2023年中考数学基础满分训练(原卷版)

40分钟限时练习5-挑战2023年中考数学基础满分训练(原卷版)

40分钟限时练习(5)一.选择题(共8小题,满分24分,每小题3分)1.(3分)下列各数中,比﹣4小的数是()A.﹣2.5B.﹣5C.0D.22.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)下列计算正确的是()A.a2+a3=a2B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab24.(3分)若关于x的方程x2+mx﹣2n=0的一个根是2,则m﹣n的值是()A.﹣2B.2C.﹣4D.45.(3分)已知⊙O的半径为3,点P在⊙O外,则OP的长可以是()A.1B.2C.3D.46.(3分)甲、乙、丙、丁四位选手各进行了10次射击,射击成绩的平均数和方差如表:选手甲乙丙丁平均数(环)9.09.09.09.0方差0.251.002.503.00则成绩发挥最稳定的是()A.甲B.乙C.丙D.丁7.(3分)如图,在矩形ABCD中,点C的坐标为(2,3),则BD的长为()A.3B.3√2C.√13D.48.(3分)如图是某商场到地下停车场的手扶电梯示意图,其中AB、CD分别表示地下停车场、商场电梯口处地面的水平线,∠ABC=135°,BC的长约是5√2m,则乘电梯从点B到点C上升的高度h是()A .5√22mB .5mC .52mD .10m二.填空题(共8小题,满分32分,每小题4分)9.(4分)要使分式x+1x−4有意义,则x 的取值应满足 .10.(4分)请你写一个能先提公因式,再运用公式来分解因式的三项式,并写出分解因式的结果 .(答案不唯一)11.(4分)大量事实证明,环境污染治理刻不容缓,据统计,全球每秒钟约有19.2万吨污水排入江河湖海,把19.2万吨用科学记数法表示为 吨.12.(4分)已知a +b =5,ab =3,b a +a b = .13.(4分)小虎同学在解方程组{y =kx +b y =3x的过程中,错把b 看成了6,其余的解题过程没有出错,解得此方程组的解为{x =−2y =−6.又已知直线y =kx +b 过点(1,﹣8),则b 的值为 . 14.(4分)菱形的周长是40cm ,两邻角的比是1:2,则较短的对角线长 .15.(4分)一副三角板如图所示放置,已知斜边互相平行,则∠1的度数为 .16.(4分)如图,在△ABC 中,∠ACB =90°,BC =3,以点C 为圆心的圆与AB 相切,⊙C 的半径为2.4,则AB = .三.解答题(共4小题,满分44分)17.(10分)计算:(1)√−83+√(−1)2−√643×√14;(2)√(−4)2−√−13+√102−62.18.(10分)解方程:(1)2x+1−1x=0;(2)x−2x+2−16x2−4=1.19.(12分)从一副扑克牌中取出红桃J、Q、K和黑桃J、Q、K这两种花色的六张扑克牌,将这三张红桃分为一组,三张黑桃分为另一组,分别将这两组牌背面朝上洗匀,然后从这两组牌中各随机抽取一张,请利用列表或画树状图的方法,求其中一张是J,另一张是Q的概率.20.(12分)如图,在平行四边形ABCD中,点O是对角线AC中点,过点O作EF⊥AC分别交边AB,CD于点E,F.(1)求证:四边形AECF是菱形;(2)当AF平分∠CAD时,且CF=5,DF=2,求AD的值.。

(中考冲刺)中考数学考点解答题限时训练

(中考冲刺)中考数学考点解答题限时训练

中考数学考点解答题限时训练1【有理数】1.有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.2.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?3.观察下列等式,,,将以上三个等式两边分别相加得:.(1)猜想并写出:=.(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:.4.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)星期一二三四五每股涨跌(元)+2﹣0.5+1.5﹣1.8+0.8根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?5.先阅读下面的材料,再解答后面的各题:现代社会对保密要求越来越高,密码正在成:为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q、W、E、…、N、M这26个字母依次对应1,2,3…25,26这26个自然数(见下表):Q W E R T Y U I O P A S D12345678910111213F G H J K L Z X C V B N M14151617181920212223242526给出一个变换公式:将明文转换成密文,如:4⇒,即R变为L.11⇒,即A变为S.将密文转换成明文,如:21⇒3×(21﹣17)﹣2=10,即X变为P13⇒3×(13﹣8)﹣1=14,即D变为F.(1)按上述方法将明文NET译为密文;(2)若按上述方法将明文译成的密文为DWN,请找出它的明文.【无理数与实数】6.计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣17.计算:2﹣1+tan45°﹣|2﹣|+÷.8.如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.(1)求m的值;(2)求|m﹣1|+(m+6)0的值.9.设a,b是任意两个实数,规定a与b之间的一种运算“⊕”为:a⊕b=,例如:1⊕(﹣3)==﹣3,(﹣3)⊕2=(﹣3)﹣2=﹣5,(x2+1)⊕(x﹣1)=(因为x2+1>0)参照上面材料,解答下列问题:(1)2⊕4=,(﹣2)⊕4=;(2)若x>,且满足(2x﹣1)⊕(4x2﹣1)=(﹣4)⊕(1﹣4x),求x的值.10.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【代数式】11.观察下列各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.12.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.13.先观察下列等式,然后用你发现的规律解答下列问题.……(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.14.观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.15.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.【整式】16.先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.17.某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出此题正确的解答过程.18.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:19.如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n 两个量之间的同一关系.(1)根据劳格数的定义,填空:d(10)=,d(10﹣2)=;(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).根据运算性质,填空:=(a为正数),若d(2)=0.3010,则d(4)=,d(5)=,d(0.08)=;(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5356891227 d(x)3a﹣b+c2a﹣b a+c1+a﹣b﹣c3﹣3a﹣3c4a﹣2b3﹣b﹣2c6a﹣3b20.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).【因式分解】21.因式分解:mx2﹣my2.22.阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.23.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.24.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.25.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.【分式】26.先化简,再求值:(1﹣)÷,其中m=2+.27.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.28.化简•﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.29.先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.30.在解题目:“当x=1949时,求代数式的值”时,聪聪认为x只要任取一个使原式有意义的值代入都有相同结果.你认为他说的有理吗?请说明理由.【二次根式】31.先化简,再求值:,其中.32.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.33.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a =,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?34.先化简,后求值:,其中,.35.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.参照(三)式得=;参照(四)式得=.(2)化简:+++…+.【一元一次方程】36.解方程:﹣=1.37.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?38.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.39.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=,b=;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?40.如图,在矩形ABCD中,AB=12cm,BC=6cm.点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6)那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?中考数学考点解答题限时训练2【二元一次方程组】1.解方程组.2.根据图中的信息,求梅花鹿和长颈鹿现在的高度.3.若关于x、y的二元一次方程组的解满足x+y>﹣,求出满足条件的m的所有正整数值.4.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.5.本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:地点票价历史博物馆10元/人民俗展览馆20元/人(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?【一元二次方程】6.已知关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且x12+x22+x1x2﹣17=0,求m的值.7.若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.8.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?9.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.10.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.【分式方程】11.解方程:=.12.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?13.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?14.某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?15.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?【不等式(组)】16.解不等式+1>x﹣3.17.如图,在数轴上,点A、B分别表示数1、﹣2x+3.(1)求x的取值范围;(2)数轴上表示数﹣x+2的点应落在.A.点A的左边B.线段AB上C.点B的右边18.某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.19.小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元)A B第一次2155第二次1365根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.20.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?【平面直角坐标系】21.某市有A,B,C,D四个大型超市,分别位于一条东西走向的平安大路两侧,如图所示,请建立适当的直角坐标系,并写出四个超市相应的坐标.22.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.23.已知:如图,矩形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A坐标为(0,3),∠OAB=60°,以AB为轴对折后,使C点落在D点处,求D点坐标.24.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.25.如图,在直角坐标系中,点A的坐标为(﹣4,0),点C为y轴上一动点,连接AC,过点C作CB⊥AC,交x轴于B.(1)当点B坐标为(1,0)时,求点C的坐标;(2)如果sin A和cos A是关于x的一元二次方程x2+ax+b=0的两个实数根,过原点O作OD⊥AC,垂足为D,且点D的纵坐标为a2,求b的值.【函数基本知识】26.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?27.某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.28.已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:x…123579…y… 1.98 3.95 2.63 1.58 1.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.29.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示.根据图象回答下列问题:(1)小明家离图书馆的距离是千米;(2)小明在图书馆看书的时间为小时;(3)小明去图书馆时的速度是千米/小时.30.如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E 以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2.已知y 与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x的取值范围是;(2)d=,m=,n=;(3)F出发多少秒时,正方形EFGH的面积为16cm2?【一次函数】31.“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?32.如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.33.如图,直线y=2x+3与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.34.某企业开展献爱心扶贫活动,将购买的60吨大米运往贫困地区帮扶贫困居民,现有甲、乙两种货车可以租用.已知一辆甲种货车和3辆乙种货车一次可运送29吨大米,2辆甲种货车和3辆乙种货车一次可运送37吨大米.(1)求每辆甲种货车和每辆乙种货车一次分别能装运多少吨大米?(2)已知甲种货车每辆租金为500元,乙种货车每辆租金为450元,该企业共租用8辆货车.请求出租用货车的总费用w(元)与租用甲种货车的数量x(辆)之间的函数关系式.(3)在(2)的条件下,请你为该企业设计如何租车费用最少?并求出最少费用是多少元?35.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C 港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,a=;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.【反比例函数】36.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.37.已知一次函数y1=kx+b的图象与反比例函数的图象交于A、B两点,且点A的横坐标和点B 的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积.38.如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.39.如图,已知直线AB与x轴交于点C,与双曲线交于A(3,)、B(﹣5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.40.(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:MN∥EF;②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.中考数学考点解答题限时训练3【二次函数】1.如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n 的值.2.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?3.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.4.抛物线y=x2﹣x+2与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,+的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三文科数学周测(第十四周)
一、选择、填空题(每小题7分,共70分)
1.如图,几何体的正视图和侧视图都正确的是( B )
2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为: ①长方形;②正方形;③圆;④椭圆.其中正确的是( C )
A .①②
B .③④
C .②③
D .①④
3.一条直线l 上有相异三个点A 、B 、C 到平面α的距离相等,那么直线l 与平面α的位置关系是( D )
A .l ∥α
B .l ⊥α
C .l 与α相交但不垂直
D .l ∥α或l ⊂α
4.平面α∥平面β的一个充分条件是( D )
A .存在一条直线a ,a ∥α,a ∥β
B .存在一条直线a ,a ⊂α,a ∥β
C .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α
D .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α
5.已知α∥β,a ⊂α,B ∈β,则在β内过点B 的所有直线中( B )
A .不一定存在与a 平行的直线
B .存在唯 一 一 条与a 平行的直线
C .存在无数条与a 平行的直线
D .只有两条与a 平行的直线
6.平面α与平面β平行的条件可以是( A )
A. α内的任何一条直线都与β平行
B.直线a//α,a//β
C.直线a α⊂,直线b β⊂,且a//β,b//α
D. α内有无穷多条直线与β平行;
7.如图所示,在空间四边形ABCD 中,点E 、H 分别是边AB 、AD 的
中点,F 、G 分别是边BC 、CD 上的点,且CF CB =CG CD =23,则( D )
A .EF 与GH 平行
B .EF 与GH 异面
C .EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上
D .EF 与GH 的交点M 一定在直线AC 上
8.a ,b ,c 表示三条不同的直线,γ表示平面,给出下列命题:
①若a ∥b ,b ∥c ,则a ∥c ; ②若a ⊥b ,b ⊥c ,则a ⊥c ; ③若a ∥γ,b ∥γ,则a ∥b ; ④若a ⊥γ,b ⊥γ,则a ∥b . 其中真命题的序号是 ① ④
题号
1 2 3 4 5 6 7 答案
9.若某空间几何体的三视图如图所示,则该几何体的体积是 1
10.考察下列三个命题,在“________”处都缺少同一个条件,补上这个条件使其构成真命题(其中l 、m 为直线,α、β为平面),则此条件为 α⊄l
① ⎭⎪⎬⎪⎫m ⊂αl ∥m ⇒l ∥α;②
⎭⎪⎬⎪⎫l ∥m m ∥α ⇒l ∥α;③ ⎭
⎪⎬⎪⎫l ⊥βα⊥β ⇒l ∥α. 二、、证明题(30分)
11.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、P 、Q 分别是BC 、C 1D 1、AD 1、BD 的中点.
(1)求证:PQ ∥平面DCC 1D 1;
(2)求证:EF ∥平面BB 1D 1D .
证明:(1)法一:连接AC 、CD 1,AC ∩BD =Q .∵P 、Q 分别为AD 1、AC 的中点, ∴PQ ∥CD 1.又CD 1⊂平面DCC 1D 1,
PQ ⊄平面DCC 1D 1,
∴PQ ∥平面DCC 1D 1.
法二:取AD 的中点G ,连接PG ,GQ ,
则有PG ∥DD 1,GQ ∥DC ,
∴平面PGQ ∥平面DCC 1D 1.
又PQ ⊂平面PGQ ,
∴PQ ∥平面DCC 1D 1.
(2)法一:取B 1D 1的中点Q 1,
连接BQ 1、FQ 1,则有FQ 1 // 12
B 1
C 1,∴BE // FQ 1. ∴四边形BEFQ 1是平行四边形.
∴EF ∥BQ 1.
又EF ⊄平面BB 1D 1D ,
BQ 1⊂平面BB 1D 1D ,
∴EF ∥平面BB 1D 1D .
法二:取B1C1的中点E1,
连接EE1,FE1,则有FE1∥B1D1,EE1∥BB1,∴平面EE1F∥平面BB1D1D又EF⊂平面EE1F,∴EF∥平面BB1D1D.。

相关文档
最新文档