由视图到立体图形

合集下载

由三视图还原立体图形-PPT课件

由三视图还原立体图形-PPT课件
由三视图还原立体图形
例1:根据三视图中主视图、俯视图和左视图, 说出立体图形的名称。
隐藏主视图 隐藏俯视图
隐藏左视图
隐藏圆柱
隐藏三棱柱
隐藏长方体
三视图
隐藏主视图 隐藏点
隐藏左视图
隐藏俯视图
隐藏圆锥
隐藏三棱锥
三视图
圆柱无中轴
三视图
隐藏几何体
三视图
隐藏几何体
三视图
隐藏几何体 显示对象
H
例2:根据物体的三视图,描述物体的形状.
移动点 移动点 还原系列2个动作
三视图
移动点 移动点 线段系列2个动作
隐藏对象
移动隐藏几何体
三视图
隐藏对象
A
B
C
三视图
A
B
C
隐藏几何体
显示对象
三视图
隐藏几何体
根据下面的三视图,说出这个几何体是由几个正方体怎么组合而成的.
建筑物的形状
某建筑物模型的三视图如图所示,请你描述建造的建筑物是什么样 子的?共有几层?模型一共需要多少个小正方体?
反馈练习
隐藏对象
显示点 移动点 移动点 系列2个动作

画立体图形PPT教学课件

画立体图形PPT教学课件

(1)俯
视3
3

12 3
(2)

3 42视

21
3、一个仓库里堆积着正方体的货箱若干,要搬运 这些箱子很困难,可仓管员要落实箱子的数量, 就想出 一个办法:将这堆货物的三视图画出来。 你能根据三视图帮他清点一下箱子的数量吗?
正 视 图
左 视 图
俯 视 图
4、用小立方体搭一个几何体,使得它的正视图
• 3、生理负荷与练习密度和课的进行相吻合,使其 具有计划性和科学性。
• 4、课后的目标反馈能及时了解学生的学习状况。
五、教材技术要点、易出现错误、纠正方法:
• 1、技术要点:后蹬充分,髋部前送。体现在“松、大、 快、前”动作放松,步幅大,频率快,向前摆臂摆腿效果 好。
• 2、易犯错误:曲线跑;八字脚 • 3、纠正方法:A、沿直线跑时要求两眼平视前方,身体重
0刚 柔 并 济 不 低 头我们 心 中 有天 地
四 方 水 土 养 育 了我们 中 华 武 术 魂
中国古代书法家(一)
1、王羲之 2、欧阳询 3、柳公权 4、颜真卿 5、赵孟頫
弓站 似 一 棵


少 林 武当


3 2 _1
摇分
坐如
太极 八 卦
2. 3 _ 5 _.6__.1__7__._ 6. - ..
钟走 路 一阵 风 连 环掌
2. _3 _5___6 7 6 -
中 华有 神

___
xx x 0
一大 片
___
xx xx x 0
枪挑 一条 线
___
清风 剑在 手 第
xx xx xx x
一、 指导思想:
本课以《体育与健康》过渡性大纲为依据,以“健康第一”的 指导思想为宗旨,以学生为主体,教师为主导。培养学生的创 造性潜能为教学方法,以快速跑、游戏为主要内容,达到愉悦 身心,体验成功,掌握技能的教学目标。

《三视图》 知识清单

《三视图》 知识清单

《三视图》知识清单一、三视图的定义三视图是指能够正确反映物体长、宽、高尺寸的正投影工程图,分别是主视图、俯视图和左视图。

主视图是从物体的前面向后面投射所得的视图,能反映物体的前面形状;俯视图是从物体的上面向下面投射所得的视图,能反映物体的上面形状;左视图是从物体的左面向右面投射所得的视图,能反映物体的左面形状。

二、三视图的投影规律1、主视图和俯视图的长对正:也就是说,主视图和俯视图在水平方向上的长度是相等的。

2、主视图和左视图的高平齐:主视图和左视图在垂直方向上的高度是相等的。

3、俯视图和左视图的宽相等:俯视图和左视图在宽度方向上的尺寸是一致的。

这三个投影规律是绘制和阅读三视图的重要依据,必须牢记。

三、三视图的绘制步骤1、分析物体的结构形状:首先要仔细观察物体,了解其组成部分和各部分之间的相对位置关系。

2、确定主视图的方向:通常选择能最清晰地反映物体主要形状特征的方向作为主视图的投射方向。

3、绘制主视图:根据物体的实际尺寸和形状,按照投影规律画出主视图。

4、绘制俯视图:在主视图的下方,根据长对正的原则,画出俯视图。

5、绘制左视图:在主视图的右方,根据高平齐、宽相等的原则,画出左视图。

6、检查和修饰:完成三视图的绘制后,要仔细检查各视图之间的投影关系是否正确,尺寸是否标注完整,线条是否清晰等,并进行必要的修饰和整理。

四、三视图中的线条类型1、可见轮廓线:用粗实线绘制,表示物体的可见部分的轮廓。

2、不可见轮廓线:用虚线绘制,表示物体被遮挡的部分的轮廓。

3、中心线:用细点画线绘制,例如对称物体的对称中心线等。

五、由三视图还原立体图形这是三视图的一个重要应用,需要根据三视图所提供的信息,想象出物体的空间形状。

1、先从主视图入手,结合俯视图和左视图,确定物体的大致形状和结构。

2、分析各视图中线条的含义,特别是虚线所表示的不可见部分。

3、逐步构建物体的各个部分,注意它们之间的连接关系和相对位置。

六、三视图在实际生活中的应用1、机械制造:在设计和制造机械零件时,三视图是必不可少的工具,能够准确地表达零件的形状和尺寸,便于加工和装配。

由三视图想象出立体图形课件

由三视图想象出立体图形课件

解:物体是正五棱柱形状的,如图所示.
例3 一个几何体由大小相同的小立方块搭成,从上面看 到的几何体的形状如图所示,其中小正方形中的数字表 示在该位置的小立方块的个数,则从正面看到几何体的 形状是图中的( D )
解析:俯视图中,第一列最高有3个小立方块,第 二列最高有2个小立方块,第三列最高有3个小立方 块,因此,主视图从左到右可看到的小立方块个数 依次为3、2、3,故选D.
由三视图想象出立体图形
知识回顾 下面是哪个几何体的三视图?
主视图
左视图
俯视图
A
B
C
D
例题讲解 例1 如图,分别根据三视图(1) (2)说出立体图形的名称.
(先分别根据主视图、 俯视图和左视图想象立体图形的前面、上面和左侧面, 然后再综合起来考虑整体图形.
解:(1) 从三个方向看立体图形,视图都是矩形,可以想象出: 整体是 长方体 ,如图①所示;


(2) 从正面、侧面看立体图形,视图都是等腰三角形; 从上面看,视图是圆;可以想象出:整体是 圆锥 , 如图②所示.
例2 根据物体的三视图描述物体的形状.
分析:由主视图可知,物体的正面是正五边形; 由俯视图可知,由上向下看到物体有两个面的 视图是矩形,它们的交线是一条棱 (中间的实线 表示),可见到,另有两条棱 (虚线表示) 被遮挡; 由左视图可知,物体左侧有两个面是矩形, 它们的交线是一条棱 (中间的实线表示),可见 到;综合各视图可知,物体的形状是正五棱柱.
获取新知
归纳: 由三视图想象立体图形时,先分别根据主视图、
俯视图和左视图想象立体图形的前面、主面和左侧面 的局部形状,然后再综合起来考虑整体图形.

三视图全解

三视图全解

《立体图形》三视图知识点及解题思维全解知识点及解题思维:三视图:①理解三视图中包含立体图形的行、列、层②能从俯视图反推立体图形,并画出其他视图一.基础:画三视图(观察能力、空间想像力)主视图(从前往后看)看到的是列(每行个数的最大数)和层(每列上的最大层数),与行无关。

层,每列上的层数列数左视图(从左往右看)看到的是行(每列个数的最大数)和层(每行上的最大层数),与列无关。

从后往前排列层(每行层数的最大值)行(每列个数中最大值)俯视图(从上往下看)看到的是最底层的每行和每列的数字,与层无关。

最底层每行的个数最底层每列的个数二.题型(一)简单题:根据俯视图,画主视图与左视图(抓住三种视图的特点即可) 例:如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字 表示该位置的小立方块的个数。

画出它的主视图与左视图。

解题思路:俯视图能确定立体图的底面的行、列,可知这个几何体有三行三列。

上面的数字表示该列每个上面的层数。

那么从前往后看(主视图),最左边的是三个,中间是2个,最右边是4个,即从左往右看(左视图),最左边的是2个,中间的是3个,右边的是4个层行列24132(二)根据两种视图,判别立体图形的形状及组成数目。

1.中等题(空间想像力+逆向推理能力):题目告诉俯视图。

解题思路:在俯视图上标上表示每个方块位置上的层数的数字。

例:下面是几何体的主视图和俯视图,请求出这个几何体最多要向个小立方体块?最少要几个小立方体块?俯视图主视图11131131133333最多块数最少块数解题思路:从俯视图开始分析,可以几何体最底层有三行三列;结合主视图看,第一列的层数最多是3层,第二列的层数最多是3层,最三列的层数最多是1层。

所以要想组成的小方块数最多,可以让每列中的任一层数都是最大值;要想组成的小方块数最少,必须让每一列层数中最多出现一个最大值,而其余每列上的层数都为1。

即:2.高难题(空间想像力+逆向推理能力+分类讨论):题目未告诉俯视图 解题思路:先根据其它两种视图,画出俯视图,再标上表示层数的数字。

听课记录三视图

听课记录三视图

听课记录三视图
本节课的主要任务是引导学生完成由立体图形到视图,再由视图想到立体图形的复杂过程。

这对于刚刚接触几何的初一学生而言,无疑是一次较大的挑战,顺利地完成教学,对今后学习兴趣、信心的培养都是至关重要的,因此,我针对学生的心理特点及接受能力对教材做如下设计:首先我用苏轼的《题西林壁》巧妙地唤起学生的生活感受,让他们认识到视图的知识在生活中我们早有亲身体验,只是还没有形成概念,然后我再用“粉笔”这一简单的教具,让学生再次体会,加深认识,这样,教学与生活紧密相连,既有自然地导入课题,又消除学生对新知识的恐惧,同时还激发了学生浓厚的学习兴趣。

然后,我不适时地出示“三视图”这一概念,通过实验,让学生认识到视图就是由立体图形转化成的平面图形,并不断地训练、讨论、总结,得出画三视图的正确方法。

这时教师要巧妙点拨,学生如何从正面、上面、侧面三个角度来观察,既体现了学生的主体地位,又突出了教师的主导作用,锻炼了学生的动手操能力。

由视图到立体图形与上面的过程恰恰相反,需要学生根据视图进行想象,在大脑中构建一个立体形象。

我引导学生利用直观形象与生活中的实物进行联系,通过归纳、总结、对比的方法,有效的突破这一难点。

为了进一步地激发学生的学习兴趣,培养学生的想象能力和思维能力,可以让学生用一些小立方体随意摆出几种组合并描绘出它的视图,再由视图到立体图形的课堂训练。

最后,让学生归纳所学知识,进一步锻炼学生的概括能力,使知识系统化。

以上设计如有不妥之处,望老师们不吝赐教,我不胜感激。

由三视图想象立体图形3

由三视图想象立体图形3

课堂练习: 由三视图想象实物的形状:
由物知图——利用正方体组合提升空间想象力 如图都是由7个小立方体搭成的几何体,从不 同方向看几何体,分别画出它们的主视图、左视 图与俯视图,并在小正方形内填上表示该位置的 小正方体的个数.
(1)
(2)
(3)
(4)
做一做:由几个相同的小立方块搭成的几何体的 俯视图如图所示。方格中的数字表示该位置的小 方块的个数.请画出这个几何体的三视图。
2.锥体——有两个视图是三角形. 3.台体
圆台——有两个视图是等腰梯形
棱台——有两个视图是梯形 4.球——三个视图都是圆
上节课我们讨论了由立体图形(实物)画出三视图, 下面我们讨论由三视图想象出立体图形(实物)。
分析:由三视图想象立体图形时,要分别根据主视图、俯视图 和左视图想象立体图形的前面、上面和左侧面,然后再综合起 来考虑整体图形。
5.一个几何体的主视图和左视图如图所示,它是什么 几何体?请补画这个几何体的俯视图.
(第5题)
直三棱柱
(第6题)
6.一个直棱柱的主视图和俯视图如图所示.描述这 个直棱柱的形状,并补画它的左视图.
直五棱柱,底面是五边形
7、右图是由一些相同的小正方体构成的几何 体的 三视图,则构成这个几何体的小正方体 的个数是【 】 A.5 B.6 C.7 D.8
由三视图想象几何体 下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
正视图
侧视图
俯视图
四棱柱
由三视图想象几何体 下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
正视图
左视图
圆锥 俯视图
由三视图想象几何体 一个几何体的三视图如下,你能说出它是 什么立体图形吗?

三视图展开图与立体图形之间的相互关系

三视图展开图与立体图形之间的相互关系

拓展练习
(3)S侧 =2 60120 80 120 140 120 40800(mm2 ) .
S表 =S侧 +2S底
=40800+2 (80 140) 30 3 2
(40800 6600 3) mm2 .
小结
由三视图描述几何体,一般先根据各视图 想象从各个方向看到的几何体的形状,然后综 合起来确定几何体的形状,再根据三视图“长 对正、高平奇、宽相等”的关系,确定轮廓线 的位置,以及各个方向的尺寸,最后根据尺寸 进行计算。
分析:
(1)请描述这个几何体的形状;
(1)由俯视图,知这是
(2)按三视图的图上的实际尺寸(单位:mm), 一个直四棱柱.
画出它的展开图;
(2)沿四棱柱的母线展
(3)根据三视图的实际尺寸,求这个几何体的侧 开后即可得到图形.
面积和表面积.
(3)表面积=4个矩形的
面积+2个等腰梯形的面
积.
拓展练习
解:(1)由该几何体是直四棱住.其中底面是上底为80mm,下底为 140mm,高为 30 3 mm的等腰梯形,棱长为120mm . (2)它的展开图如答图所示.
例题讲解
图是由八个等边三角形组成的平面图形. (1)把下面的图形描在纸上,剪下来,叠一叠,你 能得出一个什么样的立体图形? (2)画出折叠成的立体图形的三视图; (3)如果等边三角形的边长为1,那么对应的立体 图形的表面积是多少?
分析:先根据 平面图形确定 出立体图形, 再得出该立体 图形的三视图 及其表面积.
例题讲解
解:(1)通过动手操作可知,立体图形为共底的两个正 四棱锥的组合图形,如图所示.
(2)立体图形的三视图,如图所示.
(3)表面积为 8 1 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题:下面是一立体图形的三视图,请根 据视图说出立体图形的名称. 正视图 左视图
俯视图
问题:下面是一立体图形的三视图,请根据 视图说出立体图形的形状. 正视图 左视图
俯视图
例4 试根据下列视图说出立体图形的名称。
(1)正 视 图 俯 视 图
正 (2)视 图 俯 视 图 左 视 图
左 视 图
问题探究
俯 视 图
猜一猜
三视图相同,立体物体的形状是否唯一?
主视图
左视图
俯视图
4、用小立方体搭一个几何体,使得它的正视图 和俯视图如下所示。这样的几何体只有一种吗? 它最少需要多少个小立方体? 正 最多呢? 视 图
俯 视图
最少摆法中其中之一所需个数: 最多时所需小立方块个数: 3+2+1+1+1+1+1=10 3+3+3+2+2+2+1=16
(2)
3 1 2 3 3
3
4 2
2 1
俯 视 图
2、如图所示,是由几个小立方体搭成的几何体的俯 视图,小正方形中的数字表示在该位置上的小立方 体的个数。请画出几何体的主视图和左视图。
1 2 3 1 2 3 4 1 1 2
正视图
左视图
试一试
1、你能根据下面的三视图来放出相应 的立方体组合吗?
正视图
【例1】如图是由几个小立方体块所搭几何体的俯视图, 小正方形中的数字表示在该位置小立块的个数,请画出 这个几何体的正视图和左视图。
做一做
1、如图所示的两幅图分别是几个小立方块所搭几何体 的俯视图,小正方形中的数字表示在该位置小立方块的 个数,请画出相应几何体的主视图、左视图。
如图,这是一个由小立方块所搭成的几何体的 俯视图,图中的数字表示在该位置上小立方块的 个数,请画出它的正视图和左视图。 (1) 俯 视 图
左视图
俯视图
1 2
俯视图
2、根据一下面三视图建造的建筑物是什么样子? 共有几层?一共需要多少个小立方体?
主视图
左视图
俯视图
3 3 1 1 2
俯视图
3 2 2 2 2
俯视图
3 2 1 1 2
俯视图
3、一个仓库里堆积着正方体的货箱若干,要搬运 这些箱子很困难,可仓管员要落实箱子的数量, 就想出 一个办法:将这堆货物的三视图画出来。 你能根据三视图帮他清点一下箱子的数量吗? 正 视 图 左 视 图
4.2 画立体图形
——由视图到立体图形
1.下面是某个圆锥的三视图,请根据正视图中 所标出的长度,求出左视图中的线段长度和俯 视图中圆的面积.
正视图 左视图
35
AB
20
·
俯视图
2.根据三视图说出物体的形 状 正视图 左视图
俯视图
O
1、试举出俯视图是圆的立体图形。
答:圆柱、球、圆锥。 注意:1)单一视图可能有多种形状 的立体图形。 2)由视图描述物体形状须 齐备三种视图。
相关文档
最新文档