圆的基本性质
圆的性质与定理

圆的性质与定理圆是几何学中的重要概念之一,具有许多独特的性质与定理。
本文将探讨圆的性质与定理,帮助读者更好地理解和应用圆的相关知识。
一、圆的定义圆是由平面上所有到一个固定点距离相等的点构成的集合。
这个固定点称为圆心,到圆心距离相等的线段称为半径。
用符号"O"表示圆心,符号"r"表示半径,圆的表示方法为“⭕O(r)”。
二、圆的基本性质1. 圆的任意两点与圆心的距离相等。
2. 圆的半径是其上任意一条线段的长度。
三、圆的定理1. 切线定理在圆上,从圆外一点引一条切线,切点与切线上这个点连线构成的角为直角。
2. 弧与角定理圆上的弧都对应着一定的角度,且弧度与弧长之间存在以下关系:弧长 = 半径 ×弧度。
3. 弧的夹角定理两条弧的夹角等于它们所对应的圆心角的一半。
4. 弧的角度定理圆的一周对应的弧长为360度。
5. 弦定理在圆上,连接两点形成的线段叫做弦。
当两条弦的交点在圆内时,交点两侧弦的长度之积等于交点所在的直径的长度之积。
6. 弧的角平分线定理一条弧的角平分线等于它所对应的圆心角的一半。
7. 弦切定理在圆上,连接圆内一点与该点和圆心之间交点形成的弦,与从该点引出的切线垂直。
8. 弧切定理在圆上,连接圆内一点与该点所在的弧上两点形成的弦,与从该点引出的切线垂直。
9. 弧线辅助角定理圆上两点和圆心连线形成的角等于这两点所对应的圆弧的一半。
10. 垂径定理在圆上,从圆心引一条与弦垂直的线段,该线段叫做垂径。
垂径恰好平分弦。
11. 弦心角定理弦心角等于它所对应的弧的一半。
12. 圆的对称性圆具有无穷多个对称轴,其中最重要的是直径,即通过圆心且与圆上两点相连形成的线段。
综上所述,圆是由所有到圆心距离相等的点构成的集合,它具有许多独特的性质与定理。
通过了解和应用这些性质与定理,我们可以更好地理解圆的特点,解决与圆相关的几何问题。
无论是平面几何还是立体几何等领域,圆的性质与定理都是基础且重要的知识点。
圆的性质及相关定理

圆的性质及相关定理圆是几何学中的基本图形之一,它具有许多独特的性质和定理。
在本文中,我们将探讨圆的性质以及与之相关的一些定理。
一、圆的定义与基本性质圆可以被定义为平面上所有到一个给定点距离相等的点的集合。
这个给定点被称为圆心,而到圆心的距离被称为半径。
圆的基本性质包括以下几点:1. 圆的直径是通过圆心的一条线段,它的两个端点都在圆上。
直径的长度是半径长度的两倍。
2. 圆的周长是圆上任意两点之间的弧长,它等于圆的直径乘以π(pi)。
周长也可以被称为圆的周长。
3. 圆的面积是圆内部所有点的集合。
圆的面积等于半径的平方乘以π。
二、圆的相关定理在圆的研究中,有一些重要的定理被广泛应用。
下面我们将介绍其中几个。
1. 弧长定理弧长定理指出,在同一个圆上,两个弧所对应的圆心角相等时,它们的弧长也相等。
这个定理可以用来求解弧长,也可以用来证明一些与圆有关的性质。
2. 弧度制与角度制弧度制是一种用弧长来度量角度大小的方法。
在弧度制中,一个圆的周长被定义为2π弧度。
而角度制是我们常用的度量角度大小的方法。
两者之间可以通过一定的换算关系进行转换。
3. 切线定理切线定理是指与圆相切的直线与半径所构成的角是直角。
这个定理在解决与圆相关的几何问题时非常有用,可以帮助我们确定切线的位置和方向。
4. 正切定理正切定理指出,与圆相切的半径与切线所构成的角的正切值等于切线上相应弧所对应的角的正切值。
这个定理可以用来求解与切线相关的角度问题。
5. 弦切角定理弦切角定理是指,当一个弦与切线相交时,切线与弦所夹的角等于弦上所对应的弧所对应的角的一半。
这个定理可以用来求解与弦和切线相关的角度问题。
三、圆的应用圆的性质和定理在实际生活中有着广泛的应用。
以下列举几个例子:1. 圆的运动轨迹当一个点以固定的速度绕着另一个点旋转时,它的轨迹是一个圆。
这个性质被广泛应用在天文学中,用来描述行星、卫星等天体的运动。
2. 圆形建筑与设计圆形建筑具有独特的美学效果和结构稳定性。
九年级数学圆的基本性质

九年级数学圆的基本性质九年级数学:圆的基本性质及其应用圆的性质是九年级数学中的一个重要内容,它在实际生活和后续数学知识中都具有重要的地位。
本文将详细介绍圆的基本性质,并通过实例阐述其应用。
一、圆的基本定义圆是一种几何图形,由一条固定长度的线段(称为半径)围绕一个定点(称为圆心)旋转一周所形成的封闭曲线。
圆具有如下基本元素:1、圆心:定义圆的中心点,用符号“O”表示。
2、半径:连接圆心与圆上任意一点的线段,用符号“r”表示。
3、直径:通过圆心的线段,其长度为半径的两倍,用符号“d”表示。
4、周长:圆的所有边界点组成的封闭曲线长度,用符号“C”表示。
5、面积:圆所占平面的大小,用符号“S”表示。
二、圆的基本性质1、圆的确定:到一个定点距离等于定长的所有点组成的图形是一个圆。
2、圆心与半径的关系:在同圆或等圆中,半径等于直径的一半。
3、圆的基本性质:圆是轴对称图形,其对称轴有无数条,任何一条直径所在的直线都是其对称轴。
4、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
5、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
6、圆周角定理:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等。
7、弦切角定理:在圆中,与圆相交的直线被圆截得的线段相等。
三、圆的性质的应用1、日食和月食:当月球绕地球运动时,太阳、地球和月球在同一直线上,太阳照射在月球的背面,地球上的观察者会看到月偏食或月全食。
这是由于太阳照射在月球的背面,使得月球背面的影子投射在地球上,形成了月食。
2、汽车轮胎:汽车轮胎的设计考虑了圆的性质。
因为车轮是由一个圆柱体和两个半圆形组成的,所以当车轮转动时,可以平稳地行驶。
3、计算圆的周长和面积:圆的周长和面积是圆的两个基本量,可以用于计算圆的周长和面积,也可以用于计算球体、圆柱、圆锥等几何形体的体积和表面积。
4、工程设计:在工程设计中,经常需要用到圆的性质。
例如,在设计桥梁时,需要考虑桥墩之间的距离以及桥墩的形状;在设计房屋时,需要考虑窗户和门的形状和大小。
圆的基本性质

圆的基本性质圆是平面几何的重要内容之一,圆的基本性质具有非常广泛的应用,因此,它也是数学竞赛命题的热点.一、基础知识圆的基本性质有:1.圆是轴对称图形,也是中心对称图形.对称轴是任何一条直径所在的直线,对称中心是它的圆心,并且具有绕其圆心旋转的不变性.2.直径所对的圆周角是直角.3.垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.4.在同圆或等圆中,两个圆心角和它所对的两条弧、两条弦以及两个弦心距这四组量中,如果其中一组量相等,则其它三组量也都分别相等.5.如果弦长为2a,圆的半径为R,那么弦心距d为.例1 已知⊙O的半径OA=1,弦AB、AC的长分别是、.求∠BAC的度数.图1导析:如图1,作OD⊥AB,OE⊥AC,则AD=/2,AE=/2.在Rt△ODA中,cos∠OAD=/2,则∠OAD=45°;在Rt△OEA中,cos∠OAE=/2,则∠OAE=30°.当AC、AB位于OA两侧时,有∠BAC=∠OAB+∠OAE=75°;当AC、AB位于OA同侧时,有∠BAC=∠OAB-∠OAE=15°.说明:本题入手不难,能否完整作答,关键在于对弦AB、AC与直线OA的位置关系进行讨论.例2 如图2,⊙O是锐角△ABC的外接圆,H是两条高线的交点,OG是外心O到BC边的垂线段.求证:OG=(1/2)AH.图2导析:作直径CE,连结EB、AE,则AE⊥AC.又BH⊥AC,∴EA∥BH.同理可证EB∥AH.∴四边形AEBH是平行四边形.∴AH=EB.在Rt△CEB中,OG∥EB,OC=OE,∴OG是△CEB的中位线,OG=(1/2)EB.故OG=(1/2)AH.二、综合应用由于圆的问题知识容量大,综合性强,方法涉及面广,因而在处理有关圆的问题时,常常要构造直角三角形和寻找相似三角形,利用勾股定理和相似三角形的性质来解决.例3 已知半径为2的⊙O有两条互相垂直的弦AB和CD,其交点E到圆心O的距离为1,求AB2+CD2的值.导析:按照AB和CD都不是直径,AB和CD中有一条是直径分别计算.图3如果AB和CD都不是直径,如图3,作AB和CD的弦心距OF和OG,连结OB、OD,则∠FEG=∠EGO=90°.∴四边形OFEG是矩形,则OF=EG,又OF2+OG2=OE2,∴AB2+CD2=4(AF2+DG2)=4(R2-OF2+R2-OG2)=4(2R2-OE2)=28,其中R为⊙O的半径,下同.如果AB和CD中有一条是直径,不妨设AB是直径,则E为CD的中点.由垂径定理,得(1/2CD)2=AE·EB=(R+OE)(R-OE)=R2-1.∴CD2=4(R2-1)=12.又AB2=4R2=16.于是,AB2+CD2=28.综上可得AB2+CD2=28.例4 已知点A、B、C、D顺次在圆O上,,BM⊥AC,垂足为M.求证:AM=DC+CM.图4导析:由于DC和CM不在一条直线上,要证明其和等于AM,可延长DC,使延长部分等于CM.延长DC到N,使CN=CM(如图4),则∠BCN=∠BAD.又∠ACB=∠ADB,而,则∠ACB=∠BAD,AB=AD,于是∠BCN=∠BCM.从而推知△BCN≌△BCM,得BM=BN.因∠BAM=∠BDM,所以△BAM≌△BDN.得AM=DN=DC+CM.说明:此题即为著名的阿基米德折弦定理.例5 △ABC为锐角三角形,过顶点A、B、C分别作此三角形外接圆的三条直径AA1、BB1、CC1,求证△ABC的面积等于△A1BC、△AB1C、△ABC1的面积之和.图5导析:注意到AA1、BB1、CC1为三角形外接圆的直径,而直径所对的圆周角为直角,联想到三角形垂心的性质,即垂心与各顶点的连线垂直于对边,从而可通过三角形的垂心将△ABC分割为与所求的三个三角形面积分别相等的三个三角形.如图5,设H是△ABC的垂心,连结AH、BH、CH,则AH⊥BC,BC1⊥BC,∴AH∥BC1.同理可证BH∥AC1.∴AHBC1为平行四边形.∴S△AHB=S△ABC1.同理可证S△AHC=S△AB1C,S△BHC=S△A1BC.因此S△ABC=S△AHC+S△AHB+S△BHC=S△AB1C+S△ABC1+S△A1BC.三、强化训练1.如图6,AB为半圆的直径,C为半圆上一点,CD⊥AB,垂足为D,若CD=6,AD∶DB=3∶2,则AC·BC等于().图6A.15B.30C.60D.902.自圆外一点P,引圆的割线PAB、PCD,并连结AC、BD、AD、BC,则图中相似三角形的对数有().A.2对B.3对C.4对D.5对3.以AB为直径作一个半圆,圆心为O,C是半圆上一点,且OC2=AC·BC,则∠CAB=______.4.在△ABC中,∠C=3∠A,a=27,c=48,则b的值是______.5.已知⊙O中,半径r=5cm,AB、CD是两条平行弦,且AB=8cm,CD=6cm,求AC的长.6.一个内接于圆的六边形的五条边的长都为81,只有第六边AB 的长为31,求从B出发的三条对角线长的和.参考答案与提示1.B.先分别求出AD、DB,再用三角形面积公式得AC·BC=AB·CD.2.C.3.15°或75°,由三角形的面积公式及题设条件可得CD=(1/2)OC,从而∠AOC=30°,由圆的对称性可得有两种情况.4.35.先三等分弧,两次使用折弦定理即可算得.5.或5或7.分AB、CD在圆心同侧和异侧两种情况完成.先求出AB、CD间的距离.6.384.重复使用折弦定理即可.摘自《中学数学参考》。
数学圆的知识点总结

数学圆的知识点总结圆是几何中的一种基本图形,具有许多独特的性质和特征。
在数学中,圆是一个非常重要的概念,它涉及到许多不同的数学领域,包括几何、代数和微积分。
本文将从各个方面总结圆的知识点,希望能够帮助读者更好地理解和应用圆的相关知识。
一、圆的定义圆是一个平面图形,其上所有点到一个固定点的距离相等。
这个固定点叫做圆心,而相等的距离叫做半径。
圆通常用大写字母“O”表示圆心,用小写字母“r”表示半径。
通常情况下,圆可以用圆心O和半径r来表示。
二、圆的基本性质1. 圆的直径圆的直径等于半径的两倍,即d = 2r。
2. 圆的周长圆的周长等于直径乘以π,即C = πd或者C = 2πr。
3. 圆的面积圆的面积等于半径的平方乘以π,即A = πr²。
4. 圆的圆周角圆的圆周角是指圆心所包含的角度,它s等于一定方向下两个相邻半径的夹角。
5. 圆的弧长圆的弧长等于半径乘以圆周角的弧度值,即L = rθ。
6. 圆心角圆心角是指圆心所包含的角度,它等于弧长所对应的弧度数。
圆心角的角度大小等于圆周角的角度大小。
7. 圆的内切角和外切角圆的内切角是指在圆的内部,通过切线和相交弧所形成的角;圆的外切角是指在圆的外部,通过切线和相交弧所形成的角。
9. 圆锥、圆台和圆柱圆锥、圆台和圆柱是由圆所产生的几何体形状,在工程和实际生活中都有重要应用。
三、圆的相关定理1. 圆的切线定理圆上的切线与半径的平行线平方和等于切线与圆心的连线的平方。
2. 圆的切线与圆之间的位置关系直径是圆的切线,而且直径等于两条相交切线的和。
3. 圆的切线和切点的性质切线与切线的切点之间的夹角等于切线与圆心之间的夹角。
4. 圆的切线和弦的性质切线与圆内的弦之间的夹角等于这条弦所对应的圆心角的一半。
5. 圆的两条交叉弦的性质两条交叉的弦所对应的弧是线段所在圆所包含的圆心角的一半。
6. 圆的内切接着角圆的内切角是指一条切线和它的两个相交半径形成的角,它等于所对应的弧的一半。
圆的基本性质汇总

圆的基本性质汇总圆是平面上的一种特殊几何图形,具有许多基本性质。
以下是圆的一些基本性质的汇总。
1.定义性质:圆是由平面上每个点到一个固定点的距离相等的点的集合。
这个固定点被称为圆心,而相等的距离被称为半径。
2.弧:圆上的两个点之间的连线称为圆弧。
圆弧的长度等于圆心角的度数与圆的半径之积,也可以通过欧几里得的原理求解。
3.圆心角:圆心角是圆上的两条射线所夹的角,其中包括圆心的角。
圆心角的度数可以通过弧度公式求解,也可以用度数来表示。
一个圆的完整圆心角为360度或2π弧度。
4.圆上的点:圆上的任何点与圆心的距离等于圆的半径。
5.弦:两点在圆上的连线称为弦,可以是圆的直径(通过圆心的直径是对称的),也可以是其他长度小于直径的弦。
6.切线:切线是从圆上的一个点到圆的切点的直线。
7.弦弧定理:如果两条弦在圆的内部相交,那么它们所对应的弧是相等的。
8.切线定理:从一个点到圆的切点的切线是与半径垂直的。
如果两条切线相交,那么相交的角是外角,并且等于它们所对应的弧的一半。
9.弧长:弧长是圆上的一段弧的长度,可以通过圆心角的度数和圆的半径计算得到。
10.反弧:如果圆上的一段弧的两个端点相交,那么这段弧与它们所对应的圆心角称为反弧。
11.弓形:弓形是由一段弧和连接弧两个端点的线段组成的图形。
12.圆与直线的关系:一个圆与一条直线可以有三种关系。
如果圆和直线没有交点,那么它们是相离的;如果圆和直线有一个交点,那么它们是相切的;如果直线穿过圆,那么它们是相交的。
13.圆的面积:圆的面积公式为πr²,其中r是圆的半径。
这个公式可以通过将圆划分为无数个小扇形来计算。
14.圆周长:圆的周长等于直径乘以π,或者等于2πr,其中r是圆的半径。
15.圆的切线长度:如果从外部一点到圆的切点的切线与半径相交,那么切线长度是切点到圆心的距离的平方根乘以2以上是圆的一些基本性质的汇总。
理解这些性质对于解决与圆相关的数学问题非常重要,也有助于我们更好地理解三角学、几何学和数学中的其他概念和原理。
圆的基本性质

圆的基本性质【基础知识】知识点1:圆的对称性 (1)圆的旋转不变性圆具有旋转不变性,即绕圆心旋转__________后,仍与原来的圆重合;由于圆绕圆心旋转180°后与自身重合,圆是中心对称图形,对称中心是________; (2)圆的轴对称性圆是轴对称图形,它的对称轴是________________________________________________; 知识点2:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧; 逆定理及其运用知识点3:圆心角、弧、弦之间的关系(1)在______________中,相等的圆心角所对的弧相等,所对的弦相等;(2)在______________中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等;【经典例题】【例1】判断正误:(1)直径是圆的对称轴;(2)平分弦的直径垂直于弦; 【例2】若O 的半径为5,弦AB 长为8,求拱高;【例3】如图,O 的直径AB 和弦CD 相交于点E ,已知6AE cm =,2EB cm =,30CEA ∠=︒,求CD 的长;【例4】如图,在O 中,弦8AB cm =,OC AB ⊥于C ,3OC cm =,求O 的半径长。
【例5】如图1,AB是O的直径,CD是弦,AE CD⊥,垂足为E,BF CD⊥,垂足为F,EC和DF相等吗?说明理由;如图2,若直线EF平移到与直径AB相交于点P(P不与A、B重合),在其他条件不变的情况下,原结论是否改变?为什么?如图3,当EF∥AB时,情况又怎样?如图4,CD为弦,EC CD⊥,FD CD⊥,EC、FD分别交直径AB于E、F两点,你能说明AE和BF为什么相等吗?【巩固练习】1、判断:(1)垂直于弦的直线平分这条弦,并且平分弦所对的两条弧()(2)平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧()(3)经过弦的中点的直径一定垂直于弦()(4)圆的两条弦所夹的弧相等,则这两条弦平行()(5)弦的垂直平分线一定平分这条弦所对的弧()2、已知:如图,O中,弦AB∥CD,AB CD<,直径MN AB⊥,垂足为E,交弦CD于点F;图中相等的线段有;图中相等的劣弧有;3、已知:如图,O中,AB为弦,C为AB的中点,OC交AB于D,6AB cm=,1CD cm=,求O的半径OA。
圆的性质及相关定理

圆的性质及相关定理圆是几何学中的一个基本概念,是由平面上所有距离等于定值的点构成的图形。
在这篇文章中,我们将探讨圆的性质及相关定理,帮助读者更好地理解和应用圆的知识。
一、圆的基本性质1. 圆心和半径:每个圆都有一个圆心和一个半径。
圆心是圆上所有点的中心位置,通常用字母O表示。
半径是从圆心到圆上的任意点的距离,通常用字母r表示。
2. 直径:直径是通过圆心的任意两点间的线段。
直径的长度等于半径的两倍。
3. 弧:圆上两点之间的弧是连接这两点的圆上的一部分。
圆上的弧可以根据其长度分为弧长和弧度。
4. 弦:弦是连接圆上任意两点的线段。
直径是最长的弦。
5. 弧度和角度:弧度是一个与圆的半径相关的度量单位,用符号rad表示。
角度是以度为单位的度量,用符号°表示。
二、圆的定理1. 切线定理:从圆外一点引一条切线,切线与半径的连线垂直。
2. 切线与弦定理:切线和弦的交点处的角等于从该点到弦的两个割线所夹的弧对应的角。
3. 弧中角定理:在同一个圆上,弧所对的圆心角相等,而弧所对的弦所夹的角则相等。
4. 圆心角定理:在同一个圆上,圆心角是其所对弧的两倍。
5. 弧长定理:同样大小的圆心角所对应的弧长相等。
6. 切割圆定理:如果有两个弧相交于圆心,它们所对的圆心角互补(和为180°)。
三、应用示例1. 计算圆的面积:圆的面积公式为A = πr²,其中A表示面积,π是一个近似值,约等于3.14,r为半径。
2. 计算圆的周长:圆的周长公式为C = 2πr,其中C表示周长,π是一个近似值,约等于3.14,r为半径。
3. 判断点是否在圆内:计算点到圆心的距离,如果小于半径,则点在圆内。
4. 判断两个圆是否相交:计算两个圆心之间的距离,如果小于两个半径之和,则两个圆相交。
总结:本文介绍了圆的基本性质和相关定理。
通过学习圆的性质,我们可以更好地理解和应用圆的知识,解决与圆相关的几何问题。
希望本文对读者有所帮助,并在几何学学习中起到指导作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.12
答案 A
解析 作弦心距 OC,得 AC=BC=12×16=8.连接 AO,在 Rt△AOC 中空题
6.(2011·扬州)如图,⊙O 的弦 CD 与直径 AB 相交,若∠BAD=50°,则∠ ACD=__________度.
答案 40 解析 ∵AB 是⊙O 的直径, ∴∠ADB=90°. ∴∠B=90°-∠BAD=90°-50°=40°. ∴∠ACD=∠B=40°.
A.60°
B.50°
C.40°
D.30°
答案 B
解析 在△OBC 中,OB=OC,∠OCB=40°,
∴∠BOC=180°-2×40°=100°. ∴∠A=12∠BOC=12×100°=50°.
4.(2011·绍兴)一条排水管的截面如图所示.已知排水管的截面圆半径 OB =10,截面圆圆心 O 到水面的距离 OC 是 6,则水面宽 AB 是( )
D.点 B、C 均在圆 P 内
答案 C
解析 如图,AB=8,BP=3AP,得 BP=6,AP=2.在 Rt△APD 中,PD=
3 5 2+22=7>BP,所以点 B 在圆 P 内;在 Rt△BPC 中,PC= =9>PD,所以点 C 在圆 P 外.
3 5 2+62
2.(2011·凉山)如图,∠AOB=100°,点 C 在⊙O 上,且点 C 不与 A、B 重 合,则∠ACB 的度数为( )
答案 ①④
解析 ∵OC⊥AB,∴A C =B C =90°.∵AD 平分∠CAD, ∴∠CAD=∠BAD, CD = BD =45°.∴∠CAB===m==12 BC =45°, ∠DOB===m== BD =45°,∴∠CAD=∠DOB,AC∥OD; 在△ACO 中,AC>AO,AE 平分∠CAO,∴CE≠EO; 由 AC∥OD,得△ODE∽△CAE,而∠CAD=∠BAO,∠ACE≠∠AOD,∠AEC≠∠ AOD.∴△ACE 与△ADO 不相似,即△ODE 与△ADO 不相似; 连接 BD,有 BD=CD,可求得∠B=67.5°,又∵∠CED=∠AEO=67.5°,∴ ∠B=∠CED.又∵∠CDE=∠DOB=45°,∴△CDE∽△DOB,CDDO=CDEB,CD·DB= CE·DO,∴CD2=CE·12AB,即 2CD2=CE·AB. 故结论①、④正确. 三、解答题
∵AB=AE+BE=5+1=6,
∴DO=12AB=3.
在 Rt△DFO 中,OF= 32- 2 2 2=1, 在 Rt△OFE 中,OE=3-1=2,OF=1.∴∠AED=30°.
3
10.(2011·舟山)如图,AB 是半圆直径,半径 OC⊥AB 于点 O,AD 平分∠CAB 交弧 BC 于点 D,连接 CD、OD,给出以下四个结论:①AC∥OD;②CE=OE;③△ ODE∽△ADO;④2CD2=CE·AB.其中正确结论的序号是_______.
一、选择题
圆的基本性质
1.(2011·上海)矩形 ABCD 中,AB=8,BC=3 5,点 P 在边 AB 上,且 BP
=3AP,如果圆 P 是以点 P 为圆心,PD 为半径的圆,那么下列判断正确的是( )
A. 点 B、C 均在圆 P 外
B. 点 B 在圆 P 外、点 C 在圆 P 内
C. 点 B 在圆 P 内、点 C 在圆 P 外
1
A.16 B.10
C.8
D.6
答案 A
解析 在 Rt△OBC 中,OB=10,OC=6,∴BC= 102-62=8.
∵OC⊥AB, ∴AC=BC. ∴AB=2BC=2×8=16.
5.(2011·嘉兴)如图,半径为 10 的⊙O 中,弦 AB 的长为 16,则这条弦的
弦心距为( )
A.6
B.8
C.10
A.50°
B.80°或 50° C.130° D.50° 或 130°
答案 D
解析 当点 C 在优弧上,∠ACB=12∠AOB=50°;当点 C 在劣弧上,∠ACB
=180°-50°=130°.综上,∠ACB=50°或 130°.
3.(2011·重庆)如图,⊙O 是△ABC 的外接圆,∠OCB=40°,则∠A 的度 数等于( )
8.(2011·杭州)如图,点 A、B、C、D 都在⊙O 上, CD 的度数等于 84°, CA 是∠OCD 的平分线,则∠ABD+∠CAO=________.
答案 48° 解析 ∵OA=OC, ∴∠CAO=∠ACO. 又∵∠ABD=∠ACD, ∴∠ABD+∠CAO=∠ACD+∠ACO=∠DCO. 在△CDO 中,OC=OD,∠COD===m== CD =84°,
180°-84°
∴∠DCO=
2
=48°,即∠ABD+∠CAO=48°.
9.(2011·威海)如图,⊙O 的直径 AB 与弦 CD 相交于点 E,若 AE=5,BE= 1,CD=4 2,则∠AED=___________.
答案 30° 解析 连接 DO,画 OF⊥CD,垂足是 F.
11 ∴CF=DF=2CD=2×4 2=2 2.
(2)过点 O 作 OE⊥CD,E 为垂足,连接 OM. 在 Rt△OCE 中,OC=5,tan∠C=12,设 OE=x,则 CE=2x.由勾股定理得 x2 +(2x)2=52,解得 x1= 5,x2=- 5(舍去).
7.(2011·安徽)如图,⊙O 的两条弦 AB、CD 互相垂直,垂足为 E,且 AB= CD,已知 CE=1,ED=3,则⊙O 的半径是________________.
答案 5 解析 画 OM⊥AB,ON⊥CD,垂足分别为 M、N,连接 OD.
2
∵AB=CD, ∴OM=ON. 11
易证四边形 OMEN 是正方形.∵CN=DN=2CD=2×(1+3)=2, ∴EN=CN-CE=2-1=1. ∴ON=1. ∴在 Rt△DON 中,OD= 12+22= 5.
11.(2011·上海)如图,点 C、D 分别在扇形 AOB 的半径 OA、OB 的延长线上, 且 OA=3,AC=2,CD 平行于 AB,并与 A B 相交于点 M、N.
(1)求线段 OD 的长; (2)若 tan∠C=12,求弦 MN 的长.
解 (1)∵CD∥AB,∴∠OAB=∠C,∠OBA=∠D. ∵OA=OB,∴∠OAB=∠OBA.∴∠C=∠D.∴OC=OD. ∵OA=3,AC=2,∴OC=5.∴OD=5.