反应堆热工水力学15
反应堆热工水力学课后习题讲解(清华大学出版社)

反应堆热工水力学习题讲解2.1查水物性骨架表计算水的以下物性参数:(1)求16.7MPa时饱和水的动力粘度和比焓;(2)若324℃下汽水混合物中水蒸气的质量比是1%,求汽水混合物的比体积;(3)求15MPa下比焓为1600kJ/kg时水的温度;(4)求15MPa下310℃时水的热导率。
2.2计算核电厂循环的热效率:49第三章3.1的热导率,并求1600℃下97%理论密度的UO2与316℃下金属铀的热导率做比较。
13:14:49习题讲解83.2,慢化剂为重水假设堆芯内所含燃料是富集度3%的UO2D2O,慢化剂温度为260℃,并且假设中子是全部热能化的,在整个中子能谱范围内都适用1/v定律。
试计算中子注量率为1013 1/(cm2·s)处燃料元件内的体积释热率。
= 0.2753.3试推导半径为R ,高度为L ,包含n 根垂直棒状燃料元件的圆柱形堆芯的总释热率Q t 的方程:1Q tnLA u q V ,maxF u其中,A u 是燃料芯块的横截面积。
4.1燃料元件,已知表面热有一压水堆圆柱形UO2流密度为1.7 MW/m2,芯块表面温度为400℃,芯块直径为10.0mm,UO2密度取理论密度的95%,计算以下两种情况燃料芯块中心最高温度:(1)热导率为常数,k = 3 W/(m•℃)(2)热导率为k = 1+3exp(-0.0005t)。
热导率为常数k不是常数,要用积分热导法4.2有一板状燃料元件,芯块用铀铝合金制成(铀占22%重量),厚度为1mm,铀的富集度为90%,包壳用0.5mm厚的铝。
元件两侧用40℃水冷却,对流传热系数h=40000 W/(m2•℃),假设:气隙热阻可以忽略铝的热导率221.5 W/(m•℃)铀铝合金的热导率167.9 W/(m•℃)裂变截面520×10-24cm2试求元件在稳态下的径向温度分布4.3已知某压水堆燃料元件芯块半径为4.7mm,包壳内半径为4.89mm,包壳外半径为5.46mm,包壳外流体温度307.5 ℃,冷却剂与包壳之间传热系数为 28.4 kW/(m2•℃),燃料芯块热导率为 3.011 W/(m•℃),包壳热导率为18.69 W/(m•℃),气隙气体的热导率为0.277W/(m•℃)。
反应堆热工水力学

查附录 1 可知 316 ℃下金属铀热导率为 30.28 W•m-1•℃-1 ,比UO2的大一个数量级。
3.2 假设堆芯内所含燃料是富集度 3%的UO2,慢化剂为重水D2O, 慢化剂温度为 260 ℃, 并且假设中子是全部热能化的,在整个中子能谱范围内都适用 1/v定律。 试计算中子注量 率为 1013(cm-2·s-1)处燃料元件内的体积释热率。
解:查表 3-4 等可得:σ f ,0.0253 = 582 b, ρUO2 = 10.41 ×103 kg/m3, Fu = 97.4% ,则有:
C5
=
1+
1 0.9874(1/
e5
−1)
=
3.037%
MUO2 = C M 5 235UO2 + (1 − C8 )M 238UO2 = 2.6991×105 (kg/mol)
⇒ T (r)
=
tC
+ qV
d2 (
4
−
r2) / 4k
所以 T0 = tC + qV d 2 /16k ○2
(3)球 以球心为原点建立球体系,则稳态导热方程:
d 2T dr 2
+ 2 dT r dr
+ qV k
=0,0< r ≤ d /2
边界条件:i.
T (r) |r=d / 2 = tC ; ii.
(W/m•℃)
最后内插得到 16 MPa、310 ℃下的热导率:
2
k
=
k1
+ (k′ −
k1 )
t − t1 t′ − t1
=
反应堆热工水力学部分答案0

温度 t /℃
饱和水比体积v×103 /m3/kg
340
1.639
350
1.741
内插得到 344 ℃下饱和水的比体积:
饱和蒸汽比体积v /m3/kg 0.010779 0.008805
v′(344o C) = v′(340o C) + [v′(350o C) − v′(340o C)] 344 − 340 = 1.680×10-3 (m3/kg) 350 − 340
由于为 97%理论密度的UO2,应用Maxwell-Euken关系式计算:
kε
=
1.025(1− ε ) 0.95(1+ βε )
k95
其中,ε = 0.97, β = 0.5,则有:
k97
=
1.025(1− 0.03) 0.95(1+ 0.5× 0.03)
=
2.44
或
2.38
(W•m-1•℃-1)
d 2T dx2
+ qV k
=0,0< x ≤ d /2
-d/2 O d/2
x
边界条件:i.
T (x) |x=d / 2 = tC ; ii.
dT = 0 . dx x=0
方程两边积分一次:
dT dx
+ qV k
x = C1
4
ii ⇒ C1
=0⇒
dT dx
+
qV k
x = 0 ,两边再积分一次:
T (x)
250 ℃
300 ℃
15.0 MPa
638.3
565.8
17.5 MPa
639.1
外插得到 15.0 MPa、310 ℃下的热导率:
热工水力学

1.反应堆的热源来自核裂变过程中释放出来的能量,每次裂变释放出的总能量平均约为200MeV2.压水堆常使用UO2弥散体和UO2陶瓷燃料;氧-铀原子比为2的UO2的熔点是2800℃;现代压水堆都使用Zr-2 或者Zr-4 作为燃料包壳。
实际设计时,选用的包壳外表面的最高温度一般不超过350℃。
3.轻水具有良好的导热性能,比热和汽化潜热都比较大,价格很便宜,所需的ji 功率较小,是性能比较好的冷却剂。
缺点是中子吸收截面较大,沸点低,在高温下运行保持液相需要较高的压力。
4.对于压水堆棒状燃料元件,间隙热导的经验值约是5678w/(m2.℃) 。
5.燃耗越深,UO2的热导率越小,熔点越低。
6.有限圆柱体的均匀裸堆,堆芯体积释热率沿径向呈零阶贝塞尔函数分布,沿轴向呈余弦函数分布。
7.将堆芯内燃料芯块核反应释热传输到反应堆外的过程依次是燃料元件的导热、包壳外表面与冷却剂之间的传热和冷却剂的输热。
8.单相强迫对流传热系数的准则表达式。
通道的水力等效直径9.临界热流密度的两种主要传热机理是汽泡合并和流体动力学不稳定性强制对流沸腾可能出现的两种临界热流密度工况分别是偏离泡核沸腾和蒸干;前者常发生在高热流密度,欠热泡核沸腾或低含气率的饱和泡核沸腾的沸腾传热工况之后,后者常发生在低热流密度通过液膜的强制对流蒸发的沸腾传热工况之后。
当发生偏离泡核沸腾更容易引起壁面发生快速烧毁。
10.流体流动的总压降包括壁面摩擦压降、流体加速度压降、提升压降和形阻压降.其中壁面摩擦压降和形阻压降是不可逆的压降损失。
11.在均匀加热向上流动的垂直通道中,随含气率的增加,可能依次出现汽水两相流的典型流型是:泡状流、弹状流、环状流、滴状流12.泡核沸腾的传热机理主要有汽化潜热传热、汽液置换传热和微对流传热13.当平均流体温度上升到饱和温度温度时,就开始了饱和泡核沸腾。
该起始点称为热平衡态饱和沸腾起始点,在改点上热平衡含气x E=0 而中心液核达到饱和温度那一点称为真正饱和沸腾起始点。
反应堆热工水力复习要点整理

反应堆热工水力复习要点整理第一章1、压水堆重要参数:(1)压力(MPa):—回路工作压力15. 5MPa(2)温度(°C):冷却剂进口温度296.4,冷却剂出口温度327.6,慢化剂平均温度310(3)燃料(U02):浓缩度 1. 8%-2. 4%第二章在压水动力堆的设计中,通常取燃料元件的释热量占总释热量的97. 4%,而在沸水堆中取燃料元件的释热量占堆总释热量的96%。
2、功率彫响因素:(1)燃料布置(2)控制棒(3)水隙及空泡:水隙会引起附加幔化作用,使该处中子通量上升,因而使水隙周用元件的功率升髙,从而增大了功率分布的不均匀程度。
3、控制棒中的热源:吸收堆芯Y辐射以及吸收控制棒本身因(n, u )或(n, 丫)反应所产生热量的全部或一部分。
4、慢化剂中的热源:慢化剂中所产生的热量主要是裂变中子的慢化、吸收裂变产物放出的0粒子的一部分能量、吸收各种Y射线的能量。
5、结构材料的热源:几乎完全是吸收来自堆芯的各种Y辐射。
6、停堆后功率:反应堆停堆后,其功率并不是立刻降为零,而是按照一个负的周期迅速地衰减,周期的长短最终取决于寿命最长的放射缓发中子的裂变核群的半衰期。
当反应堆由于事故或正常停堆后,堆内自持的链式裂变反应虽然随即终止,但还有热量不断地从芯块通过包壳传入冷却剂中。
这些热量一部分来自撚料棒内储存的显热,热量的另外两个来源是剩余中子引起的裂变和裂变产物的衰变及中子俘获产物的衰变。
因此,在反应堆停堆后,还必须采取一定的措施对堆芯继续进行冷却,以便排除这些热量防止损坏燃料元件。
7、衰变功率:裂变产物的放射性衰变和中子俘获产物的放射性衰变所产生的能量。
第三章1. 热传导微分方程:K a dr%. 一体积释热率(w/〃F)K —热导率(W/(m・"C))a = K/(p-c p)2、圆柱体燃料元件芯块温度场:忽略轴向导热,可以推得:33“dr r dr K U或者由物理意义,可以写出(中心温度变化率为零):2记最后可以解得:纸44:体积释热率,表面热流^度,线功率3、平板形燃料元件芯块温度场: 忽略轴向导热,可以推得:最后可以解得:◎-平板半厚度4、平板形包壳温度场: 由傅里叶上律有:dt解得: =q62匕t -/ =—66-包壳厚度5、圆壁形包壳温度场:由傅里叶泄律有:Q = -K C 2TO L —dr最后解得:==Q 1/ — G 1/ - 4 In 厶17UC C L r ci 2 恋c r ci 27tK c d ci6、单相对流换热公式:Q = hF ・卜巧△0 -膜温差7、强迫对流换热:圆形通道内强迫对流换热公式D-B 公式:M/= 0.023 Re° Pr"几-静止流体导热系数 ”-加热取04冷却取0・3 〃-管道直径和特征长度8、 沸腾曲线(参考书P37图3-9)壁而过热度f 饱和温度)=At xal 和热流密度的关系曲线称为沸腾曲线。
压水堆核电站基础:第三章 热工水力学基础知识

系统与设备(3)
3
235U每次裂变释放的能量(单位:MeV)
能量来源 裂变碎片动能 裂变中子动能 瞬发γ射线
能量 射程 168(84) 极短 5(2.5) 中 7(3.5) 长
裂变产物的β射线 7(3.5) 短
裂变产物的γ射线
6(3) 长
非裂变反应(n,γ) 7(3.5) 放出的β、γ射线
总计 系统与设备(3)
包壳间隙处放热系数。
为了获得最大的允许线功率密度和最小的堆芯尺寸,
系统与设备(必3) 须使λf 、 λc 、α和αG达到最大值。
13
热辐射
一个表面积S的物体在单位时间内辐射的热量是:
E = εσ 0ST 4
S为物体的辐射表面积,m2;σ0 为黑体辐射常 数,ε 为物体的黑度,T为表面的绝对温度,K
为了提高整个电厂的循环效率,需要提高二回路蒸 汽的温度和压力,从而必须提高一回路冷却剂的温 度,因而必须提高一回路压力。大亚湾核电站的一 回路冷却剂压力为15.5MPa。波动范围为0.2MPa。
系统与设备(3)
7
燃料元件内的传热与冷却
燃料元件内部的热量传给包壳外边的冷却剂 流体是一个复杂的传热过程,包括:
系统与设备(3)
10
从包壳表面到冷却剂的放热过程
从燃料元件包壳表面到冷却剂的放热过程可以用 牛顿冷却定律描述 q = α (Ts − Tf )(千焦 / 米2 ⋅小时)
q表示单位时间单位传热表面积上的传热量 (千焦/米2 •小时),称为热负荷;
Ts为包壳壁面温度,Tf为冷却剂主体温度; α为对流传热系数。 对流传热系数与流体性质、平均速度、流动状态 和是否沸腾等因素有关,一般由实验确定。
200
反应堆热工水力20个知识点
反应堆热工水力20个知识点一. 需要掌握的基本概念1. 堆内热源的由来和分布特点。
2. 体积释热率基本概念和计算方法?3. 有限圆柱形反应堆. 无干扰. 均匀裸堆条件下的功率分布规律?4. 影响堆芯功率分布的因素主要有哪些?5. 控制棒中的热源来源是什么?6. 热中子反应堆中慢化剂中的热源来源是什么?7. 反应堆停堆后的功率由哪几部分组成?有何特点。
.8. 以铀-235作为燃料的压水堆,每次裂变释放出来的总能量约为多少?在大型压水堆的设计中,往往取燃料元件的释热量占堆总释热量的百分之几?9 与早期压水堆中采用的均匀装载方案相比,现代大型压水堆采用分区装载方案的优点是什么?10. 什么是积分热导率?为什么要引入积分热导率?11. 棒状元件均匀释热条件下的积分热导率导出。
12. 板状元件均匀释热条件下的积分热导率导出。
13. 什么是沸腾临界,沸腾临界可以分为哪两种?14.在垂直加热蒸发管中,一般公认的两相流流型主要有哪几种?15.在压水堆燃料元件的传热计算中,影响包壳外表面最高温度t cs·max 的主要因素有哪些?用锆合金做的包壳的外表面工作温度一般不得超过多少度?16. 气隙传热有哪两种基本模型?各适用于何种条件?17.压水堆主回路中的总压降由哪几部分组成?对于闭合回路,系统中哪项压降为零。
18.对于单相流,确定某一截面发生临界流的两个等价条件是什么?19. 什么是流动的亚稳态现象?20.什么叫均匀流模型?其基本假设有哪些?分离流模型基本假设有哪些?21.什么叫自然循环?自然循环对核电厂的安全运行有什么意义?导致压水反应堆核电站自然循环流量下降或断流的主要因素有哪些?22.什么是质量含气率. 空泡份额及容积含气率?23.什么是两相流动不稳定性?两相流动不稳定性有什么危害?24. 什么是水动力学流动不稳定性?水动力学流动不稳定性发生条件是什么?25. 缓解或消除管间脉动的方法有哪些?26. 已知一段均匀加热稳定流动水平管道,进口为过冷水,出口为两相混合物,导出总压降与流量之间的关系。
反应堆热工水力学
1.核燃料的化合物主要有:氧化物、碳化物和氮化物。
2.二氧化铀的特点:一、没有同素异形体,在整个熔点以下温度范围内只有一种结晶形态,各向同性,允许有较深的燃耗。
二、熔点高,使用范围大。
三、在高温水和液态钠中具有良好的耐腐蚀性能。
四、与包壳材料的相容性好。
3.二氧化铀熔点:2805±15℃,燃耗越深,下降越多。
4.二氧化铀理论密度:10.98g/cm3。
5.二氧化铀热导率:热导率随燃耗的增加而减小。
6.包壳作用:一、保护燃料不受冷却剂的化学腐蚀和机械侵蚀;二、包容裂变气体和其它裂变产物;三、规定燃料元件几何形态的支承结构。
7.包壳材料选择:一、中子吸收截面要小,感生放射性要弱;二、具有较好的导热性能;三、与核燃料相容性要好;四、具有良好的机械性能;五、应有良好的抗腐蚀性能;六、具有良好的辐照稳定性;七、易加工,成本低,便于后处理。
8.压水堆:锆合金,快堆:不锈钢和镍基合金,高温气冷堆:石墨。
9.锆合金的优点:中子吸收截面小,具有良好的机械性能和抗腐蚀性能。
10.冷却剂:对反应堆进行冷却,并把链式裂变反应释放的热量带到反应堆外面的液体或气体介质。
11.冷却剂要求:一、中子吸收截面小,感生放射性弱;二、具有良好的物性;三、粘度低,密度大;四、与燃料和结构材料的相容性好;五、具有良好的辐照稳定性和热稳定性;六、慢化能力与反应堆类型匹配;七、成本低,使用方便。
12.每次裂变放出的总能量E f=200Mev13.燃料元件的释热量占堆总释热量的97.5%14.堆芯平均比功率:是在整个堆芯内,平均每千克燃料所发出的热功率。
15.堆芯平均热功率密度:在整个堆芯内,平均每单位堆芯体积所发出的功率。
16.体积释热率:单位时间,堆芯内某点附近单位体积燃料所释放出来的能量。
17.影响堆芯功率分布的因素:一、燃料布置;二、控制棒;三、水隙及空泡;四、燃料元件的自屏蔽效应。
18.燃料均匀装载和分区装载:均匀装载中心区会出现一个高的功率峰值,限制整个反应堆的总功率输出值,堆芯的平均燃耗低;分区装载与之相反。
反应堆热工水力复习要点整理
反应堆热工水力复习要点整理第一章1、压水堆重要参数:(1)压力(MPa):一回路工作压力15.5MPa(2)温度(℃):冷却剂进口温度296.4,冷却剂出口温度327.6,慢化剂平均温度310(3)燃料(UO2):浓缩度1.8%-2.4%第二章1、裂变能分布:在压水动力堆的设计中,通常取燃料元件的释热量占总释热量的97.4%,而在沸水堆中取燃料元件的释热量占堆总释热量的96%。
2、功率影响因素:(1)燃料布置(2)控制棒(3)水隙及空泡:水隙会引起附加慢化作用,使该处中子通量上升,因而使水隙周围元件的功率升高,从而增大了功率分布的不均匀程度。
3、控制棒中的热源:吸收堆芯γ辐射以及吸收控制棒本身因(n,α)或(n,γ)反应所产生热量的全部或一部分。
4、慢化剂中的热源:慢化剂中所产生的热量主要是裂变中子的慢化、吸收裂变产物放出的β粒子的一部分能量、吸收各种γ射线的能量。
5、结构材料的热源:几乎完全是吸收来自堆芯的各种γ辐射。
6、停堆后功率:反应堆停堆后,其功率并不是立刻降为零,而是按照一个负的周期迅速地衰减,周期的长短最终取决于寿命最长的放射缓发中子的裂变核群的半衰期。
当反应堆由于事故或正常停堆后,堆内自持的链式裂变反应虽然随即终止,但还有热量不断地从芯块通过包壳传入冷却剂中。
这些热量一部分来自燃料棒内储存的显热,热量的另外两个来源是剩余中子引起的裂变和裂变产物的衰变及中子俘获产物的衰变。
因此,在反应堆停堆后,还必须采取一定的措施对堆芯继续进行冷却,以便排除这些热量防止损坏燃料元件。
7、衰变功率:裂变产物的放射性衰变和中子俘获产物的放射性衰变所产生的能量。
第三章1、热传导微分方程:)c κ/(ρα))W/(m /W 1p 32⋅=⋅--∂∂⋅=+∇C m q t q t o v v热导率()体积释热率(κτακ2、圆柱体燃料元件芯块温度场:忽略轴向导热,可以推得:0122=++uvq dr dt r dr t d κ 或者由物理意义,可以写出(中心温度变化率为零):H r q drdtrH v u 22ππκ⋅=⋅⋅ 最后可以解得:密度,线功率体积释热率,表面热流:,,412420l v ulu u u u v u q q q q r q r q t t πκκκ===-3、平板形燃料元件芯块温度场:忽略轴向导热,可以推得:uv q dx td κ-=22 最后可以解得:平板半厚度-==-u u uu u v u q q t t δκδκδ22204、平板形包壳温度场: 由傅里叶定律有:dxdt q cκ-= 解得:包壳厚度-=-c cccs ci qt t δδκ5、圆壁形包壳温度场: 由傅里叶定律有:drdt rLQ c πκ2-= 最后解得:cics c l ci cs c l ci cs c cs ci d d q r r q r r LQ t t ln 2ln 2ln2πκπκπκ===- 6、单相对流换热公式:膜温差-∆∆⋅=f f hF Q θθ7、强迫对流换热:圆形通道内强迫对流换热公式D-B 公式:管道直径和特征长度冷却取加热取静止流体导热系数---======d n hd Nu a v c v d d Nu p n3.0,4.0Pr Re Pr Re 023.08.0λλλμνμρν8、沸腾曲线(参考书P37图3-9)壁面过热度sat sw t t t ∆=-(饱和温度)和热流密度的关系曲线称为沸腾曲线。
反应堆热工水力
第一章核反应堆是一个能维持和控制核裂变链式反应,从而实现核能到热能转换的装置。
传热机理—热传导、热对流、热辐射世界上第一座反应堆是1942 年美国芝加哥大学建成的。
核反应堆按照冷却剂类型分为轻水堆、重水堆、气冷堆、钠冷堆按照用途分为实验堆、生产堆、动力堆按中子能量分类:热中子堆、中能中子堆、快中子堆以压水堆为热源的核电站称为压水堆核电站主要有核岛和常规岛核岛的四大部件为蒸汽发生器、稳压器、主泵、堆芯五种重要堆型压水堆沸水堆重水堆高温气冷堆钠冷快中子增值堆水作为冷却剂慢化剂的优缺点:轻水作为冷却剂缺点是沸点低,优点具有优良热传输性能,且价格便宜。
描述反应堆性能的参数反应堆热功率[MWh]:反应堆堆芯内生产的总热量电厂功率输出[MWe]:电厂生产的净电功率电厂净效率[%]:电厂电功率输出/反应堆热功率容量因子[%]:某时间间隔内生产的总能量/[(电厂额定功率)×该时间间隔]功率密度[MW/m3]:单位体积堆芯所产生的热功率线功率密度[kW/m]:单位长度燃料元件内产生的热功率比功率[kW/kg]:反应堆热功率/可裂变物质初始总装量燃料总装量[kg]:堆芯内燃料总质量燃料富集度[%]:易裂变物质总质量/易裂变物质和可转换物质总质量比燃耗[MWd/t]:堆芯工作期间生产的总能量/可裂变物质总质量本章主要内容1.压水堆的主要特征2 沸水堆和重水堆的主要特征3 热工水力学分析的目的与任务(这个可以忽略)第二章(本章可以覆盖部分计算题)热力学第一定律:热力系内物质的能量可以传递,其形式可以转换,在转换和传递过程中总能量保持不变。
热力学第二定律(永动机不可能制成):不可能将热从低温物体传至高温物体而不引起其它变化;不可能从单一热源取热,并使之完全转变为有用功而不产生其它影响;不可逆热力过程中的熵的微增量总是大于零。
最基本的状态参数:压力(压强Pa,atm,bar,at)比体积(m3/kg)温度内能:系统内部一切微观粒子的一切运动形式所具有的能量总和,U焓:热力学中表示物质系统一个状态参数–H,数值上等于系统内能加上压强与体积的乘积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14:22:16
稳定准则
eω t ∆qm ε=
∂ ( ∆pex ) ∂ ( ∆pfric ) − ∂qm ∂qm ω= I
∂ ( ∆pex ) ∂qm
14:22:16
≤
∂ ( ∆pf ) ∂qm
4
流动不稳定性
两相压降特性和流动不稳定性
汽
A C
∆p
液
pout ql(z) pin
g
14:22:16
稳态设计
9
作业
7.4 反应堆回路如图所示, 试证明当主循环泵停止转 动时系统的自然循环驱动 压头为∆pd=(ρ1-ρ2)gL, 其中ρ1,ρ2分别为进出反 应堆的冷却剂密度,L为 反应堆半高处至蒸汽发生 器半高处的距离(即冷热 源中心的高差),并且假 设密度 ρ 随温度的变化 是线性的。
7 反应堆稳态热工设计
7.1 热工设计准则 7.2 热管因子 7.3 单通道设计方法 7.4 自然循环计算及稳定性分析
两相压降特性和流动不稳定性
汽
A C
∆p
液
pout ql(z) pin
g
L
D B
0 两相流区 qm 1 qm 2 单相液区 qm 3 qm
qm hin
14:22:16
流动不稳定性
2
微扰分析法
流量方程: 扰动方程: 引入微扰: 得到:
dqm I = ∆pex − ∆pfric dt
∂ ( ∆pfric ) ∂∆qm ∂ ( ∆pex ) I = ∆qm − ∆qm ∂t ∂qm ∂qm
∆qm ε= eω t
∂ ( ∆pex ) ∂ ( ∆pfric ) − ∂qm ∂qm ω= I
蒸汽发生器
LSG
ρ2
主泵
ρ1
L
LR
反应堆
14:22:16
稳态设计
10
L
D B
0 两相流区 qm 1 qm 2 单相液区 qm 3 qm
qm hin
14:22:16
流动不稳定性
5
自然循环
分析方法: 驱动压头=阻力压头
14:22:16
自然循环Biblioteka 6图表法计算自然循环流量
∆p
∆p d
∆p r
∆p 0
qm 1 qm 2 qm 0
14:22:16 自然循环
qm 3
qm 4
qm
7
哪里是不稳定的?
14:22:16
稳态设计
8
习题
7.3 已知压水反应堆的热功率为2727.27 MW;燃料元件包壳外 径10 mm,包壳内径8.6 mm,芯块直径8.43mm;燃料组件采 用15×15正方形排列,每个组件内有20个控制棒套管和1个中 子通量密度测量管,燃料棒的中心栅距13.3 mm,组件间水隙1 mm。系统工作压力15.48 MPa,冷却剂平均温度302℃,堆芯 冷却剂平均温升39.64℃,冷却剂旁流系数9%,堆下腔室流量 不均匀系数0.05,燃料元件包壳外表面平均热流密度652.76 kW/m2,FqN = 2.3,FRN = 1.438,F∆hE = 1.08,FqE = 1.03。 又假设在燃料元件内释热份额占总发热量的97.4%,堆芯高度 取3.29m,并近似认为燃料元件表面最大热流量、元件表面最 高温度和元件中心最高温度都发生在元件半高处。已知元件包 壳的热导率kc = 0.00547(1.8tcs+32)+13.8 W/(m•℃),试 用单通道模型求燃料元件中心最高温度。